JP4994734B2 - Aluminum alloy for casting and cast aluminum alloy - Google Patents
Aluminum alloy for casting and cast aluminum alloy Download PDFInfo
- Publication number
- JP4994734B2 JP4994734B2 JP2006200931A JP2006200931A JP4994734B2 JP 4994734 B2 JP4994734 B2 JP 4994734B2 JP 2006200931 A JP2006200931 A JP 2006200931A JP 2006200931 A JP2006200931 A JP 2006200931A JP 4994734 B2 JP4994734 B2 JP 4994734B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- weight
- casting
- alloy
- mechanical properties
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 88
- 238000005266 casting Methods 0.000 title claims description 61
- 229910052742 iron Inorganic materials 0.000 claims description 14
- 229910052748 manganese Inorganic materials 0.000 claims description 11
- 229910052749 magnesium Inorganic materials 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- 239000011572 manganese Substances 0.000 description 38
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 35
- 239000011777 magnesium Substances 0.000 description 25
- 229910045601 alloy Inorganic materials 0.000 description 21
- 239000000956 alloy Substances 0.000 description 21
- 238000002156 mixing Methods 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 16
- 238000013329 compounding Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 230000035882 stress Effects 0.000 description 10
- 239000010936 titanium Substances 0.000 description 10
- 238000004512 die casting Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 239000002994 raw material Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005496 eutectics Effects 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000011856 silicon-based particle Substances 0.000 description 2
- 229910018131 Al-Mn Inorganic materials 0.000 description 1
- 229910018461 Al—Mn Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910018619 Si-Fe Inorganic materials 0.000 description 1
- 229910008289 Si—Fe Inorganic materials 0.000 description 1
- 229910008302 Si—Fe—Mn Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000007528 sand casting Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Body Structure For Vehicles (AREA)
Description
本発明は、成形性と機械的特性とに優れた鋳造用アルミニウム合金および当該合金を利用したアルミニウム合金鋳物に関する。 The present invention relates to an aluminum alloy for casting excellent in formability and mechanical properties, and an aluminum alloy casting using the alloy.
アルミニウム合金は、軽量であると共に、優れた熱伝導性および高い耐蝕性などの諸特性から、自動車や産業機械、航空機、家庭電化製品その他各種分野において、その構成部品素材として広く使用されている。このうち特に自動車の分野においては、環境問題への対応など(具体的には、車体の軽量化による燃費の向上等)からアルミニウム合金の採用意欲が旺盛であり、このようなニーズに応えるべく様々な技術が開発されている。その一例として、9.5〜11.5重量%のSi,0.1〜0.5重量%のMg,0.5〜0.8重量%のMn,最大0.15重量%のFe,最大0.03重量%のCu,最大0.15重量%のTi,30〜300ppmのSrおよび残部がAlで構成されたダイカスト合金が挙げられる(例えば、特許文献1参照。)。 Aluminum alloys are widely used as component materials in automobiles, industrial machines, aircraft, home appliances and other various fields because of their light weight and various characteristics such as excellent thermal conductivity and high corrosion resistance. Of these, especially in the automobile field, there is a strong desire to use aluminum alloys to respond to environmental issues (specifically, improvement in fuel efficiency by reducing the weight of the vehicle body). Technology has been developed. Examples include 9.5 to 11.5 wt% Si, 0.1 to 0.5 wt% Mg, 0.5 to 0.8 wt% Mn, up to 0.15 wt% Fe, max Examples include a die-cast alloy composed of 0.03% by weight of Cu, a maximum of 0.15% by weight of Ti, 30 to 300 ppm of Sr, and the balance of Al (for example, see Patent Document 1).
かかる合金によれば、必要な機械的特性を有した自動車構成部品(例えば自動車ホイール,足回り部品およびボディ部品など)を成形性よく鋳造することができる。
しかしながら、自動車構成部品へのアルミニウム合金の採用を更に拡大させるためには、鋳造時の成形性(鋳造性)を低下させることなく機械的特性を更に向上させなければならない。具体的には、自動車の車体には走行中に大きな振動荷重が作用しており、また、衝突時には極めて大きな衝撃が作用する。このような荷重や衝撃に対応するため、自動車構成部品を形成するアルミニウム合金は強度のみならず優れた耐力および伸び(すなわち靱性)を備えていなければならない。また、自動車部品を効率よく経済的に製造するためには鋳造時にアルミニウム合金と金型との焼付きを防止して鋳造性を向上させなければならない。 However, in order to further expand the use of aluminum alloys for automobile component parts, it is necessary to further improve the mechanical characteristics without reducing the formability (castability) during casting. Specifically, a large vibration load is applied to the body of an automobile during traveling, and a very large impact is applied during a collision. In order to cope with such loads and impacts, the aluminum alloy forming the automobile component must have not only strength but also excellent proof stress and elongation (ie, toughness). Further, in order to efficiently and economically manufacture automobile parts, it is necessary to prevent seizure between the aluminum alloy and the mold at the time of casting to improve the castability.
ここで、上述した従来のアルミニウム合金では、鋳造時の焼付き防止のためにMnを添加しているが、Mnを添加すると合金の伸びを阻害するようになる。このように合金の伸びが低下すると、当該合金によって鋳造された自動車構造部品の靱性が低下し、長期間振動荷重が与えられることや衝突時の衝撃によって当該部品が容易に破損するようになる。なお、かかる現象は部品鋳造時の冷却速度が遅い時あるいは遅い部分で顕著となる。 Here, in the conventional aluminum alloy described above, Mn is added to prevent seizure during casting. However, when Mn is added, the elongation of the alloy is inhibited. When the elongation of the alloy is reduced in this way, the toughness of the automobile structural part cast by the alloy is lowered, and the part is easily damaged by being given a vibration load for a long time or by an impact at the time of collision. Such a phenomenon becomes conspicuous when the cooling rate at the time of casting a part is slow or at a slow part.
そこで、部品すなわち鋳造品の伸びを向上させるべくMnの添加量を低減すると、今度は鋳造時にアルミニウム合金と金型との間で焼付きが生じ、成形性が低下するようになる。 Therefore, if the amount of Mn added is reduced to improve the elongation of the part, that is, the cast product, seizure occurs between the aluminum alloy and the mold at the time of casting, and the formability decreases.
また、合金の靱性向上を目的に、合金成分中のMnの許容範囲を大幅に低減すると、3000系合金(JIS呼称)に代表されるようなMnを多く含むAl−Mn系合金のスクラップ(リサイクル原料)を使用することができなくなり、靱性に優れた合金を経済的に提供するのが困難になるという問題があった。 For the purpose of improving the toughness of the alloy, if the allowable range of Mn in the alloy component is greatly reduced, scrap of Al-Mn alloy containing a large amount of Mn such as represented by 3000 series alloy (JIS name) (recycling) There is a problem that it becomes difficult to economically provide an alloy having excellent toughness.
さらに、上述した従来のアルミニウム合金では、伸びを確保するためFeを最大で0.15重量%とする必要があり、Feを含んだスクラップ(すなわちリサイクル材料)を原料として使用できず、コスト高になるという問題があった。 Further, in the above-described conventional aluminum alloy, it is necessary to make Fe at a maximum of 0.15% by weight in order to ensure elongation, and scrap containing Fe (that is, recycled material) cannot be used as a raw material, resulting in high cost. There was a problem of becoming.
それゆえに、この発明の主たる課題は、鋳造時におけるアルミニウム合金と金型との焼付きを防止できると共に、MnやFeの含有量が多くても優れた耐力と伸びとを有する鋳造用アルミニウム合金と、当該合金で鋳造された靭性の高いアルミニウム合金鋳物とを提供することである。 Therefore, the main problem of the present invention is to prevent the seizure between the aluminum alloy and the mold at the time of casting, and to provide an aluminum alloy for casting having excellent proof stress and elongation even if the content of Mn and Fe is large. It is to provide an aluminum alloy casting with high toughness cast with the alloy.
請求項1に記載した発明は、「Si:4.0〜6.5重量%,Mg:0.4〜1.2重量%,Mn:0.3〜1.1重量%,Fe:0.21〜0.7重量%を含有し、残部がAl及び不可避不純物からなる」ことを特徴とする鋳造用アルミニウム合金である。 The invention described in claim 1 is described as follows: “Si: 4.0 to 6.5% by weight, Mg: 0.4 to 1.2% by weight, Mn: 0.3 to 1.1% by weight, Fe: 0.0. It is an aluminum alloy for casting characterized by containing 21 to 0.7% by weight and the balance being made of Al and inevitable impurities.
この発明では、Siの配合割合を4.0〜6.5重量%の範囲に設定しているので、アルミニウム合金の伸びを大きくすることができる。但し、Siの配合割合がこのように低い範囲である場合、アルミニウム合金溶湯の流動性を改善するのが困難となる。それ故、アルミニウム合金溶湯の流動性を維持するためには鋳造温度を多少上げる必要がある。ここで、鋳造温度を上げると鋳造時に当該アルミニウム合金と金型との間で焼付きが発生しやすくなる。しかしながら、本発明では0.3〜1.1重量%のMn及び0.21〜0.7重量%のFeを配合しているので、合金の伸びの低下を最低限に抑えつつ、鋳造温度が高い場合であっても鋳造時におけるアルミニウム合金と金型との間の焼付きを防止することができる。 In this invention, since the compounding ratio of Si is set in the range of 4.0 to 6.5% by weight, the elongation of the aluminum alloy can be increased. However, when the blending ratio of Si is in such a low range, it becomes difficult to improve the fluidity of the molten aluminum alloy. Therefore, in order to maintain the fluidity of the molten aluminum alloy, it is necessary to raise the casting temperature somewhat. Here, if the casting temperature is raised, seizure is likely to occur between the aluminum alloy and the mold during casting. However, since 0.3 to 1.1 wt% Mn and 0.21 to 0.7 wt% Fe are blended in the present invention, the casting temperature is reduced while minimizing the decrease in elongation of the alloy. Even if it is high, seizure between the aluminum alloy and the mold during casting can be prevented.
また、Mgを0.4〜1.2重量%配合しているので、伸びの低下を抑えつつ、アルミニウム合金の耐力を向上させることができる。 Moreover, since 0.4 to 1.2% by weight of Mg is blended, the yield strength of the aluminum alloy can be improved while suppressing a decrease in elongation.
そして、上述したように、Mnの配合割合を0.3〜1.1重量%の範囲にすると共に、Feを0.7重量%まで許容しているので、MnやFeを含んだスクラップを材料として使用することができ、リサイクルに供することができる。 And as mentioned above, since the mixing ratio of Mn is in the range of 0.3 to 1.1% by weight and Fe is allowed up to 0.7% by weight, scraps containing Mn and Fe are used as materials. Can be used as and can be used for recycling.
請求項2に記載した発明は、請求項1に記載の鋳造用アルミニウム合金において、「Na,SrおよびCaから選ばれる少なくとも1種を30〜200ppm添加した」ことを特徴とするものであり、請求項3に記載した発明は、請求項1又は2に記載の鋳造用アルミニウム合金において、「Sbを0.05〜0.20重量%添加した」ことを特徴とするものである。 The invention described in claim 2 is characterized in that, in the aluminum alloy for casting according to claim 1, “at least one selected from Na, Sr and Ca is added in an amount of 30 to 200 ppm”. The invention described in Item 3 is characterized in that in the casting aluminum alloy according to Item 1 or 2, “0.05 to 0.20% by weight of Sb is added”.
これらの発明では、共晶Siの粒子を細かくすることができ、アルミニウム合金の靱性や強度をより一層向上させることができる。 In these inventions, the particles of eutectic Si can be made finer, and the toughness and strength of the aluminum alloy can be further improved.
請求項4に記載した発明は、請求項1乃至3に記載のいずれかに記載の鋳造用アルミニウム合金において、「Tiを0.05〜0.30重量%添加した」ことを特徴とするものであり、請求項5に記載した発明は、請求項1乃至4に記載のいずれかに記載の鋳造用アルミニウム合金において、さらに「Bを1〜50ppm添加した」ことを特徴とするものである。 The invention described in claim 4 is characterized in that, in the aluminum alloy for casting according to any one of claims 1 to 3, "0.05 to 0.30% by weight of Ti is added". The invention described in claim 5 is characterized in that, in the aluminum alloy for casting according to any one of claims 1 to 4, "B is added in an amount of 1 to 50 ppm".
これらの発明では、特にSi量が少ない場合や冷却速度の遅い鋳造方法を用いる場合であってもアルミニウム合金の結晶粒を微細化させることができ、その結果、当該アルミニウム合金の伸びを向上させることができる。 In these inventions, even when the amount of Si is small or when a casting method with a low cooling rate is used, the crystal grains of the aluminum alloy can be refined, and as a result, the elongation of the aluminum alloy can be improved. Can do.
請求項6に記載した発明は、「請求項1乃至5のいずれかに記載のアルミニウム合金で鋳造された」ことを特徴とするアルミニウム合金鋳物である。 The invention described in claim 6 is an aluminum alloy casting characterized by being "cast with the aluminum alloy according to any one of claims 1 to 5".
請求項1乃至5のいずれかに記載のアルミニウム合金で鋳造された鋳物は、鋳造性よく量産できると共に、耐力と伸びとに優れているため、自動車用構造部品など長期間繰返し振動荷重が与えられ、且つ衝突時に衝撃が加わる部材に最適である。 The casting casted with the aluminum alloy according to any one of claims 1 to 5 can be mass-produced with good castability and is excellent in yield strength and elongation. And, it is most suitable for a member that receives an impact at the time of collision.
本発明によれば、鋳造時におけるアルミニウム合金と金型との焼付きを防止できると共に、MnやFeの含有量が高くても優れた耐力と伸びとを有する鋳造用アルミニウム合金と、当該合金で鋳造された靭性の高いアルミニウム合金鋳物とを提供することができる。 According to the present invention, an aluminum alloy for casting that can prevent seizure between an aluminum alloy and a mold at the time of casting, and has excellent proof stress and elongation even when the content of Mn and Fe is high, and the alloy A cast aluminum alloy casting with high toughness can be provided.
本発明の鋳造用アルミニウム合金は、主として4.0〜6.5重量%のSi(珪素),0.4〜1.2重量%のMg(マグネシウム),0.3〜1.1重量%のMn(マンガン),0.21〜0.7重量%のFe(鉄)を含有し、残部がAl(アルミニウム)及び不可避不純物などによって構成されている。 The casting aluminum alloy of the present invention is mainly composed of 4.0 to 6.5 wt% Si (silicon), 0.4 to 1.2 wt% Mg (magnesium), 0.3 to 1.1 wt% It contains Mn (manganese), 0.21 to 0.7% by weight of Fe (iron), and the balance is composed of Al (aluminum) and inevitable impurities.
Siは、アルミニウム合金を溶融して鋳造する際に、その流動性を向上させるためのものである。 Si is for improving the fluidity of an aluminum alloy when it is melted and cast.
アルミニウム合金全体の重量に対するSiの配合割合は、溶湯の流動性のみに着目した場合には10%前後であることが好ましいが、アルミニウム合金の伸びの向上を目的とする本発明の場合には上述したように4.0〜6.5重量%の範囲であることが好ましい。Siの配合割合をこのような範囲とすることによって溶湯の流動性は若干低下するが、鋳造温度を多少上げることによって流動性の確保は可能となる。なお、Siの配合割合が4.0重量%未満の場合には、流動性の低下が大きくなるのに加え、凝固収縮が大きくなり鋳造割れが起こり易くなる。一方、Siの配合割合が6.5重量%より多い場合には、アルミニウム合金溶湯の流動性は改善できるが、伸びが低下するようになる。 The proportion of Si with respect to the total weight of the aluminum alloy is preferably about 10% when focusing only on the fluidity of the molten metal, but in the case of the present invention for the purpose of improving the elongation of the aluminum alloy, Thus, it is preferably in the range of 4.0 to 6.5% by weight. When the Si content is within such a range, the fluidity of the molten metal is slightly lowered, but the fluidity can be ensured by slightly raising the casting temperature. In addition, when the compounding ratio of Si is less than 4.0% by weight, in addition to the decrease in fluidity, solidification shrinkage increases and casting cracks easily occur. On the other hand, when the compounding ratio of Si is more than 6.5% by weight, the fluidity of the molten aluminum alloy can be improved, but the elongation decreases.
また、Siの配合割合を4.0〜6.5重量%の範囲とすることによって所謂「内引け」が小さくなり、真空ダイカストや層流ダイカストで鋳造する際の鋳造欠陥を抑制することができる。ここで、「内引け」とは、アルミニウム合金の溶湯が冷却固化する際、その容積は6%程度収縮するが、かかる収縮が合金の内部で発生し、得られた鋳物の内部に空洞ができる現象をいう。このような「内引け」が発生すると、得られた鋳物は構造材として不適切なものとなる。 In addition, when the Si content is in the range of 4.0 to 6.5% by weight, so-called “inner shrinkage” is reduced, and casting defects during casting by vacuum die casting or laminar flow die casting can be suppressed. . Here, “inner shrinkage” means that when the molten aluminum alloy is cooled and solidified, its volume shrinks by about 6%, but such shrinkage occurs inside the alloy, and a cavity is formed inside the resulting casting. A phenomenon. When such “collapse” occurs, the obtained casting becomes inappropriate as a structural material.
Mgは、アルミニウム合金に耐力および引張強さを付与するためのものである。 Mg is for imparting proof stress and tensile strength to the aluminum alloy.
アルミニウム合金全体の重量に対するMgの配合割合は、0.4〜1.2重量%の範囲であることが好ましい。Mgの配合割合が0.4重量%未満の場合には、耐力および引張強さといった機械的特性の向上が認められず、逆に、Mgの配合割合が1.2重量%より多い場合には、アルミニウム合金の伸びが急激に低下するようになるからである。 The blending ratio of Mg with respect to the weight of the entire aluminum alloy is preferably in the range of 0.4 to 1.2% by weight. When the Mg content is less than 0.4% by weight, mechanical properties such as proof stress and tensile strength are not improved. Conversely, when the Mg content is greater than 1.2% by weight. This is because the elongation of the aluminum alloy starts to drop rapidly.
Mnは、主として鋳造時におけるアルミニウム合金と金型との焼付きを防止するためのものである。 Mn is mainly for preventing seizure between the aluminum alloy and the mold during casting.
アルミニウム合金全体の重量に対するMnの配合割合は、上述したように0.3〜1.1重量%の範囲であることが好ましい。Mnの配合割合が0.3重量%未満の場合には、アルミニウム合金を鋳造する際にアルミニウム合金と金型との間で焼付きが生じるようになり、逆に、Mnの配合割合が1.1重量%より多い場合には、鋳造時に焼付きの問題は生じないものの、合金の伸びが低下するようになるからである。 As described above, the mixing ratio of Mn relative to the weight of the entire aluminum alloy is preferably in the range of 0.3 to 1.1% by weight. When the mixing ratio of Mn is less than 0.3% by weight, seizure occurs between the aluminum alloy and the mold when the aluminum alloy is cast, and conversely, the mixing ratio of Mn is 1. If the amount is more than 1% by weight, the problem of seizure does not occur at the time of casting, but the elongation of the alloy decreases.
なお、本発明のアルミニウム合金では、上述のようにMnの配合割合を合金全体の重量に対して最大で1.1重量%まで許容しているので、アルミ缶回収材料などMn含有量が高いAl−Mn系スクラップを合金原料として使用することができる。 In the aluminum alloy of the present invention, as described above, the maximum proportion of Mn is 1.1% by weight with respect to the total weight of the alloy. -Mn-based scrap can be used as an alloy raw material.
Feは鋳造時における焼付き防止効果を有することが知られており、一般のダイカスト用アルミニウム合金には0.5重量%以上添加されている。 Fe is known to have an effect of preventing seizure during casting, and 0.5% by weight or more is added to a general aluminum alloy for die casting.
しかしながら、このFeはAl−Si−Feからなる針状晶を晶出し、アルミニウム合金の靭性(とりわけ伸び)を低下させる。このため、本発明では、Feの配合割合を0.21〜0.7重量%に限定すると共に、Feの配合によるアルミニウム合金の靭性低下を防止すべく、Mnを0.3〜1.1重量%添加してFe系化合物がAl−Si−Fe−Mn相となるようにしている。Fe系化合物をこのような態様にすることで、伸びの低下を軽減すると同時に、鋳造時における焼付きの発生を防止することができる。 However, this Fe crystallizes needle-like crystals made of Al-Si-Fe and lowers the toughness (especially elongation) of the aluminum alloy. Therefore, in the present invention, the mixing ratio of Fe is limited to 0.21 to 0.7% by weight, and Mn is added to 0.3 to 1.1 wt. % Is added so that the Fe-based compound becomes an Al-Si-Fe-Mn phase. By making the Fe-based compound in this manner, it is possible to reduce the decrease in elongation and at the same time prevent the occurrence of seizure during casting.
本発明のアルミニウム合金には、上述した各成分(Si,Mg,Mn,Fe)の他に母材となるAlおよび不可避不純物が含まれている。 The aluminum alloy of the present invention contains Al and inevitable impurities as a base material in addition to the above-described components (Si, Mg, Mn, Fe).
以上の配合割合に従って、Si,Mg,MnおよびFeを配合すると、鋳造時におけるアルミニウム合金と金型との焼付きを防止できると共に、優れた耐力と伸びとを有する鋳造用アルミニウム合金を得ることができる。 When Si, Mg, Mn and Fe are blended according to the above blending ratio, seizure between the aluminum alloy and the mold during casting can be prevented, and an aluminum alloy for casting having excellent proof stress and elongation can be obtained. it can.
なお、上述した各元素成分のほかに、Na(ナトリウム),Sr(ストロンチウム),Ca(カルシウム)およびSb(アンチモン)から選ばれる少なくとも1種を改良処理材として添加するようにしてもよい。このような改良処理材を添加することによって共晶Siの粒子を細かくすることができ、アルミニウム合金の靱性や強度をより一層向上させることができる。 In addition to each element component described above, at least one selected from Na (sodium), Sr (strontium), Ca (calcium), and Sb (antimony) may be added as an improvement treatment material. By adding such an improved treatment material, the particles of eutectic Si can be made finer, and the toughness and strength of the aluminum alloy can be further improved.
ここで、アルミニウム合金全体の重量に対する改良処理材の添加割合は、当該改良処理材がNa,SrおよびCaの場合には30〜200ppm、Sbの場合には0.05〜0.20重量%の範囲であることが好ましい。改良処理材の添加割合が30ppm(Sbの場合には0.05重量%)未満の場合には、アルミニウム合金中の共晶Siの粒子を微細化するのが困難となり、逆に、改良処理材の添加割合が200ppm(Sbの場合には0.20重量%)より多い場合には、アルミニウム合金中の共晶Siの粒子は十分に微細化されており、これ以上添加量を増やしても添加効果が上がらなくなるからである。 Here, the addition ratio of the improved treatment material to the total weight of the aluminum alloy is 30 to 200 ppm when the improved treatment material is Na, Sr and Ca, and 0.05 to 0.20% by weight when the improved treatment material is Sb. A range is preferable. When the addition ratio of the improved treatment material is less than 30 ppm (0.05% by weight in the case of Sb), it becomes difficult to refine the eutectic Si particles in the aluminum alloy. In the case where the addition ratio of Z is more than 200 ppm (0.20% by weight in the case of Sb), the eutectic Si particles in the aluminum alloy are sufficiently refined and added even if the addition amount is further increased. This is because the effect does not increase.
また、上記改良処理材に代えて、或いは改良処理材と共に、Ti(チタン)およびB(硼素)の少なくとも一方を添加するようにしてもよい。このようにTiおよびBの少なくとも一方を添加することによってアルミニウム合金の結晶粒が微細化され、当該合金の伸びを向上させることができる。なお、かかる効果は、特にSi量が少ない場合や冷却速度の遅い鋳造方法を用いる場合に顕著となる。 In addition, at least one of Ti (titanium) and B (boron) may be added instead of or in addition to the above-described improvement treatment material. Thus, by adding at least one of Ti and B, the crystal grains of the aluminum alloy are refined, and the elongation of the alloy can be improved. Such an effect is particularly remarkable when the amount of Si is small or when a casting method having a low cooling rate is used.
アルミニウム合金全体の重量に対するTiおよびBの添加割合は、Tiの場合には0.05〜0.30重量%、Bの場合には1〜50ppmの範囲であることが好ましい。Tiの添加割合が0.05重量%未満或いはBの添加割合が1ppm未満の場合には、アルミニウム合金中の結晶粒を微細化するのが困難となり、逆に、Tiの添加割合が0.30重量%より多い場合或いはBの添加割合が50ppmより多い場合には、アルミニウム合金中の結晶粒は十分に微細化されており、これ以上添加量を増やしても添加効果が上がらなくなるからである。 The addition ratio of Ti and B to the total weight of the aluminum alloy is preferably in the range of 0.05 to 0.30 wt% in the case of Ti and 1 to 50 ppm in the case of B. When the addition ratio of Ti is less than 0.05% by weight or the addition ratio of B is less than 1 ppm, it is difficult to refine the crystal grains in the aluminum alloy. Conversely, the addition ratio of Ti is 0.30. This is because when the amount is more than% by weight or when the addition ratio of B is more than 50 ppm, the crystal grains in the aluminum alloy are sufficiently refined, and even if the addition amount is increased further, the addition effect cannot be improved.
本発明のアルミニウム合金を製造する際には、まず、Al,Si,Mg,MnおよびFeの各元素成分が上述した所定の割合となるように配合した原料を準備する。続いて、この原料を前炉付溶解炉や密閉溶解炉などの溶解炉に投入し、これらを溶解させる。溶解させた原料すなわちアルミニウム合金の溶湯は、必要に応じて脱水素処理および脱介在物処理などの精製処理が施される。そして、精製された溶湯を所定の鋳型などに流し込み、固化させることによって、アルミニウム合金の溶湯を合金地金インゴットなどに成形する。 When manufacturing the aluminum alloy of the present invention, first, raw materials are prepared so that each elemental component of Al, Si, Mg, Mn, and Fe has the above-mentioned predetermined ratio. Subsequently, this raw material is put into a melting furnace such as a pre-furnace melting furnace or a closed melting furnace to melt them. The melted raw material, that is, the molten aluminum alloy is subjected to a purification treatment such as a dehydrogenation treatment and a decontamination treatment as necessary. Then, the refined molten metal is poured into a predetermined mold or the like and solidified to form the molten aluminum alloy into an alloy ingot or the like.
また、本発明のアルミニウム合金を用いてアルミニウム合金鋳物を鋳造する際には、砂型鋳造法,金型鋳造法,低圧鋳造法およびダイカスト法などのあらゆる鋳造法を用いることができる。 Moreover, when casting an aluminum alloy casting using the aluminum alloy of the present invention, any casting method such as a sand casting method, a die casting method, a low pressure casting method and a die casting method can be used.
そして、これらの鋳造法によって得られたアルミニウム合金鋳物は、必要に応じて溶体化処理および時効処理などが施される。このようにアルミニウム合金鋳物に溶体化処理および時効処理などを施すことによってアルミニウム合金鋳物の機械的特性を改良することができる。 The aluminum alloy castings obtained by these casting methods are subjected to solution treatment and aging treatment as necessary. Thus, the mechanical properties of the aluminum alloy casting can be improved by subjecting the aluminum alloy casting to solution treatment and aging treatment.
以下に、実施例を挙げて本発明を具体的に説明するが、本発明は実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.
[実施例1]
Siの配合割合を4.55重量%,Mgの配合割合を0.67重量%,Mnの配合割合を0.59重量%,Feの配合割合を0.21重量%、そして残部をAlとすることによって、本発明におけるアルミニウム合金の元素組成の範囲内となるように配合した溶湯を調製した。なお、本実施例ではAl原料としてスクラップを使用していることから、前記溶湯中には、極微量のCrやTiなども不可避不純物として存在している。続いて、この溶湯を真空ダイカストではなく、通常のダイカストマシンにて鋳造温度720〜750℃,射出速度5m/秒(ゲート速度100m/秒)でダイカスト鋳造し、ASTM(American Society for Testing and Material)規格に準拠した丸棒試験片を作製した。そして、作製した丸棒試験片をT5処理して機械的特性測定用のサンプルとし、このサンプルの機械的特性を(株)島津製作所社製の万能試験機(UMH−10)で測定した。得られた結果を表1に示す。
[Example 1]
The Si compounding ratio is 4.55 % by weight, the Mg compounding ratio is 0.67% by weight, the Mn compounding ratio is 0.59 % by weight, the Fe compounding ratio is 0.21 % by weight, and the balance is Al. Thus, a molten metal was prepared so as to be within the range of the elemental composition of the aluminum alloy in the present invention. In this embodiment, scrap is used as the Al raw material, and therefore, a very small amount of Cr, Ti, etc. are present as inevitable impurities in the molten metal. Subsequently, this molten metal is die-casted at a casting temperature of 720 to 750 ° C. and an injection speed of 5 m / sec (gate speed of 100 m / sec) by an ordinary die casting machine, not by vacuum die casting, and ASTM (American Society for Testing and Material) A round bar specimen according to the standard was prepared. The prepared round bar test piece was treated with T5 to obtain a sample for measuring mechanical properties, and the mechanical properties of this sample were measured with a universal testing machine (UMH-10) manufactured by Shimadzu Corporation. The obtained results are shown in Table 1 .
なお、T5処理とは、溶体化処理は行なわずに鋳造温度から急冷し、機械的特性の改善あるいは寸法安定化のために、その後人工時効処理する熱処理方法であり、具体的な人工時効処理方法としては170℃で3時間加熱した後に空冷した。 The T5 treatment is a heat treatment method in which the solution is rapidly cooled from the casting temperature without performing solution treatment, and then subjected to artificial aging treatment in order to improve mechanical properties or stabilize dimensions, and a specific artificial aging treatment method. Was heated at 170 ° C. for 3 hours and then air-cooled.
[実施例2]
Siの配合割合を4.62重量%,Mgの配合割合を0.67重量%,Mnの配合割合を0.58重量%,Feの配合割合を0.55重量%、そして残部をAlとして溶湯を調製したこと以外は、実施例1と同じ条件にして機械的特性測定用のサンプルを作製した。得られたサンプルの機械的特性を表1に示す。
[Example 2 ]
Molten metal containing 4.62% by weight of Si, 0.67% by weight of Mg, 0.58% by weight of Mn, 0.55% by weight of Fe, and the balance as Al A sample for measuring mechanical properties was prepared under the same conditions as in Example 1 except that was prepared. The mechanical properties of the obtained sample are shown in Table 1.
[実施例3]
Siの配合割合を4.55重量%,Mgの配合割合を0.67重量%,Mnの配合割合を0.59重量%,Feの配合割合を0.21重量%、そして残部をAlとして溶湯を調製すると共に、鋳造した丸棒試験片を鋳放しとしたこと以外は、実施例1と同じ条件にして機械的特性測定用のサンプルを作製した。得られたサンプルの機械的特性を表1に示す。なお、表1における熱処理「F」は「鋳放し」を意味するものである。
[Example 3 ]
Molten Si containing 4.55% by weight of Si, 0.67% by weight of Mg, 0.59% by weight of Mn, 0.21% by weight of Fe, and the balance as Al A sample for measuring mechanical properties was prepared under the same conditions as in Example 1 except that the cast round bar test piece was left as cast . The mechanical properties of the obtained sample are shown in Table 1 . The heat treatment “F” in Table 1 means “as cast”.
[実施例4]
Siの配合割合を4.68重量%,Mgの配合割合を0.68重量%,Mnの配合割合を0.58重量%,Feの配合割合を0.46重量%、そして残部をAlとして溶湯を調製したこと以外は、実施例3と同じ条件にして機械的特性測定用のサンプルを作製した。得られたサンプルの機械的特性を表1に示す。
[Example 4 ]
Molten metal containing 4.68% by weight of Si, 0.68% by weight of Mg, 0.58% by weight of Mn, 0.46% by weight of Fe, and Al as the balance A sample for measuring mechanical properties was prepared under the same conditions as in Example 3 except that was prepared. The mechanical properties of the obtained sample are shown in Table 1.
[実施例5]
Siの配合割合を4.62重量%,Mgの配合割合を0.67重量%,Mnの配合割合を0.58重量%,Feの配合割合を0.55重量%、そして残部をAlとして溶湯を調製したこと以外は、実施例3と同じ条件にして機械的特性測定用のサンプルを作製した。得られたサンプルの機械的特性を表1に示す。
[Example 5 ]
Molten metal containing 4.62% by weight of Si, 0.67% by weight of Mg, 0.58% by weight of Mn, 0.55% by weight of Fe, and the balance as Al A sample for measuring mechanical properties was prepared under the same conditions as in Example 3 except that was prepared. The mechanical properties of the obtained sample are shown in Table 1.
[実施例6]
Siの配合割合を4.62重量%,Mgの配合割合を0.95重量%,Mnの配合割合を0.58重量%,Feの配合割合を0.58重量%、そして残部をAlとして溶湯を調製したこと以外は、実施例3と同じ条件にして機械的特性測定用のサンプルを作製した。得られたサンプルの機械的特性を表1に示す。
[Example 6 ]
Molten metal containing 4.62% by weight of Si, 0.95% by weight of Mg, 0.58% by weight of Mn, 0.58% by weight of Fe, and the balance as Al A sample for measuring mechanical properties was prepared under the same conditions as in Example 3 except that was prepared. The mechanical properties of the obtained sample are shown in Table 1.
[実施例7]
Siの配合割合を5.93重量%,Mgの配合割合を0.42重量%,Mnの配合割合を0.60重量%,Feの配合割合を0.31重量%,Srの配合割合を 0.009重量%(90ppm)、そして残部をAlとして溶湯を調製したこと以外は、実施例1と同じ条件にして機械的特性測定用のサンプルを作製した。得られたサンプルの機械的特性を表1に示す。
[Example 7 ]
The compounding ratio of Si is 5.93% by weight, the compounding ratio of Mg is 0.42% by weight, the compounding ratio of Mn is 0.60% by weight, the compounding ratio of Fe is 0.31% by weight, and the compounding ratio of Sr is 0. A sample for measuring mechanical properties was prepared under the same conditions as in Example 1 except that the molten metal was prepared with 0.009 wt% (90 ppm) and the balance being Al. The mechanical properties of the obtained sample are shown in Table 1.
[比較例1]
Siの配合割合を9.67重量%,Mgの配合割合を0.22重量%,Mnの配合割合を0.58重量%,Feの存在割合を0.08重量%、そして残部をAlとすることによって、従来の自動車構造部品用アルミニウム合金の元素組成の範囲内となるように配合した溶湯を調製した。続いて、この溶湯を真空ダイカストではなく、通常のダイカストマシンにて鋳造温度690〜710℃,射出速度5m/秒(ゲート速度100m/秒)でダイカスト鋳造し、ASTM(American Society for Testing and Material)規格に準拠した丸棒試験片を作製した。そして、作製した丸棒試験片をT5処理(170℃で3時間加熱した後に空冷)して機械的特性測定用のサンプルとし、このサンプルの機械的特性を(株)島津製作所社製の万能試験機(UMH−10)で測定した。得られた結果を表1に示す。
[Comparative Example 1]
The Si content is 9.67% by weight, the Mg content is 0.22% by weight, the Mn content is 0.58% by weight, the Fe content is 0.08% by weight, and the balance is Al. Thus, a molten metal was prepared so as to be within the range of the elemental composition of the conventional aluminum alloy for automobile structural parts. Subsequently, this molten metal is die-casted at a casting temperature of 690 to 710 ° C. and an injection speed of 5 m / sec (gate speed of 100 m / sec) by a normal die casting machine, not by vacuum die casting, and ASTM (American Society for Testing and Material) A round bar specimen according to the standard was prepared. The prepared round bar test piece was T5 treated (heated at 170 ° C. for 3 hours and then air-cooled) to obtain a sample for measuring mechanical properties, and the mechanical properties of this sample were evaluated as a universal test manufactured by Shimadzu Corporation. (UMH-10). The obtained results are shown in Table 1.
[比較例2]
Siの配合割合を9.68重量%,Mgの配合割合を0.38重量%,Mnの配合割合を0.57重量%,Feの配合割合を0.08重量%、そして残部をAlとして溶湯を調製したこと以外は、比較例1と同じ条件にして機械的特性測定用のサンプルを作製した。得られたサンプルの機械的特性を表1に示す。
[Comparative Example 2]
Molten metal containing 9.68% by weight of Si, 0.38% by weight of Mg, 0.57% by weight of Mn, 0.08% by weight of Fe, and Al as the balance A sample for measuring the mechanical properties was prepared under the same conditions as in Comparative Example 1 except that was prepared. The mechanical properties of the obtained sample are shown in Table 1.
[比較例3]
Siの配合割合を9.70重量%,Mgの配合割合を0.11重量%,Mnの配合割合を0.59重量%,Feの配合割合を0.08重量%、そして残部をAlとして溶湯を調製したこと以外は、比較例1と同じ条件にして機械的特性測定用のサンプルを作製した。得られたサンプルの機械的特性を表1に示す。
[Comparative Example 3]
Molten metal containing 9.70% by weight of Si, 0.11% by weight of Mg, 0.59% by weight of Mn, 0.08% by weight of Fe, and Al as the balance A sample for measuring the mechanical properties was prepared under the same conditions as in Comparative Example 1 except that was prepared. The mechanical properties of the obtained sample are shown in Table 1.
[比較例4]
Siの配合割合を10.4重量%,Mgの配合割合を0.24重量%,Mnの配合割合を0.59重量%,Feの配合割合を0.09重量%,Srの配合割合を0.008重量%(80ppm)、そして残部をAlとして溶湯を調製したこと以外は、比較例1と同じ条件にして機械的特性測定用のサンプルを作製した。得られたサンプルの機械的特性を表1に示す。
[Comparative Example 4]
The Si blending ratio is 10.4 wt%, the Mg blending ratio is 0.24 wt%, the Mn blending ratio is 0.59 wt%, the Fe blending ratio is 0.09 wt%, and the Sr blending ratio is 0. A sample for measuring mechanical properties was prepared under the same conditions as in Comparative Example 1 except that the molten metal was prepared with 0.008 wt% (80 ppm) and the balance being Al. The mechanical properties of the obtained sample are shown in Table 1.
[比較例5]
Siの配合割合を10.4重量%,Mgの配合割合を0.23重量%,Mnの配合割合を0.59重量%,Feの配合割合を0.28重量%,Srの配合割合を0.008重量%(80ppm)、そして残部をAlとして溶湯を調製したこと以外は、比較例1と同じ条件にして機械的特性測定用のサンプルを作製した。得られたサンプルの機械的特性を表1に示す。
[Comparative Example 5]
The Si blending ratio is 10.4 wt%, the Mg blending ratio is 0.23 wt%, the Mn blending ratio is 0.59 wt%, the Fe blending ratio is 0.28 wt%, and the Sr blending ratio is 0. A sample for measuring mechanical properties was prepared under the same conditions as in Comparative Example 1 except that the molten metal was prepared with 0.008 wt% (80 ppm) and the balance being Al. The mechanical properties of the obtained sample are shown in Table 1.
[比較例6]
Siの配合割合を4.45重量%,Mgの配合割合を2.04重量%,Mnの配合割合を0.68重量%,Feの配合割合を0.10重量%、そして残部をAlとして溶湯を調製すると共に、鋳造した丸棒試験片を鋳放しの状態としたこと以外は、比較例1と同じ条件にして機械的特性測定用のサンプルを作製した。得られたサンプルの機械的特性を表1に示す。
[Comparative Example 6]
Molten Si containing 4.45% by weight of Si, 2.04% by weight of Mg, 0.68% by weight of Mn, 0.10% by weight of Fe, and the balance as Al A sample for measuring mechanical properties was prepared under the same conditions as in Comparative Example 1 except that the cast round bar test piece was in an as-cast state. The mechanical properties of the obtained sample are shown in Table 1.
表1より、本発明におけるアルミニウム合金の元素組成の範囲内となる実施例1〜7では、その全てにおいて5%以上の伸びと概ね160N/mm2以上の0.2%耐力とを有しており、靱性が高いことが窺える。とりわけ実施例3〜5では、Feの配合割合が0.21重量%から0.55重量%に変化しても伸びの低下がなく、9%以上の高い伸びを得られることが分かる。 From Table 1, in Examples 1 to 7 , which are within the range of the elemental composition of the aluminum alloy in the present invention, all of them have an elongation of 5% or more and a 0.2% proof stress of generally 160 N / mm 2 or more. It can be seen that the toughness is high. In particular, in Examples 3 to 5 , it can be seen that even when the blending ratio of Fe is changed from 0.21 wt% to 0.55 wt%, there is no decrease in elongation, and a high elongation of 9% or more can be obtained.
また、図1は、各実施例及び比較例のアルミニウム合金における伸びと0.2%耐力との関係を表わしたグラフであるが、この図が示すように、全ての実施例と比較例とを比較した場合、各実施例のアルミニウム合金は、比較例の値を結んだ線より右上側の領域すなわち比較例のものよりも伸びと0.2%耐力とに優れた領域にあることが窺える。 FIG. 1 is a graph showing the relationship between the elongation and the 0.2% proof stress in the aluminum alloys of the examples and comparative examples. As shown in the figure, all examples and comparative examples are shown. When compared, it can be seen that the aluminum alloy of each example is in a region on the upper right side of the line connecting the values of the comparative example, that is, a region excellent in elongation and 0.2% proof stress than that of the comparative example.
なお、実施例および比較例共に鋳造時においてアルミニウム合金と金型との間で焼付きは生じなかった。 In both examples and comparative examples, no seizure occurred between the aluminum alloy and the mold during casting.
以上より、本実施例のアルミニウム合金によれば、鋳造時におけるアルミニウム合金と金型との焼付きを防止できると共に、Mn及びFeの含有量が高くても優れた耐力と伸びとを有する鋳造用アルミニウム合金を提供することができる。また、当該合金を用いることで靭性の高いアルミニウム合金鋳物を提供することができる。 As described above, according to the aluminum alloy of the present example, seizure between the aluminum alloy and the mold at the time of casting can be prevented, and excellent proof stress and elongation can be achieved even if the contents of Mn and Fe are high. An aluminum alloy can be provided. Moreover, aluminum alloy casting with high toughness can be provided by using the said alloy.
本発明のアルミニウム合金は自動車構成部品のみならず、例えば産業機械や家電製品など、あらゆる機器の構成部品素材として広く利用可能であり、特に長期間繰返し振動荷重が与えられ、且つ衝突時に衝撃が加わる部品の材料に好適である。 The aluminum alloy of the present invention can be widely used as a component material for not only automobile components but also industrial equipment, home appliances, etc., and is particularly subjected to repeated vibration loads for a long period of time, and is subject to impact at the time of collision. Suitable for parts material.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006200931A JP4994734B2 (en) | 2006-07-24 | 2006-07-24 | Aluminum alloy for casting and cast aluminum alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006200931A JP4994734B2 (en) | 2006-07-24 | 2006-07-24 | Aluminum alloy for casting and cast aluminum alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008025003A JP2008025003A (en) | 2008-02-07 |
JP4994734B2 true JP4994734B2 (en) | 2012-08-08 |
Family
ID=39115953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006200931A Active JP4994734B2 (en) | 2006-07-24 | 2006-07-24 | Aluminum alloy for casting and cast aluminum alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4994734B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY155638A (en) * | 2009-01-27 | 2015-11-13 | Daiki Aluminium Industry Co Ltd | An aluminum alloy for pressure casting and an alumium alloy cast made of the same |
WO2016120905A1 (en) * | 2015-01-29 | 2016-08-04 | 株式会社大紀アルミニウム工業所 | Aluminum alloy for die casting and aluminum-alloy die cast obtained therefrom |
JP6569453B2 (en) * | 2015-10-09 | 2019-09-04 | 日本軽金属株式会社 | High toughness aluminum alloy casting and manufacturing method thereof |
CN105483465B (en) * | 2015-12-21 | 2018-07-31 | 河北立中有色金属集团有限公司 | A kind of die casting Al-Si-Mg cast aluminium alloy golds and preparation method thereof |
CN105483468A (en) * | 2016-02-01 | 2016-04-13 | 东莞品派实业投资有限公司 | Production method of special aluminum alloy for forging automobile aluminum alloy hubs |
FR3059630B1 (en) * | 2016-12-06 | 2020-02-14 | Renault S.A.S | ASSEMBLY OF A VEHICLE CRADLE ON A BODY WITH A FOUNDRY PIECE |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5842748A (en) * | 1981-09-08 | 1983-03-12 | Furukawa Alum Co Ltd | Die casting aluminum alloy |
JPH02232331A (en) * | 1989-03-03 | 1990-09-14 | Nippon Light Metal Co Ltd | Aluminum alloy for die casting having excellent filiform corrosion resistance |
JP3269312B2 (en) * | 1995-01-19 | 2002-03-25 | 日本軽金属株式会社 | Aluminum die-cast door panel and method of manufacturing the same |
JPH093610A (en) * | 1995-06-15 | 1997-01-07 | Nippon Light Metal Co Ltd | Thin aluminum diecast product excellent in dimensional accuracy and ductility and its production |
JP3982849B2 (en) * | 1995-11-02 | 2007-09-26 | 住友軽金属工業株式会社 | Aluminum alloy for forging |
JPH10158772A (en) * | 1996-11-29 | 1998-06-16 | Hitachi Metals Ltd | Rocker arm and its production |
JP3921314B2 (en) * | 1999-09-03 | 2007-05-30 | 株式会社神戸製鋼所 | Aluminum alloy cast material excellent in impact fracture strength and method for producing the same |
ES2211617T3 (en) * | 1999-09-24 | 2004-07-16 | Honsel Guss Gmbh | PROCEDURE FOR THE THERMAL TREATMENT OF FOUNDRY STRUCTURAL PARTS OF AN ALUMINUM ALLOY MUST BE USED FOR IT. |
JP2005082865A (en) * | 2003-09-09 | 2005-03-31 | Nippon Light Metal Co Ltd | Non-heat treated aluminum alloy for die-casting, die-cast product obtained by using the alloy, and method for producing the product |
-
2006
- 2006-07-24 JP JP2006200931A patent/JP4994734B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008025003A (en) | 2008-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5469100B2 (en) | Aluminum alloy for pressure casting and cast aluminum alloy | |
JP5898819B1 (en) | Aluminum alloy for die casting and aluminum alloy die casting using the same | |
KR101205169B1 (en) | Aluminium alloy | |
KR101295458B1 (en) | Aluminium alloy and use of an aluminium alloy | |
KR102609410B1 (en) | die casting alloy | |
JP6852146B2 (en) | Aluminum alloy for die casting and aluminum alloy die casting using this | |
KR101971846B1 (en) | Die casting alloy | |
WO2014061329A1 (en) | Vehicular aluminum alloy and vehicular component | |
JP2005264301A (en) | Casting aluminum alloy, casting of aluminum alloy and manufacturing method therefor | |
EP1882754B1 (en) | Aluminium alloy | |
JP5797360B1 (en) | Aluminum alloy for die casting and aluminum alloy die casting using the same | |
JP4994734B2 (en) | Aluminum alloy for casting and cast aluminum alloy | |
KR20160011136A (en) | Magnesium alloy having improved corrosion resistance and method for manufacturing magnesium alloy member using the same | |
JP2006322062A (en) | Aluminum alloy for casting, and aluminum alloy casting thereby | |
CN102965553A (en) | Aluminum alloy cast ingot for automotive bumper and production process thereof | |
JP4145242B2 (en) | Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy | |
JP2007070716A (en) | Aluminum alloy for pressure casting, and aluminum alloy casting made thereof | |
JP2005272966A (en) | Aluminum alloy for semisolid casting and method for manufacturing casting | |
JP5969713B1 (en) | Aluminum alloy for die casting and aluminum alloy die casting using the same | |
JP6267408B1 (en) | Aluminum alloy and aluminum alloy castings | |
JP2006316341A (en) | Castable aluminum alloy and aluminum alloy cast made therefrom | |
CN102994838A (en) | MgAlSi heat resistance magnesium alloy | |
JP4963444B2 (en) | Spheroidal graphite cast iron member | |
JP5723064B2 (en) | Aluminum alloy for die casting and aluminum alloy die casting using the same | |
JP5482627B2 (en) | Cast aluminum alloy and cast aluminum alloy castings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110526 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110725 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120410 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120509 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150518 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4994734 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |