EP1680246B1 - Method for producing metal matrix composite materials - Google Patents

Method for producing metal matrix composite materials Download PDF

Info

Publication number
EP1680246B1
EP1680246B1 EP04765979A EP04765979A EP1680246B1 EP 1680246 B1 EP1680246 B1 EP 1680246B1 EP 04765979 A EP04765979 A EP 04765979A EP 04765979 A EP04765979 A EP 04765979A EP 1680246 B1 EP1680246 B1 EP 1680246B1
Authority
EP
European Patent Office
Prior art keywords
composite material
metal
magnesium
matrix
matrix composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04765979A
Other languages
German (de)
French (fr)
Other versions
EP1680246A1 (en
Inventor
Florian Moll
Lutz Oemisch
Ulrich Bischofberger
Karl Ulrich Prof. Dr.-Ing. Kainer
Norbert Hort
Hajo Dieringa
Hagen Frank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle GmbH
Original Assignee
Mahle GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle GmbH filed Critical Mahle GmbH
Publication of EP1680246A1 publication Critical patent/EP1680246A1/en
Application granted granted Critical
Publication of EP1680246B1 publication Critical patent/EP1680246B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • C22C1/1052Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites by mixing and casting metal matrix composites with reaction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/12Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0078Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only silicides

Definitions

  • the present invention relates to a method for the production of metal-matrix composite materials comprising at least one portion of magnesium or a magnesium alloy and at least one production step in which a thixomolding takes place.
  • the material magnesium can not readily be used for certain applications, such as pistons in motor vehicle engines or other engine components, in particular of engines.
  • the properties mentioned can be positively influenced by the material is reinforced by means of a second, usually much firmer and harder phase-usually find ceramic or carbon-based short or long fibers or particles.
  • These can be introduced in a melt-metallurgical production either in the form of a porous shaped body (so-called preform), which is infiltrated with liquid molten metal, or in the case of particles also by stirring into the metallic matrix.
  • Another way to reinforce a metallic material by fibers or particles consists in the self-or "in situ" formation of the reinforcing component.
  • metallic composite materials can also be produced by powder metallurgy.
  • Composite material of this type can be cast directly in the form of castings or ingots. In the in-situ process, the composite is formed by a reaction between two or three a plurality of alloying elements of the metallic matrix or phases of the overall system, usually forming a new, usually intermetallic phase.
  • the DE 101 35 198 A1 describes a process for the production of magnesium alloys by thixomolding, which may also contain a proportion of silicon among other elements.
  • the metallic material is fed as granules to the thixomolding machine and moved within a heated cylinder by a transport screw in the direction of the spray nozzle.
  • the temperature which lies between the liquidus and solidus temperature of the metal, this partially liquefies, while the remaining solid content forms globular
  • the behavior of the thixotropic material is pseudoplastic, that is, the viscosity decreases with increasing shear.
  • the Thixomolding is particularly suitable for the production of very thin-walled components with high dimensional stability, since it hardly comes to shrinkage and distortion due to the favorable temperature level between liquidus and solidus
  • the infiltration ability of preforms with high fiber and particle contents in classical die casting is not readily given, preferably the method of squeeze casting is used for this purpose, for which in turn special casting plants are necessary.
  • the difficulties that can arise in die-casting infiltration are mainly due to the high filling rate of the process and the low pressure which can be exerted via the melt due to the small bleed. However, this is needed to overcome the normally very low tendency to wetting between the metallic melt and the ceramic molding.
  • the preform must be heated significantly above the melt temperature in order to prevent premature solidification of the melt on the fiber body.
  • the method of stirring is primarily reserved for the particulate reinforcements, as the use of fibers can lead to a large increase in viscosity of the melt, which makes a homogeneous distribution of the fibers very difficult or even impossible.
  • the stirring result depends on the particle size used, the stirrer speed and the temperature. Insufficient choice of parameters can lead to clumping, flooding of the particles into the slag or their sedimentation on the crucible bottom. If the particles and the melt are reactive systems, reaction reactions at the interfaces may result due to the long contact time between the two phases, resulting in particle damage.
  • Example is the system magnesium - alumina, here is formed in the reaction between the two partners with decomposition of the particulate matter magnesium oxide and aluminum.
  • WO 03/027342 A From the WO 03/027342 A a method of the type mentioned is known. This process is based on a magnesium powder or a powder of a magnesium alloy and a silicon powder, which are processed to produce a more compact product. In this case, a heating and a reaction takes place between the magnesium and the silicon, so that a metal-matrix composite material containing Mg 2 Si as a reinforcing component is present. Furthermore, a hot forming process is provided.
  • the object of the present invention is to provide a method for the production of metal matrix composite materials of the type mentioned, which enables the production of light metal composite materials, in particular for use in temperature-loaded components, which is more variable and less expensive than the Hitherto known method and avoids the above-mentioned disadvantages associated with these.
  • the solution to this problem provides a method according to the invention for the production of metal matrix composite materials of the type mentioned above with the characterizing features of claim 1.
  • the production of the light metal composite material in the thixomolding process wherein in a metal matrix, an Mg 2 Si Phase with a volume content of at least 2%.
  • Mg-Mg 2 Si composites are to be prepared with a volume content of at least 2% Mg 2 Si by a granule of silicon or a silicon alloy and granules of magnesium or a magnesium alloy are supplied together to the thixomolding process and there under shear a form at least partially liquid melt, which solidifies in the form of a magnesium body.
  • Advantages of the method are the wide range of adjustable volume contents of Mg 2 Si, the ability to dispense with fiber or P siepreforms and determine the size and amount of Si particles, the amount and size of the forming Mg 2 Si crystals
  • properties such as thermal expansion coefficient, modulus of elasticity, tensile and yield strength, and wear behavior can be changed individually. So Si contents are adjustable, which can not be produced by melt metallurgy.
  • the thus cast material can be supplied to subsequent forming operations such as a forging process.
  • a cast body is produced from the metal-matrix composite material which is subsequently processed further.
  • the cast body is subsequently reshaped in at least one method step.
  • Such a forming process may include, for example, at least one forging process.
  • metal-matrix composites made by the process of this invention may be used to make pistons or other engine parts for diesel or gasoline fueled engines.
  • the metal-matrix composites are also suitable, for example, for the production of liners for shafts, cylinders and other rotationally symmetrical parts, especially in engines. They are also suitable for the production of other on wear stressed automotive parts such as brake discs.
  • the volume content of the Mg 2 Si phase in the metal matrix is preferably in the range between about 5 and about 40 volume percent.
  • the metal-matrix composites of the present invention are obtainable, for example, from standard alloys such as AZ91, AM50, MR1230D, MR1253M or other Mg die cast alloys obtained an addition of Si. Essential here is the reaction 2 Mg + Si ⁇ Mg 2 Si. In the context of the invention, an addition of at least about 2 percent by weight of Si and preferably at most about 15 percent by weight of Si is suitable.
  • the resulting volume percentages of Mg 2 Si are listed in Table 1 below, which represent exemplary levels of Mg 2 Si phase in the metal matrix composite.
  • Mg 2 Si is a comparatively high-melting phase with a melting point near 1100 ° C.
  • this phase is suitable as a reinforcement for improving the high-temperature properties of the matrix material.
  • This applies both to the creep behavior and characteristic values such as the thermal conductivity and also the thermal expansion coefficient. In addition to other physical and mechanical properties, these values can be adjusted specifically with regard to an application.
  • the exact numerical values depend, inter alia, on the base alloy, the volume fraction of Mg 2 Si, further precipitates in the matrix alloy, and also on the operating temperature or the operating temperature range. These data are to be determined experimentally for each application.
  • Mg 2 Si precipitates Another influencing factor is the manifestation of Mg 2 Si precipitates. Usually they are found as so-called "Chinese script" excretions, ie as acicular precipitates, which are very similar in their shape to Chinese characters. By the addition of alloying elements such. B. Ca, however, produce primary polygonal precipitates that behave like a particle reinforcement. Both types of precipitation also have an effect on mechanical and physical properties.
  • the parameters selected during further processing have a significant effect on the property profile. If a forming takes place, for example, by extrusion, then the alignment of planes of the Mg crystallites parallel to the extrusion direction leads to anisotropy.
  • the magnitude of the anisotropy depends on various factors, in particular on the forming ratio, the temperature in the tool, the preheating, heat transfer after pressing and thus the dynamic and static recrystallization.
  • the alloy composition including the influence of impurities is also an influencing factor.
  • the temperature control in the production of metal-matrix composite materials according to the inventive method is directly related to the selected alloy, the shot weight and the tool, in particular its component geometry, sprue, etc., the geometry of worm and cylinder in thixomolding, the feed rate and also the shooting speed. These parameters must be determined empirically for each component and are also dependent on the design of the machine and its data profile. Likewise, the properties also depend on the solid phase fraction. This affects the mechanical properties of the matrix alloy alone as well as the composite material, d. H. the combination of matrix and amplification.
  • the reaction means 2 Mg + Si ⁇ Mg 2 Si, that although the alloys build up a high proportion of liquid phase more quickly, at the same time there is an increasing proportion of solid phase due to the formation of Mg 2 Si.
  • the reaction not only takes place in the area of the cylindrical worm of the thixomolding machine, but can also take place after the casting in the workpiece. Especially in areas with accumulations of material, this behavior can be expected. Under certain circumstances, a reprint is therefore more successfully applied, as is still a part of matrix alloy in the molten phase by the exothermic reaction.
  • Related conclusions can be obtained by examining metallographic cuts.
  • the melting interval plays a major role.
  • the alloy AZ91 is listed, the melting interval in the range of 440 to 600 ° C. It is known from the literature that for this alloy a high proportion of liquid phase in the range of 95% leads to an improvement of the mechanical properties in the component. With such a liquid phase fraction, one can speak of a supercooled melt. After injection into the tool, a high nucleation rate is the result in the inventive method therefore at the same time a very high number of germs. This leads to the expression of a very fine structure, which has very good mechanical properties due to the Hall-Petsch relationship. Due to the supercooling of the melt, the shrinkage is also very low overall. It is the lower, the lower the proportion of liquid phase. This means at the same time that in comparison with die casting less internal stress and thus less distortion occurs.
  • the grain size of the granules is usually not a determinant size. Depending on the machine and selected component then each other a different screw geometry can be selected. The grain size and the grain shape must be matched to the screw geometry. This is completely independent of the alloy or the composite material. In the further consequence, the particle size ratio Mg-Si must be matched. However, this usually only makes sense for a previously defined screw geometry.
  • granules can, for example, by a simple conveyor at the same time or shortly after the granule application (both materials are still solid), which can be additionally attached to the machine.
  • a machine of conventional design can be used, as is available on the market, for example, from the companies Thixomat or Japan Steel Works.

Abstract

The invention relates to a method for producing metal matrix composite materials, comprising at least one proportion of magnesium or one magnesium alloy and involving at least one production step in which a thixomolding ensues. According to the invention, an Mg2Si phase having a volume fraction of at least 2 % is incorporated in a metal matrix preferably comprised of magnesium or of a magnesium alloy. The inventive method uses the thixomolding method for the in-situ production of a metallic composite material and is advantageous in that a broad range of adjustable volume fractions of the Mg2Si phase in the composite material results whereby enabling the properties of the composite material to be individually modified. The inventive metal matrix composite material is particularly suited for producing thermally stressed parts of motor vehicles such as pistons or the like.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Metall-Matrix-Verbundwerkstoffen umfassend mindestens einen Anteil an Magnesium oder einer Magnesiumlegierung sowie mindestens einen Herstellungsschritt, in dem ein Thixomolding erfolgt.The present invention relates to a method for the production of metal-matrix composite materials comprising at least one portion of magnesium or a magnesium alloy and at least one production step in which a thixomolding takes place.

Der Werkstoff Magnesium ist aufgrund seines niedrigen E-Moduls, des hohen thermischen Ausdehnungskoeffizienten sowie der mangelnden Verschleißbeständigkeit für bestimmte Anwendungsfälle wie zum Beispiel Kolben in Kraftfahrzeugmotoren oder andere Aggregatkomponenten insbesondere von Motoren nicht ohne weiteres verwendbar. Die genannten Eigenschaften lassen sich jedoch positiv beeinflussen, indem der Werkstoff mittels einer zweiten, üblicherweise deutlich festeren und härteren Phase verstärkt wird-Verwendung dafür finden üblicherweise keramische oder kohlenstoffbasierte Kurz- oder Langfasem beziehungsweise Partikel. Diese können bei einer schmelzmetallurgischen Herstellung entweder in Form eines porösen Formkörpers (sog. Preform), der mit flüssiger Metallschmelze infiltriert wird, oder im Falle von Partikeln auch durch Einrühren in die metallische Matrix eingebracht werden. Eine weitere Möglichkeit, einen metallischen Werkstoff durch Fasern oder Partikel zu verstärken, besteht in der Selbst- oder auch "in situ"-Bildung der verstärkenden Komponente. Neben den genannten schmelzmetallurgischen Verfahren lassen sich metallische Verbundwerkstoffe auch pulvermetallurgisch erzeugen.Due to its low modulus of elasticity, the high coefficient of thermal expansion and the lack of wear resistance, the material magnesium can not readily be used for certain applications, such as pistons in motor vehicle engines or other engine components, in particular of engines. However, the properties mentioned can be positively influenced by the material is reinforced by means of a second, usually much firmer and harder phase-usually find ceramic or carbon-based short or long fibers or particles. These can be introduced in a melt-metallurgical production either in the form of a porous shaped body (so-called preform), which is infiltrated with liquid molten metal, or in the case of particles also by stirring into the metallic matrix. Another way to reinforce a metallic material by fibers or particles consists in the self-or "in situ" formation of the reinforcing component. In addition to the aforementioned melting metallurgical processes, metallic composite materials can also be produced by powder metallurgy.

Bei der Verwendung von Preforms als infiltrierbare Formkörper hat sich das Pressgießen (Squeeze casting) als bevorzugtes Gießverfahren etabliert. Hierbei wird bei etwas geringeren Formfüllgeschwindigkeiten, aber etwas höheren Drücken als beim klassischen Druckguss das schmelzflüssige Metall in den porösen Faser- oder Partikelkörper eingepresst. Dabei wird ein nahezu porenfreier Verbundwerkstoff mit geschlossenen Faser-Matrix-Anbindungen erzeugt.When preforms are used as infiltratable moldings, squeeze casting has become established as the preferred casting method. In this case, the molten metal is pressed into the porous fiber or particle body at somewhat lower filling speeds, but somewhat higher pressures than in the classical die casting. This produces a virtually pore-free composite material with closed fiber-matrix bonds.

Beim Einrühren werden üblicherweise keramische Partikel als lose Schüttung der bewegten Metallschmelze durch Einrieseln oder Einblasen zugeführt. Verbundwerkstoffschmetzen dieser Art können direkt in Form von Gussstücken oder Barren vergossen werden. Beim in-situ-Verfahren entsteht der Verbundwerkstoff durch eine Reaktion zwischen zwei oder mehreren Legierungselementen der metallischen Matrix oder Phasen des Gesamtsystems meist unter Bildung einer neuen, in der Regel intermetallischen Phase.When stirring ceramic particles are usually supplied as a loose bed of moving molten metal by trickling or blowing. Composite material of this type can be cast directly in the form of castings or ingots. In the in-situ process, the composite is formed by a reaction between two or three a plurality of alloying elements of the metallic matrix or phases of the overall system, usually forming a new, usually intermetallic phase.

Die Herstellung und Charakterisierung des Systems Mg-Mg2Si ist mehrfach beschrieben worden. Es wird zum Beispiel auf die Offenbarung der DE 41 25 014 A1 verwiesen. Die Entstehung der intermetallischen Phase im Sinne einer Verstärkung kann dem in-situ-Prozess zugeordnet worden. Meist geschieht dies durch Infiltration Si-Partikel-haftiger Faserpreforms oder durch Ausscheiden primären Magnesiumsilizids aus übereutektischen Mg-Si-Legierungen. Während sich beim primären Ausscheiden nach Unterschreiten der Liquiduslinie grobe, blockförmige Mg2Si-Ausscheidungen bilden, formt sich das Mg2Si bei der reaktiven Umsetzung des Rein-Si in einer Preform globular ein. Euktektisch ausgeschiedenes Mg2Si wiederum zeigt in der Regel die charakteristische "Chinesenschrift"-Struktur.The preparation and characterization of the system Mg-Mg 2 Si has been described several times. It is based, for example, on the revelation of DE 41 25 014 A1 directed. The emergence of the intermetallic phase in terms of amplification may have been assigned to the in situ process. This is usually done by infiltration of Si-particle-shaped fiber preforms or by precipitation of primary magnesium silicide from hypereutectic Mg-Si alloys. While the primary coarse withdrawal after falling below the liquidus line, block-shaped form Mg 2 Si precipitates, the Mg 2 Si formed at the reactive conversion of pure Si in a preform a globular. Eucleatively excreted Mg 2 Si, in turn, usually shows the characteristic "Chinese script" structure.

Die DE 101 35 198 A1 beschreibt ein Verfahren zur Herstellung von Magnesiumlegierungen durch Thixomolding, die neben anderen Elementen auch einen Anteil an Silizium enthalten können.The DE 101 35 198 A1 describes a process for the production of magnesium alloys by thixomolding, which may also contain a proportion of silicon among other elements.

Beim Thixomolding-Prozess wird das metallische Material als Granulat der Thixomolding-Maschine zugeführt und innerhalb eines beheizten Zylinders durch eine Transportschnecke in Richtung der Spritzdüse bewegt. Unter Wirkung der Scherkräfte und der Temperatur, die zwischen Liquidus- und Solidustemperatur des Metalls liegt, verflüssigt sich dieses teilweise, während sich der verbleibende Feststoffanteil globular einformt Das Verhalten des thixotropen Materials ist strukturviskos, das heißt die Viskosität sinkt mit zunehmender Scherwirkung. Das Thixomolding eignet sich vor allem für die Herstellung sehr dünnwandiger Bauteile mit hoher Maßhaltigkeit, da es aufgrund des günstigen Temperaturniveaus zwischen Liquidus und Solidus kaum zu Schwindungs- und Verzugserscheinungen kommtIn the thixomolding process, the metallic material is fed as granules to the thixomolding machine and moved within a heated cylinder by a transport screw in the direction of the spray nozzle. Under the effect of the shear forces and the temperature, which lies between the liquidus and solidus temperature of the metal, this partially liquefies, while the remaining solid content forms globular The behavior of the thixotropic material is pseudoplastic, that is, the viscosity decreases with increasing shear. The Thixomolding is particularly suitable for the production of very thin-walled components with high dimensional stability, since it hardly comes to shrinkage and distortion due to the favorable temperature level between liquidus and solidus

Nachteile der oben genannten Verfahrensrouten zur Herstellung von metallischen Verbundwerkstoffen liegen im Falle der Preforminfiltration in der aufwändigen Anlagentechnik, der eingeschränkten Gestaltungsfähigkeit , dem Fasergehalt der Preforms sowie deren hohem Kostenniveau. Komplexe Geometrien sind derzeit kaum oder nur unter erhöhtem technischen und finanziellen Aufwand realisierbar, so dass eine Net-Shape-Herstellung faser- oder partikelverstärkter Bauteile durch Infiltration derzeit kaum möglich ist. Dies hat in der Regel einen relativ hohen Bearbeitungsaufwand zur Folge, der sich bei der Verwendung keramischer Hartphasen als Verstärkungen schwierig und kostenintensiv darstellt, da zum Beispiel die Bearbeitung eines mit SiC- oder Al2O3- Fasern verstärkten Körpers nur mittels diamantbesetzter Werkzeuge möglich ist. Überdies ist die Infiltrationsfähigkeit von Preforms mit hohen Faser- und Partikelgehalten im klassischen Druckguss nicht ohne weiteres gegeben, bevorzugt wird hierfür das Verfahren des Pressgießens (Squeeze casting) angewendet, wofür wiederum spezielle Gießanlagen notwendig sind. Die Schwierigkeiten, die sich bei der Infiltration mittels Druckguss ergeben können, haben ihre Ursache vornehmlich in der hohen Füllgeschwindigkeit des Verfahrens und dem geringen Druck, der über die Schmelze aufgrund des kleinen Anschnitts ausgeübt werden kann. Dieser wird jedoch benötigt, um die normalerweise sehr geringe Benetzungsneigung zwischen metallischer Schmelze und keramischem Formkörper zu überwinden- Darüberhinaus muss die Preform deutlich Ober die Schmelzetemperatur erwärmt werden, um ein vorzeitiges Erstarren der Schmelze am Faserkörper zu vermeiden.Disadvantages of the above-mentioned process routes for the production of metallic composite materials are in the case of preform infiltration in the complex system technology, the limited design capability, the fiber content of the preforms and their high cost level. Complex geometries are currently hardly or only with increased technical and financial effort feasible, so that a net-shape production of fiber or particle-reinforced components by infiltration is currently hardly possible. This usually results in a relatively high processing outlay, which is difficult and cost-intensive in the use of ceramic hard phases as reinforcements, since, for example, the machining of a reinforced with SiC or Al 2 O 3 - fibers Body is possible only by means of diamond-studded tools. Moreover, the infiltration ability of preforms with high fiber and particle contents in classical die casting is not readily given, preferably the method of squeeze casting is used for this purpose, for which in turn special casting plants are necessary. The difficulties that can arise in die-casting infiltration are mainly due to the high filling rate of the process and the low pressure which can be exerted via the melt due to the small bleed. However, this is needed to overcome the normally very low tendency to wetting between the metallic melt and the ceramic molding. In addition, the preform must be heated significantly above the melt temperature in order to prevent premature solidification of the melt on the fiber body.

Das Verfahren des Einrührens ist in erster Linie den partikelförmigen Verstärkungen vorbehalten, da die Verwendung von Fasern zu einer starken Viskositätserhöhung der Schmelze führen kann, die eine homogene Verteilung der Fasern sehr erschwert oder sogar unmöglich macht. Im Falle von Partikeln ist das Rührergebnis abhängig von der verwendeten Partikelgröße, der Rührerdrehzahl und der Temperatur. Ungenügende Parameterwahl kann zu Verklumpungen, Ausschwemmungen der Partikel in die Schlacke oder deren Sedimentation am Tiegelboden führen. Handelt es sich bei Partikeln und Schmelze um ein reaktives System, treten unter Umständen aufgrund der langen Kontaktzeit zwischen beiden Phasen Umsetzungsreaktionen an den Grenzflächen ein, die eine Schädigung der Partikel zur Folge haben. Beispiel hierfür ist etwa das System Magnesium - Aluminiumoxid, hier wird bei der Reaktion zwischen beiden Partnern unter Zersetzung der Partikelsubstanz Magnesiumoxid und Aluminium gebildet.The method of stirring is primarily reserved for the particulate reinforcements, as the use of fibers can lead to a large increase in viscosity of the melt, which makes a homogeneous distribution of the fibers very difficult or even impossible. In the case of particles, the stirring result depends on the particle size used, the stirrer speed and the temperature. Insufficient choice of parameters can lead to clumping, flooding of the particles into the slag or their sedimentation on the crucible bottom. If the particles and the melt are reactive systems, reaction reactions at the interfaces may result due to the long contact time between the two phases, resulting in particle damage. Example is the system magnesium - alumina, here is formed in the reaction between the two partners with decomposition of the particulate matter magnesium oxide and aluminum.

Aus der WO 03/027342 A ist ein Verfahren der eingangs genannten Art bekannt. Bei diesem Verfahren wird von einem Magnesiumpulver oder einem Pulver aus einer Magnesiumlegierung und einem Siliziumpulver ausgegangen, die zur Herstellung eines kompakteren Produkts verarbeitet werden. Dabei erfolgt eine Erwärmung und eine Reaktion zwischen dem Magnesium und dem Silizium, so dass ein Metall-Matrix-Verbundwerkstoff vorliegt, der Mg2Si als Verstärkungskomponente enthält. Weiterhin ist ein Warmumformprozess vorgesehen.From the WO 03/027342 A a method of the type mentioned is known. This process is based on a magnesium powder or a powder of a magnesium alloy and a silicon powder, which are processed to produce a more compact product. In this case, a heating and a reaction takes place between the magnesium and the silicon, so that a metal-matrix composite material containing Mg 2 Si as a reinforcing component is present. Furthermore, a hot forming process is provided.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zur Herstellung von Metall-Matrix-Verbundwerkstoffen der eingangs genannten Gattung zur Verfügung zu stellen, welches die Herstellung von Leichtmetail-Verbundwerkstoffen insbesondere für den Einsatz in temperaturbelasteten Bauteilen ermöglicht, welches variabler und kostengünstiger als die bislang bekannten Verfahren ist und die mit diesen verbundenen obengenannten Nachteile vermeidet.The object of the present invention is to provide a method for the production of metal matrix composite materials of the type mentioned, which enables the production of light metal composite materials, in particular for use in temperature-loaded components, which is more variable and less expensive than the Hitherto known method and avoids the above-mentioned disadvantages associated with these.

Die Lösung dieser Aufgabe liefert ein erfindungsgemäßes Verfahren zur Herstellung von Metall-Matrix-Verbundwerkstoffen der eingangs genannten Gattung mit den kennzeichnenden Merkmalen des Anspruchs 1. Erfindungsgemäß erfolgt die Herstellung des Leichtmetall-Verbundwerkstoffs im Thixomolding-Verfahren, wobei in eine Metallmatrix eine Mg2Si-Phase mit einem Volumengehalt von mindestens 2 % eingelagert wird.
Die besonderen Vorteile des Verfahrens gemäß der vorliegenden Erfindung ergeben sich aus der Kombination des Thixomoldingverfahrens mit dem Verfahren zur in-situ-Erzeugung eines metallischen Verbundwerkstoffes. Erfindungsgemäß sollen Mg-Mg2Si-Verbundwerkstoffe mit einem Volumengehalt von mindestens 2 % Mg2Si hergestellt werden, indem ein Granulat des Siliziums oder einer Siliziumlegierung und ein Granulat des Magnesiums oder einer Magnesiumlegierung gemeinsam dem Thixomolding-Prozess zugeführt werden und dort unter Scherung eine zumindest teilflüssige Schmelze bilden, die in Form eines Magnesiumkörpers erstarrt. Vorteile des Verfahrens sind die große Bandbreite der einstellbaren Volumengehalte an Mg2Si, die Möglichkeit, auf Faser- oder Partikelpreforms verzichten zu können und über die Größe und die Menge der Si-Partikel die Menge und Größe der sich bildenden Mg2Si-Kristalle bestimmen zu können, wodurch sich wiederum Eigenschaften wie der thermische Ausdehnungskoeffizient, das E-Modul, die Zug- und Dehngrenze sowie das Verschleißverhalten individuell verändern lassen. So sind Si-Gehalte einstellbar, die schmelzmetallurgisch nicht herstellbar sind. Der so vergossene Werkstoff kann nachfolgenden Umformoperationen wie etwa einem Schmiedeprozess zugeführt werden.
The solution to this problem provides a method according to the invention for the production of metal matrix composite materials of the type mentioned above with the characterizing features of claim 1. According to the invention, the production of the light metal composite material in the thixomolding process, wherein in a metal matrix, an Mg 2 Si Phase with a volume content of at least 2%.
The particular advantages of the method according to the present invention result from the combination of the thixomolding method with the method for the in-situ production of a metallic composite material. According to the invention Mg-Mg 2 Si composites are to be prepared with a volume content of at least 2% Mg 2 Si by a granule of silicon or a silicon alloy and granules of magnesium or a magnesium alloy are supplied together to the thixomolding process and there under shear a form at least partially liquid melt, which solidifies in the form of a magnesium body. Advantages of the method are the wide range of adjustable volume contents of Mg 2 Si, the ability to dispense with fiber or Partikelpreforms and determine the size and amount of Si particles, the amount and size of the forming Mg 2 Si crystals In turn, properties such as thermal expansion coefficient, modulus of elasticity, tensile and yield strength, and wear behavior can be changed individually. So Si contents are adjustable, which can not be produced by melt metallurgy. The thus cast material can be supplied to subsequent forming operations such as a forging process.

Vorzugsweise stellt man in dem erfindungsgemäßen Thixomolding-Prozess einen gegossenen Körper aus dem Metall-Matrix-Verbundwerkstoff her, der anschließend weiter verarbeitet wird. Insbesondere wird der gegossene Körper anschließend in mindestens einem Verfahrensschritt umgeformt. Ein solcher Umformprozess kann beispielsweise mindestens ein Schmiedeverfahren umfassen.Preferably, in the thixomolding process according to the invention, a cast body is produced from the metal-matrix composite material which is subsequently processed further. In particular, the cast body is subsequently reshaped in at least one method step. Such a forming process may include, for example, at least one forging process.

Die in den Unteransprüchen genannten Merkmale betreffen bevorzugte Weiterbildungen der erfindungsgemäßen Aufgabenlösung. Weitere Vorteile der Erfindung ergeben sich aus der nachfolgenden Detailbeschreibung.The features mentioned in the dependent claims relate to preferred developments of the task solution according to the invention. Further advantages of the invention will become apparent from the following detailed description.

Nachfolgend wird die vorliegende Erfindung anhand von Ausführungsbeispielen näher beschrieben.Hereinafter, the present invention will be described in detail with reference to embodiments.

Metall-Matrix-Verbundwerkstoffe, die nach dem erfindungsgemäßen Verfahren hergestellt wurden, können beispielsweise zur Herstellung von Kolben oder anderen Motorenteilen für mit Dieselkraftstoff oder Benzinkraftstoff betriebene Motoren verwendet werden. Die Metall-Matrix-Verbundwerkstoffe eignen sich weiterhin beispielsweise zur Herstellung von Laufbuchsen für Wellen, Zylinder und andere rotationssymmetrische Teile, insbesondere in Motoren. Sie sind weiter geeignet zur Herstellung von anderen auf Verschleiß beanspruchten Kraftfahrzeugteilen wie zum Beispiel Bremsscheiben.For example, metal-matrix composites made by the process of this invention may be used to make pistons or other engine parts for diesel or gasoline fueled engines. The metal-matrix composites are also suitable, for example, for the production of liners for shafts, cylinders and other rotationally symmetrical parts, especially in engines. They are also suitable for the production of other on wear stressed automotive parts such as brake discs.

Der Volumengehalt der Mg2Si-Phase in der Metallmatrix liegt vorzugsweise im Bereich zwischen etwa 5 und etwa 40 Volumenprozent Die erfindungsgemäßen Metall-Matrix-Verbundwerkstoffe sind beispielsweise erhältlich ausgehend von Standardlegierungen wie AZ91, AM50, MR1230D, MR1253M oder anderen Mg-Druckgusslegierungen, die eine Zugabe von Si erhalten. Wesentlich ist dabei die Reaktion 2 Mg + Si → Mg2Si. Im Rahmen der Erfindung kommt eine Zugabe von mindestens etwa 2 Gewichtsprozent Si und vorzugsweise maximal etwa 15 Gewichtsprozent Si in Betracht. Die daraus resultierenden Volumenprozentanteile an Mg2Si sind in der nachfolgenden Tabelle 1 aufgelistet, die beispielhafte Anteile Mg2Si-Phase in dem Metall-Matrix-Verbundwerkstoff wiedergeben. Tabelle 1 Zugabemengen von Si in wt.-% und die daraus resultierenden Mengen in Volumenprozent wt.-% Si Vol.-% Mg2Si 2 5,08 3 7,63 4 10,19 5 12,77 6 15,35 7 17,95 8 20,55 9 23,17 10 25,80 11 28,44 12 31,09 13 33,75 14 36,42 15 39,10 The volume content of the Mg 2 Si phase in the metal matrix is preferably in the range between about 5 and about 40 volume percent. The metal-matrix composites of the present invention are obtainable, for example, from standard alloys such as AZ91, AM50, MR1230D, MR1253M or other Mg die cast alloys obtained an addition of Si. Essential here is the reaction 2 Mg + Si → Mg 2 Si. In the context of the invention, an addition of at least about 2 percent by weight of Si and preferably at most about 15 percent by weight of Si is suitable. The resulting volume percentages of Mg 2 Si are listed in Table 1 below, which represent exemplary levels of Mg 2 Si phase in the metal matrix composite. Table 1 Addition amounts of Si in wt .-% and the resulting amounts in volume percent wt .-% Si Vol .-% Mg 2 Si 2 5.08 3 7.63 4 10.19 5 12.77 6 15.35 7 17.95 8th 20.55 9 23.17 10 25,80 11 28.44 12 31.09 13 33.75 14 36.42 15 39.10

Mg2Si ist eine vergleichsweise hochschmelzende Phase mit einem Schmelzpunkt nahe 1.100 °C. Damit eignet sich diese Phase als Verstärkung zur Verbesserung der Hochtemperatureigenschaften des Matrixwerkstoffes. Dies betrifft sowohl das Kriechverhalten als auch Kennwerte wie die thermische Leitfähigkeit und auch den thermischen Ausdehnungskoeffizienten. Neben anderen physikalischen und mechanischen Eigenschaften lassen sich diese Werte gezielt im Hinblick auf eine Anwendung einstellen. Die genauen Zahlenwerte hängen dabei unter anderem sowohl von der Basislegierung, dem Volumenanteil an Mg2Si, weiteren Ausscheidungen in der Matrixlegierung, als auch von der Einsatztemperatur bzw. dem Einsatztemperaturbereich ab. Diese Daten sind für die jeweilige Anwendung jeweils experimentell zu ermitteln.Mg 2 Si is a comparatively high-melting phase with a melting point near 1100 ° C. Thus, this phase is suitable as a reinforcement for improving the high-temperature properties of the matrix material. This applies both to the creep behavior and characteristic values such as the thermal conductivity and also the thermal expansion coefficient. In addition to other physical and mechanical properties, these values can be adjusted specifically with regard to an application. The exact numerical values depend, inter alia, on the base alloy, the volume fraction of Mg 2 Si, further precipitates in the matrix alloy, and also on the operating temperature or the operating temperature range. These data are to be determined experimentally for each application.

Ein weiterer Einflussfaktor ist die Ausprägung der Mg2Si-Ausscheidungen. Üblicherweise trifft man sie als sogenannte "chinese script"-Ausscheidungen an, d. h. als nadelförmige Ausscheidungen, die hinsichtlich ihrer Gestalt sehr an chinesische Schriftzeichen erinnern. Durch die Zugabe von Legierungselementen wie z. B. Ca entstehen jedoch primäre polygonale Ausscheidungen, die sich wie eine Partikelverstärkung verhalten. Beide Ausscheidungstypen wirken sich zudem auch auf mechanische und physikalische Eigenschaften aus.Another influencing factor is the manifestation of Mg 2 Si precipitates. Usually they are found as so-called "Chinese script" excretions, ie as acicular precipitates, which are very similar in their shape to Chinese characters. By the addition of alloying elements such. B. Ca, however, produce primary polygonal precipitates that behave like a particle reinforcement. Both types of precipitation also have an effect on mechanical and physical properties.

Bei der Herstellung von Halbzeug aus den erfindungsgemäßen Metall-Matrix-Verbundwerkstoffen wirken sich die bei der Weiterverarbeitung gewählten Parameter maßgeblich auf das Eigenschaftsprofil aus. Erfolgt eine Umformung beispielsweise durch Strangpressen, dann führt die Ausrichtung von Ebenen der Mg-Kristallite parallel zur Strangpressrichtung zu einer Anisotropie. Die Größenordnung der Anisotropie ist von verschiedenen Faktoren abhängig, insbesondere von dem Umformverhältnis, der Temperatur im Werkzeug, der Vorwärmung, Wärmeführung nach dem Verpressen und somit der dynamischen und statischen Rekristallisation. Die Legierungszusammensetzung einschließlich des Einflusses an Verunreinigungen ist dabei ebenfalls ein beeinflussender Faktor.In the production of semi-finished products from the metal matrix composite materials according to the invention, the parameters selected during further processing have a significant effect on the property profile. If a forming takes place, for example, by extrusion, then the alignment of planes of the Mg crystallites parallel to the extrusion direction leads to anisotropy. The magnitude of the anisotropy depends on various factors, in particular on the forming ratio, the temperature in the tool, the preheating, heat transfer after pressing and thus the dynamic and static recrystallization. The alloy composition including the influence of impurities is also an influencing factor.

Parameter für die Herstellung:Parameters for the production:

Die Temperaturführung bei der Herstellung von Metall-Matrix-Verbundwerkstoffen nach dem erfindungsgemäßen Verfahren steht in direktem Zusammenhang mit der ausgewählten Legierung, dem Schussgewicht und dem Werkzeug, insbesondere dessen Bauteilgeometrie, Anguss etc., der Geometrie von Schnecke und Zylinder beim Thixomolding, der Vorschubgeschwindigkeit und auch der Schussgeschwindigkeit. Diese Parameter müssen für jedes Bauteil jeweils empirisch ermittelt werden und sind dabei auch von der Bauart der Maschine und deren Datenprofil abhängig. Gleichermaßen hängen die Eigenschaften auch vom Festphasenanteil ab. Dieser beeinflusst die mechanischen Eigenschaften der Matrixlegierung allein wie auch die des Verbundwerkstoffes, d. h. der Kombination aus Matrix und Verstärkung.The temperature control in the production of metal-matrix composite materials according to the inventive method is directly related to the selected alloy, the shot weight and the tool, in particular its component geometry, sprue, etc., the geometry of worm and cylinder in thixomolding, the feed rate and also the shooting speed. These parameters must be determined empirically for each component and are also dependent on the design of the machine and its data profile. Likewise, the properties also depend on the solid phase fraction. This affects the mechanical properties of the matrix alloy alone as well as the composite material, d. H. the combination of matrix and amplification.

Hinsichtlich des Flüssigphasenanteils bedeutet die Reaktion 2 Mg + Si → Mg2Si, dass zwar die Legierungen schneller einen hohen Anteil an Flüssigphase aufbauen, es jedoch gleichzeitig zu einem steigenden Anteil an Festphase durch die Bildung von Mg2Si kommt. Die Reaktion läuft nicht nur im Bereich Zylinder-Schnecke der Thixomolding-Maschine ab, sondern kann auch nach dem Abguss im Werkstück ablaufen. Vor allem in Bereichen mit Materialanhäufungen ist mit diesem Verhalten zu rechnen. Unter Umständen ist daher ein Nachdruck erfolgreicher aufbringbar, da sich durch die exotherme Reaktion immer noch ein Teil an Matrixlegierung in der schmelzflüssigen Phase befindet. Diesbezügliche Rückschlüsse lassen sich durch Untersuchung von metallographischen Schliffen gewinnen.With regard to the liquid phase content, the reaction means 2 Mg + Si → Mg 2 Si, that although the alloys build up a high proportion of liquid phase more quickly, at the same time there is an increasing proportion of solid phase due to the formation of Mg 2 Si. The reaction not only takes place in the area of the cylindrical worm of the thixomolding machine, but can also take place after the casting in the workpiece. Especially in areas with accumulations of material, this behavior can be expected. Under certain circumstances, a reprint is therefore more successfully applied, as is still a part of matrix alloy in the molten phase by the exothermic reaction. Related conclusions can be obtained by examining metallographic cuts.

Hinsichtlich der Matrixlegierung spielt das Schmelzintervall eine große Rolle. Beispielsweise sei die Legierung AZ91 aufgeführt, deren Schmelzintervall im Bereich von 440 bis 600 °C liegt. Aus der Literatur ist bekannt, dass für diese Legierung ein hoher Anteil an Flüssigphase im Bereich von 95 % zu einer Verbesserung der mechanischen Eigenschaften im Bauteil führt. Bei einem derartigen Flüssigphasenanteil kann man von einer unterkühlten Schmelze reden. Nach dem Einspritzen in das Werkzeug ist bei dem erfindungsgemäßen Verfahren daher eine hohe Keimbildungsrate die Folge bei gleichzeitig sehr hoher Anzahl von Keimen. Dies führt zur Ausprägung eines sehr feinen Gefüges, das aufgrund der Hall-Petsch-Beziehung sehr gute mechanische Eigenschaften aufweist. Bedingt durch die Unterkühlung der Schmelze ist zudem die Schwindung insgesamt sehr gering. Sie ist um so geringer, je geringer der Anteil an Flüssigphase ist. Dies bedeutet gleichzeitig, dass im Vergleich mit Druckguss weniger innere Spannungen und damit auch weniger Verzug auftritt.With regard to the matrix alloy, the melting interval plays a major role. For example, the alloy AZ91 is listed, the melting interval in the range of 440 to 600 ° C. It is known from the literature that for this alloy a high proportion of liquid phase in the range of 95% leads to an improvement of the mechanical properties in the component. With such a liquid phase fraction, one can speak of a supercooled melt. After injection into the tool, a high nucleation rate is the result in the inventive method therefore at the same time a very high number of germs. This leads to the expression of a very fine structure, which has very good mechanical properties due to the Hall-Petsch relationship. Due to the supercooling of the melt, the shrinkage is also very low overall. It is the lower, the lower the proportion of liquid phase. This means at the same time that in comparison with die casting less internal stress and thus less distortion occurs.

Im Zusammenhang mit der Zugabe von Si kommt es zu einer exothermen Reaktion zwischen Mg und dem Si beim ersten Auftreten von Schmelze. Dies bedeutet, dass die Heizleistung der Maschine verringert werden kann. Eine Größenordnung hierfür ist abhängig von verschiedenen Parametern, insbesondere von der Umgebungstemperatur, der thermischen Isolierung der jeweils verwendeten Maschine wie auch den thermischen Leitfähigkeiten der verschiedenen beteiligten Komponenten (Werkstoffe). Gerade im Bereich von Wärmeübergangskoeffizienten bei erhöhten Temperaturen in einem geschlossenen System, wie es eine Thixomolding-Maschine darstellt, sind die Zusammenhänge sehr komplex.In connection with the addition of Si, there is an exothermic reaction between Mg and the Si at the first occurrence of melt. This means that the heating power of the machine can be reduced. An order of magnitude for this depends on various parameters, in particular on the ambient temperature, the thermal insulation of the machine used in each case as well as the thermal conductivities of the various components involved (materials). Especially in the area of heat transfer coefficients at elevated temperatures in a closed system, as it is a thixomolding machine, the relationships are very complex.

Die Korngröße der Granulate ist in der Regel keine bestimmende Größe. Je nach Maschine und ausgewähltem Bauteil kann dann jeweils eine andere Schneckengeometrie gewählt werden. Die Korngröße und die Kornform muss dabei auf die Schneckengeometrie abgestimmt werden. Dies ist völlig unabhängig von der Legierung oder dem Verbundwerkstoff. In der weiteren Folge muss das Korngrößenverhältnis Mg-Si abgestimmt sein. Dies ist jedoch in der Regel nur sinnvoll für eine zuvor festgelegte Schneckengeometrie.The grain size of the granules is usually not a determinant size. Depending on the machine and selected component then each other a different screw geometry can be selected. The grain size and the grain shape must be matched to the screw geometry. This is completely independent of the alloy or the composite material. In the further consequence, the particle size ratio Mg-Si must be matched. However, this usually only makes sense for a previously defined screw geometry.

Die Zugabe von Granulat kann beispielsweise durch eine einfache Fördervorrichtung gleichzeitig oder kurz nach der Granulataufgabe (beide Werkstoffe sind noch fest) erfolgen, die zusätzlich an der Maschine angebracht werden kann. Dabei kann grundsätzlich eine Maschine herkömmlicher Bauart verwendet werden, wie sie beispielsweise von den Firmen Thixomat oder Japan Steel Works am Markt erhältlich ist.The addition of granules can, for example, by a simple conveyor at the same time or shortly after the granule application (both materials are still solid), which can be additionally attached to the machine. In principle, a machine of conventional design can be used, as is available on the market, for example, from the companies Thixomat or Japan Steel Works.

Claims (9)

  1. Method for producing metal-matrix composite materials based on Mg-Mg2Si with a metal matrix comprising magnesium or a magnesium alloy and with a content of an Mg2Si phase incorporated into the metal matrix, characterized in that granules of silicon or a silicon alloy and granules of magnesium or a magnesium alloy are used as starting material, and these are processed together in a thixomoulding process, and in that an Mg2Si phase with a volume content of at least 2% is incorporated into the metal matrix.
  2. Method according to Claim 1, characterized in that the amount or size of the Mg2Si crystals formed and/or the silicon content of the composite material is determined via the size and/or amount of the particles of silicon or silicon alloy.
  3. Method according to Claim 1 or 2, characterized in that a cast body of the metal-matrix composite material is produced in the thixomoulding process, which is subsequently processed further.
  4. Method according to Claim 3, characterized in that the cast body made of the metal-matrix composite material is subsequently shaped in at least one method step.
  5. Method according to Claim 4, characterized in that the cast body made of the metal-matrix composite material is subsequently shaped in at least one forging method and/or extrusion method.
  6. Method according to one of Claims 1 to 5, characterized in that at least 2 per cent by weight of Si and at most 15 per cent by weight of Si are added during the production of the composite material.
  7. Method according to one of Claims 1 to 6, characterized in that an Mg2Si phase with a volume content of from at least 5% to at most 40% is incorporated into a metal matrix.
  8. Method according to one of Claims 1 to 7, characterized in that one of the standard magnesium alloys AZ91, AM50, MR1230D, MR1253M or an Mg die-cast alloy is used as starting material for the production of the metal-matrix composite material.
  9. Method according to one of Claims 1 to 8, characterized in that after adding the Si, the heating power of the thixomoulding device is reduced when the melt first occurs.
EP04765979A 2003-11-07 2004-10-16 Method for producing metal matrix composite materials Expired - Fee Related EP1680246B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10352453A DE10352453A1 (en) 2003-11-07 2003-11-07 Method for producing metal matrix composite materials
PCT/EP2004/011688 WO2005046911A1 (en) 2003-11-07 2004-10-16 Method for producing metal matrix composite materials

Publications (2)

Publication Number Publication Date
EP1680246A1 EP1680246A1 (en) 2006-07-19
EP1680246B1 true EP1680246B1 (en) 2007-07-11

Family

ID=34530186

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04765979A Expired - Fee Related EP1680246B1 (en) 2003-11-07 2004-10-16 Method for producing metal matrix composite materials

Country Status (7)

Country Link
US (1) US8282748B2 (en)
EP (1) EP1680246B1 (en)
JP (1) JP4444963B2 (en)
KR (1) KR101110947B1 (en)
CN (1) CN100402191C (en)
DE (2) DE10352453A1 (en)
WO (1) WO2005046911A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6973955B2 (en) 2003-12-11 2005-12-13 Novelis Inc. Heated trough for molten metal
US9728039B2 (en) * 2010-06-14 2017-08-08 Automated Cash Systems, Inc. Enabling financial transactions for electronic gaming machines
US8715066B2 (en) 2010-06-14 2014-05-06 Automated Cash Systems, Llc System and method for electronic fund transfers for use with gaming systems
KR101310622B1 (en) * 2011-04-08 2013-09-24 가부시키가이샤 에스티유 Magnesium alloy chips and process for manufacturing molded article using same
CN103045891B (en) * 2013-01-04 2015-03-11 南昌大学 In-situ preparation method of Al2Y particle reinforced magnesium matrix composite
US11508213B2 (en) * 2014-05-13 2022-11-22 Automated Cashless Systems, Inc. Enabling financial transactions for electronic gaming machines
US11410499B2 (en) * 2014-05-13 2022-08-09 Automated Cashless Systems, Inc. Financial gaming passport for cashless mobile gaming
CN104148608B (en) * 2014-08-06 2018-08-03 南昌大学 One kind preparing semisolid Mg based on ultrasound2Si particles enhance the method for building up of Mg-Al-Mn composite material rheological models
AT518825A1 (en) * 2016-05-31 2018-01-15 Lkr Leichtmetallkompetenzzentrum Ranshofen Gmbh Method for producing a profile from a metal alloy
US11908277B2 (en) * 2021-05-24 2024-02-20 Automated Cashless Systems, Inc. Financial gaming passport for cashless mobile gaming

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415697A (en) * 1965-01-08 1968-12-10 Reynolds Metals Co Method and composition for exothermic fluxless brazing of aluminum and aluminum base alloys
JP2780778B2 (en) * 1988-03-04 1998-07-30 水澤化学工業株式会社 Thixotropic property imparting agent
DE4125014A1 (en) 1990-09-22 1992-03-26 Metallgesellschaft Ag COMPONENTS FOR ENGINES AND VEHICLES
JPH04231168A (en) 1990-12-28 1992-08-20 Toyota Central Res & Dev Lab Inc Manufacture of metal base composite material
JPH0681068A (en) 1992-09-01 1994-03-22 Honda Motor Co Ltd Method for casting heat resistant mg alloy
US5902424A (en) * 1992-09-30 1999-05-11 Mazda Motor Corporation Method of making an article of manufacture made of a magnesium alloy
JP2981977B2 (en) 1995-10-09 1999-11-22 本田技研工業株式会社 Thixocasting method
DE69622664T2 (en) 1995-10-09 2002-11-14 Honda Motor Co Ltd thixocasting
JP4352472B2 (en) 1998-06-26 2009-10-28 株式会社豊田中央研究所 Magnesium matrix composite
JP3494020B2 (en) * 1998-07-03 2004-02-03 マツダ株式会社 Method and apparatus for semi-solid injection molding of metal
DE10135198A1 (en) 2001-07-19 2003-02-06 Bayerische Motoren Werke Ag Method and device for thixo injection molding of metallic material and application of the method
WO2003027342A1 (en) 2001-09-25 2003-04-03 Center For Advanced Science And Technology Incubation, Ltd. Magnesium base composite material
WO2003027341A1 (en) 2001-09-25 2003-04-03 Center For Advanced Science And Technology Incubation, Ltd. Magnesium base composite material
JP2003211260A (en) 2002-01-18 2003-07-29 Sodick Plastech Co Ltd Method for injecting light metal material and injecting unit in light metal injection-forming machine
CN1291048C (en) * 2002-02-15 2006-12-20 株式会社东京大学Tlo Magnesium base composite material and method for production thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2007510545A (en) 2007-04-26
DE502004004318D1 (en) 2007-08-23
KR20070008518A (en) 2007-01-17
CN100402191C (en) 2008-07-16
US20070104606A1 (en) 2007-05-10
US8282748B2 (en) 2012-10-09
KR101110947B1 (en) 2012-02-20
WO2005046911A1 (en) 2005-05-26
DE10352453A1 (en) 2005-06-02
CN1863626A (en) 2006-11-15
JP4444963B2 (en) 2010-03-31
EP1680246A1 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
DE112005000511B4 (en) Magnesium wrought alloy with improved extrudability and moldability
US20200407827A1 (en) 7000-series aluminum alloy wire for additive manufacturing and preparation method thereof
EP1978120B1 (en) Aluminium-silicon alloy and method for production of same
DE112010002575B4 (en) Recycled magnesium alloy, process for improving the corrosion resistance of a recycled magnesium alloy and magnesium alloy
DE3817350C2 (en)
DE69921925T2 (en) High strength aluminum alloy forgings
DE102016210354A1 (en) METHOD FOR MANUFACTURING ALUMINUM OR MAGNESIUM BASED COMPOSITE ENGINE BLOCKS OR OTHER PARTS WITH SITU SHAPED REINFORCED PHASES BY SQUEEZE-CASTING OR SEMI-METAL FORMING AND POST HEAT TREATMENT
EP3370900B1 (en) Light metal casting part and method of its production
DE102009015316B4 (en) Metal treatment for the elimination of hot crack defects in low silicon aluminum alloys
DE2423597A1 (en) IMPROVED ALUMINUM ALLOY PRODUCTS AND METHODS FOR MANUFACTURING THEREOF
WO2008138614A1 (en) Use of an al-mn alloy for high temperature resistant products
DE2813986A1 (en) SUPERPLASTIC ALUMINUM ALLOY PRODUCTS AND METHOD FOR THE PRODUCTION THEREOF
DE3344450C2 (en)
EP1680246B1 (en) Method for producing metal matrix composite materials
DE102019130108A1 (en) Method for producing an aluminum casting and an aluminum casting produced thereby
EP2598664B1 (en) High temperature scandium-containing aluminium alloy with improved extrudability
DE60114281T2 (en) Cast and forged product using a copper-based alloy
EP1407056B1 (en) Process for producing a moulded piece made from an intermetallic gamma-ti-al material
CH646999A5 (en) OBJECT OF A HIGH-STRENGTH ALUMINUM ALLOY AND METHOD FOR THE PRODUCTION THEREOF.
DE2242235C3 (en) Superplastic aluminum alloy
WO1995005490A1 (en) Molten mass treating agent, its production and use
DE60316679T2 (en) Brake product, brake system and method for the production thereof
EP1012353B1 (en) Alloy and method for producing objects therefrom
DE3835253A1 (en) SUBJECT OF AN ALUMINUM SILICON ALLOY AND METHOD FOR THE PRODUCTION THEREOF
JPH0635624B2 (en) Manufacturing method of high strength aluminum alloy extruded material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20060914

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004004318

Country of ref document: DE

Date of ref document: 20070823

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071008

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080414

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151022

Year of fee payment: 12

Ref country code: IT

Payment date: 20151030

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151022

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004004318

Country of ref document: DE

Ref country code: DE

Ref legal event code: R409

Ref document number: 502004004318

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004004318

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004004318

Country of ref document: DE

Owner name: VOLKSWAGEN AG, DE

Free format text: FORMER OWNERS: VOLKSWAGEN AG, 38440 WOLFSBURG, DE; MAHLE GMBH, 70376 STUTTGART, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R409

Ref document number: 502004004318

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161016

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201031

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004004318

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220503