JP4415098B2 - Method for producing flame retardant magnesium alloy extruded material and extruded material - Google Patents

Method for producing flame retardant magnesium alloy extruded material and extruded material Download PDF

Info

Publication number
JP4415098B2
JP4415098B2 JP2005075473A JP2005075473A JP4415098B2 JP 4415098 B2 JP4415098 B2 JP 4415098B2 JP 2005075473 A JP2005075473 A JP 2005075473A JP 2005075473 A JP2005075473 A JP 2005075473A JP 4415098 B2 JP4415098 B2 JP 4415098B2
Authority
JP
Japan
Prior art keywords
extruded material
magnesium alloy
flame
retardant magnesium
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005075473A
Other languages
Japanese (ja)
Other versions
JP2006257478A (en
Inventor
満 坂本
英俊 上野
華 南 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005075473A priority Critical patent/JP4415098B2/en
Publication of JP2006257478A publication Critical patent/JP2006257478A/en
Application granted granted Critical
Publication of JP4415098B2 publication Critical patent/JP4415098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、カルシウムを添加した難燃性マグネシウム合金押出材の製造方法及びその押出材に係り、特に、金属間化合物(AlCa)の晶出を抑制した難燃性マグネシウム合金押出材の製造方法及びその押出材難燃性マグネシウム合金押出材に関する。 The present invention relates to a method for producing a flame retardant magnesium alloy extruded material to which calcium is added and the extruded material , and in particular, the production of a flame retardant magnesium alloy extruded material in which crystallization of an intermetallic compound (Al 2 Ca) is suppressed. methods and the extruded material flame retardant magnesium alloy extruded material.

マグネシウム及びその合金は実用金属中で最も軽い金属であり、アルミニウム(Al)、亜鉛(Zn)、マンガン(Mn)などと合金化して用いられ、近年、携帯機器や自動車等の輸送機器の分野を始めとする様々な分野において適用されており、注目を集めている金属である。しかしながら、マグネシウムは非常に活性であり、溶解・鋳造時や切削・研磨時などに発火する虞があるため、十分に注意して取り扱わなければならない。   Magnesium and its alloys are the lightest metals among practical metals and are used by alloying with aluminum (Al), zinc (Zn), manganese (Mn), etc. It is a metal that is attracting attention because it has been applied in various fields including the beginning. However, since magnesium is very active and may ignite during melting / casting or cutting / polishing, it must be handled with great care.

本発明者らは、このように可燃性の高いマグネシウム合金に数パーセントのカルシウム(Ca)を添加することによって発火温度を上げ、難燃性のマグネシウム合金が得られることを見出し、例えば、特開2000−109963号公報(特許文献1)には、「高強度難燃性マグネシウム合金の製造方法」に係る発明を提案している。
特開2000−109963号公報
The present inventors have found that a flame retardant magnesium alloy can be obtained by increasing the ignition temperature by adding several percent of calcium (Ca) to a highly flammable magnesium alloy. Japanese Patent Laid-Open No. 2000-109963 (Patent Document 1) proposes an invention relating to “a method for producing a high-strength flame-retardant magnesium alloy”.
Japanese Patent Laid-Open No. 2000-109963

しかし、アルミニウムが合金化されたマグネシウム合金にカルシウムを添加して難燃化すると、最も安定であるアルミニウムとカルシウムとの金属間化合物(AlCa)が結晶粒界に晶出し、伸びを低下させ、鋳造材強度や塑性加工性を低下させる。また、AlCaはマグネシウム基地に固溶しえないため溶体化熱処理や時効析出熱処理等の熱処理性を低下させる。したがって、カルシウムを添加したMg−Al系のマグネシウム合金を製品化するための大きな阻害要因となっている。 However, when calcium is added to a magnesium alloy alloyed with aluminum to make it flame retardant, the most stable intermetallic compound of aluminum and calcium (Al 2 Ca) crystallizes at the crystal grain boundary, reducing the elongation. , Reduce the strength of cast material and plastic workability. Moreover, since Al 2 Ca cannot be dissolved in the magnesium base, heat treatment properties such as solution heat treatment and aging precipitation heat treatment are reduced. Therefore, it is a major impediment to commercializing Mg-Al based magnesium alloys to which calcium is added.

本発明は、上記の事情に鑑みて創案されたものであり、その目的は、AlCaの晶出を抑え、合金の伸びを向上させ、鋳造材強度、塑性加工性及び熱処理性を改善した難燃性マグネシウム合金押出材の製造方法及びその押出材を提供することにある。 The present invention was devised in view of the above circumstances, and its purpose is to suppress the crystallization of Al 2 Ca, improve the elongation of the alloy, and improve the cast material strength, plastic workability and heat treatment properties. It is providing the manufacturing method of a flame-retardant magnesium alloy extrusion material, and its extrusion material .

上記の目的を達成すべく、本発明に係る難燃性マグネシウム合金押出材の製造方法は、
1〜12mass%のアルミニウム及び0.2〜5.0mass%のカルシウム、残部マグネシウムから成る難燃性マグネシウム合金押出材の製造方法であって、
マグネシウム及び0.2〜5.0mass%のカルシウムを溶解した後、988K以上に昇温した上で1〜12mass%のアルミニウムを添加して溶解し、凝固させることを特徴とする。
In order to achieve the above object, a method for producing a flame retardant magnesium alloy extruded material according to the present invention 1 comprises:
1~12Mass% calcium aluminum and 0.2~5.0Mass%, a process for the preparation of the flame-retardant magnesium alloy extruded material and the balance of magnesium,
After magnesium and 0.2 to 5.0 mass% calcium are dissolved, the temperature is raised to 988 K or more, and then 1 to 12 mass% aluminum is added and dissolved to solidify.

上記難燃性マグネシウム合金押出材の製造方法において、300℃以上で上記アルミニウム含有量におけるMg−Al系合金の共晶温度未満の温度に保持した後、急冷して溶体化処理してもよい。 In the method for producing the flame-retardant magnesium alloy extruded material , the solution may be subjected to a solution treatment by rapid cooling after being kept at a temperature of 300 ° C. or higher and lower than the eutectic temperature of the Mg—Al-based alloy in the aluminum content.

また、上記のいずれかの難燃性マグネシウム合金押出材の製造方法により製造した難燃性マグネシウム合金押出材に塑性加工を施してもよい。 Moreover, you may give a plastic working to the flame-retardant magnesium alloy extrusion material manufactured by the manufacturing method of one of said flame-retardant magnesium alloy extrusion materials .

本発明に係る難燃性マグネシウム合金押出材の製造方法及びその押出材によれば、組織制御によってアルミニウムとカルシウムとの金属間化合物(AlCa)の晶出を抑え、合金の伸びを向上させることにより、鋳造材強度、塑性加工性及び熱処理性を改善することができるという優れた効果を発揮する。 According to the method for producing a flame-retardant magnesium alloy extruded material and the extruded material according to the present invention, the crystallization of an intermetallic compound of aluminum and calcium (Al 2 Ca) is suppressed by structure control, and the elongation of the alloy is improved. By this, the outstanding effect that cast material strength, plastic workability, and heat processing property can be improved is exhibited.

以下、本発明を実施するための最良の形態を図面に基づいて説明するが、本発明は本実施形態に限るものではない。
本実施形態の難燃性マグネシウム合金としては、マグネシウム(Mg)と共に、少なくとも、1〜12mass%のアルミニウム(Al)及び0.2〜5.0mass%のカルシウム(Ca)を含有するものであればよく、その他に亜鉛(Zn)、マンガン(Mn)、ジルコニウム(Zr)、イットリウム(Y)、珪素(Si)から選ばれる0.01〜5.0mass%の添加元素を含有していてもよい。このようなものとしては、例えば、アルミニウム及びカルシウムを上記割合で含有するMg−Al系マグネシウム合金、Mg−Al−Zn系マグネシウム合金、Mg−Al−Mn系マグネシウム合金などが挙げられる。
The best mode for carrying out the present invention will be described below with reference to the drawings. However, the present invention is not limited to this embodiment.
As a flame-retardant magnesium alloy of this embodiment, if it contains at least 1-12 mass% aluminum (Al) and 0.2-5.0 mass% calcium (Ca) with magnesium (Mg). In addition, 0.01 to 5.0 mass% of an additive element selected from zinc (Zn), manganese (Mn), zirconium (Zr), yttrium (Y), and silicon (Si) may be contained. Examples of such a material include Mg—Al-based magnesium alloys, Mg—Al—Zn-based magnesium alloys, and Mg—Al—Mn-based magnesium alloys containing aluminum and calcium in the above proportions.

本実施の形態の難燃性マグネシウム合金は、次のようにして製造される。まず、マグネシウム、アルミニウム及びカルシウム以外の亜鉛やマンガン等の添加元素、並びに0.2〜5.0mass%のカルシウムを、例えば、700℃にて溶解する。カルシウムの添加量0.2〜5.0mass%の範囲は、難燃性及び他の物性のバランスを図るために設定されている。すなわち、カルシウムの含有量が0.2mass%未満では難燃効果が充分に発揮されず、5.0mass%を超えるとその他の物性が低下するからである。   The flame retardant magnesium alloy of the present embodiment is manufactured as follows. First, additive elements such as zinc and manganese other than magnesium, aluminum and calcium, and 0.2 to 5.0 mass% of calcium are dissolved at, for example, 700 ° C. A range of 0.2 to 5.0 mass% of calcium is set in order to balance flame retardancy and other physical properties. That is, if the calcium content is less than 0.2 mass%, the flame retardant effect is not sufficiently exhibited, and if it exceeds 5.0 mass%, other physical properties are deteriorated.

次に、上記の溶湯を988K(約715℃)以上に昇温する。988K(約715℃)以上に昇温するのは、溶湯中に存在するマグネシウムとカルシウムとの金属間化合物(MgCa)を溶解させるためであり、例えば、上記溶湯を993K(約720℃)まで昇温してMgCaを完全に溶解させる。 Next, the temperature of the molten metal is raised to 988K (about 715 ° C.) or higher. The reason why the temperature is raised to 988K (about 715 ° C) or more is to dissolve the intermetallic compound of magnesium and calcium (Mg 2 Ca) present in the molten metal. For example, the molten metal is heated to 993K (about 720 ° C). And the Mg 2 Ca is completely dissolved.

その後、この993K(約720℃)の溶湯中に1〜12mass%のアルミニウムを添加して溶解させた後、各種砂型、金型等への重力鋳造、ダイカスト法等による加圧鋳造法、連続鋳造法などによって鋳造して凝固させる。1〜12mass%のアルミニウムを添加するのは、マグネシウムに強度をもたせるためである。   Then, after adding 1-12 mass% of aluminum in this 993K (about 720 ° C) melt and dissolving it, gravity casting to various sand molds, dies, etc., pressure casting method by die casting method, continuous casting, etc. Cast and solidify by methods. The reason why 1 to 12 mass% of aluminum is added is to give magnesium strength.

このような製造方法により製造された本実施の形態の難燃性マグネシウム合金は、マグネシウムにアルミニウムを溶解するよりも前にカルシウムを溶解することによって、マグネシウム基地に固溶し易いMgCaを主としてMg17Al12を晶出させ、マグネシウム基地に固溶し難いAlCaの晶出を抑えることにより、合金の伸びを向上させることができる。 The flame-retardant magnesium alloy of the present embodiment manufactured by such a manufacturing method mainly contains Mg 2 Ca that is easily dissolved in a magnesium base by dissolving calcium before dissolving aluminum in magnesium. The elongation of the alloy can be improved by crystallizing Mg 17 Al 12 and suppressing the crystallization of Al 2 Ca that is difficult to dissolve in the magnesium matrix.

したがって、上記の製造方法により溶解されたマグネシウム合金を各種砂型、金型等への重力鋳造、ダイカスト法等による加圧鋳造法、連続鋳造法などによって鋳造することにより、鋳造材の伸び、強度を高めることができる。また、塑性加工性及び熱処理性も改善することができ、塑性加工や熱処理によって難燃性マグネシウム合金の機械的性質の向上が期待できる。   Therefore, by casting the magnesium alloy melted by the above production method by various types of sand molds, die casting, gravity casting, pressure casting method by die casting method, continuous casting method, etc., the elongation and strength of the cast material can be increased. Can be increased. In addition, plastic workability and heat treatment can be improved, and improvement in mechanical properties of the flame retardant magnesium alloy can be expected by plastic working and heat treatment.

すなわち、以上のようにして得られた凝固体を300℃以上で上記アルミニウム含有量におけるMg−Al系合金の共晶温度未満の温度に保持した後、水冷等により急冷して溶体化処理(T4処理)を施してもよい。溶体化処理することにより、上記凝固体に晶出した金属間化合物を固溶させて、過飽和固溶状態とすることができる。溶体化処理の加熱温度を300℃以上で上記アルミニウム含有量におけるMg−Al系合金の共晶温度未満に設定したのは、300℃未満では固溶量が小さくなり、Mg−Al系合金の共晶温度に達して部分的な溶解を回避するためである。Mg−Al系合金の共晶温度はアルミニウムの含有量によっても異なるが、1〜12mass%のアルミニウム添加量では437℃であり、437℃未満であることが好ましい。   That is, the solidified body obtained as described above is kept at a temperature of 300 ° C. or higher and lower than the eutectic temperature of the Mg—Al based alloy in the above aluminum content, and then rapidly cooled by water cooling or the like to form a solution treatment (T4 Treatment). By performing the solution treatment, the intermetallic compound crystallized in the solidified body can be made into a solid solution to be in a supersaturated solid solution state. The heating temperature of the solution treatment is set to 300 ° C. or higher and lower than the eutectic temperature of the Mg—Al based alloy at the above aluminum content. This is because the crystal temperature is reached and partial dissolution is avoided. Although the eutectic temperature of the Mg—Al-based alloy varies depending on the aluminum content, the aluminum addition amount of 1 to 12 mass% is 437 ° C. and preferably less than 437 ° C.

このように鋳造等により得られた凝固体を溶体化処理(T4処理)することにより、過飽和固溶状態とすることができ、機械的強度を高めることができる。このように溶体化処理(T4処理)が可能であるので、人工時効析出処理(T6処理)への応用も期待できる。   Thus, by carrying out the solution treatment (T4 process) of the solidified body obtained by casting etc., it can be set as a supersaturated solid solution state and mechanical strength can be raised. Since solution treatment (T4 treatment) is possible in this way, application to artificial aging precipitation treatment (T6 treatment) can also be expected.

また、上記鋳造後の凝固体もしくは溶体化処理を施した凝固体に塑性加工を施してもよい。塑性加工は、金属の延性、展性などの塑性変形する性質を利用する加工法であり、例えば、押出し加工、圧延加工、鍛造加工、引抜き加工などの加工法があるが、後述する実施例では押出し加工を採用する。この塑性加工により、金属間化合物が破砕され、この破砕粒子が均一に分散するため、機械的強度が向上する。また、この塑性加工処理における温度は、合金の種類に応じて適宜設定されるが、例えば、180〜420℃の範囲で設定される。押出し加工を行う場合、押出し比が高い方が機械的強度を向上させる上で好ましいが、押出し比が高過ぎると強度の向上が殆ど期待できなくなり、むしろ装置の経済性が低下するので、一般的には10〜150の範囲で設定される。   The solidified body after casting or the solidified body subjected to solution treatment may be subjected to plastic working. Plastic processing is a processing method that utilizes the properties of plastic deformation such as ductility and malleability of metals, and examples include processing methods such as extrusion processing, rolling processing, forging processing, and drawing processing. Adopt extrusion process. By this plastic working, the intermetallic compound is crushed and the crushed particles are uniformly dispersed, so that the mechanical strength is improved. In addition, the temperature in this plastic working process is appropriately set according to the type of alloy, and is set in the range of 180 to 420 ° C., for example. When performing extrusion processing, a higher extrusion ratio is preferable for improving mechanical strength. However, if the extrusion ratio is too high, improvement in strength can hardly be expected, and the economics of the apparatus is rather lowered. Is set in the range of 10 to 150.

このように鋳造後の凝固体もしくは溶体化処理を施した凝固体に塑性加工を施すことにより、塑性流動によって金属間化合物が破砕され、この破砕粒子が均一に分散するため、機械的強度をさらに向上させることができる。   By subjecting the solidified body after casting or the solidified body subjected to solution treatment to plastic processing in this way, the intermetallic compound is crushed by plastic flow, and the crushed particles are uniformly dispersed. Can be improved.

以下、本発明の実施例を詳細に説明するが、本発明はこれらの実施例に限るものではない。
〔実施例1〕
試料1として、純マグネシウム(Mg)1200gを700℃で溶解し、粒状の金属カルシウム(Ca)28.1gを添加して撹拌混合した。その後、溶湯温度を720℃まで昇温し、純アルミニウム(Al)76.6gを添加し、φ50×5t×230Lのパイプ状の金型内に鋳造した。図1は、試料1の断面を5%氷酢酸により8秒間(室温)のエッチングを行った場合の断面組織を示す顕微鏡写真図である。
Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.
[Example 1]
As Sample 1, 1200 g of pure magnesium (Mg) was dissolved at 700 ° C., and 28.1 g of granular metallic calcium (Ca) was added and stirred and mixed. Thereafter, the molten metal temperature was raised to 720 ° C., 76.6 g of pure aluminum (Al) was added, and the mixture was cast into a pipe-shaped mold having a diameter of 50 × 5 t × 230 L. FIG. 1 is a photomicrograph showing the cross-sectional structure of the sample 1 when the cross section of the sample 1 is etched with 5% glacial acetic acid for 8 seconds (room temperature).

また、試料2(比較材)として、アルミニウムを5.6〜6.4mass%程度含有するマグネシウム合金(AM60B)1300gを700℃で溶解し、粒状の金属カルシウム28.6gを添加して撹拌混合し、720℃に昇温して上記試料1と同じ金型内に鋳造した。図2は、試料1と同様にしてエッチングを行ったAM60B+2Ca合金の断面組織を示す顕微鏡写真図である。図2に示す試料2(比較材)の断面組織ではカルシウムの添加によって結晶粒界に多数の金属間化合物(AlCa+Mg17Al12)が晶出しているのに対し、図1に示す試料1の断面組織では金属間化合物の量が少なくなっているのが判る。 As sample 2 (comparative material), 1300 g of a magnesium alloy (AM60B) containing about 5.6 to 6.4 mass% of aluminum is melted at 700 ° C., and 28.6 g of granular metallic calcium is added and mixed by stirring. The temperature was raised to 720 ° C. and cast in the same mold as that of Sample 1. FIG. 2 is a photomicrograph showing the cross-sectional structure of AM60B + 2Ca alloy etched in the same manner as Sample 1. In the cross-sectional structure of the sample 2 (comparative material) shown in FIG. 2, many intermetallic compounds (Al 2 Ca + Mg 17 Al 12 ) are crystallized at the crystal grain boundaries by the addition of calcium, whereas the sample 1 shown in FIG. It can be seen that the amount of the intermetallic compound is small in the cross-sectional structure.

さらに、試料3として、試料1を400℃に加熱して18時間保持した後、水冷する溶体化熱処理(T4処理)を施した。図3は、試料1,2と同様にしてエッチングを行った試料3の断面組織を示す顕微鏡写真図であり、結晶粒界に存在する金属間化合物の量がさらに減少している。図1に示す試料1の断面組織ではAlCaを主とし、Mg17Al12が晶出しているが、図3に示す試料3の断面組織では溶体化熱処理(T4)によって金属間化合物が少なくなっていることから、MgCa+AlCaと成っていると考えられる。 Further, as Sample 3, Sample 1 was heated to 400 ° C. and held for 18 hours, and then subjected to a solution heat treatment (T4 treatment) that was cooled with water. FIG. 3 is a photomicrograph showing the cross-sectional structure of Sample 3 etched in the same manner as Samples 1 and 2, and the amount of intermetallic compounds present at the crystal grain boundaries is further reduced. In the cross-sectional structure of sample 1 shown in FIG. 1, Al 2 Ca is mainly used and Mg 17 Al 12 is crystallized, but in the cross-sectional structure of sample 3 shown in FIG. 3, there are few intermetallic compounds by solution heat treatment (T4). Therefore, it is considered that Mg 2 Ca + Al 2 Ca is formed.

〔実施例2〕
実施例2は、実施例1において作製した試料1〜3に対して押出し加工を施し、その機械的特性を検証した。
下記表1は、試料1〜3を直径40mm、長さ40mmに切削加工した後、押出し比19.8、押出し温度400℃で押出し加工を施した場合の初期押出し力の測定結果である。
[Example 2]
In Example 2, the samples 1 to 3 produced in Example 1 were subjected to extrusion processing, and the mechanical properties were verified.
Table 1 below shows measurement results of initial extrusion force when samples 1 to 3 are cut into a diameter of 40 mm and a length of 40 mm, and then subjected to extrusion at an extrusion ratio of 19.8 and an extrusion temperature of 400 ° C.

Figure 0004415098
表1に示すように、塑性加工性を改善した試料1及び溶体化熱処理を施した試料3の初期押出し力は、約10%の低減となっている。
Figure 0004415098
As shown in Table 1, the initial extruding force of sample 1 with improved plastic workability and sample 3 subjected to solution heat treatment is reduced by about 10%.

また、図4に示すように、押出し加工による塑性流動によって、金属間化合物は粒子状に破砕され、合金マトリックス中に破砕粒子が均一に分散している。
下記の表2は、試料1,3、及び試料2(比較材)を試料3と同じ条件で溶体化熱処理(T4)した試料4の引張り強さと伸びを示している。

Figure 0004415098
表2に示すように、試料3は、溶体化熱処理し、さらに押出し加工することによって、伸びが25.9%と向上しており、他の試料と比較して伸びが飛躍的に改善されていることが判る。 Further, as shown in FIG. 4, the intermetallic compound is crushed into particles by plastic flow by extrusion, and the crushed particles are uniformly dispersed in the alloy matrix.
Table 2 below shows the tensile strength and elongation of Sample 1 and Sample 3 and Sample 4 (Comparative Material) obtained by solution heat treatment (T4) under the same conditions as Sample 3.
Figure 0004415098
As shown in Table 2, the sample 3 was subjected to solution heat treatment and further subjected to extrusion processing, whereby the elongation was improved to 25.9%, and the elongation was drastically improved compared to other samples. I know that.

〔実施例3〕
実施例1と同様の方法で、直径170mm、長さ600mmの金型内に鋳造したものを、直径150mm、長さ410mmの6インチビレットに切削加工した後、1650tonの横型押出し機を用い、380℃において直径14mm(押出し比118)の丸棒に押出し加工したときの押出し力、最大押出速度を測定した。その測定結果を下記表3に示している。
Example 3
After casting into a 6-inch billet with a diameter of 150 mm and a length of 410 mm, a product cast in a mold having a diameter of 170 mm and a length of 600 mm in the same manner as in Example 1, and using a 1650 ton horizontal extruder, 380 The extrusion force and the maximum extrusion speed when extruding into a round bar having a diameter of 14 mm (extrusion ratio 118) at 0 ° C. were measured. The measurement results are shown in Table 3 below.

Figure 0004415098
表3に示すように、試料1及び試料4については、押出し圧力、押出速度ともに改善が見られ、特に押出速度は、試料2(比較材)の押出速度を1とした場合に、それぞれ1.22、1.56と大幅に速度上昇していることが判った。
Figure 0004415098
As shown in Table 3, both the extrusion pressure and the extrusion speed of Sample 1 and Sample 4 were improved. In particular, the extrusion speed was 1 when the extrusion speed of Sample 2 (comparative material) was 1. It was found that the speed was significantly increased to 22, 1.56.

試料1の断面組織を示す顕微鏡写真図である。2 is a micrograph showing a cross-sectional structure of sample 1. FIG. 試料2の断面組織を示す顕微鏡写真図である。3 is a micrograph showing a cross-sectional structure of sample 2. FIG. 試料3の断面組織を示す顕微鏡写真図である。FIG. 3 is a photomicrograph showing the cross-sectional structure of sample 3. 試料4の断面組織を示す顕微鏡写真図である。FIG. 4 is a photomicrograph showing the cross-sectional structure of sample 4.

Claims (4)

1〜12mass%のアルミニウム及び0.2〜5.0mass%のカルシウム、残部マグネシウムから成る難燃性マグネシウム合金押出材の製造方法であって、
マグネシウム及び0.2〜5.0mass%のカルシウムを溶解した後、988K以上に昇温した上で1〜12mass%のアルミニウムを添加して溶解し、凝固させることを特徴とする難燃性マグネシウム合金押出材の製造方法。
A method for producing a flame retardant magnesium alloy extruded material comprising 1 to 12 mass% aluminum, 0.2 to 5.0 mass% calcium, and the balance magnesium,
A flame-retardant magnesium alloy characterized by melting magnesium and 0.2-5.0 mass% calcium, then heating to 988K or higher, adding 1-12 mass% aluminum, melting and solidifying Extruded material manufacturing method.
300℃以上で前記アルミニウム含有量におけるMg−Al系合金の共晶温度未満の温度に保持した後、急冷して溶体化処理することを特徴とする請求項に記載の難燃性マグネシウム合金押出材の製造方法。 2. The flame-retardant magnesium alloy extrusion according to claim 1 , wherein the extrusion treatment is performed by rapid cooling and solution treatment after the temperature is kept at 300 ° C. or more and lower than the eutectic temperature of the Mg—Al alloy in the aluminum content. A method of manufacturing the material. 請求項1又は2に記載の難燃性マグネシウム合金押出材の製造方法により製造した難燃性マグネシウム合金押出材に塑性加工を施すことを特徴とする難燃性マグネシウム合金押出材の製造方法。 To claim 1 or 2 flame retardant magnesium alloy extruded material manufactured by the manufacturing method of the flame-retardant magnesium alloy extruded material according to method for producing a flame-retardant magnesium alloy extruded material, characterized in that performing plastic working. 請求項1ないし請求項の何れが1項に記載の方法により製造した難燃性マグネシウム合金押出材。 4. A flame retardant magnesium alloy extruded material produced by the method according to claim 1 according to any one of claims 1 to 3 .
JP2005075473A 2005-03-16 2005-03-16 Method for producing flame retardant magnesium alloy extruded material and extruded material Active JP4415098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005075473A JP4415098B2 (en) 2005-03-16 2005-03-16 Method for producing flame retardant magnesium alloy extruded material and extruded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005075473A JP4415098B2 (en) 2005-03-16 2005-03-16 Method for producing flame retardant magnesium alloy extruded material and extruded material

Publications (2)

Publication Number Publication Date
JP2006257478A JP2006257478A (en) 2006-09-28
JP4415098B2 true JP4415098B2 (en) 2010-02-17

Family

ID=37097059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005075473A Active JP4415098B2 (en) 2005-03-16 2005-03-16 Method for producing flame retardant magnesium alloy extruded material and extruded material

Country Status (1)

Country Link
JP (1) JP4415098B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105695770A (en) * 2016-01-28 2016-06-22 大连理工大学 Method for in-situ preparation of Al2X particle reinforced magnesium base composite material
DE102016116244A1 (en) 2016-08-31 2018-03-01 Max-Planck-Institut Für Eisenforschung GmbH magnesium alloy

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093673A (en) * 2006-10-07 2008-04-24 Kinomoto Shinsen Kk Wire drawing method for magnesium based alloy
JP4929000B2 (en) * 2007-03-19 2012-05-09 三井金属鉱業株式会社 Magnesium alloy for plastic working and magnesium alloy plastic working member
JP5415739B2 (en) * 2008-10-31 2014-02-12 宮本工業株式会社 Magnesium alloy for forging
JP5587581B2 (en) * 2009-09-30 2014-09-10 富士重工業株式会社 Method for producing magnesium alloy containing silicon
CA2721752C (en) 2009-11-20 2015-01-06 Korea Institute Of Industrial Technology Aluminum alloy and manufacturing method thereof
CA2721761C (en) * 2009-11-20 2016-04-19 Korea Institute Of Industrial Technology Aluminum alloy and manufacturing method thereof
KR101066536B1 (en) * 2010-10-05 2011-09-21 한국기계연구원 Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy
JP2012097309A (en) * 2010-10-29 2012-05-24 Sanden Corp Magnesium alloy member, compressor for air conditioner, and method for manufacturing magnesium alloy member
KR101080164B1 (en) * 2011-01-11 2011-11-07 한국기계연구원 Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy
WO2012144301A1 (en) * 2011-04-18 2012-10-26 国立大学法人東北大学 Magnesium fuel cell
KR101402897B1 (en) * 2011-05-20 2014-06-02 한국생산기술연구원 Manufacturing method of alloys and alloys fabricated by the same
CN104334761B (en) * 2012-04-19 2018-05-01 国立大学法人熊本大学 Magnesium alloy and its manufacture method
EP2987874B1 (en) * 2013-04-15 2019-11-20 National University Corporation Kumamoto University Fire-resistant magnesium alloy and production method therefor
KR101931672B1 (en) 2014-12-19 2018-12-21 한국기계연구원 High speed extrudable non-flammability magnesium alloys and method for manufacturing magnesium alloy extrusion using the same
JP6760584B2 (en) * 2016-06-24 2020-09-23 不二ライトメタル株式会社 Extruded member of magnesium alloy
CN108660348A (en) * 2017-04-01 2018-10-16 比亚迪股份有限公司 A kind of fire-retardant wrought magnesium alloy of high strength and low cost
CN110066948B (en) * 2019-04-29 2020-09-11 东北大学 High-strength high-plasticity Mg-Ca-Al-Zn-Mn-Ce wrought magnesium alloy and preparation method thereof
CN111705249A (en) * 2020-07-16 2020-09-25 烟台南山学院 High-strength heat-resistant rare earth magnesium alloy and preparation method thereof
CN114438387B (en) * 2022-02-10 2022-10-14 重庆大学 Low-cost high-strength flame-retardant magnesium alloy and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105695770A (en) * 2016-01-28 2016-06-22 大连理工大学 Method for in-situ preparation of Al2X particle reinforced magnesium base composite material
CN105695770B (en) * 2016-01-28 2017-07-11 大连理工大学 A kind of preparation Al in situ2The method of X particle reinforced magnesium base compound materials
DE102016116244A1 (en) 2016-08-31 2018-03-01 Max-Planck-Institut Für Eisenforschung GmbH magnesium alloy

Also Published As

Publication number Publication date
JP2006257478A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4415098B2 (en) Method for producing flame retardant magnesium alloy extruded material and extruded material
US9279173B2 (en) Aluminum alloy forged material for automotive vehicles and production method for the material
JP5852580B2 (en) Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same
CN105154734B (en) It is a kind of can high-speed extrusion wrought magnesium alloy and preparation method thereof
JP6439683B2 (en) Flame retardant magnesium alloy and method for producing the same
JP3940154B2 (en) High strength and high toughness magnesium alloy and method for producing the same
JP5804431B2 (en) Magnesium alloy and manufacturing method thereof
KR101258470B1 (en) High-Strength High-Ductility Ignition-Proof Magnesium Alloy
KR100994812B1 (en) High-strength high-ductility magnesium alloy extrudate and manufacturing method thereof
JP3891933B2 (en) High strength magnesium alloy and method for producing the same
WO2013115593A1 (en) Machining magnesium alloy capable of being heat treated at high temperature
JP5289904B2 (en) Method for producing extruded magnesium alloy profile
KR20210130455A (en) Wrought magnesium alloys with high mechanical properties and method for preparing the same
JP4433916B2 (en) Magnesium alloy and magnesium alloy member for plastic working
JP2009144215A (en) Heat resistant magnesium alloy material and its manufacturing method
KR101700419B1 (en) Method for preparing high-strength magnesium alloy extruded material using low temperature and slow speed extrusion process and magnesium alloy extruded material manufactured thereby
JP2001316787A (en) METHOD FOR PRODUCING HALF-MELTED BILLET OF Al ALLOY FOR TRANSPORTING MACHINE
KR101007856B1 (en) High strength and high ductility magnesium alloy
CN116005042A (en) Aluminum-manganese alloy extrusion material and preparation method and application thereof
JP6726058B2 (en) Manufacturing method of Al alloy casting
JPS61259828A (en) Production of high-strength aluminum alloy extrudate
KR102407828B1 (en) Wrought magnesium alloys with high mechanical properties and method for preparing the same
WO2007114345A1 (en) DIECASTING Zn ALLOY, PROCESS FOR PRODUCTION THEREOF, AND Al MASTER ALLOY FOR DIECASTING ALLOY
JP2002060881A (en) Aluminum alloy for casting and forging, and method for producing casting and forging material
JP6638193B2 (en) Aluminum alloy processing material and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091016

R150 Certificate of patent or registration of utility model

Ref document number: 4415098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250