JPS61259828A - Production of high-strength aluminum alloy extrudate - Google Patents

Production of high-strength aluminum alloy extrudate

Info

Publication number
JPS61259828A
JPS61259828A JP10028285A JP10028285A JPS61259828A JP S61259828 A JPS61259828 A JP S61259828A JP 10028285 A JP10028285 A JP 10028285A JP 10028285 A JP10028285 A JP 10028285A JP S61259828 A JPS61259828 A JP S61259828A
Authority
JP
Japan
Prior art keywords
billet
aluminum alloy
pressure
strength
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10028285A
Other languages
Japanese (ja)
Other versions
JPH0635624B2 (en
Inventor
Ichizo Tsukuda
市三 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP60100282A priority Critical patent/JPH0635624B2/en
Publication of JPS61259828A publication Critical patent/JPS61259828A/en
Publication of JPH0635624B2 publication Critical patent/JPH0635624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce a defectless billet suitable for extrusion by solidifying a molten Al alloy contg. a specific ratio each of hardening elements such as Zn, Mg and Cu under a high pressure. CONSTITUTION:The Al alloy contg., by weight %, 7-12% Zn, 2-7% Mg and 0.5-3% Cu, contg. 1 or >=2 kinds among 0.2-1.0% Mn, 0.1-0.4% Cr and 0.05%-3% Zr, if necessary and consisting of the balance Al and inevitable impurities is melted. Such molten metal is poured into a metallic mold for high-pressure solidification and is solidified under the prescribed high pressure (<=50kgf/cm<2>) to produce the billet. Such billet is subjected to extrusion. The defectless billet consisting of the fine crystal grains is thus produced.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えば車輌用部品、機械用部品、野球用バ
ット等に使用される高強度アルミニウム合金押出材、特
にA1−高zn−xg−cu系アルミニウム合金押出材
の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to high-strength aluminum alloy extrusions used, for example, in vehicle parts, machine parts, baseball bats, etc., particularly in A1-high ZN-XG-CU series. This invention relates to a method for producing aluminum alloy extrusions.

定義 なお、この明細書において、「%」はいずれも重量%を
示すものである。
Definitions In this specification, all "%" refers to % by weight.

従来の技術 従来、高強度アルミニウム合金展伸材としては、代表的
なものとしてA7075合金、A7178合金、A70
50合金等が知ら−れている。
Conventional technology Conventionally, typical high-strength aluminum alloy wrought materials include A7075 alloy, A7178 alloy, and A70 alloy.
50 alloy etc. are known.

発明が解決しようとする問題点 ところが、最近では、これらの合金でさえなお、強度を
不満足とする用途が増え、その更なる強度の増大をはか
ることが強く要望されている。このために、近時上記の
ようなAI−Zn−Mq−cu系合金についても、その
主要硬化元素であるZn 、Mg、Cuの添加量を更に
増大させる試みがなされているが、これらの硬化元素を
従来合金の範囲を超えて多く含有せしめると、連続鋳造
時に鋳造割れが発生し、その製造が困難になる。
Problems to be Solved by the Invention Recently, however, even these alloys have been increasingly used in applications where their strength is unsatisfactory, and there is a strong demand for further increases in their strength. For this reason, attempts have recently been made to further increase the amounts of Zn, Mg, and Cu, which are the main hardening elements, in AI-Zn-Mq-cu alloys such as those mentioned above. If the alloy contains a large amount of elements beyond the range of conventional alloys, casting cracks will occur during continuous casting, making production difficult.

一方、この鋳造割れの防止対策として一般的には鋳造温
度を低くすることが考慮されるが、この場合には、応力
腐蝕割れ防止、結晶粒微細化等のために通常添加される
Mn 、 Cr 、 Zr。
On the other hand, as a measure to prevent casting cracks, lowering the casting temperature is generally considered, but in this case, Mn and Cr, which are usually added to prevent stress corrosion cracking and refine grains, etc. , Zr.

等が鋳造時に粗大ないし巨大な晶出物を生成するという
新たな問題点を発生する。このため、鋳造温度を低下す
るにも自ずと限界があり、従来既知の7000番系合金
の許容範囲を超えてZn 、Ma 、Cuの含有量を増
大した高強度アルミニウム合金材料の工業的な生産は著
るしく困難であったのが実情でおる。もっとも、そのよ
うな合金を粉末冶金法によって製造しうろことは知られ
ているが、高価格のものとなり、しかも酸化物の混入に
よる延性の低下の問題もあって、工業的実生産には不向
きなものであった。
A new problem arises in that coarse or large crystallized substances are generated during casting. For this reason, there is a natural limit to lowering the casting temperature, and it is difficult to industrially produce high-strength aluminum alloy materials with increased Zn, Ma, and Cu contents beyond the allowable range of conventional 7000 series alloys. The reality is that it was extremely difficult. Although it is known that such alloys can be produced by powder metallurgy, they are expensive and suffer from reduced ductility due to the inclusion of oxides, making them unsuitable for industrial production. It was something.

問題点を解決するための手段 本発明者は種々の実験と研究の結果、7−n、MCI 
、CI等の硬化元素を多量に含む溶融アルミニウム合金
を高圧下に凝固せしめることにより、凝固割れを生じさ
せることなく、しかもMn 、 Or 、 Zr等の添
加元素による粗大晶出物の生成をも防止して、押出加工
に好適する欠陥のないビレットを作製しうろことを見出
し、この発明を完成するに至った。
Means for Solving the Problems As a result of various experiments and research, the present inventor has developed 7-n, MCI
By solidifying a molten aluminum alloy containing large amounts of hardening elements such as CI and CI under high pressure, solidification cracking does not occur, and the formation of coarse crystals due to additive elements such as Mn, Or, and Zr is also prevented. As a result, they discovered that it is possible to produce a defect-free billet suitable for extrusion processing, leading to the completion of this invention.

而して、この発明の要旨とするところは、Zn;7〜1
2%、M(];22〜7%Cu;0.5〜3%を含有し
、かつ必要に応じてMn;0.2〜1゜0%、Cr;0
.1〜0.4%、Zr;0.05〜O13%のうちの一
種または2種以上を含有し、残部アルミニウム及び不可
避不純物からなるアルミニウム合金を溶解し、その注湯
を加圧凝固用金型に注湯し、かつ所定の高圧下に加圧凝
固せしめることによりビレットに作製したのち、該ビレ
ットを押出加工することを特徴とする高強度アルミニウ
ム合金押出材の製造法である。
Therefore, the gist of this invention is that Zn;
2%, M(]; 22-7% Cu; 0.5-3%, and if necessary Mn; 0.2-1°0%, Cr; 0
.. 1 to 0.4%, Zr; 0.05 to 13% of O, and the balance consists of aluminum and unavoidable impurities. This is a method for producing a high-strength aluminum alloy extruded material, which is characterized in that a billet is produced by pouring molten metal into the aluminum alloy and solidifying it under a predetermined high pressure, and then extruding the billet.

先ず、上記合金成分の限定理由について説明すると次の
とおりでおる。
First, the reasons for limiting the above alloy components are as follows.

必須成分としてのZn 、Mg、CUは、既知のとおり
主として合金の強度向上に寄与するものであり、いずれ
も下限値未満では、即ちZn;7%未満、MU;2%未
満、C1;0.5%未満では、この発明によって所期す
るところの従来合金の達成領域をこえる高強度を達成す
ることができない。従ってまた上記下限値未満の含有量
によるときは、従来の常法によるビレットの連続鋳造が
可能であり、この発明の製造方法を採用することの意義
に乏しい。また、上限値であるZn;12%、M!II
; 7%、CO;3%をそれぞれ超えるときは、本発明
による高圧凝固法によるビレットの作製を行う場合に於
ても、なお上記元素の粗大晶出物が発生し、かえって合
金材の高強度化の達成を阻害する。殊に、Znは12%
をこえて含有しても比例的な強度向上効果は望めず実質
的に無意味である。最も好適な含有量は、概ねZn;8
〜10%、Mg13〜5%、Cu;1〜2%程度でおる
As is known, Zn, Mg, and CU as essential components mainly contribute to improving the strength of the alloy, and when they are all below the lower limit values, that is, Zn: less than 7%, MU: less than 2%, C1: 0. If it is less than 5%, it is impossible to achieve the desired high strength of the present invention that exceeds the range achieved by conventional alloys. Therefore, when the content is less than the above lower limit, it is possible to continuously cast a billet by the conventional conventional method, and there is little significance in adopting the manufacturing method of the present invention. In addition, the upper limit of Zn; 12%, M! II
7% and CO; 3% respectively, even when producing billets by the high-pressure solidification method according to the present invention, coarse crystallized substances of the above elements will occur, which will actually reduce the strength of the alloy material. impede the achievement of In particular, Zn is 12%
Even if the content exceeds 100%, no proportional strength improvement effect can be expected and it is essentially meaningless. The most suitable content is approximately Zn;8
-10%, Mg: 13-5%, Cu: about 1-2%.

任意的な含有成分として必要に応じて添加されるMn 
SCr 、 Zrは、いずれも結晶粒の微細化、耐応力
腐蝕割れ性の改善に効果を示す上から均等物として評価
しうるちのであり、Mn;0.2%未満、Cr;0.1
%未満、Zr;O,。
Mn added as necessary as an optional component
SCr and Zr are both effective in refining crystal grains and improving stress corrosion cracking resistance, so they can be evaluated as equivalent substances.Mn: less than 0.2%, Cr: 0.1%
Less than %, Zr;O,.

5%未満では上記効果に乏しく、Mn;1.0%超過、
Cr’;0.4%超過、あるいはZr;0.3%超過の
場合には、合金中にそれらの粗大な晶出物を発生して所
期する合金の高強度化を達成することができない。
If it is less than 5%, the above effects will be poor, and if Mn exceeds 1.0%,
If Cr' exceeds 0.4% or Zr exceeds 0.3%, coarse crystallized substances will occur in the alloy, making it impossible to achieve the desired high strength of the alloy. .

次に、製造工程について説明する。上記のようなZnの
高含有率のA l−Zn−Mg−Cu系合金は、従来の
常法として行われているような連続鋳造法では、著るし
い鋳造割れの発生のために製造が困離であるが、この発
明はこの問題点を加圧凝固法の採用によって克服してい
る。即ち、上記アルミニウム合金を溶解し、その溶湯を
加圧凝固用金型内に注湯して加圧凝固せしめることによ
り、欠陥のない結晶粒の微細なビレットの作製を行いう
るちのである。加圧凝固用金型は、これに押出機のコン
テナを利用するものとしてもよい。即ち、アルミニウム
合金溶湯を直接法コンテナに注入し、ステムで加圧しつ
つ凝固させるものとしても良い。もちろん、この場合、
上記コンテナの前面は盲ダイスを付設して塞ぎ、加圧凝
固中の溶湯の噴き出しを防ぐものとすることが必要であ
る。
Next, the manufacturing process will be explained. The above-mentioned Al-Zn-Mg-Cu alloy with a high Zn content cannot be manufactured using the conventional continuous casting method due to the occurrence of significant casting cracks. Although it is difficult, the present invention overcomes this problem by employing a pressure coagulation method. That is, by melting the above aluminum alloy, pouring the molten metal into a pressure solidification mold, and solidifying it under pressure, a billet with fine grains and no defects can be produced. The pressurized solidification mold may utilize a container of an extruder. That is, the molten aluminum alloy may be directly poured into a container and solidified while being pressurized by a stem. Of course, in this case,
It is necessary to close the front surface of the container with a blind die to prevent the molten metal from spouting out during pressurized solidification.

また、上記の注湯に際しては、前記金型を予め300〜
350°C程度に加熱しておくものとすることが望まし
い。これによりビレットに一層微細な組織を得ることを
可能にする。即ち、300℃程度未満であると、注湯後
前記アルミニウムの凝固がすぐに開始してしまい、加圧
凝固による効果が充分に達成され難い。一方350℃を
こえる高温に加熱しておくと、冷却速度が遅くなり、晶
出物が成長して上記微細化効果を充分に達成し難いもの
となる傾向がみられる。
In addition, when pouring the metal, prepare the mold in advance to a temperature of 300~
It is desirable to heat it to about 350°C. This makes it possible to obtain a finer texture in the billet. That is, if the temperature is less than about 300°C, solidification of the aluminum starts immediately after pouring, making it difficult to fully achieve the effect of pressure solidification. On the other hand, if it is heated to a high temperature exceeding 350° C., the cooling rate slows down, and crystallized substances tend to grow, making it difficult to sufficiently achieve the above-mentioned refinement effect.

注湯後、すぐさま前記金型内の溶湯を加圧ピ。Immediately after pouring, the molten metal in the mold is pressurized.

ストンにより加圧し、i迂回を進行せしめることによっ
てビレットを作製する。即ち、加圧凝固法によってビレ
ットを作製する。この際の加圧力は50KIf/crA
以上であれば加圧凝固の効果を得ることができるが、好
ましくは500〜1000に’Jf/crA程度とする
のが良い。このように、所定の加圧状態下においてアル
ミニウム合金を凝固させることにより、鋳造割れを生じ
させることなく、かつ晶出物の小さなビレットを作製し
うる。従って、従来の鋳造法によってビレットを作製す
る場合、組織の均一化と微細化をはかるために必要とし
た爾後の加熱均質化処理を省略することが可能となり、
そのための熱エネルギー及び処理時間の節約を達成しう
る。上記加圧力の大小は、ビレットの品質にさして太き
な影響を与えるものではない。しかしながら50に3f
/c17iL未満では、加圧凝固法による鋳造割れ防止
及び結晶粒の微細化効果に不十分であり、反面例えば1
500 K’Jt/craをこえるような高圧を付加し
ても、それに要するエネルギーの増大に見合う効果の比
例的向上を見ることができないためむしろ無益である。
A billet is produced by applying pressure with a stone and advancing the i-detour. That is, a billet is produced by a pressure coagulation method. The pressing force at this time is 50KIf/crA
If it is above, the effect of pressure coagulation can be obtained, but preferably it is about 500 to 1000'Jf/crA. In this manner, by solidifying the aluminum alloy under a predetermined pressurized condition, a small billet of crystallized material can be produced without causing casting cracks. Therefore, when producing a billet using the conventional casting method, it is possible to omit the subsequent heating homogenization treatment required to homogenize and refine the structure.
Savings in thermal energy and processing time can therefore be achieved. The magnitude of the above-mentioned pressing force does not significantly affect the quality of the billet. However, 3f in 50
/c less than 17 iL is insufficient for preventing casting cracks and refining crystal grains by the pressure solidification method;
Even if a high pressure exceeding 500 K'Jt/cra is applied, it is rather useless because the effect cannot be proportionally improved to compensate for the increase in energy required.

なお、加圧凝固により、晶出物の微細化をはかりうる理
由は、−加圧により金型と溶湯の間及び溶湯内の空隙が
消滅し、冷却速度が増大することが1つの要因になって
いるものと推測される。
One of the reasons why the crystallized material can be made finer by pressure solidification is that - Pressure eliminates the voids between the mold and the molten metal and within the molten metal, increasing the cooling rate. It is assumed that

上記の加圧凝固法により作製したビレットは、次にこれ
を押出加工して所期する高強度アルミニウム合金材とす
る。ここに、ビレットは一旦冷却された同相状態のもの
を用いても良いが、好ましくは前記加圧凝固の進行によ
り、ビレットの温度が押出加工に適する温度、例えば液
相温度の約1/2程度にまで低下し半溶融状態となった
時点で加圧凝固工程を終了し、すぐさまそのまま押出機
のコンテナに装填して押出しを開始するものとなすこと
が推奨される。このような手順を採用することにより、
押出加工に際してのビレットの加熱工程を省くことが可
能となり、その加熱に要するエネルギー及び時間を節約
し、合金押出材の製造能率の向上及び製造コストの低減
の利益を享受しうる。
The billet produced by the above pressure solidification method is then extruded to form the desired high-strength aluminum alloy material. Here, the billet may be once cooled and in the same phase state, but preferably, as the pressure solidification progresses, the temperature of the billet is a temperature suitable for extrusion processing, for example, about 1/2 of the liquidus temperature. It is recommended that the pressurized solidification step be completed when the temperature has decreased to a semi-molten state, and that the extruder be immediately loaded into the container of the extruder and extrusion be started. By adopting such a procedure,
It becomes possible to omit the step of heating the billet during extrusion processing, saving the energy and time required for heating, and enjoying the benefits of improved manufacturing efficiency and reduced manufacturing costs of alloy extruded materials.

発明の効果 この発明は上述のように、組成面において特に極めて高
含有率にZnを含有し、Mg及びCUも比較的高含有の
A l−Zn−Mg−Cl系合金からなるものであるか
ら、従来合金より卓越した高強度を保有し、各種機械部
品等に使用してその一層の薄肉化、軽量化の達成を可能
とするのはもとより、先ず高圧凝固法によりビレットの
作製を行い、然る後押出加工を行うものとしたことによ
り、前記のような高強度合金でありながら、ビレットの
作製に鋳造割れを生じることなく、かつ結晶粒の微細な
延性に優れた高強度アルミニウム合金材を高能率かつ低
価格に製造することができるものでおる。
Effects of the Invention As described above, the present invention is composed of an Al-Zn-Mg-Cl alloy containing extremely high Zn content and relatively high content of Mg and CU. , which has superior strength compared to conventional alloys, can be used in various mechanical parts to make them even thinner and lighter. By performing post-extrusion processing, we were able to create a high-strength aluminum alloy material with fine crystal grains and excellent ductility, without causing casting cracks during billet production, even though it is a high-strength alloy as described above. It can be manufactured with high efficiency and at low cost.

実施例 次にこの発明の実施例を比較例とともに示す。Example Next, examples of the present invention will be shown together with comparative examples.

第1表 上記第1表に示す各種化学組成の合金を液相温度+10
0℃に溶解し、その溶湯を約280℃に加熱した加圧凝
固用金型に注湯したのち、すぐさまこれを1000 K
lf/criに加圧し、該加圧下に凝固させた。そして
、およそ液相温度の1/2程度の温度にまで冷却したと
き、加圧凝固工程を終了し、得られたビレット(直径7
5馴、長さ100mm)をすぐさま押出機のコンテナー
に挿入し、直径12mの丸棒に押出した。
Table 1 Alloys with various chemical compositions shown in Table 1 above have liquidus temperature +10
The molten metal was melted at 0℃, poured into a pressurized solidification mold heated to about 280℃, and then immediately heated to 1000K.
It was pressurized to lf/cri and solidified under the pressure. When the billet is cooled to about 1/2 of the liquidus temperature, the pressure solidification process is completed and the resulting billet (diameter 7
5, length 100 mm) was immediately inserted into the container of an extruder and extruded into a round bar with a diameter of 12 m.

上記工程において、ビレットは鋳造割れのない状態のも
のが得られ、かつその押出しも支障なく行い得るもので
あった。
In the above process, a billet with no casting cracks was obtained, and the billet could be extruded without any problems.

そこで次いで、この押出材を460’Cで溶体化処理し
、更に120’CX24時間の時効処理を施したのち、
得られた各試料の機械的性質を調べた。結果を第2表に
示す。なお、第1表中に示す比較合金は、Zn、Mg、
及びCuの含有量を、従来の製法による場合の製造上の
ほぼ限界値とされている組成範囲のものを示した。
Therefore, this extruded material was then solution treated at 460'C and further aged at 120'C for 24 hours.
The mechanical properties of each sample obtained were investigated. The results are shown in Table 2. The comparative alloys shown in Table 1 are Zn, Mg,
The composition range of the Cu content and Cu content is approximately at the manufacturing limit when using conventional manufacturing methods.

[以下余白] 第2表 上記第2表の結果に示されるとおり、本発明合金による
ものは、主にZnの高率含有によって、従来の製法によ
る場合の限界とされている比較合金のものに較へ、若干
伸びが低下するもの引張り強さ、耐力に一段と優れたも
のとなっていることが分かる。
[Margins below] Table 2 As shown in the results in Table 2 above, the alloys of the present invention exceeded those of the comparative alloys, which are considered to be the limits of conventional manufacturing methods, mainly due to the high content of Zn. In comparison, it can be seen that although the elongation is slightly lower, the tensile strength and yield strength are much better.

以上that's all

Claims (3)

【特許請求の範囲】[Claims] (1)Zn;7〜12%、Mg;2〜7%、Cu;0.
5〜3%を含有し、かつ必要に応じてMn;0.2〜1
.0%、Cr;0.1〜0.4%、Zr;0.05〜0
.3%のうちの一種または2種以上を含有し、残部アル
ミニウム及び不可避不純物からなるアルミニウム合金を
溶解し、その溶湯を加圧凝固用金型に注湯して所定の高
圧下に加圧凝固せしめることによりビレットに作製した
のち、該ビレットを押出加工することを特徴とする高強
度アルミニウム合金押出材の製造法。
(1) Zn; 7-12%, Mg; 2-7%, Cu; 0.
5 to 3%, and optionally Mn; 0.2 to 1
.. 0%, Cr; 0.1-0.4%, Zr; 0.05-0
.. An aluminum alloy containing one or more of 3% aluminum and the remainder aluminum and unavoidable impurities is melted, and the molten metal is poured into a pressure solidification mold and solidified under a predetermined high pressure. 1. A method for producing a high-strength aluminum alloy extruded material, the method comprising producing a billet by extruding the billet.
(2)ビレットの作製のための加圧凝固を、50Kgf
/cm^2以上の加圧条件下で行うことを特徴とする特
許請求の範囲第1項記載の高強度アルミニウム合金押出
材の製造法。
(2) Pressure coagulation for billet production at 50Kgf
2. The method for producing a high-strength aluminum alloy extruded material according to claim 1, which is carried out under pressurized conditions of /cm^2 or more.
(3)ビレットの作製のための加圧凝固工程を、ビレッ
トが押出加工に適する温度にまで冷却された時点で終了
し、すぐさま該ビレットを押出機のコンテナに装入して
そのまま押出加工を行うことを特徴とする特許請求の範
囲第1項または第2項記載の高強度アルミニウム合金押
出材の製造法。
(3) The pressure solidification process for billet production ends when the billet is cooled to a temperature suitable for extrusion processing, and the billet is immediately charged into the extruder container and extrusion processing is performed as is. A method for producing a high-strength aluminum alloy extruded material according to claim 1 or 2, characterized in that:
JP60100282A 1985-05-10 1985-05-10 Manufacturing method of high strength aluminum alloy extruded material Expired - Lifetime JPH0635624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60100282A JPH0635624B2 (en) 1985-05-10 1985-05-10 Manufacturing method of high strength aluminum alloy extruded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60100282A JPH0635624B2 (en) 1985-05-10 1985-05-10 Manufacturing method of high strength aluminum alloy extruded material

Publications (2)

Publication Number Publication Date
JPS61259828A true JPS61259828A (en) 1986-11-18
JPH0635624B2 JPH0635624B2 (en) 1994-05-11

Family

ID=14269837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60100282A Expired - Lifetime JPH0635624B2 (en) 1985-05-10 1985-05-10 Manufacturing method of high strength aluminum alloy extruded material

Country Status (1)

Country Link
JP (1) JPH0635624B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218526A (en) * 1986-03-18 1987-09-25 Showa Alum Corp Manufacture of extruded aluminum alloy material having superior modulus of elasticity
US4863528A (en) * 1973-10-26 1989-09-05 Aluminum Company Of America Aluminum alloy product having improved combinations of strength and corrosion resistance properties and method for producing the same
JPH032345A (en) * 1989-04-05 1991-01-08 Pechiney Rech Aluminum-base alloy of high young's modulus and mechanical strength and production of said alloy
US5221377A (en) * 1987-09-21 1993-06-22 Aluminum Company Of America Aluminum alloy product having improved combinations of properties
US5496426A (en) * 1994-07-20 1996-03-05 Aluminum Company Of America Aluminum alloy product having good combinations of mechanical and corrosion resistance properties and formability and process for producing such product
FR2838135A1 (en) * 2002-04-05 2003-10-10 Pechiney Rhenalu PRODUCTS CORROYED IN A1-Zn-Mg-Cu ALLOYS WITH VERY HIGH MECHANICAL CHARACTERISTICS, AND AIRCRAFT STRUCTURE ELEMENTS
JP2014125676A (en) * 2012-12-27 2014-07-07 Kobe Steel Ltd Aluminum alloy extrusion material excellent in strength
WO2017126413A1 (en) * 2016-01-21 2017-07-27 株式会社神戸製鋼所 Machine component, method for producing same, and extruded material
WO2018037810A1 (en) * 2016-08-22 2018-03-01 株式会社神戸製鋼所 Machine component and extruded material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181851A (en) * 1982-04-06 1983-10-24 Kobe Steel Ltd Preparation of al-zn-mg-cu base alloy material having uniform moldability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181851A (en) * 1982-04-06 1983-10-24 Kobe Steel Ltd Preparation of al-zn-mg-cu base alloy material having uniform moldability

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863528A (en) * 1973-10-26 1989-09-05 Aluminum Company Of America Aluminum alloy product having improved combinations of strength and corrosion resistance properties and method for producing the same
JPS62218526A (en) * 1986-03-18 1987-09-25 Showa Alum Corp Manufacture of extruded aluminum alloy material having superior modulus of elasticity
US5221377A (en) * 1987-09-21 1993-06-22 Aluminum Company Of America Aluminum alloy product having improved combinations of properties
JPH032345A (en) * 1989-04-05 1991-01-08 Pechiney Rech Aluminum-base alloy of high young's modulus and mechanical strength and production of said alloy
US5496426A (en) * 1994-07-20 1996-03-05 Aluminum Company Of America Aluminum alloy product having good combinations of mechanical and corrosion resistance properties and formability and process for producing such product
FR2838135A1 (en) * 2002-04-05 2003-10-10 Pechiney Rhenalu PRODUCTS CORROYED IN A1-Zn-Mg-Cu ALLOYS WITH VERY HIGH MECHANICAL CHARACTERISTICS, AND AIRCRAFT STRUCTURE ELEMENTS
WO2003085146A1 (en) * 2002-04-05 2003-10-16 Pechiney Rhenalu Al-zn-mg-cu alloys welded products with high mechanical properties, and aircraft structural elements
JP2014125676A (en) * 2012-12-27 2014-07-07 Kobe Steel Ltd Aluminum alloy extrusion material excellent in strength
WO2017126413A1 (en) * 2016-01-21 2017-07-27 株式会社神戸製鋼所 Machine component, method for producing same, and extruded material
WO2018037810A1 (en) * 2016-08-22 2018-03-01 株式会社神戸製鋼所 Machine component and extruded material

Also Published As

Publication number Publication date
JPH0635624B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
EP2644727B1 (en) Aluminum alloy forged material for automotive vehicles and production method for the material
RU2463371C2 (en) Magnesium-containing high-silica aluminium alloys used as structural materials and method of their manufacturing
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JP2006257478A (en) Flame-retardant magnesium alloy and its manufacturing method
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
JP2016524045A (en) Aluminum alloy composites with improved high temperature mechanical properties
CN111187951A (en) Aluminum-magnesium-scandium-zirconium-titanium alloy and preparation method thereof
CN114231802A (en) Rare earth aluminum alloy bar for forging aluminum alloy hub and preparation method thereof
JPS61259828A (en) Production of high-strength aluminum alloy extrudate
JPH02149631A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JP2020164946A (en) Al-Mg-Si-BASED ALUMINUM ALLOY COLD-ROLLED SHEET AND METHOD OF MANUFACTURING THE SAME, AND MOLDING Al-Mg-Si-BASED ALUMINUM ALLOY COLD-ROLLED SHEET AND METHOD OF MANUFACTURING THE SAME
JPS61259830A (en) Production of wear resistant aluminum alloy extrudate having excellent machineability
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JPS61259829A (en) Production of wear resistant aluminum alloy extrudate
JPS62218527A (en) Manufacture of extruded magnesium alloy material having superior modulus of elasticity
JPH0480108B2 (en)
JPH03249148A (en) Low thermal expansion aluminum alloy excellent in strength and ductility
JPH02149633A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPH0557344B2 (en)
JPH0366387B2 (en)
CN114589430B (en) Al-Mg alloy welding wire and preparation method thereof
JPS62218526A (en) Manufacture of extruded aluminum alloy material having superior modulus of elasticity
JPH01143791A (en) Aluminum alloy filler metal
JPH03126834A (en) High strength aluminum alloy having excellent elastic modulus and low thermal expansibility
JPH02149629A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity