JPH0635624B2 - Manufacturing method of high strength aluminum alloy extruded material - Google Patents

Manufacturing method of high strength aluminum alloy extruded material

Info

Publication number
JPH0635624B2
JPH0635624B2 JP60100282A JP10028285A JPH0635624B2 JP H0635624 B2 JPH0635624 B2 JP H0635624B2 JP 60100282 A JP60100282 A JP 60100282A JP 10028285 A JP10028285 A JP 10028285A JP H0635624 B2 JPH0635624 B2 JP H0635624B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
billet
pressure
extruded material
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60100282A
Other languages
Japanese (ja)
Other versions
JPS61259828A (en
Inventor
市三 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aluminum Can Corp
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP60100282A priority Critical patent/JPH0635624B2/en
Publication of JPS61259828A publication Critical patent/JPS61259828A/en
Publication of JPH0635624B2 publication Critical patent/JPH0635624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、例えば車輌用部品、機械用部品、野球用バ
ット等に使用される高強度アルミニウム合金押出材、特
にAl-高Zn-Mg-Cu 系アルミニウム合金押出材の製造
法に関する。
Description: TECHNICAL FIELD The present invention relates to a high-strength aluminum alloy extruded material used for, for example, vehicle parts, machine parts, baseball bats, etc., particularly Al-high Zn-Mg-Cu system. The present invention relates to a method for manufacturing an aluminum alloy extruded material.

定 義 なお、この明細書において、「%」はいずれも重量%を
示すものである。
Definition In this specification, "%" means "% by weight".

従来の技術 従来、高強度アルミニウム合金展伸材としては、代表的
なものとしてA7075合金、A7178合金、A70
50合金等が知られている。
2. Description of the Related Art Conventionally, as a high strength aluminum alloy wrought material, representative ones are A7075 alloy, A7178 alloy and A70.
50 alloy and the like are known.

発明が解決しようとする問題点 ところが、最近では、これらの合金でさえなお、強度を
不満足とする用途が増え、その更なる強度の増大をはか
ることが強く要望されている。このために、近時上記の
ようなAl-Zn-Mg-Cu 系合金についても、その主要硬
化元素であるZn 、Mg 、Cu の添加量を更に増大させ
る試みがなされているが、これらの硬化元素を従来合金
の範囲を超えて多く含有せしめると、連続鋳造時に鋳造
割れが発生し、その製造が困難になる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention Recently, even with these alloys, the number of applications in which the strength is unsatisfactory has increased, and it has been strongly demanded to further increase the strength. For this reason, recently, with respect to the Al-Zn-Mg-Cu based alloys as described above, attempts have been made to further increase the addition amounts of Zn, Mg and Cu which are the main hardening elements, but these hardening If the element is contained in a large amount exceeding the range of conventional alloys, casting cracks will occur during continuous casting, making its production difficult.

一方、この鋳造割れの防止対策として一般的には鋳造温
度を低くすることが考慮されるが、この場合には、応力
腐蝕割れ防止、結晶粒微細化等のために通常添加される
Mn 、Cr 、Zr 等が鋳造時に粗大ないし巨大な晶出物
を生成するという新たな問題点を発生する。このため、
鋳造温度を低下するにも自ずと限界があり、従来既知の
7000番系合金の許容範囲を超えてZn 、Mg 、Cu
の含有量を増大した高強度アルミニウム合金材料の工業
的な生産は著るしく困難であったのが実情である。もっ
とも、そのような合金を粉末冶金法によって製造しうる
ことは知られているが、高価格のものとなり、しかも酸
化物の混入による延性の低下の問題もあって、工業的実
生産には不向きなものであった。
On the other hand, as a measure for preventing the casting crack, it is generally considered to lower the casting temperature. In this case, Mn and Cr which are usually added to prevent stress corrosion cracking and grain refinement are used. , Zr, etc. cause a new problem that coarse or huge crystallized substances are formed during casting. For this reason,
There is a limit to lowering the casting temperature, and Zn, Mg, Cu exceeds the permissible range of the conventionally known 7000 series alloy.
The fact is that the industrial production of high-strength aluminum alloy materials with an increased content of was extremely difficult. However, although it is known that such an alloy can be manufactured by powder metallurgy, it is not suitable for industrial production because it becomes expensive and there is a problem of reduced ductility due to the inclusion of oxides. It was something.

問題点を解決するための手段 本発明者は種々の実験と研究の結果、Zn 、Mg 、Cu
等の硬化元素を多量に含む溶融アルミニウム合金を所定
の高圧下に凝固せしめることにより、凝固割れを生じさ
せることなく、しかもMn 、Cr 、Zr 等の添加元素に
よる粗大晶出物の生成をも防止して、押出加工に好適す
る欠陥のないビレットを作製しうることを見出し、この
発明を完成するに至った。
As a result of various experiments and studies, the present inventor has found that Zn, Mg, Cu
By solidifying a molten aluminum alloy containing a large amount of hardening elements such as, for example, under a predetermined high pressure, solidification cracking does not occur, and the formation of coarse crystallized substances by additive elements such as Mn, Cr, and Zr is also prevented. As a result, they have found that a defect-free billet suitable for extrusion processing can be produced, and completed the present invention.

即ち、この発明は、 Zn;7〜12%、 Mg;2〜7%、 Cu;0.5〜3%を含有し、 あるいは更に Mn;0.2〜1.0%、 Cr;0.1〜0.4%、 Zr;0.05〜0.3%のうちの1種または2種以上を
含有し、残部アルミニウム及び不純物からなるアルミニ
ウム合金を溶解し、その溶湯を、300〜350℃に予
熱した加圧凝固用金型に注湯して300kgf/cm2以上の
高圧下に加圧凝固せしめることによりビレットに作製し
たのち、該ビレット押出加工することを特徴とする高強
度アルミニウム合金押出材の製造方法を要旨とするもの
である。
That is, the present invention contains Zn; 7 to 12%, Mg; 2 to 7%, Cu; 0.5 to 3%, or further Mn; 0.2 to 1.0%, Cr; .About.0.4%, Zr; 0.05 to 0.3%, and one or more of them are dissolved, the balance aluminum alloy consisting of aluminum and impurities is melted, and the molten metal is heated to 300 to 350.degree. A high-strength aluminum alloy extruded material characterized by being prepared by forming a billet by pouring it into a preheated mold for pressure solidification and solidifying it under high pressure of 300 kgf / cm 2 or more, and then extruding the billet. The manufacturing method is as a gist.

先ず、上記合金成分の限定理由について説明すると次の
とおりである。
First, the reason for limiting the alloy components is as follows.

必須成分としてのZn 、Mg 、Cu は、既知のとおり主
として合金の強度向上に寄与するものであり、いずれも
下限値未満では、即ちZn;7%未満、Mg;2%未満、C
u;0.5%未満では、この発明によって所期するところ
の従来合金の達成領域をこえる高強度を達成することが
できない。従ってまた上記下限値未満の含有量によると
きは、従来の常法によるビレットの連続鋳造が可能であ
り、この発明の製造方法を採用することの意義に乏し
い。また、上限値であるZn;12%、Mg;7%、Cu;3
%をそれぞれ超えるときは、本発明による高圧凝固法に
よるビレットの作製を行う場合に於ても、なお上記元素
の粗大晶出物が発生し、かえって合金材の高強度化の達
成を阻害する。殊に、Zn は12%をこえて含有しても
比較的な強度向上効果は望めず実質的に無意味である。
最も好適な含有量は、概ねZn;8〜10%、Mg;3〜5
%、Cu;1〜2%程度である。
As is known, Zn, Mg and Cu as essential components mainly contribute to improving the strength of the alloy, and if all are less than the lower limit value, that is, Zn; less than 7%, Mg; less than 2%, C
If u is less than 0.5%, it is not possible to achieve a high strength, which exceeds the desired range of the conventional alloy, which is expected by the present invention. Therefore, when the content is less than the above lower limit value, the continuous casting of the billet by the conventional ordinary method is possible, and it is meaningless to adopt the manufacturing method of the present invention. Further, the upper limit values are Zn; 12%, Mg; 7%, Cu; 3
%, The coarse crystallized substances of the above elements are still generated even when the billet is produced by the high-pressure solidification method according to the present invention, which rather hinders achievement of high strength of the alloy material. In particular, even if Zn is contained in an amount of more than 12%, a comparative strength improving effect is not expected and it is substantially meaningless.
The most preferable contents are generally Zn; 8-10%, Mg; 3-5
%, Cu; 1-2%.

任意的な含有成分として必要に応じて添加されるMn 、
Cr 、Zr は、いずれも結晶粒の微細化、耐応力腐蝕割
れ性の改善に効果を示す上から均等物として評価しうる
ものであり、Mn;0.2%未満、Cr;0.1%未満、Z
r;0.05%未満では上記効果に乏しく、Mn;1.0%
超過、Cr;0.4%超過、あるいはZr;0.3%超過の
場合には、合金中にそれらの粗大な晶出物を発生して所
期する合金の高強度化を達成することができない。
Mn added as necessary as an optional component,
Both Cr and Zr can be evaluated as equivalent since they are effective in refining crystal grains and improving stress corrosion cracking resistance. Mn: less than 0.2%, Cr: 0.1% Less than Z
If r is less than 0.05%, the above effect is poor, and Mn is 1.0%.
When the content of Cr exceeds 0.4%, the content of Cr exceeds 0.4%, or the content of Zr exceeds 0.3%, coarse crystallized substances are generated in the alloy to achieve the desired high strength of the alloy. Can not.

次に、製造工程について説明する。上記のようなZn の
高含有率のAl-Zn-Mg-Cu 系合金は、従来の常法とし
て行われているような連続鋳造法では、著るしい鋳造割
れの発生のために製造が困難であるが、この発明はこの
問題点を加圧凝固法の採用によって克服している。即
ち、上記アルミニウム合金を溶解し、その溶湯を加圧凝
固用金型内に注湯して加圧凝固せしめることにより、欠
陥のない結晶粒の微細なビレットの作製を行いうるもの
である。加圧凝固用金型は、これに押出機のコンテナを
利用するものとしてもよい。即ち、アルミニウム合金溶
湯を直接該コンテナに注入し、ステムで加圧しつつ凝固
させるものとしても良い。もちろん、この場合、上記コ
ンテナの前面は盲ダイスを付設して塞ぎ、加圧凝固中の
溶湯の噴き出しを防ぐものとすることが必要である。
Next, the manufacturing process will be described. The above-mentioned Al-Zn-Mg-Cu-based alloy having a high Zn content is difficult to manufacture by the continuous casting method which is conventionally performed as a conventional method due to the occurrence of remarkable casting cracks. However, the present invention overcomes this problem by adopting the pressure coagulation method. That is, by melting the above aluminum alloy and pouring the molten metal into a mold for pressure solidification to solidify under pressure, a fine billet having crystal grains without defects can be produced. The mold for pressure solidification may use a container of an extruder for this. That is, the molten aluminum alloy may be poured directly into the container and solidified while being pressurized by the stem. Of course, in this case, it is necessary that a blind die is attached to the front surface of the container so as to close the front surface of the container so as to prevent the molten metal from spouting during pressure solidification.

また、上記の注湯に際しては、前記金型を予め300〜
350℃程度に加熱しておくものとする。これによりビ
レットに一層微細な組織を得ることを可能にする。即
ち、300℃程度未満であると、注湯後前記アルミニウ
ムの凝固がすぐに開始してしまい、加圧凝固による効果
が充分に達成され難い。一方350℃をこえる高温に加
熱しておくと、冷却速度が遅くなり、晶出物が成長して
上記微細化効果を充分に達成し難いものとなる傾向がみ
られる。
In addition, when pouring the above, the mold is preliminarily 300
It shall be heated to about 350 ° C. This makes it possible to obtain a finer structure in the billet. That is, when the temperature is lower than about 300 ° C., solidification of the aluminum immediately starts after pouring, and it is difficult to sufficiently achieve the effect of pressure solidification. On the other hand, when heated to a high temperature of more than 350 ° C., the cooling rate becomes slow, and crystallized substances tend to grow to make it difficult to sufficiently achieve the above-mentioned refinement effect.

注湯後、すぐさま前記金型内の溶湯を加圧ピストンによ
り加圧し、凝固を進行せしめることによってビレットを
作製する。即ち、加圧凝固法によってビレットを作製す
る。この際の加圧力は十分な加圧凝固の効果を得るため
には少なくとも300kgf/cm2以上に設定することが必
要であり、好ましくは500〜1000kgf/cm2程度と
するのが良い。このように、所定の加圧状態下において
アルミニウム合金を凝固させることにより、鋳造割れを
生じさせることなく、かつ晶出物の小さなビレットを作
製しうる。従って、従来の鋳造法によってビレットを作
製する場合、組織の均一化と微細化をはかるために必要
とした爾後の加熱均質化処理を省略することが可能とな
り、そのための熱エネルギー及び処理時間の節約を達成
しうる。上記加圧力の大小は、ビレットの品質にさして
大きな影響を与えるものではない。しかしながら300
kgf/cm2未満では、加圧凝固法による鋳造割れ防止及び
結晶粒の微細化効果に不十分であり、反面例えば150
0kgf/cm2をこえるような高圧を付加しても、それに要
するエネルギーの増大に見合う効果の比例的向上を見る
ことができないためむしろ無益である。なお、加圧凝固
により、晶出物の微細化をはかりうる理由は、加圧によ
り金型と溶湯の間及び溶湯内の空隙が消滅し、冷却速度
が増大することが1つの要因になっているものと推測さ
れる。
Immediately after pouring, the molten metal in the mold is pressurized by a pressure piston to allow solidification to form a billet. That is, the billet is produced by the pressure solidification method. Pressure at this time is necessary to set at least 300 kgf / cm 2 or more in order to obtain sufficient effect of pressurized solidification, and it is preferably a 500~1000kgf / cm 2 approximately. As described above, by solidifying the aluminum alloy under a predetermined pressure condition, a billet having small crystallized substances can be produced without causing casting cracks. Therefore, when the billet is produced by the conventional casting method, it becomes possible to omit the subsequent heating homogenization treatment required for homogenizing and refining the structure, which saves heat energy and processing time. Can be achieved. The magnitude of the pressing force does not greatly affect the quality of the billet. However, 300
If it is less than kgf / cm 2, it is insufficient in the effect of preventing casting cracks and refining of crystal grains by the pressure solidification method.
Even if a high pressure exceeding 0 kgf / cm 2 is applied, it is rather useless because it is not possible to see a proportional improvement in the effect commensurate with the increase in energy required. The reason why the crystallized product can be made finer by the pressure solidification is that the cooling speed increases because the voids between the mold and the melt and in the melt disappear due to the pressure. Presumed to be present.

上記の加圧凝固法により作製したビレットは、次にこれ
を押出加工して所期する高強度アルミニウム合金押出材
とする。ここに、ビレットは一旦冷却された固相状態の
ものを用いても良いが、好ましくは前記加圧凝固の進行
により、ビレットの温度が押出加工に適する温度、例え
ば液相温度の約1/2程度にまで低下し半溶融状態とな
った時点で加圧凝固工程を終了し、すぐさまそのまま押
出機のコンテナに装填して押出しを開始するものとなす
ことが推奨される。このような手順を採用することによ
り、押出加工に際してのビレットの加熱工程を省くこと
が可能となり、その加熱に要するエネルギー及び時間を
節約し、合金押出材の製造能率の向上及び製造コストの
低減の利益を享受しうる。
The billet produced by the above-mentioned pressure solidification method is then extruded into a desired high-strength aluminum alloy extruded material. Here, the billet may be in a solid state that is once cooled, but preferably the temperature of the billet is a temperature suitable for extrusion, for example, about 1/2 of the liquidus temperature due to the progress of the pressure solidification. It is recommended that the pressure solidification step be terminated when the temperature is reduced to a certain degree and the state becomes a semi-molten state, and the container is immediately loaded as it is to start extrusion. By adopting such a procedure, it becomes possible to omit the billet heating step at the time of extrusion processing, save the energy and time required for the heating, improve the production efficiency of the alloy extruded material and reduce the production cost. You can enjoy the benefits.

発明の効果 この発明は上述のように、組成面において特に極めて高
含有率にZn を含有し、Mg 及びCu も比較的高含有の
Al-Zn-Mg-Cu 系合金からなるものであるから、従来
合金より卓越した高強度を保有し、各種機械部品等に使
用してその一層の薄肉化、軽量化の達成を可能とする優
れた高強度アルミニウム合金を得ることができる。
EFFECTS OF THE INVENTION As described above, the present invention is composed of an Al-Zn-Mg-Cu-based alloy that contains Zn in a very high content ratio in terms of composition and has a relatively high Mg and Cu content. It is possible to obtain an excellent high-strength aluminum alloy that has superior strength to conventional alloys and can be used for various machine parts etc. to achieve further thinning and weight reduction.

かつ製造工程面では、上記組成のアルミニウム合金の溶
湯を300〜350℃に予熱した加圧凝固用金型に注湯
し300kgf/cm2以上の高圧凝固法によりビレットの作
製を行い、然る後該ビレットに押出加工を行うものとし
ている。従って、前記のような高強度合金でありなが
ら、ビレットの作製に鋳造割れを生じることなく、かつ
結晶粒の微細な延性に優れた高強度アルミニウム合金材
を押出材として高能率かつ低価格に製造することができ
る。
In terms of manufacturing process, a molten aluminum alloy having the above composition is poured into a pressure solidification mold preheated to 300 to 350 ° C., and a billet is manufactured by a high pressure solidification method of 300 kgf / cm 2 or more. The billet is to be extruded. Therefore, despite being a high-strength alloy as described above, a high-strength aluminum alloy material excellent in fine ductility of crystal grains is produced as a extruded material at high efficiency and at a low price without causing casting cracks in the production of billets. can do.

実施例 次にこの発明の実施例を比較例とともに示す。Examples Next, examples of the present invention will be shown together with comparative examples.

上記第1表に示す各種化学組織の合金を液相温度+10
0℃に溶解し、その、溶湯を約320℃に加熱した加圧
凝固用金型に注湯したのち、すぐさまこれを100kgf/
cm2に加圧し、該加圧下に凝固させた。そして、およそ
液相温度の約1/2程度の温度にまで冷却したとき、加
圧凝固工程を終了し、得られた半溶融状態のビレット
(直径75mm、長さ100mm)をすぐさま押出機のコン
テナーに挿入し、直径12mmの丸棒に押出した。上記工
程において、ビレットは鋳造割れのない状態のものが得
られ、かつその押出しも支障なく行い得るものであっ
た。
Alloys of various chemical structures shown in Table 1 above were used for liquidus temperature +10
Melt at 0 ℃, pour the melt into a mold for pressure coagulation heated to about 320 ℃, and immediately add 100kgf /
It was pressurized to cm 2 and solidified under the pressure. Then, when cooled to about ½ of the liquidus temperature, the pressure solidification process is completed, and the resulting semi-molten billet (diameter 75 mm, length 100 mm) is immediately put into the container of the extruder. And extruded into a 12 mm diameter round bar. In the above process, the billet was obtained in a state without casting cracks, and its extrusion could be performed without any trouble.

そこで次いで、この押出材を460℃で溶体化処理し、
更に120℃×24時間の時効処理を施したのち、得ら
れた各試料の機械的性質を調べた。結果を第2表に示
す。なお、第1表中に示す比較合金は、Zn 、Mg 、及
びCu の含有量を、従来の製法による場合の製造上のほ
ぼ限界値とされている組成範囲のものを示した。
Then, this extruded material is then subjected to solution treatment at 460 ° C.,
After further aging treatment at 120 ° C. for 24 hours, the mechanical properties of each obtained sample were examined. The results are shown in Table 2. The comparative alloys shown in Table 1 are those having a composition range in which the contents of Zn, Mg, and Cu are considered to be almost the limit values in the production by the conventional production method.

上記第2表の結果に示されるとおり、本発明合金による
ものは、主にZn の高率含有によって、従来の製法によ
る場合のZn 含有量の限界とされている比較合金のもの
に較べ、若干伸びが低下するもの引張り強さ、耐力に一
段と優れたものとなっていることが分かる。
As shown in the results in Table 2 above, the alloys of the present invention are slightly higher than those of the comparative alloys, which are considered to have a limit of Zn content in the conventional production method mainly due to the high content of Zn. It can be seen that although the elongation decreases, the tensile strength and proof stress are much better.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Zn;7〜12%、 Mg;2〜7%、 Cu;0.5〜3%を含有し、 残部アルミニウム及び不純物からなるアルミニウム合金
を溶解し、その溶湯を、300〜350℃に予熱した加
圧凝固用金型に注湯して300kgf/cm2以上の高圧下に
加圧凝固せしめることによりビレットに作製したのち、
該ビレットを押出加工することを特徴とする高強度アル
ミニウム合金押出材の製造法。
1. An aluminum alloy containing Zn; 7 to 12%, Mg; 2 to 7%, Cu; 0.5 to 3%, the balance being aluminum and impurities, and melting the molten metal to 300 to 350. After being poured into a mold for pressure solidification preheated to ℃ and solidified under high pressure of 300 kgf / cm 2 or more, a billet is prepared.
A method for producing a high-strength aluminum alloy extruded material, which comprises extruding the billet.
【請求項2】Zn;7〜12% Mg;2〜7% Cu;0.5〜3%、 を含有し、かつ Mn;0.2〜1.0% Cr;0.1〜0.4% Zr;0.05〜0.3%のうちの1種または2種以上を
含有し、残部アルミニウム及び不純物からなるアルミニ
ウム合金を溶解し、その溶湯を、300〜350℃に予
熱した加圧凝固用金型に注湯して300kgf/cm2以上の
高圧下に加圧凝固せしめることによりビレットに作製し
たのち、該ビレットを押出加工することを特徴とする高
強度アルミニウム合金押出材の製造法。
2. Zn; 7-12% Mg; 2-7% Cu; 0.5-3%, and Mn; 0.2-1.0% Cr; 0.1-0.4 % Zr; One or more of 0.05 to 0.3%, aluminum alloy consisting of balance aluminum and impurities is melted, and the molten metal is preheated to 300 to 350 ° C under pressure solidification. A method for producing a high-strength aluminum alloy extruded material, which comprises forming a billet by pouring it into a casting mold and solidifying it under a high pressure of 300 kgf / cm 2 or more, and then extruding the billet.
JP60100282A 1985-05-10 1985-05-10 Manufacturing method of high strength aluminum alloy extruded material Expired - Lifetime JPH0635624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60100282A JPH0635624B2 (en) 1985-05-10 1985-05-10 Manufacturing method of high strength aluminum alloy extruded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60100282A JPH0635624B2 (en) 1985-05-10 1985-05-10 Manufacturing method of high strength aluminum alloy extruded material

Publications (2)

Publication Number Publication Date
JPS61259828A JPS61259828A (en) 1986-11-18
JPH0635624B2 true JPH0635624B2 (en) 1994-05-11

Family

ID=14269837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60100282A Expired - Lifetime JPH0635624B2 (en) 1985-05-10 1985-05-10 Manufacturing method of high strength aluminum alloy extruded material

Country Status (1)

Country Link
JP (1) JPH0635624B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863528A (en) * 1973-10-26 1989-09-05 Aluminum Company Of America Aluminum alloy product having improved combinations of strength and corrosion resistance properties and method for producing the same
JPH0672271B2 (en) * 1986-03-18 1994-09-14 昭和アルミニウム株式会社 Method for producing extruded aluminum alloy having excellent elastic modulus
US5221377A (en) * 1987-09-21 1993-06-22 Aluminum Company Of America Aluminum alloy product having improved combinations of properties
FR2645546B1 (en) * 1989-04-05 1994-03-25 Pechiney Recherche HIGH MODULATED AL MECHANICAL ALLOY WITH HIGH MECHANICAL RESISTANCE AND METHOD FOR OBTAINING SAME
US5496426A (en) * 1994-07-20 1996-03-05 Aluminum Company Of America Aluminum alloy product having good combinations of mechanical and corrosion resistance properties and formability and process for producing such product
FR2838135B1 (en) * 2002-04-05 2005-01-28 Pechiney Rhenalu CORROSIVE ALLOY PRODUCTS A1-Zn-Mg-Cu WITH VERY HIGH MECHANICAL CHARACTERISTICS, AND AIRCRAFT STRUCTURE ELEMENTS
JP5830006B2 (en) * 2012-12-27 2015-12-09 株式会社神戸製鋼所 Extruded aluminum alloy with excellent strength
WO2017126413A1 (en) * 2016-01-21 2017-07-27 株式会社神戸製鋼所 Machine component, method for producing same, and extruded material
JP2018031026A (en) * 2016-08-22 2018-03-01 株式会社神戸製鋼所 Machine component and extrusion material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058298B2 (en) * 1982-04-06 1985-12-19 株式会社神戸製鋼所 Method for producing Al-Zn-Mg-Cu alloy material with uniform formability

Also Published As

Publication number Publication date
JPS61259828A (en) 1986-11-18

Similar Documents

Publication Publication Date Title
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JP2000506938A (en) Aluminum-silicon-copper thixotropic alloy for forming in semi-solid state
KR101511632B1 (en) Method for manufacturing of Al-Zn alloy sheet using twin roll casting and Al-Zn alloy sheet thereby
CN111187951A (en) Aluminum-magnesium-scandium-zirconium-titanium alloy and preparation method thereof
CN114231802A (en) Rare earth aluminum alloy bar for forging aluminum alloy hub and preparation method thereof
JPH0635624B2 (en) Manufacturing method of high strength aluminum alloy extruded material
JP2002348625A (en) Aluminum alloy sheet with superior warm formability, and manufacturing method therefor
EP1680246B1 (en) Method for producing metal matrix composite materials
US3544761A (en) Process of welding aluminum
JPH02149631A (en) Low thermal expansion aluminum alloy having excellent wear resistance and heat conductivity
JPS62235436A (en) Production of aluminum alloy extrudate for bearing
JPH0340647B2 (en)
KR20190030296A (en) Methods of treating aluminum alloy
JPS62218527A (en) Manufacture of extruded magnesium alloy material having superior modulus of elasticity
JPS61259829A (en) Production of wear resistant aluminum alloy extrudate
JPH03249148A (en) Low thermal expansion aluminum alloy excellent in strength and ductility
JPH03223437A (en) Low thermal expansion aluminum alloy excellent in wear resistance and elastic modulus
US3492119A (en) Filament reinforced metals
JPH0672271B2 (en) Method for producing extruded aluminum alloy having excellent elastic modulus
KR920009037B1 (en) Process for producing extruded aluminium alloys
JP2002241880A (en) Aluminum alloy extrusion profile material having excellent bending workability and production method therefor
JPH0557344B2 (en)
JPH03126834A (en) High strength aluminum alloy having excellent elastic modulus and low thermal expansibility
JPH0480108B2 (en)
JPH0366387B2 (en)