JPH03249148A - Low thermal expansion aluminum alloy excellent in strength and ductility - Google Patents

Low thermal expansion aluminum alloy excellent in strength and ductility

Info

Publication number
JPH03249148A
JPH03249148A JP4831690A JP4831690A JPH03249148A JP H03249148 A JPH03249148 A JP H03249148A JP 4831690 A JP4831690 A JP 4831690A JP 4831690 A JP4831690 A JP 4831690A JP H03249148 A JPH03249148 A JP H03249148A
Authority
JP
Japan
Prior art keywords
strength
alloy
thermal expansion
ductility
low thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4831690A
Other languages
Japanese (ja)
Inventor
Ichizo Tsukuda
市三 佃
Jiichi Nagai
滋一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP4831690A priority Critical patent/JPH03249148A/en
Publication of JPH03249148A publication Critical patent/JPH03249148A/en
Pending legal-status Critical Current

Links

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

PURPOSE:To improve the ductility and strength of an aluminum alloy without impairing its low thermal expasibility by incorporating an Al-Ti series alloy with specified amounts of B, Zr, Hf, Nb and Ni. CONSTITUTION:An alloy is incorporated with, by weight, 1 to 20% Ti, furthermore incorporated with either or both of total 0.005 to 1% of one or >=two kinds among B, Zr, Hf and Nb and 0.05 to 0.5% Ni and the balance Al with inevitable impurities. If required, one or >=two kinds among 1.5 to 8% Cu, 0.2 to 7% Mg, 0.01 to 13% Si, 0.01 to 7% Zn, 0.01 to 1% Cr, 0.01 to 2% Mn, 0.05 to 1% Ag and 0.01 to 2% Fe are incorporated therein. This alloy can be manufactured by a casting metallurgy method. The alloy is suitable for automobile members or the like requiring high strength, high ductility and a low thermal expansion coefficient.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、コンロッド、ピストン等の自動車用部品そ
の他機械部品として用いられる強度、延性に優れた低熱
膨張アルミニウム合金に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a low thermal expansion aluminum alloy having excellent strength and ductility and used as automobile parts and other mechanical parts such as connecting rods and pistons.

従来の技術及び解決しようとする課題 例えばコンロッド等の自動車部品は、ピストンやクラン
ク等との間で苛酷な応力を受けることから、強度、延性
に優れていることが要請される。また、高温環境下で使
用されることから、熱膨張の小さいものであることも要
請される。
BACKGROUND ART Automotive parts such as connecting rods are required to have excellent strength and ductility because they are subjected to severe stress between pistons, cranks, etc. Furthermore, since it is used in a high-temperature environment, it is also required to have low thermal expansion.

従って、かかる自動車部品等に適用されるアルミニウム
合金は、優れた強度、延性、低膨張性のいずれをも兼ね
備えたものであることが必要である。
Therefore, the aluminum alloy used in such automobile parts and the like must have excellent strength, ductility, and low expansion properties.

而して、従来より、高強度を有するアルミニウム合金と
してAg−Cu系合金が知られ一般に用いられているが
、低熱膨張性の点で十分な満足を与え得るものではなか
った。
Although Ag-Cu alloys have heretofore been known and commonly used as aluminum alloys having high strength, they have not been able to provide sufficient satisfaction in terms of low thermal expansion.

一方、高温強度、低熱膨張性ともに優れた特性を示す材
料として、Ag−5t−Fe −Mn系合金からなる急
冷粉末合金を用いたものが知られているが、この合金は
粉末冶金法により製作されるものであることからコスト
高につき実用的ではなかった。
On the other hand, a material using a quenched powder alloy consisting of an Ag-5t-Fe-Mn alloy is known as a material that exhibits excellent properties in both high-temperature strength and low thermal expansion, but this alloy is manufactured using a powder metallurgy method. However, it was not practical due to the high cost.

この発明はかかる技術的背景に鑑みてなされたものであ
って、強度、延性、低熱膨張性いずれにも優れるととも
に、鋳造冶金法により製作しうるアルミニウム合金の提
供を目的とする。
The present invention was made in view of this technical background, and an object of the present invention is to provide an aluminum alloy that is excellent in strength, ductility, and low thermal expansion, and that can be manufactured by a casting metallurgy method.

課題を解決するための手段 上記目的を達成するために、この発明は、基本的にAg
−Ti系合金を用いることによりAgマトリックス中に
金属間化合物としてのAg3Tiを分散せしめ、もって
強度、低熱膨張性を確保するとともに、さらにB、Zr
、Hf。
Means for Solving the Problems In order to achieve the above object, the present invention basically consists of Ag
- By using a Ti-based alloy, Ag3Ti as an intermetallic compound is dispersed in the Ag matrix, thereby ensuring strength and low thermal expansion.
, Hf.

Nb、Niの1種以上を添加含有せしめることにより、
低熱膨張性を損うことなく延性の増大と強度の更なる向
上を図りうることを知見しこの発明を完成しえたもので
ある。
By adding and containing one or more of Nb and Ni,
This invention was completed by discovering that it is possible to further improve ductility and strength without impairing low thermal expansion properties.

即ち、この発明は、Ti:1〜20wt%を含有し、さ
らにBSz「、Hf5Nbの1種または2種以上を合計
で0.005〜1wt%かNi:0.05〜5wt%の
いずれかあるいは両方を含有し、あるいはさらに、Cu
:1.5〜8wt%Mg : 0.2〜7wt%、S 
i : 0.01〜13wt%、Zn : 0.01〜
7wt%、Cr:0.01〜1 wt%、Mn : 0
.01〜2wt%、Ag:0.05〜1wt%、F e
 : 0. 01〜2wt%、の1種または2種以上を
含有し、残部アルミニウム及び不可避不純物からなるこ
とを特徴とする強度、延性に優れた低熱膨張アルミニウ
ム合金を要旨とする。
That is, this invention contains Ti: 1 to 20 wt%, and further contains one or more types of BSz", Hf5Nb in total of 0.005 to 1 wt%, or Ni: 0.05 to 5 wt%, or Contains both, or in addition, Cu
: 1.5-8wt% Mg: 0.2-7wt%, S
i: 0.01~13wt%, Zn: 0.01~
7 wt%, Cr: 0.01-1 wt%, Mn: 0
.. 01-2wt%, Ag: 0.05-1wt%, Fe
: 0. The subject matter is a low thermal expansion aluminum alloy with excellent strength and ductility, which is characterized by containing one or more of the following:

本発明合金における各元素の添加意義とその限定理由に
ついて説明すると、Tiはへρ−Ti系金属間化合物を
形成して合金中に分散し、主として強度の向上、熱膨張
係数の低下に寄与するものである。しかしその含有量が
1wt%未満ではその効果に乏しい。一方20wt%を
超えると熱伝導性を阻害するとともに加工性の劣化を招
く。特に好ましい含有範囲は5〜15wt%である。
To explain the significance of adding each element in the present invention alloy and the reason for its limitation, Ti forms a ρ-Ti intermetallic compound and is dispersed in the alloy, which mainly contributes to improving the strength and lowering the coefficient of thermal expansion. It is something. However, if the content is less than 1 wt%, the effect is poor. On the other hand, if it exceeds 20 wt%, thermal conductivity will be inhibited and workability will deteriorate. A particularly preferable content range is 5 to 15 wt%.

B5Zr5Hf、Nb、NiはTiによる低熱膨張性を
阻害することなく、合金強度の更なる向上と延性の増大
に有効なものである。かかる効果の点でこれらは相互に
均等物として評価しうるちのである。しかし、B、Zr
、Hf。
B5Zr5Hf, Nb, and Ni are effective for further improving the alloy strength and increasing ductility without inhibiting the low thermal expansion property due to Ti. In terms of these effects, they can be evaluated as equivalent to each other. However, B, Zr
, Hf.

Nbの4元素とNiとでは上記効果を達成する含有範囲
が異なる。即ち、B、Zr、Hf%Nbを含有する場合
には、それらの1種または2種を合計値で0.005〜
1wt%の範囲に規定する必要がある。また、Niを含
有する場合には0.05〜5wt%に規定する必要があ
る。B5Zr5Hf、Nbが0.005wt%未満、N
iが0.05wt%未満では合金強度及び延性の向上効
果に乏しい。一方B5Zr、Hf%Nbが1wt%を超
え、あるいはNiが5wt%を超えると熱伝導性を阻害
する。もとより、上記範囲でBes Z r% Hfs
 NbとNiの両方を同時に含有せしめても良い。特に
好ましい含有量はBe5Zr、Hf、Nbの合計値:0
.01−0゜8wt%、Ni : 0.1〜4wt%で
ある。
The four elements of Nb and Ni have different content ranges that achieve the above effects. That is, when containing B, Zr, Hf%Nb, the total value of one or two of them is 0.005~
It is necessary to specify the content within the range of 1 wt%. Moreover, when Ni is contained, it is necessary to specify it at 0.05 to 5 wt%. B5Zr5Hf, Nb less than 0.005wt%, N
When i is less than 0.05 wt%, the effect of improving alloy strength and ductility is poor. On the other hand, if B5Zr, Hf%Nb exceeds 1wt%, or Ni exceeds 5wt%, thermal conductivity will be inhibited. Of course, Bes Z r% Hfs in the above range
Both Nb and Ni may be contained at the same time. A particularly preferable content is the total value of Be5Zr, Hf, and Nb: 0
.. 01-0°8wt%, Ni: 0.1-4wt%.

任意的に1種または2種以上の含有が許容されるCLI
SMg、S 1SZnは合金の強度向上に寄与するもの
である。またSiはさらに低熱膨張にも寄与するもので
ある。しかし、Cu:1.5wt%未満、Mg : 0
.2wt%未満、Si:0.01wt%未満、Zn:0
.01wt%未満では上記の効果に乏しい。一方、Cu
:8wt%、Mgニアwt%、Si:13wt%、Zn
ニアwt%をそれぞれ超えても上記効果の格別な増大作
用かないばかりでなく、却って加工性の劣化を派生する
。特に好ましい範囲は、Cu:2〜7wt%、Mg :
 0.3〜5wt%、5ilo、2〜12wt%、Zn
:1〜5wt%である。
Optionally, one or more CLIs may be included.
SMg and S1SZn contribute to improving the strength of the alloy. Furthermore, Si also contributes to low thermal expansion. However, Cu: less than 1.5 wt%, Mg: 0
.. Less than 2wt%, Si: less than 0.01wt%, Zn: 0
.. If it is less than 0.01 wt%, the above effects will be poor. On the other hand, Cu
:8 wt%, Mgnia wt%, Si:13 wt%, Zn
Exceeding the near wt% does not only not significantly increase the above effect, but also leads to deterioration of workability. Particularly preferable ranges are Cu: 2 to 7 wt%, Mg:
0.3-5wt%, 5ilo, 2-12wt%, Zn
:1 to 5 wt%.

さらに、同じく任意的に1種または2種以上の含有が許
容されるCrSMn、Ag、Feは合金中で金属間化合
物を形成して合金の熱膨張係数の低下、弾性率の向上に
寄与する。しかし、Cr、Mn、Feが個々に0゜01
wt%未満、Agが0.05wt%未満では上記効果に
乏しいものとなり、一方Cr、Agが1wt%を超え、
Mn、Feが2wt%を超えると加工性の劣化を派生す
る。特に好ましい含有範囲は、Cr : 0゜05〜0
.5wt%、Mn : 0.1〜1.5wt%、Ag 
: 0. 1〜0. 7wt%、Fe : 0.1〜1
゜5wt%である。
Further, CrSMn, Ag, and Fe, which may optionally be contained in one or more kinds, form intermetallic compounds in the alloy and contribute to lowering the coefficient of thermal expansion and improving the elastic modulus of the alloy. However, Cr, Mn, and Fe are individually 0°01
When Cr and Ag are less than 0.05 wt%, the above effects are poor; on the other hand, when Cr and Ag exceed 1 wt%,
When Mn and Fe exceed 2 wt%, processability deteriorates. A particularly preferable content range is Cr: 0°05 to 0
.. 5wt%, Mn: 0.1-1.5wt%, Ag
: 0. 1~0. 7wt%, Fe: 0.1-1
It is 5 wt%.

本発明に係るアルミニウム合金は、常法に従う連続ある
いは半連続鋳造法によっても製造することができるが、
Ti等の添加により形成された金属間化合物の一層の微
細化を図るため、加圧凝固法により製造することも推奨
される。
The aluminum alloy according to the present invention can also be produced by continuous or semi-continuous casting according to conventional methods, but
In order to further refine the intermetallic compound formed by adding Ti or the like, it is also recommended to manufacture by a pressure solidification method.

この加圧凝固法を説明すると次のとおりである。This pressure coagulation method will be explained as follows.

即ち、本発明合金を溶解し、その溶湯を加圧凝固用金型
に注湯して加圧凝固せしめることにより、欠陥のない金
属間化合物の均一かつ微細なビレットの作製を行うもの
である。加圧凝固用金型は、これに押出機のコンテナを
利用するものとしても良い。即ち、アルミニウム合金溶
湯を直接コンテナに注入し、ステムで加圧しつつ凝固さ
せるものとしても良い。もちろん、この場合、上記コン
テナの前面は盲ダイスを付設して塞ぎ、加圧凝固中の溶
湯の吹出しを防ぐものとすることが必要である。また上
記注湯に際しては前記金型を予め300〜350℃程度
に加熱しておくものとすることが望ましい。これにより
ビレットに一層微細な組織を得ることを可能にする。即
ち300℃程度未満であると、注湯後前記アルミニウム
の凝固が直ぐに開始してしまい、加圧凝固による効果が
十分に達成され難い。一方、350℃を超える高温に加
熱しておくと、冷却速度が遅くなり、晶出物が成長して
上記微細効果を十分に達成し難いものとなる傾向がみら
れる。注湯後すぐさま前記金型内の溶湯を加圧ピストン
により加圧し、凝固を進行せしめることによってビレッ
トを作製する。即ち加圧凝固法によってビレットを作製
する。この際の加圧力は50Ktf/a1以上であれば
良く、望ましくは500〜1000υf/ai程度とす
るのが良い。この加圧力の大小はビレットの品質にさし
て大きな影響を与えるものではない。
That is, by melting the alloy of the present invention, pouring the molten metal into a pressure solidification mold, and solidifying it under pressure, a uniform and fine billet of defect-free intermetallic compounds is produced. The pressurized solidification mold may utilize a container of an extruder. That is, the molten aluminum alloy may be directly poured into the container and solidified while being pressurized by the stem. Of course, in this case, it is necessary to close the front surface of the container with a blind die to prevent the molten metal from blowing out during pressurized solidification. Further, when pouring the molten metal, it is desirable that the mold be preheated to about 300 to 350°C. This makes it possible to obtain a finer texture in the billet. That is, if the temperature is less than about 300° C., solidification of the aluminum will start immediately after pouring, making it difficult to fully achieve the effect of pressure solidification. On the other hand, if it is heated to a high temperature exceeding 350° C., the cooling rate becomes slow and crystallized substances grow, making it difficult to sufficiently achieve the above-mentioned fine effect. Immediately after pouring, the molten metal in the mold is pressurized by a pressurizing piston to advance solidification, thereby producing a billet. That is, a billet is produced by a pressure solidification method. The pressing force at this time may be at least 50 Ktf/a1, preferably about 500 to 1000 υf/ai. The magnitude of this pressing force does not significantly affect the quality of the billet.

しかしながら、50υf/ci未満では加圧凝固法によ
る鋳造割れ防止及び晶出物の微細化効果に不十分であり
、反面例えば150ONff/cI!を超えるような高
圧を付加しも、それに要するエネルギの増大に見合う効
果の比例的向上を見ることができないためむしろ無益で
ある。このように、所定の加圧状態下においてアルミニ
ウム合金を凝固させることにより、鋳造割れを生じさせ
ることなく、かつ晶出物の小さなビレットを作製しうる
。上記加圧凝固法により作製したビレットは、次にこれ
を押出加工して所期するアルミニウム合金材とする。こ
こに、ビレットは一旦冷却された固相状態のものを用い
ても良いが、好ましくは前記加圧凝固の進行により、ビ
レットの温度が押出し加工に適する温度、例えば液相温
度の約1/2程度にまで低下し半溶融状態となった時点
で加圧凝固工程を終了し、すぐさまそのまま押出機のコ
ンテナに装填して押出しを開始するものとなすことが奨
励される。
However, if it is less than 50 υf/ci, the effect of preventing casting cracks and refining crystallized substances by the pressure solidification method is insufficient. It is rather useless to apply a high pressure that exceeds 100, because there is no proportional improvement in effectiveness commensurate with the increase in energy required. In this manner, by solidifying the aluminum alloy under a predetermined pressurized condition, a small billet of crystallized material can be produced without causing casting cracks. The billet produced by the above pressure solidification method is then extruded to form the desired aluminum alloy material. Here, the billet may be used in a solid state that has been cooled once, but preferably, the temperature of the billet is adjusted to a temperature suitable for extrusion processing, for example, about 1/2 of the liquidus temperature, by the progress of the pressure solidification. It is recommended that the pressurized solidification process be completed when the temperature has decreased to a certain degree and the mixture has reached a semi-molten state, and that the extruder be immediately loaded into the container of the extruder and extrusion be started.

このような手順を採用することにより、押出加工に際し
てのビレットの加熱工程を省くことが可能となり、その
加熱に要するエネルギおよび時間を節約し、合金押出材
の製造能率の向上および製造コストの低減の利益を享受
しうる。
By adopting such a procedure, it is possible to omit the billet heating step during extrusion processing, saving the energy and time required for heating, improving the manufacturing efficiency of alloy extrusions, and reducing manufacturing costs. can enjoy benefits.

実施例 次にこの発明の実施例を示す。Example Next, examples of this invention will be shown.

[以下余白コ 上記第1表に示す組成のアルミニウム合金を、850℃
にて溶解したのち、常法に従う鋳造法により直径3イン
チのビレットに鋳込み、該ビレットを500℃で直径1
2ao+の丸棒に押出したものを試験片として用いた。
[The following blanks indicate that an aluminum alloy having the composition shown in Table 1 above was heated at 850°C.
After melting at 500°C, it is cast into a billet with a diameter of 3 inches by a conventional casting method.
A test piece extruded into a 2ao+ round bar was used.

上記により製作した試験片につき、引張強さ、耐力、伸
びを測定するとともに、ヤング率、熱膨張係数を調査し
た。その結果を下記第2表に示す。
The tensile strength, proof stress, and elongation of the test pieces produced as described above were measured, and the Young's modulus and coefficient of thermal expansion were investigated. The results are shown in Table 2 below.

[以下余白] 第2表の結果から、本発明合金は、強度が高いうえ熱膨
張係数が小さく、しかもTi含有量が同じであるがB5
Zr5Hf、、Nb、Niを含まない比較合金に較べて
、強度、伸びが増大していることがわかる。また、Cu
 % M g SSi、Znの1種または2種以上をさ
らに添加したものは、上記に加えて強度がさらに増大し
ていることもわかる。また、Cr SM n SA g
 sFeの1種または2種以上を添加したもの(例えば
No12)は添加しないもの(例えばN04)に較べて
弾性率が向上し、熱膨張係数が低下していることがわか
る。
[Left below] From the results in Table 2, it is clear that the alloy of the present invention has high strength and a low coefficient of thermal expansion, and has the same Ti content as B5.
It can be seen that the strength and elongation are increased compared to the comparative alloy that does not contain Zr5Hf, Nb, or Ni. Also, Cu
% M g It can be seen that the strength is further increased in addition to the above when one or more of SSi and Zn are added. Also, Cr SM n SA g
It can be seen that the elastic modulus is improved and the thermal expansion coefficient is lower in the case where one or more types of sFe are added (for example, No. 12) compared to the case where sFe is not added (for example, No. 4).

発明の効果 この発明は上述の次第で、所定量のTiにさらに所定量
のBs Zrs Hf5Nbs Niの1種または2種
以上が添加含有されてなるものであるから、強度、延性
、低熱膨張性に優れたアルミニウム合金となしうる。し
かも、鋳造冶金法によって製造可能であるから、粉末冶
金法による場合に較べて安価に提供できる。従って、材
料特性として高強度、高延性、低熱膨張係数の要求され
る自動車用部品等に好適に用いうる。
Effects of the Invention As described above, this invention is made by adding and containing a predetermined amount of one or more of Bs Zrs Hf5Nbs Ni to a predetermined amount of Ti, so that strength, ductility, and low thermal expansion properties are improved. It can be made into an excellent aluminum alloy. Moreover, since it can be manufactured by casting metallurgy, it can be provided at a lower cost than by powder metallurgy. Therefore, it can be suitably used for automobile parts, etc., which require material properties such as high strength, high ductility, and low coefficient of thermal expansion.

また、請求項2に記載のアルミニウム合金は、上記に加
えて、さらなる強度の向上あるいは弾性率の向上、熱膨
張係数の低下を図りうる。
Moreover, in addition to the above, the aluminum alloy according to claim 2 can further improve strength, improve modulus of elasticity, and lower coefficient of thermal expansion.

以上that's all

Claims (2)

【特許請求の範囲】[Claims] (1)Ti:1〜20wt%を含有し、さらにB、Zr
、Hf、Nbの1種または2種以上を合計で0.005
〜1wt%かNi:0.05〜5wt%のいずれかある
いは両方を含有し、残部アルミニウム及び不可避不純物
からなることを特徴とする強度、延性に優れた低熱膨張
アルミニウム合金。
(1) Contains Ti: 1 to 20 wt%, and further contains B and Zr.
, Hf, Nb or more in total of 0.005
A low thermal expansion aluminum alloy having excellent strength and ductility, characterized in that it contains either or both of Ni: 0.05 to 5 wt%, and the remainder consists of aluminum and unavoidable impurities.
(2)Ti:1〜20wt%を含有し、さらにB)Zr
、Hf、Nbの1種または2種以上を合計で0.005
〜1wt%かNi:0.05〜5wt%のいずれかある
いは両方を含有し、さらに、 Cu:1.5〜8wt% Mg:0.2〜7wt%、 Si:0.01〜13wt%、 Zn:0.01〜7wt%、 Cr:0.01〜1wt%、 Mn:0.01〜2wt%、 Ag:0.05〜1wt%、 Fe:0.01〜2wt%、 の1種または2種以上を含有し、残部アル ミニウム及び不可避不純物からなることを 特徴とする強度、延性に優れた低熱膨張ア ルミニウム合金。
(2) Contains Ti: 1 to 20 wt%, and further contains B) Zr
, Hf, Nb or more in total of 0.005
~1 wt%, Ni: 0.05 to 5 wt%, or both, and further contains Cu: 1.5 to 8 wt%, Mg: 0.2 to 7 wt%, Si: 0.01 to 13 wt%, and Zn. : 0.01 to 7 wt%, Cr: 0.01 to 1 wt%, Mn: 0.01 to 2 wt%, Ag: 0.05 to 1 wt%, Fe: 0.01 to 2 wt%, one or two of the following. A low thermal expansion aluminum alloy with excellent strength and ductility, characterized in that it contains the above, and the remainder consists of aluminum and unavoidable impurities.
JP4831690A 1990-02-27 1990-02-27 Low thermal expansion aluminum alloy excellent in strength and ductility Pending JPH03249148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4831690A JPH03249148A (en) 1990-02-27 1990-02-27 Low thermal expansion aluminum alloy excellent in strength and ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4831690A JPH03249148A (en) 1990-02-27 1990-02-27 Low thermal expansion aluminum alloy excellent in strength and ductility

Publications (1)

Publication Number Publication Date
JPH03249148A true JPH03249148A (en) 1991-11-07

Family

ID=12800014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4831690A Pending JPH03249148A (en) 1990-02-27 1990-02-27 Low thermal expansion aluminum alloy excellent in strength and ductility

Country Status (1)

Country Link
JP (1) JPH03249148A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564814A2 (en) * 1992-02-28 1993-10-13 Ykk Corporation Compacted and consolidated material of a high-strength, heat-resistant aluminum-based alloy and process for producing the same
US5547633A (en) * 1992-07-08 1996-08-20 Monash University Aluminum-titanium alloy
JP2011077269A (en) * 2009-09-30 2011-04-14 Mitsubishi Materials Corp Current collector for non-aqueous electrochemical cell and electrode employing the same
JP2012237061A (en) * 2011-04-27 2012-12-06 Nippon Light Metal Co Ltd Aluminum alloy excellent in rigidity and manufacturing method therefor
CN104532081A (en) * 2014-12-25 2015-04-22 常熟市古里镇鑫良铝合金门窗厂 Durable aluminum alloy door frame
CN107586976A (en) * 2017-10-25 2018-01-16 江苏广盛源科技发展有限公司 A kind of preparation method of aluminum copper alloy material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564814A2 (en) * 1992-02-28 1993-10-13 Ykk Corporation Compacted and consolidated material of a high-strength, heat-resistant aluminum-based alloy and process for producing the same
EP0564814A3 (en) * 1992-02-28 1993-11-10 Yoshida Kogyo Kk High-strength, heat-resistant aluminum-based alloy, compacted and consolidated material thereof, and process for producing the same
US5407636A (en) * 1992-02-28 1995-04-18 Ykk Corporation High-strength, heat-resistant aluminum-based alloy, compacted and consolidated material thereof, and process for producing the same
EP0564814B1 (en) * 1992-02-28 1996-01-24 Ykk Corporation Compacted and consolidated material of a high-strength, heat-resistant aluminum-based alloy and process for producing the same
US5547633A (en) * 1992-07-08 1996-08-20 Monash University Aluminum-titanium alloy
JP2011077269A (en) * 2009-09-30 2011-04-14 Mitsubishi Materials Corp Current collector for non-aqueous electrochemical cell and electrode employing the same
JP2012237061A (en) * 2011-04-27 2012-12-06 Nippon Light Metal Co Ltd Aluminum alloy excellent in rigidity and manufacturing method therefor
CN104532081A (en) * 2014-12-25 2015-04-22 常熟市古里镇鑫良铝合金门窗厂 Durable aluminum alloy door frame
CN107586976A (en) * 2017-10-25 2018-01-16 江苏广盛源科技发展有限公司 A kind of preparation method of aluminum copper alloy material

Similar Documents

Publication Publication Date Title
JP3194742B2 (en) Improved lithium aluminum alloy system
US4867806A (en) Heat-resisting high-strength Al-alloy and method for manufacturing a structural member made of the same alloy
JP2005264301A (en) Casting aluminum alloy, casting of aluminum alloy and manufacturing method therefor
EP1882753A1 (en) Aluminium alloy
JPH0559477A (en) Aluminum alloy for forging
EP1882754A1 (en) Aluminium alloy
CA2564078A1 (en) Heat treatable al-zn-mg alloy for aerospace and automotive castings
CN109136681B (en) 6061 aluminum cast bar and casting process thereof
JP4145242B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy
CN115011846A (en) High-strength and high-stability Al-Mg-Si-Cu-Sc aluminum alloy and preparation method thereof
CN102965554A (en) Hard aluminum alloy cast ingot
JP4994734B2 (en) Aluminum alloy for casting and cast aluminum alloy
CN112522552B (en) Corrosion-resistant aluminum alloy and preparation method and application thereof
JPH03249148A (en) Low thermal expansion aluminum alloy excellent in strength and ductility
JP3852915B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JPH0635624B2 (en) Manufacturing method of high strength aluminum alloy extruded material
JPH0457738B2 (en)
JPH04308055A (en) Rolled al-mg alloy sheet for forming at cryogenic temperature
MXPA03001213A (en) Cu-based alloy and method of manufacturing high strength and high thermal conductive forged article using the same.
JPH02149631A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JP3769646B2 (en) Processing method of Al-Zn-Si alloy
FI112669B (en) Manufacture of tempered copper alloys
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JPH03126834A (en) High strength aluminum alloy having excellent elastic modulus and low thermal expansibility
JPH03223437A (en) Low thermal expansion aluminum alloy excellent in wear resistance and elastic modulus