WO2003091465A1 - Magnesium alloy for diecasting - Google Patents

Magnesium alloy for diecasting Download PDF

Info

Publication number
WO2003091465A1
WO2003091465A1 PCT/JP2002/004017 JP0204017W WO03091465A1 WO 2003091465 A1 WO2003091465 A1 WO 2003091465A1 JP 0204017 W JP0204017 W JP 0204017W WO 03091465 A1 WO03091465 A1 WO 03091465A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
component
weight
alloy
present
Prior art date
Application number
PCT/JP2002/004017
Other languages
French (fr)
Japanese (ja)
Inventor
Taketoshi Ishida
Shigeharu Kamado
Suguru Takeda
Original Assignee
Ahresty Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000331857A priority Critical patent/JP2002129272A/en
Application filed by Ahresty Corporation filed Critical Ahresty Corporation
Priority to PCT/JP2002/004017 priority patent/WO2003091465A1/en
Priority to AU2002249626A priority patent/AU2002249626A1/en
Publication of WO2003091465A1 publication Critical patent/WO2003091465A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent

Definitions

  • the present invention relates to a magnesium alloy for die-casting, and more particularly, to molding a product which is required to be exposed to high temperatures and at the same time is required to have high-temperature creep resistance, such as parts for automobiles, particularly parts around an engine. It relates to the magnesium alloy for die casting used. Background art
  • Products made of magnesium alloys are lighter than products made of aluminum alloys as well as iron-based alloys, and can be die-cast as materials for forming products that require strength and weight reduction. Magnesium alloys are attracting attention.
  • JIS standards include Mg-A1_Zn_Mn-based alloy (AZ91D alloy) and Mg-A1-Mn-based alloy (AM60B alloy).
  • Mg-A1_Zn_Mn-based alloy AZ91D alloy
  • Mg-A1-Mn-based alloy AM60B alloy.
  • Magnesium alloys lose strength at high temperatures of around 120 ° C, so they cannot be used for products that require heat-resistant strength, such as parts around automobile engines.
  • an alloy such as Mg—A 1 -RE (Rare Earth), in which a rare earth element (RE) is added has been proposed by Dow Chemical Co., Ltd. of the United States, and others.
  • the AE42 standard magnesium alloy proposed by Dow Chemical in the United States does not have sufficient high-temperature creep strength, so it is subjected to high temperatures of about 150 ° C under pressure, such as when bolted. It cannot be used for products that require particularly high heat resistance, such as exposed parts. No examples have been used.
  • any of the known magnesium alloys has fluidity during die casting (so-called molten metal flowability, the same applies hereinafter) and hot cracking (high heat cracking that occurs immediately after casting). (4) There was a problem with the formability, and it was not suitable for use in mass-produced products.
  • the present invention has been made on the basis of such knowledge, and is excellent in moldability (fluidity) and hardly causes hot cracking in die-casting. Therefore, the present invention is suitable for mass-produced products.
  • An object of the present invention is to provide a magnesium alloy for die casting that has excellent high-temperature creep resistance and can be used for products such as parts around an engine of an automobile that requires heat resistance in a pressurized state.
  • the magnesium alloy for die casting according to the present invention comprises, by weight, 0.5 to 8% of zinc, 1 to 10% of aluminum, 1 to 3% of calcium, and 3% of rare earth element. % Or less, with the balance being magnesium and unavoidable impurities.
  • the dumbbell component is set to 0.5 to 4% by weight in order to further improve the formability (that is, the flowability of the molten metal), prevent the occurrence of hot cracking, and improve the high-temperature creep resistance.
  • Aluminum component is 4 to 10% by weight
  • rare earth element component is 1 to 10% by weight. Preferably it is 3 ° / o.
  • manganese is contained in the magnesium alloy for die casting in a weight ratio of 0.1 to 2.0%, more preferably 0.15 to 1.5%. It is good to add.
  • rare earth elements examples include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, euphyllium, gadolinium, tenorebium, dysprosium, homium, je / rebium, thulium, ytterbium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium power
  • misch metal which is a cerium-group rare earth natural alloy containing praseodymium, n
  • FIG. 1 is a graph showing the influence on the flow length (fluidity) as the ⁇ component increases in the embodiment of the magnesium alloy according to the present invention.
  • FIG. 2 is also a graph showing the effect on creep strain as the ⁇ component increases in the example of the present invention.
  • FIG. 3 is a graph showing the effect of increasing the ⁇ ⁇ component on hot tearing in the example of the present invention.
  • FIG. 4 is a graph showing the effect on creep strain when the A1 component is added to the Mg—Zn alloy in the example of the present invention.
  • FIG. 5 is a graph showing the effect on hot cracking when the A1 component is added to the Mg—Zn alloy in the example of the present invention.
  • FIG. 6 is a graph showing the effect on creep strain when the Ca component is added to the Mg—Zn—4A1 alloy in the example of the present invention.
  • FIG. 7 is a graph showing the effect on hot cracking when a Ca component is added to the Mg—Zn-4A1 alloy in the example of the present invention.
  • FIG. 8 is a graph showing the effect of the addition of the Ca component to the Mg_Zn-4A1 alloy in the embodiment of the present invention on the occurrence of a hot junction failure.
  • FIG. 9 is a graph showing the effect of the RE component added to the Mg—Zn—4A 1-1 Ca alloy on the tarry strain in the example of the present invention.
  • FIG. 10 is a graph showing the effect on hot cracking when an RE component is added to the Mg_Zn-4A1-1Ca alloy in the example of the present invention.
  • FIG. 11 is a graph showing the effect on creep strain when the Mn component is added to the Mg—Zn—A 1 —Ca_RE alloy in the example of the present invention.
  • FIG. 12 is a graph showing the effect on hot cracking when the Mn component is added to the Mg—Zn—A1-Ca—RE alloy in the example of the present invention.
  • FIG. 13 is a graph showing high-temperature crepe resistance in Examples of the present invention and Comparative Examples.
  • FIG. 14 is a graph showing the flow length (fluidity) in Examples of the present invention and Comparative Examples.
  • FIG. 15 is a graph showing hot cracking properties in Examples of the present invention and Comparative Examples.
  • zinc (Zn) is contained in a weight ratio of 0. 5 to 8%, and anoremium (A1) 1 to 1: LO%, calcium (Ca) 1 to 3%, and rare earth element (RE) 3% or less, the balance being magnesium and unavoidable It consists of impurities and those containing 0.10 to 2.0% of manganese (Mn) in the above components.
  • the Zn (zinc) component added as a component of the present magnesium alloy has the function of expanding the solidification range of the magnesium alloy and improving the fluidity during die casting.
  • the Zn component increases, the thermally unstable Mg—Zn compound increases and the high-temperature creep resistance tends to decrease.
  • the Mg_Zn compound is present, as shown in the graph of FIG. 3, there is a tendency that hot cracking tends to occur.
  • the Zn component is added at a maximum weight ratio of 0.5 to 8%, preferably 0.5 to 4%, and more preferably 2 to 4%. Add within the range. That is, as shown in FIG. 1, if the amount of the 11 components is less than 0.5% by weight, the effect of improving the fluidity (fluidity) at the time of die casting cannot be exerted, so 0.5% by weight or more is added. There is a need. However, as shown in FIG. 2, the high-temperature creep resistance tended to decrease as the Zn content increased, and as shown in FIG. 3, the Zn content was 4 wt.
  • the addition amount of the Zn component is set to be in a range of 0.5% to 8 ° / 0 at maximum by weight, and preferably in a range of 0.5% to 4%.
  • a l (aluminum) component, thermally stable M g 3 2 (A l, Z n) by adding the M g _ Z n alloy was 4 9 compound precipitation, shown in Figure 4 As shown in Fig. 5, it has the effect of suppressing hot cracking as well as improving the high-temperature creep resistance, but the amount of intermetallic compound also increases with the increase of the A1 component, and grain boundary precipitation occurs. Since the brittleness is reduced due to excessive amount, in the magnesium alloy of the present invention, the A1 component is added in a weight ratio of 1% to 10%, preferably in a range of 4% to 10%.
  • the amount of one component added is in the range of 1% to 10% by weight, preferably in the range of 4% to 10%.
  • the Ca (calcium) component becomes a Mg—Zn—Ca compound by combining with the thermally unstable Mg—Zn alloy, and as shown in FIG. While it has the effect of improving the heat resistance, as shown in Fig. 7, the amount of intermetallic compound increases with the increase in the amount of addition, and there is a tendency for hot cracking to occur easily. As shown in the figure, there is also a tendency for the apparent viscosity of the molten metal to increase and for the product to have poor hot junctions and to become chewy.
  • the Ca component is added in a range of 1% to 3% by weight. If the content of Ca is less than 1% by weight, the effect of improving the high-temperature creep resistance can hardly be expected as shown in FIG. 6, while if the content of Ca exceeds 3% by weight, it can be seen in FIG. And as shown in Fig. 8 The incidence of poor hot water borders becomes extremely high.
  • the magnesium alloy of the present invention by adding the Ca component in the above range, an A1-Ca-based compound which is an intermetallic compound is generated, and this compound covers the entire surface of dendrites or crystal grain boundaries. By covering, the weakening of the artificial metal structure is suppressed.
  • the RE (rare earth element) component forms an Mg_RE compound and combines with the A1 component added at the same time to form an A1-RE compound, resulting in high temperature creep resistance as shown in Fig. 9. There is a function to improve. In other words, in combination with the dendrites or the A1-Ca-based compound covering the grain boundaries, the resulting alloy has a high deformation resistance in a high-temperature region and improves the high-temperature creep resistance. You. However, as shown in FIG. 10, an increase in the RE component increases the cost of the magnesium alloy, and at the same time, increases the amount of the intermetallic compound to easily cause hot cracking.
  • the RE component is added in a weight ratio of 3% or less, preferably in the range of 1% to 3%.
  • the amount of the RE component is less than 1% by weight, the effect of improving the high-temperature creep resistance can hardly be expected. If the amount of the RE component exceeds 3% by weight, hot cracking increases as shown in FIG. Further, the Mn (manganese) component is added to the magnesium alloy containing Zn—A 1—Ca—RE to form a solid solution with the Mg component to improve the resistance to solid solution and to improve the power resistance. As shown in Fig. 11, it has the function of improving the creep resistance at high temperatures.
  • the Mn component is added in a weight ratio of 0.10 to 2.0%, preferably in a range of 0.15% to 1.50%. If the Mn content is less than 0.10% by weight, the effect of improving high temperature creep resistance can hardly be expected as shown in FIG. If it exceeds 10% by weight, as shown in Fig. 12, the incidence of hot cracking becomes extremely high.
  • Table 1 summarizes data on the alloy composition, creep strain, and formability of Examples and Comparative Examples of the present invention. .
  • the RE (rare earth element) in the alloy composition cerium 50 weight 0/0, lanthanum 25% by weight, praseodymium 4 wt%, neodymium 20 wt%, samarium 1 wt%, was used mischmetal containing.
  • the die casting was performed at a mold temperature of 200 ° C, a forming temperature of 700 ° C, and a forming pressure of 6 OMPa, and a creep test was performed at a temperature of 175 ° C at a temperature of 5 OMpa. This was done with great effort.
  • table 1
  • Comparative Example 1 is JIS standard AZ91 D material.
  • Comparative Example 2 is AE42 material from Dow Chemical Company, USA.
  • Comparative Example 3 is an example material disclosed in JP-A-7-331375.
  • a die-cast structure using the magnesium alloy according to the present invention is a comparative example (AZ91D material which is a JIS standard product of magnesium alloy, Dow Chemical Co., USA) Creep strain (%) is in the range of 0.3% to 0.6%, and the flow length during manufacturing is sufficient, from 19 mm to 22 mm. It is understood that the steel is excellent in formability, with a hot cracking rate of about 0% to 3%.
  • the magnesium alloy for die-casting which concerns on this invention, it is excellent in the formability (hot-water flow property) and hard to generate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

A magnesium alloy for a diecasting, which comprises, in wt %, 0.5 to 4 % of zinc, 4 to 10 % of aluminum, 1 to 3 % of calcium, 3 % or less of a rare earth element and the balanced amount of magnesium and inevitable impurities. The magnesium alloy for a diecasting is advantageous in that it combines excellent casting property (flowability of a melt), less susceptibility to hot cracking and excellent resistance to high temperature creeping.

Description

U 書  U letter
ダイカスト用マグネシウム合金 技術分野  Technical field of magnesium alloy for die casting
本発明は、 ダイカスト用マグネシウム合金に関し、 更に詳しくは、 自動車用部 品、 特にエンジン回りの部品のように、 高温下にさらされると同時に耐高温クリ 一プ性が求められる製品を成形するのに用いられるダイカスト用マグネシウム合 金に関するものである。 背景技術  The present invention relates to a magnesium alloy for die-casting, and more particularly, to molding a product which is required to be exposed to high temperatures and at the same time is required to have high-temperature creep resistance, such as parts for automobiles, particularly parts around an engine. It relates to the magnesium alloy for die casting used. Background art
マグネシゥム合金で成形された製品は、 鉄系合金はもちろんのことアルミニゥ ム合金で成形された製品と比べても軽量であり、 強度と軽量化が求められる製品 を成形するための素材としてダイカスト铸造可能なマグネシウム合金が注目され ている。  Products made of magnesium alloys are lighter than products made of aluminum alloys as well as iron-based alloys, and can be die-cast as materials for forming products that require strength and weight reduction. Magnesium alloys are attracting attention.
ダイカスト鎵造が可能なマグネシウム合金として、 J I S規格には Mg— A 1 _Z n_Mn系合金 (AZ 91 D合金) や Mg— A 1一 Mn系合金 (AM 60 B 合金) 等があるが、 これらのマグネシウム合金は 120°C程度の高温下で強度が 低下してしまうので、 自動車用エンジン回りの部品のように耐熱強度が要求され る製品には使用できない。  As magnesium alloys that can be die cast, JIS standards include Mg-A1_Zn_Mn-based alloy (AZ91D alloy) and Mg-A1-Mn-based alloy (AM60B alloy). Magnesium alloys lose strength at high temperatures of around 120 ° C, so they cannot be used for products that require heat-resistant strength, such as parts around automobile engines.
そこで、 マグネシウム合金の耐熱強度を改良するべく、 希土類元素 (RE) を 添カ卩した Mg— A 1 -RE (Rare Earth) 系合金が、 米国ダウ ·ケミカル社など 力 ら提案された。 しかし、 例えば米国ダウ 'ケミカル社から提案された AE 42 規格のマグネシウム合金は、 耐高温クリープ強度が十分ではないので、 ボルトで 締結されるなど加圧された状態で 150°C程度の高温下にさらされるような特に 耐熱強度が要求される製品には使用できなず、 自動車のエンジン回りの部品に使 用された例はない。 Therefore, in order to improve the heat resistance of magnesium alloys, an alloy such as Mg—A 1 -RE (Rare Earth), in which a rare earth element (RE) is added, has been proposed by Dow Chemical Co., Ltd. of the United States, and others. However, for example, the AE42 standard magnesium alloy proposed by Dow Chemical in the United States does not have sufficient high-temperature creep strength, so it is subjected to high temperatures of about 150 ° C under pressure, such as when bolted. It cannot be used for products that require particularly high heat resistance, such as exposed parts. No examples have been used.
加えて、 既知のマグネシウム合金はいずれも、 ダイカスト铸造に際して流動性 (いわゆる、 溶湯の湯流れ性、 以下同じ。) や熱間割れ性 (铸造直後に発生する 高熱割れのことを言う。) などの铸造性に問題があり、 量産製品への使用には不 向きであった。  In addition, any of the known magnesium alloys has fluidity during die casting (so-called molten metal flowability, the same applies hereinafter) and hot cracking (high heat cracking that occurs immediately after casting). (4) There was a problem with the formability, and it was not suitable for use in mass-produced products.
—般的に、 マグネシウム合金に亜鉛を添加すると、 ダイカスト鎳造時の铸造性 (湯流れ性) は向上するが亜鉛の増加に伴つて耐高温クリープ性が低下すると思 われており、 事実そうではあるが、 本発明者等は、 同時に所要量のアルミニウム とカルシウム及び希土類元素を添加することにより、 耐高温クリ一プ性を向上さ せることが可能であることを見出した。 —Generally, when zinc is added to a magnesium alloy, it is thought that the formability (fluidity) during die-casting is improved, but the high-temperature creep resistance is reduced with an increase in zinc. However, the present inventors have found that it is possible to improve high-temperature creep resistance by simultaneously adding the required amounts of aluminum, calcium, and a rare earth element.
本発明はこのような知見に基づいてなされたものであり、 ダイカスト铸造に際 して鎳造性 (湯流れ性) に優れ且つ熱間割れが生じにくく、 よって、 量産製品の 铸造に適すると共に、 耐高温クリープ性に優れ、 加圧された状態で耐熱強度が要 求される自動車のエンジン回りの部品のような製品にも使用可能なダイカスト用 マグネシゥム合金を提供することを目的とする。  The present invention has been made on the basis of such knowledge, and is excellent in moldability (fluidity) and hardly causes hot cracking in die-casting. Therefore, the present invention is suitable for mass-produced products, An object of the present invention is to provide a magnesium alloy for die casting that has excellent high-temperature creep resistance and can be used for products such as parts around an engine of an automobile that requires heat resistance in a pressurized state.
発明の開示  Disclosure of the invention
上記した目的を達成するために、 本発明に係るダイカスト用マグネシウム合金 は、 重量比で、 亜鉛 0 . 5〜8 %と、 アルミニウム 1〜1 0 %と、 カルシウム 1 〜3 %と、 希土類元素 3 %以下を含み、 残部がマグネシウム及び不可避的不純物 からなる事を特徴としたものである。  In order to achieve the above object, the magnesium alloy for die casting according to the present invention comprises, by weight, 0.5 to 8% of zinc, 1 to 10% of aluminum, 1 to 3% of calcium, and 3% of rare earth element. % Or less, with the balance being magnesium and unavoidable impurities.
この際、 鎵造性 (すなわち湯流れ性) をより向上させ熱間割れを生じにくし且 っ耐高温クリープ性を向上させるために、 前記亜鈴成分を重量比で 0 . 5〜4 % とし、 アルミニウム成分を重量比で 4〜1 0 %、 希土類元素成分を重量比で 1〜 3 °/oとすることが好ましい。 At this time, the dumbbell component is set to 0.5 to 4% by weight in order to further improve the formability (that is, the flowability of the molten metal), prevent the occurrence of hot cracking, and improve the high-temperature creep resistance. Aluminum component is 4 to 10% by weight, rare earth element component is 1 to 10% by weight. Preferably it is 3 ° / o.
また、 耐高温クリープ性を更に向上させるために、 前記ダイカスト用マグネシ ゥム合金に、 マンガンを重量比で 0 . 1 0〜2 . 0 %、 更に好ましくは 0 . 1 5 〜1 . 5 0 %添加すると良い。  In order to further improve the high-temperature creep resistance, manganese is contained in the magnesium alloy for die casting in a weight ratio of 0.1 to 2.0%, more preferably 0.15 to 1.5%. It is good to add.
上記希土類元素としては、 スカンジウム, イットリウム, ランタン, セリウム , プラセオジム, ネオジム, プロメチウム, サマリウム, ユウ口ピウム, ガドリ 二ゥム, テノレビゥム, ジスプロシウム, ホ ミゥム, ェ /レビゥム, ツリウム, ィ ッテルビウム, ルテチウム, 力 ら選ばれた 1種または 2種以上を用いることがで きるが、 これらの希土類元素は単体として分離すると非常に高価であるので、 '実 際の添加に際しては、 比較的安価でセリウム, ランタン, プラセオジム, ネオジ ム, サマリウム, 等を含んでいるセリウム族希土類の自然合金であるミッシュメ タルを用いることが好ましい。 図面の簡単な説明  Examples of the rare earth elements include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, euphyllium, gadolinium, tenorebium, dysprosium, homium, je / rebium, thulium, ytterbium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium, ruthenium power One or more selected from these can be used, but these rare earth elements are very expensive if separated as a simple substance. It is preferable to use misch metal, which is a cerium-group rare earth natural alloy containing praseodymium, neodymium, samarium, and the like. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係るマグネシゥム合金の実施例における Ζ η成分増加に伴 う流動長 (湯流れ性) への影響を示すグラフである。  FIG. 1 is a graph showing the influence on the flow length (fluidity) as the Ζη component increases in the embodiment of the magnesium alloy according to the present invention.
第 2図は、 同様に本発明実施例における Ζ η成分増加に伴うクリープひずみへ の影響を示すグラフである。  FIG. 2 is also a graph showing the effect on creep strain as the Ζη component increases in the example of the present invention.
第 3図は、 同本発明実施例における Ζ η成分増加に伴う熱間割れへの影響を示 すグラフである。  FIG. 3 is a graph showing the effect of increasing the に η component on hot tearing in the example of the present invention.
第 4図は、 同本発明実施例における M g— Z n合金に A 1成分を添加したとき のクリープひずみへの影響を示すグラフである。  FIG. 4 is a graph showing the effect on creep strain when the A1 component is added to the Mg—Zn alloy in the example of the present invention.
第 5図は、 同本発明実施例における M g— Z n合金に A 1成分を添加したとき の熱間割れへの影響を示すグラフである。 第 6図は、 同本発明実施例における Mg— Z n— 4 A 1合金に C a成分を添加 したときのクリープひずみへの影響を示すグラフである。 FIG. 5 is a graph showing the effect on hot cracking when the A1 component is added to the Mg—Zn alloy in the example of the present invention. FIG. 6 is a graph showing the effect on creep strain when the Ca component is added to the Mg—Zn—4A1 alloy in the example of the present invention.
第 7図は、 同本発明実施例における Mg— Zn-4A 1合金に C a成分を添加 したときの熱間割れへの影響を示すグラフである。  FIG. 7 is a graph showing the effect on hot cracking when a Ca component is added to the Mg—Zn-4A1 alloy in the example of the present invention.
第 8図は、 同本発明実施例における Mg_Z n— 4 A 1合金に C a成分を添加 したときの湯境不良発生への影響を示すダラフである。  FIG. 8 is a graph showing the effect of the addition of the Ca component to the Mg_Zn-4A1 alloy in the embodiment of the present invention on the occurrence of a hot junction failure.
第 9図は、 同本発明実施例における Mg— Zn— 4A 1— 1 C a合金に RE成 分を添加したときのタリープひずみへの影響を示すグラフである。  FIG. 9 is a graph showing the effect of the RE component added to the Mg—Zn—4A 1-1 Ca alloy on the tarry strain in the example of the present invention.
第 10図は、 同本発明実施例における Mg_Zn— 4 A 1― 1 C a合金に RE 成分を添加したときの熱間割れへの影響を示すグラフである。  FIG. 10 is a graph showing the effect on hot cracking when an RE component is added to the Mg_Zn-4A1-1Ca alloy in the example of the present invention.
第 11図は、 同本発明実施例における Mg— Zn— A 1— C a_RE合金に M n成分を添加したときのクリープひずみへの影響を示すグラフである。  FIG. 11 is a graph showing the effect on creep strain when the Mn component is added to the Mg—Zn—A 1 —Ca_RE alloy in the example of the present invention.
第 12図は、 同本発明実施例における Mg— Z n— A 1— C a— RE合金に M n成分を添加したときの熱間割れへの影響を示すグラフである。  FIG. 12 is a graph showing the effect on hot cracking when the Mn component is added to the Mg—Zn—A1-Ca—RE alloy in the example of the present invention.
第 13図は、 本発明の実施例と比較例における耐高温クレープ性を示すグラフ である。  FIG. 13 is a graph showing high-temperature crepe resistance in Examples of the present invention and Comparative Examples.
第 14図は、 本発明の実施例と比較例における流動長 (湯流れ性) を示すダラ フである。  FIG. 14 is a graph showing the flow length (fluidity) in Examples of the present invention and Comparative Examples.
第 15図は、 本発明の実施例と比較例における熱間割れ性を示すグラフである  FIG. 15 is a graph showing hot cracking properties in Examples of the present invention and Comparative Examples.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の最良の形態を具体的に説明する。  Hereinafter, the best mode of the present invention will be specifically described.
本発明に係るダイカスト用マグネシゥム合金は、 重量比で亜鉛 (Zn) を 0 5〜8%と、 ァノレミニゥム (A1) を 1〜: L O%と、 カルシウム (C a) を 1〜 3%と、 そして希土類元素 (RE) を 3%以下含み、 残部がマグネシウム及び不 可避的不純物からなるものと、 上記成分に更にマンガン (Mn) を 0. 10〜2 . 0%含むものとからなる。 In the magnesium alloy for die casting according to the present invention, zinc (Zn) is contained in a weight ratio of 0. 5 to 8%, and anoremium (A1) 1 to 1: LO%, calcium (Ca) 1 to 3%, and rare earth element (RE) 3% or less, the balance being magnesium and unavoidable It consists of impurities and those containing 0.10 to 2.0% of manganese (Mn) in the above components.
本マグネシウム合金の成分として添加する Zn (亜鉛) 成分は、 第 1図のグラ フで示されるように、 マグネシウム合金としての凝固範囲を広げてダイカスト铸 造時における流動性を向上させるはたらきがある反面、 第 2図のグラフで示され るように、 Z n成分の増加に伴って熱的に不安定な Mg— Z n化合物が増加し、 耐高温クリープ性が低下する傾向が見られる。 また、 Mg_Zn化合物が多量に 存在すると、 第 3図のグラフで示されるように、 熱間割れが発生しやすくなる傾 向も見ら る。 し力 し、 同時に添加する A 1 (アルミニウム) 成分と協働して、 熱的に安定な Mg32 (Al , Zn) 49化合物が析出して耐高温クリープ性を向 上させると同時に、 M g— Z n化合物の発生を抑制して熱間割れを抑制する傾向 も見られた。 As shown in the graph of Fig. 1, the Zn (zinc) component added as a component of the present magnesium alloy has the function of expanding the solidification range of the magnesium alloy and improving the fluidity during die casting. As shown in the graph of FIG. 2, there is a tendency that as the Zn component increases, the thermally unstable Mg—Zn compound increases and the high-temperature creep resistance tends to decrease. In addition, when a large amount of the Mg_Zn compound is present, as shown in the graph of FIG. 3, there is a tendency that hot cracking tends to occur. In combination with the simultaneously added A 1 (aluminum) component, a thermally stable Mg 32 (Al, Zn) 49 compound precipitates to improve high-temperature creep resistance, — There was also a tendency to suppress the generation of Zn compounds and hot cracking.
そこで、 本発明に係るマグネシウム合金においては、 Zn成分を重量比で最大 0. 5〜 8%の範囲で添カ卩し、 好ましくは 0. 5〜4%の範囲、 更に好ましくは 2〜4%の範囲で添加する。 すなわち、 第 1図に示す通り、 11成分が0. 5% 重量%未満ではダイカスト铸造時における流動性 (湯流れ性) の向上効果を発揮 し得なくなるので、 0. 5重量%以上を添加する必要がある。 し力 し、 第 2図に 示す通り、 Zn成分の増加に伴って耐高温クリープ性が低下する傾向が見られこ とと、 第 3図に示す通り、 Zn成分が 4重量。/0を超えると熱間割れが発生しやす くなり、 8重量%を超えると熱間割れが極端に発生しやすくなる。 従って、 Zn 成分の添加量を、 重量比で最大 0. 5%〜8°/0の範囲、 好ましくは 0. 5%〜4 %の範囲とするものである。 また、 A l (アルミニウム) 成分は、 M g _ Z n合金に添加することにより熱 的に安定な M g 3 2 (A l, Z n ) 4 9化合物が析出して、 第 4図に示すごとく耐 高温クリ一プ性を向上させると同時に、 第 5図に示すごとく熱間割れを抑制する はたらきがあるが、 A 1成分の増加に伴って同時に金属間化合物量も増加し、 粒 界析出過多により脆性が低下するので、 本発明のマグネシウム合金においては、 A 1成分を重量比で 1 %〜 1 0 %の範囲で添加し、 好ましくは 4 %〜 1 0 %の範 囲で添加する。 Therefore, in the magnesium alloy according to the present invention, the Zn component is added at a maximum weight ratio of 0.5 to 8%, preferably 0.5 to 4%, and more preferably 2 to 4%. Add within the range. That is, as shown in FIG. 1, if the amount of the 11 components is less than 0.5% by weight, the effect of improving the fluidity (fluidity) at the time of die casting cannot be exerted, so 0.5% by weight or more is added. There is a need. However, as shown in FIG. 2, the high-temperature creep resistance tended to decrease as the Zn content increased, and as shown in FIG. 3, the Zn content was 4 wt. If it exceeds 0 , hot cracking is likely to occur, and if it exceeds 8% by weight, hot cracking is extremely likely to occur. Therefore, the addition amount of the Zn component is set to be in a range of 0.5% to 8 ° / 0 at maximum by weight, and preferably in a range of 0.5% to 4%. Also, A l (aluminum) component, thermally stable M g 3 2 (A l, Z n) by adding the M g _ Z n alloy was 4 9 compound precipitation, shown in Figure 4 As shown in Fig. 5, it has the effect of suppressing hot cracking as well as improving the high-temperature creep resistance, but the amount of intermetallic compound also increases with the increase of the A1 component, and grain boundary precipitation occurs. Since the brittleness is reduced due to excessive amount, in the magnesium alloy of the present invention, the A1 component is added in a weight ratio of 1% to 10%, preferably in a range of 4% to 10%.
すなわち、 第 4図に示す通り、 A 1成分が重量比で 1 %未満では耐高温タリー プ性を向上させる効果をほとんど発揮し得なくなり、 好ましくは 4重量%以上を 必要とし、 また第 5図に示す通り、 A 1成分が 4重量%未満では熱間割れを抑制 するはたらきをほとんど発揮し得なくなり、 1 0重量%を超えると熱間割れが極 端に多くなつてしまう。 従って、 本発明に係るマグネシウム合金においては、 A That is, as shown in FIG. 4, when the A1 component is less than 1% by weight, the effect of improving the high-temperature anti-tarnish property is hardly exhibited, and preferably 4% by weight or more is required. As shown in the figure, when the A1 component is less than 4% by weight, the function of suppressing hot cracking can hardly be exhibited, and when it exceeds 10% by weight, hot cracking becomes extremely large. Therefore, in the magnesium alloy according to the present invention, A
1成分の添加量を、 重量比で 1 %〜 1 0 %の範囲、 好ましくは 4 %〜 1 0 %の範 囲とするものである。 The amount of one component added is in the range of 1% to 10% by weight, preferably in the range of 4% to 10%.
また、 C a (カルシウム) 成分は、 熱的に不安定な M g— Z n合金と化合する ことにより M g— Z n— C a化合物となって、 第 6図に示すごとく、 耐高温タリ 一プ性を向上させるはたらきがある反面、 第 7図に示すごとく、 添加量の増加に 伴って金属間化合物量が増加して熱間割れが発生しやすくなる傾向が見られ、 し かも第 8図に示すごとく、溶湯の見かけの粘度が上昇して製品に湯境不良が発生 しゃすくなる傾向も見られる。  In addition, the Ca (calcium) component becomes a Mg—Zn—Ca compound by combining with the thermally unstable Mg—Zn alloy, and as shown in FIG. While it has the effect of improving the heat resistance, as shown in Fig. 7, the amount of intermetallic compound increases with the increase in the amount of addition, and there is a tendency for hot cracking to occur easily. As shown in the figure, there is also a tendency for the apparent viscosity of the molten metal to increase and for the product to have poor hot junctions and to become chewy.
そこで、 本発明のマグネシウム合金においては、 C a成分を重量比で 1 %〜 3 %の範囲で添加するものである。 C a成分が 1重量%未満では、 第 6図に示す通 り、 耐高温クリープ性を向上させる効果がほとんど期待できなくなり、 かと言つ て C a成分が 3重量%を超えると、 第 7図及び第 8図に示す通り、 熱間割れ及ぴ 湯境不良の発生率が極端に多くなってしまう。 Therefore, in the magnesium alloy of the present invention, the Ca component is added in a range of 1% to 3% by weight. If the content of Ca is less than 1% by weight, the effect of improving the high-temperature creep resistance can hardly be expected as shown in FIG. 6, while if the content of Ca exceeds 3% by weight, it can be seen in FIG. And as shown in Fig. 8 The incidence of poor hot water borders becomes extremely high.
また、 本発明のマグネシゥム合金では、 C a成分を上記の範囲で添加すること により、 金属間化合物である A 1 -C a系化合物が生成され、 この化合物がデン ドライトまたは 結晶粒界の全面を覆うことにより鎵造金属組織の脆弱化が抑制 されるようになる。  Further, in the magnesium alloy of the present invention, by adding the Ca component in the above range, an A1-Ca-based compound which is an intermetallic compound is generated, and this compound covers the entire surface of dendrites or crystal grain boundaries. By covering, the weakening of the artificial metal structure is suppressed.
RE (希土類元素) 成分は、 Mg_RE系化合物を生成すると共に、 同時に添 加する A 1成分と化合して A 1—RE系化合物を生成することにより、 第 9図に 示すごとく、 耐高温クリープ性を向上させるはたらきがある。 すなわち、 デンド ライトまたはひ結晶粒界を覆う A 1— C a系化合物と相俟って、 得られた合金に おける高温域での変形抵抗が高くなり、 耐高温クリープ性を向上させるものであ る。 しかし、 第 10図に示すごとく、 RE成分の増加はマグネシウム合金として コストアップをもたらすと同時に、 金属間化合物量が増加して熱間割れが発生し やすくなるので、 本発明のマグネシウム合金においては、 RE成分を重量比で 3 %以下、 好ましくは 1 %〜 3 %の範囲で添加する。 R E成分が 1重量%未満では 、 耐高温クリープ性を向上させる効果がほとんど期待できなくなり、 RE成分が 3重量%を超えると、 第 10図に示した通り熱間割れが多くなってしまう。 また、 Mn (マンガン) 成分は、 Z n— A 1— C a—REを含むマグネシウム 合金に添加することにより、 Mg成分に固溶して、 固溶強ィ匕による耐カを向上さ せると共に、 第 1 1図に示すごとく、 高温での耐クリープ性を向上させるはたら きがある。  The RE (rare earth element) component forms an Mg_RE compound and combines with the A1 component added at the same time to form an A1-RE compound, resulting in high temperature creep resistance as shown in Fig. 9. There is a function to improve. In other words, in combination with the dendrites or the A1-Ca-based compound covering the grain boundaries, the resulting alloy has a high deformation resistance in a high-temperature region and improves the high-temperature creep resistance. You. However, as shown in FIG. 10, an increase in the RE component increases the cost of the magnesium alloy, and at the same time, increases the amount of the intermetallic compound to easily cause hot cracking. The RE component is added in a weight ratio of 3% or less, preferably in the range of 1% to 3%. If the amount of the RE component is less than 1% by weight, the effect of improving the high-temperature creep resistance can hardly be expected. If the amount of the RE component exceeds 3% by weight, hot cracking increases as shown in FIG. Further, the Mn (manganese) component is added to the magnesium alloy containing Zn—A 1—Ca—RE to form a solid solution with the Mg component to improve the resistance to solid solution and to improve the power resistance. As shown in Fig. 11, it has the function of improving the creep resistance at high temperatures.
そこで、 本発明のマグネシウム合金においては、 Mn成分を重量比で 0. 10 〜 2. 0 %の範囲で添加し、 好ましくは 0. 15 %〜 1. 50 %の範囲で添加す る。 Mn成分が 0. 10重量%未満では、 第 11図に示す通り、 耐高温クリープ 性を向上させる効果がほとんど期待できなくなり、 力と言って Mn成分が 2. 0 重量%を超えると、 第 12図に示す通り、 熱間割れの発生率が極端に多くなつて しまう。 Therefore, in the magnesium alloy of the present invention, the Mn component is added in a weight ratio of 0.10 to 2.0%, preferably in a range of 0.15% to 1.50%. If the Mn content is less than 0.10% by weight, the effect of improving high temperature creep resistance can hardly be expected as shown in FIG. If it exceeds 10% by weight, as shown in Fig. 12, the incidence of hot cracking becomes extremely high.
下記の表 1に、 本発明の実施例と比較例について、 合金組成とクリープひずみ 及ぴ铸造性に関するデータをまとめて示す。 .  Table 1 below summarizes data on the alloy composition, creep strain, and formability of Examples and Comparative Examples of the present invention. .
尚、 合金組成中の RE (希土類元素) としては、 セリウム 50重量0 /0、 ランタ ン 25重量%、 プラセオジム 4重量%、 ネオジム 20重量%、 サマリウム 1重量 %、 を含むミッシュメタルを用いた。 As the RE (rare earth element) in the alloy composition, cerium 50 weight 0/0, lanthanum 25% by weight, praseodymium 4 wt%, neodymium 20 wt%, samarium 1 wt%, was used mischmetal containing.
また、 本実施例では、 金型温度 200°C、 鎳造温度 700°C、 錄造圧力 6 OM P a、 でダイカスト鏡造し、 クリープ試験は 175°Cの温度下で 5 OMp aの応 力をかけて行なった。 表 1  In this example, the die casting was performed at a mold temperature of 200 ° C, a forming temperature of 700 ° C, and a forming pressure of 6 OMPa, and a creep test was performed at a temperature of 175 ° C at a temperature of 5 OMpa. This was done with great effort. table 1
Figure imgf000010_0001
Figure imgf000010_0001
備考 Remarks
①比較例 1は、 J I S規格の AZ91 D材である。  (1) Comparative Example 1 is JIS standard AZ91 D material.
②比較例 2は、 米国ダウケミカル社の AE42材である。  ② Comparative Example 2 is AE42 material from Dow Chemical Company, USA.
③比較例 3は、 特開平 7— 331 375号公報に開示された実施例材である c 上記表 1から明らかなように、 本発明に係るマグネシウム合金を用いてダイ力 スト錡造したものは、 比較例 (マグネシウム合金の J I S規格品である A Z 9 1 D材、 米国ダウ ·ケミカル社規格の A E 4 1材など) と比較しても、 クリープひ ずみ (%) が 0 . 3 %〜0 . 6 %内にあり、 铸造時における流動長が 1 9 O mm〜 2 2 1 mmと十分に長く、 しかも熱間割れの発生率が 0 %〜 3 %程度であり、 铸 造性にも優れたものであることが理解される。 産業上の利用可能性 ③ Comparative Example 3 is an example material disclosed in JP-A-7-331375. As is clear from Table 1 above, a die-cast structure using the magnesium alloy according to the present invention is a comparative example (AZ91D material which is a JIS standard product of magnesium alloy, Dow Chemical Co., USA) Creep strain (%) is in the range of 0.3% to 0.6%, and the flow length during manufacturing is sufficient, from 19 mm to 22 mm. It is understood that the steel is excellent in formability, with a hot cracking rate of about 0% to 3%. Industrial applicability
本発明に係るダイカスト用マグネシウム合金によれば、 ダイカスト鎵造に際し て鎳造性 (湯流れ性) に優れ且つ熱間割れが発生しにくくなり、 よって、 量産製 品のダイカスト鏡造に適すると共に、 耐高温クリープ性にも優れ、 加圧された状 態下で耐熱強度が要求されるエンジン回りの部品のような製品にも使用が可能と なる。  ADVANTAGE OF THE INVENTION According to the magnesium alloy for die-casting which concerns on this invention, it is excellent in the formability (hot-water flow property) and hard to generate | occur | produce a hot crack at the time of die-casting. It has excellent high-temperature creep resistance and can be used for products such as parts around engines that require heat-resistant strength under pressurized conditions.

Claims

請求の範囲 The scope of the claims
1. 重量比で、 亜鉛 0. 5〜8%と、 アルミニウム 1〜10%と、 カルシゥ ム 1〜 3 %と、 希土類元素 3 %以下を含み、 残部がマグネシゥム及ぴ不可避的不 純物からなる事を特徴とするダイカスト用マグネシウム合金。 1. Contains 0.5 to 8% by weight of zinc, 1 to 10% of aluminum, 1 to 3% of calcium, and 3% or less of rare earth elements. The balance consists of magnesium and inevitable impurities. Magnesium alloy for die casting characterized by the following:
2. 重量比で、 亜鉛 0· 5〜4%、 アルミニウム 4〜10%、 カノレシゥム 1 〜 3 %、 希土類元素 1〜 3 %を含み、 残部がマグネシゥム及ぴ不可避的不純物か らなる事を特徴とするダイカスト用マグネシウム合金。 2. Contains 0.5 to 4% by weight of zinc, 4 to 10% of aluminum, 1 to 3% of canoleum, and 1 to 3% of rare earth elements, with the balance being magnesium and unavoidable impurities. Magnesium alloy for die casting.
3. 重量比で、 マンガン 0. 10〜 2. 0%を含む請求項 1又は 2記載のダ ィカスト用マグネシウム合金。 3. The magnesium alloy for die casting according to claim 1, wherein the magnesium alloy contains 0.10 to 2.0% of manganese by weight.
4. 重量比で、 マンガン 15〜 1. 50 %を含む請求項 1又は 2記載の ダイカスト用マグネシゥム合金。 4. The magnesium alloy for die casting according to claim 1 or 2, which contains 15 to 1.50% of manganese by weight.
PCT/JP2002/004017 2000-10-31 2002-04-23 Magnesium alloy for diecasting WO2003091465A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000331857A JP2002129272A (en) 2000-10-31 2000-10-31 Magnesium alloy for diecasting
PCT/JP2002/004017 WO2003091465A1 (en) 2002-04-23 2002-04-23 Magnesium alloy for diecasting
AU2002249626A AU2002249626A1 (en) 2002-04-23 2002-04-23 Magnesium alloy for diecasting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/004017 WO2003091465A1 (en) 2002-04-23 2002-04-23 Magnesium alloy for diecasting

Publications (1)

Publication Number Publication Date
WO2003091465A1 true WO2003091465A1 (en) 2003-11-06

Family

ID=29267243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004017 WO2003091465A1 (en) 2000-10-31 2002-04-23 Magnesium alloy for diecasting

Country Status (2)

Country Link
AU (1) AU2002249626A1 (en)
WO (1) WO2003091465A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106967913A (en) * 2016-01-14 2017-07-21 北京航空航天大学 A kind of Mg-Zn-Al-RE-Ca heat resistance magnesium alloys

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073207A (en) * 1989-08-24 1991-12-17 Pechiney Recherche Process for obtaining magnesium alloys by spray deposition
JPH06200348A (en) * 1992-05-22 1994-07-19 Mitsui Mining & Smelting Co Ltd Highly strong magnesium alloy
JPH0718364A (en) * 1993-06-30 1995-01-20 Toyota Central Res & Dev Lab Inc Heat resistant magnesium alloy
JPH08269609A (en) * 1995-03-27 1996-10-15 Toyota Central Res & Dev Lab Inc Mg-al-ca alloy excellent in die castability
US5681403A (en) * 1993-06-28 1997-10-28 Nissan Motor Co., Ltd. Magnesium alloy
US5811058A (en) * 1996-02-27 1998-09-22 Honda Giken Kogyo Kabushiki Kaisha Heat-resistant magnesium alloy
JP2002129272A (en) * 2000-10-31 2002-05-09 Ahresty Corp Magnesium alloy for diecasting

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073207A (en) * 1989-08-24 1991-12-17 Pechiney Recherche Process for obtaining magnesium alloys by spray deposition
JPH06200348A (en) * 1992-05-22 1994-07-19 Mitsui Mining & Smelting Co Ltd Highly strong magnesium alloy
US5681403A (en) * 1993-06-28 1997-10-28 Nissan Motor Co., Ltd. Magnesium alloy
JPH0718364A (en) * 1993-06-30 1995-01-20 Toyota Central Res & Dev Lab Inc Heat resistant magnesium alloy
JPH08269609A (en) * 1995-03-27 1996-10-15 Toyota Central Res & Dev Lab Inc Mg-al-ca alloy excellent in die castability
US5811058A (en) * 1996-02-27 1998-09-22 Honda Giken Kogyo Kabushiki Kaisha Heat-resistant magnesium alloy
JP2002129272A (en) * 2000-10-31 2002-05-09 Ahresty Corp Magnesium alloy for diecasting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106967913A (en) * 2016-01-14 2017-07-21 北京航空航天大学 A kind of Mg-Zn-Al-RE-Ca heat resistance magnesium alloys

Also Published As

Publication number Publication date
AU2002249626A1 (en) 2003-11-10

Similar Documents

Publication Publication Date Title
JP5327515B2 (en) Magnesium alloys for casting and magnesium alloy castings
CN102676887B (en) Aluminum alloy for compression casting and casting of aluminum alloy
CN109868393B (en) High temperature cast aluminum alloy for cylinder heads
JP3592659B2 (en) Magnesium alloys and magnesium alloy members with excellent corrosion resistance
KR101395276B1 (en) Mg-Al based alloys for high temperature casting
JP2008266734A (en) Magnesium alloy for casting, and magnesium alloy casting
JP4328927B2 (en) Aluminum alloy material with excellent electrical and thermal conductivity
JP2004162090A (en) Heat resistant magnesium alloy
JP6814446B2 (en) Flame-retardant magnesium alloy and its manufacturing method
JP2002129272A (en) Magnesium alloy for diecasting
JP4905680B2 (en) Magnesium casting alloy and compressor impeller using the same
CN101818293B (en) Heat resistant magnesium alloy
US20120070331A1 (en) Magnesium alloy and method for making the same
CA2366924A1 (en) Creep resistant magnesium alloys with improved castability
JP2005187896A (en) Heat resistant magnesium alloy casting
JP4575645B2 (en) Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy casting
JP4285188B2 (en) Heat-resistant magnesium alloy for casting, casting made of magnesium alloy and method for producing the same
WO2003091465A1 (en) Magnesium alloy for diecasting
JP4526769B2 (en) Magnesium alloy
JP2005187895A (en) Heat resistant magnesium alloy casting
JP2002266044A (en) Magnesium alloy
JP3164252B2 (en) Manufacturing method of heat-resistant magnesium alloy
JPS6024169B2 (en) magnesium alloy
JP3611759B2 (en) Magnesium alloy and magnesium alloy heat-resistant member with excellent heat resistance and castability
KR20070096477A (en) Magnesium alloy having heat resisting property

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP