WO2003027341A1 - Magnesium base composite material - Google Patents

Magnesium base composite material Download PDF

Info

Publication number
WO2003027341A1
WO2003027341A1 PCT/JP2002/002968 JP0202968W WO03027341A1 WO 2003027341 A1 WO2003027341 A1 WO 2003027341A1 JP 0202968 W JP0202968 W JP 0202968W WO 03027341 A1 WO03027341 A1 WO 03027341A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
magnesium
composite material
based composite
precursor
Prior art date
Application number
PCT/JP2002/002968
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuyoshi Kondoh
Tatsuhiko Aizawa
Hideki Oginuma
Eiji Yuasa
Original Assignee
Center For Advanced Science And Technology Incubation, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Center For Advanced Science And Technology Incubation, Ltd. filed Critical Center For Advanced Science And Technology Incubation, Ltd.
Priority to US10/490,412 priority Critical patent/US20050016638A1/en
Priority to CNB028185315A priority patent/CN100567529C/en
Priority to JP2003530902A priority patent/JP3668811B2/en
Priority to EP02763033A priority patent/EP1433862A4/en
Priority to PCT/JP2002/009502 priority patent/WO2003027342A1/en
Publication of WO2003027341A1 publication Critical patent/WO2003027341A1/en
Priority to JP2005022078A priority patent/JP4140851B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0078Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only silicides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/18Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on silicides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Definitions

  • the present invention relates to a magnesium-based composite material having excellent mechanical properties and corrosion resistance, a precursor of the magnesium-based composite material as a precursor thereof, and a method for producing the same.
  • JP-A-6 - 8 1 0 6 8 publication is that the M g 2 S i by reaction with high S i of Matorittasu magnesium alloy containing in you injection molding a semi-molten state M g and S i It discloses a method for producing a magnesium-based composite material which is synthesized and in which the Mg 2 Si particles are dispersed.
  • Japanese Patent Application Laid-Open No. 8-41564 discloses a magnesium-based composite material in which Mg 2 S i particles and S i C particles are dispersed by a forging method.
  • JP-2 0 0 0 - 1 7 3 5 2 discloses the spherical M g 2 S i particles discloses magnesium-based composite material dispersed, and the process according to the ⁇ method. DISCLOSURE OF THE INVENTION.
  • the above-mentioned production methods for the magnesium-based composite material are all based on a dissolution method such as a mirror manufacturing method or an impregnation method. That is, in these methods, a magnesium or a magnesium alloy constituting the matrix is once melted and then solidified and solidified. For this reason, the crystal grain size of magnesium in the matrix and the coarse growth of Mg 2 Si particles are observed, and the resulting reduction in mechanical properties such as strength and hardness is observed. '
  • An object of the present invention is to provide a crystal grain size and a Mg 2 Si grain size of a matrix magnesium.
  • An object of the present invention is to provide a high-base composite material which suppresses coarse growth of the element and thereby has high mechanical properties such as strength and hardness and corrosion resistance.
  • Another object of the present invention is to provide a method for producing a magnesium-based composite material which is lower in cost than the above-mentioned dissolving method in addition to or in addition to the above-mentioned objects. It is a further object of the present invention to provide a precursor of the magnesium-based composite material and a method for producing the same, in addition to or in addition to the above objects.
  • the present inventors mechanically destroyed / divided an oxide film (MgO) on the surface of Mg powder during the process of compacting a mixed powder of a matrix powder containing Mg and Si powder.
  • MgO oxide film
  • ⁇ 1> a step of blending a matrix powder having magnesium (Mg) and silicon (S i) powder to prepare a mixed powder; filling the mixed powder into a container and pressurizing to increase the porosity.
  • a method for producing a magnesium-based composite material comprising: producing Mg 2 S i).
  • Mg 2 Si is preferably dispersed in a magnesium-based composite material.
  • (weight of Si powder) Z (weight of Mg in the matrix powder) is preferably 36.6 / 63.4 or less. Or less than 10Z90.
  • heating is preferably performed at 350 ° C or higher.
  • Mg 2 Si is 3 wt% or more, preferably 5 wt% or more when the magnesium based composite material is 100 wt%. There should be.
  • a precursor of a magnesium based composite material obtained by mixing a matrix powder containing magnesium (Mg) and a silicon (Si) powder, wherein the precursor has a porosity of 35% or less.
  • a magnesium-based composite precursor obtained by mixing a matrix powder containing magnesium (Mg) and a silicon (Si) powder, wherein the precursor has a porosity of 35% or less.
  • the precursor exhibits an exothermic peak derived from Mg 2 Si at a temperature of 150 to 650 ° C, preferably 350 to 650 ° C in a differential scanning calorimetry (DSC) measurement. It is better to have.
  • DSC differential scanning calorimetry
  • the precursor preferably has (weight of Si powder) / (weight of Mg in the matrix powder) of 36.6 / 63.4 or less.
  • a magnesium-based composite material precursor obtained by blending a matrix powder having magnesium (Mg) and a silicon (Si) powder, wherein the precursor is a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the precursor preferably has a ratio of (weight of Si powder) / (weight of Mg in the matrix powder) of 36.6 / 63.4 or less.
  • a method for producing a magnesium-based composite material precursor comprising a step of producing a magnesium-based composite material precursor having a porosity of 35% or less.
  • the magnesium-based composite material has a Rockwell hardness (E scale) of 40 or more and 105 or less, preferably 40 or more and 95 or less, and / or the Rockwell hardness (E scale) of the magnesium-based composite material. Is larger than the Rockwell hardness (E scale) of the base material excluding the magnesium silicide of the magnesium-based composite material by a value of 20 to 80, preferably 20 to 40;
  • the tensile strength of the magnesium-based composite material is 10 OMPa or more and 35 OMPa or less, preferably 10 OMPa or more and 28 OMPa or less; and Z or the tensile strength of the magnesium-based composite material is the base material.
  • the tensile strength is greater than 2 OMPa and less than 10 OMPa, preferably greater than 2 OMPa and less than 5 OMPa.
  • Mg 2 S i should be at least 3 wt%, preferably at least 5 wt ° / 0 , when the magnesium-based composite material is 100 w 1:%. ,.
  • ⁇ 15> a step of blending a matrix powder containing magnesium (Mg) and silicon (S i) powder to prepare a composite powder in which Si is dispersed in the matrix powder; and
  • the method may further comprise a step of filling the composite powder into a container and pressurizing to produce a green compact, and heating and holding the green compact to form a magnesium compact.
  • the method should preferably include a step of producing mussilide (Mg 2 S i).
  • Mg 2 Si is preferably dispersed in a magnesium-based composite material.
  • the preparing step may include: a) a step of mixing the Si powder and the matrix powder to obtain a compounded powder; and b) compounding It is preferable to have a step of crushing and / or pressing and / or crushing the powder.
  • the preparation step is preferably performed by repeating step b) a plurality of times.
  • the step b) in the preparation step is performed using a crusher.
  • the crusher preferably has a mechanical crushing treatment capacity using impact energy by ball media.
  • the crusher may be selected from the group consisting of a rotary pole mill, a vibrating pole mill, and a planetary pole mill.
  • (weight of Si powder) Z (weight of Mg in matrix powder) may be 36.6 / 6/3.
  • the heating may be performed at 150 to 650 ° C, preferably at 150 to 350 ° C.
  • Mg 2 S i when it has a mug Neshiumu based composite material as 100 wt%, 3 wt% or more, preferably 5 wt% or more Is good.
  • a magnesium-based composite material precursor obtained by mixing a matrix powder containing magnesium (Mg) and a silicon (Si) powder and dispersing the Si powder in a matrix powder.
  • the precursor may have an exothermic peak derived from Mg 2 Si at a temperature of 150 to 650 ° C, preferably 150 to 350 ° C in a differential scanning calorimetry (DSC) measurement. It's good to have it.
  • DSC differential scanning calorimetry
  • the precursor may have a (weight of Si powder) Z (weight of Mg in the matrix powder) of 36.6 / 63.4 or less. Is good.
  • a magnesium-based composite material precursor obtained by mixing a matrix powder having magnesium (Mg) and a silicon (S i) powder, wherein the precursor is characterized by differential scanning calorimetry (DSC) In the measurement, the exothermic peak derived from Mg 2 Si is 150 to 650 ° C., preferably 150 to 350.
  • DSC differential scanning calorimetry
  • the precursor is (weight of Si powder) / (matrix (Weight of Mg in the powder) should be 36.6 / 63.4 or less.
  • ⁇ 31> a step of blending a matrix powder containing magnesium (Mg) with silicon (S i) powder to prepare a composite powder in which Si is dispersed in the matrix powder; and
  • the preparation step includes: a) a step of blending the Si powder and the matrix powder to obtain a blended powder; and b) pulverizing the blended powder and applying Z Alternatively, a step of crushing may be provided.
  • the step b) of the preparation step may be performed using a pulverizer.
  • the crusher preferably has a mechanical crushing capacity using impact energy by ball media.
  • the crusher is preferably selected from the group consisting of a rotary ball mill, a vibrating pole mill, and a planetary ball mill.
  • the magnesium-based composite material has a Rockwell hardness (E scale) of 40 or more and 105 or less, preferably 40 or more and 95 or less; and Z or the Rockwell hardness (E) of the magnesium-based composite material. Is larger than the Rockwell hardness (E scale) of the base material excluding the magnesium silicide of the magnesium-based composite material by a value of 20 to 80, preferably 20 to 40; and
  • the tensile strength of the magnesium-based composite material is 10 OMPa or more and 35 OMPa Or less, preferably not less than 10 OMPa and not more than 28 OMPa, and / or the tensile strength of the magnesium-based composite material is not less than 2 OMPa and not more than 10 OMPa, preferably not more than 2 OMPa, than the tensile strength of the base material. Greater than a and less than 5 OMPa.
  • Mg 2 Si may be at least 3 wt%, preferably at least 5 wt%, when the magnesium-based composite material is 100 wt%.
  • FIG. 1 is a schematic diagram of a mixed powder in which a matrix powder containing Mg and a silicon Si powder are uniformly mixed.
  • FIG. 2 is a graph showing the results of differential calorimetric analysis (DSC) of a compact having a certain porosity.
  • FIG. 3 is a schematic diagram of a composite powder of the present invention in which silicon Si powder is dispersed in a matrix powder containing Mg.
  • FIG. 4 is a view showing an image of the composite powder of the present invention observed by an optical microscope.
  • FIG. 5 is a graph showing the results of DSC measurement of three samples. BEST MODE FOR CARRYING OUT THE INVENTION
  • an oxide film existing on the surface of Mg contained in the matrix powder that is, a state in which Mg and Si powder are brought into close contact with each other without the presence of MgO is adjusted.
  • the feature is that the reaction between Mg and Si proceeds more easily.
  • One aspect of the present invention will be described in the order of a method for manufacturing a magnesium-based composite material precursor, an obtained precursor, a method for manufacturing a magnesium-based composite material from the precursor, and an obtained magnesium-based composite material. I do. Further, other aspects of the present invention will be described in the same order as described above.
  • Magnesium-based composite material precursor according to one aspect of the present invention (hereinafter, unless otherwise specified, The abbreviated precursor) has a step of preparing a mixed powder and a step of pressing the mixed powder to produce a precursor.
  • a matrix powder comprising magnesium (Mg) and a silicon (S i) powder are blended to prepare a mixed powder.
  • the matrix powder having Mg it is preferable to use a powder having a particle diameter of 10 ⁇ or more from the viewpoint of explosion protection against dust explosion and the like. If this point is satisfied, the form of the matrix powder containing Mg is not particularly limited, but is preferably in the form of, for example, a powder, a chip, or a lump.
  • the matrix powder containing Mg includes an alloy containing Mg, or a powder composed of only Mg.
  • the matrix powder containing Mg is an alloy
  • Al, Zn, Mn, Zr, Ce, Li, Ag and the like may be included in addition to Mg. Yes, but not limited to.
  • the Si powder has a particle size of 10 to 50 m, preferably from 50 to 50 m, in terms of improving mechanical bonding with a matrix powder containing Mg in a step of producing a green compact or a precursor. It should be between 10 and 200 m.
  • the ratio of the weight of Si to the weight of Mg contained in the matrix powder that is, (weight of Si powder) / (weight of Mg in matrix powder), 36.6 / 63.4 It should be: If the added amount of Si exceeds 36.6% by weight, theoretically all of the Mg in the matrix powder becomes Mg 2 Si (that is, Mg as a matrix does not remain). The material obtained in this case has a significantly lower strength and does not have the desired properties. Therefore, (weight of Si powder) Z (weight of Mg in matrix powder) Force 36.6 / 63.4 or less, preferably 10/90 or less from the viewpoint of mechanical properties and machinability There should be.
  • a mixed powder is prepared by blending the above matrix powder containing Mg and silicon Si powder.
  • a conventional mixing and crushing machine can be used.
  • a V-type mixer or a pole mill can be mentioned, but not limited thereto.
  • the mixing can be performed in various environments, for example, in the atmosphere.
  • fine particles When a powder is used, it is preferable to prevent the oxidation of the powder surface during the mixing process by filling the mixing vessel with an inert gas such as nitrogen gas or argon gas.
  • a mixed powder in which a matrix powder containing Mg and a silicon Si powder are uniformly mixed can be obtained.
  • the obtained mixed powder is filled in a container and pressurized to produce a magnesium-based composite material precursor or a green compact having a porosity of 35% or less.
  • a process used in a conventional powder metallurgy method can be applied. For example, a method in which a container is filled with a mixed powder and cold isostatic pressing (CIP) is performed; or a method in which a powder is filled in a mold and compressed by upper and lower punches to create a green compact; But not limited to these.
  • CIP cold isostatic pressing
  • the obtained precursor or green compact has a porosity of 35% or less, preferably 20% or less.
  • the significance of setting the porosity to this value is considered to be due to the following effects. That is, the surface of the matrix powder is generally covered with an oxide film (MgO). Since this MgO has a small free energy of formation compared to other oxides and is stable, this MgO surface film suppresses the reaction between Mg and Si powder. For this reason, in the conventional method, a step of generating a liquid phase of Mg by heating above the melting point of Mg (650 ° C) is provided, and then the reaction between the Mg in the matrix powder and the Si powder is promoted. Mg 2 Si was synthesized. In this heating step, there was a problem of the same matrix and coarse growth of Mg 2 Si as in the structure melting method.
  • MgO oxide film
  • the mixed powder in the step of producing a precursor or a green compact, is pressurized so that the porosity is 35% or less.
  • the surface of the MgO surface film is mechanically cut and broken by the plastic deformation of the particles due to the surface friction due to the rearrangement of the particles between the powders, and a new surface of active Mg matrices appears in that part.
  • the new Mg surface is then heated and heated to react with the Si powder to synthesize Mg 2 Si.
  • the lower the value of the porosity the larger the area of the Mg nascent surface, and consequently the synthesis temperature of Mg 2 Si shifts to a lower temperature side.
  • the porosity of the precursor or the green compact is preferably lower, more preferably 20% or less. Conversely, the porosity of the precursor or powder compact increases. In this case, the area of formation of the new Mg surface becomes smaller because the MgO film is not destroyed by more than + minutes. As a result, Mg 2 S i synthesis temperature is hotter side, for example, forced to shift to above the melting point of the liquid phase region of the Mg, that Do and that with the formation of coarse Mg 2 S i particles.
  • the magnesium-based composite material precursor or green compact according to one aspect of the present invention has the above porosity.
  • This porosity can be measured as follows.
  • the density (A) is determined from the density, composition, and composition of the elements constituting the precursor or the green compact. Further, the density (B) of the obtained precursor or green compact is measured in accordance with JIS Rl643. Using these A and B, the porosity (V) can be obtained by the following equation I.
  • the magnesium-based composite material precursor or the green compact of the present invention has a value of 150 to 650 as measured by differential scanning calorimetry (DSC). It should have an exothermic peak at C, preferably at 350 to 650 ° C.
  • FIG. 2 shows the results of measurement of the precursor or the compact of the present invention prepared under the condition of changing the porosity by differential calorimetry (DSC).
  • Precursors with porosity of 9%, 19% and 32% have an exothermic peak in the above mentioned range, i.e. 150-650 ° C, preferably 350-650 ° C, No endothermic peak is observed.
  • Mg 2 Si is synthesized by the reaction of Mg and Si in the solid state at this exothermic peak.
  • Temperature with the highest heating value as the porosity of the precursor or the green compact is lowered (temperature of heat generation peak)., I.e. synthesis initiation temperature of Mg 2 S i is shifted to the low temperature side.
  • the temperature with the highest calorific value (exothermic peak temperature) is lower than the melting point of Mg (650 ° C) Means that the synthesis reaction is completed in the solid state.
  • the Mg 2 Si is generated by the reaction between the Mg in the matrix powder and the Si powder, and the magnesium-based composite material of the present invention is obtained.
  • the heating atmosphere is not particularly limited. However, in order to suppress the oxidation of Mg or the Mg-containing alloy in the matrix (precursor or green compact), the heating atmosphere is in an inert gas atmosphere such as nitrogen or argon, or in a vacuum. Is good.
  • the heating temperature is set to 150 ° C. or higher, preferably 350 ° C. or higher, and more preferably 450 ° C. or higher.
  • the present invention mechanically divides and / or breaks the surface oxide film (MgO) during compaction, and as a result, the temperature range is lower than the temperature range of the conventional manufacturing method, namely, 650. .
  • Mg 2 Si can be synthesized in a temperature range lower than C.
  • the Mg 2 Si thus obtained has the following characteristics. .
  • the particle size of Mg 2 Si is 10 to 200 ⁇ , and the Mg 2 Si particles are formed in a state of being dispersed in the obtained magnesium based composite material.
  • Mg 2 Si has a lower coefficient of thermal expansion than magnesium, has high rigidity and high hardness, and has low specific gravity and excellent heat resistance and corrosion resistance.
  • the obtained magnesium-based composite material of the present invention has excellent properties, for example, mechanical properties and corrosion resistance.
  • the composite material having these excellent properties contains 100 wt% of Mg 2 Si in the composite material, the content is preferably 3 wt% or more, and more preferably 5 w 1;% or more.
  • the composite material of the present invention has a property of any one of the following A) and B) or a property obtained by variously combining two or more properties.
  • the tensile strength of the magnesium-based composite material is l O OMPa or more and 350 MPa or less, preferably 10 OMPa or more and 28 OMPa or less; and Z or ii) the magnesium-based composite material
  • the tensile strength is greater than the tensile strength of the base material by a value of 2 OMPa to 10 OMPa, preferably 2 OMPa to 5 OMPa.
  • the composite material of the present invention satisfies A_i), A-ii), A-i) with respect to A and satisfies A-ii), and has any property; and Z or , B have any of the characteristics satisfying B-i), B-ii), B-i) and satisfying B-ii). Further, the composite material of the present invention can also have a property that satisfies any of the properties regarding A and any of the properties regarding B at the same time.
  • a method for producing a precursor of a magnesium-based composite material includes a step of preparing a composite powder and a step of pressurizing the composite powder to produce a precursor.
  • a matrix powder comprising magnesium (Mg) and a silicon (Si) powder are blended to prepare a composite powder in which Si is dispersed in a matrix powder.
  • the particle size and shape of the matrix powder and the Si powder containing Mg are not particularly limited. This is because, as described later, if a process of mechanically pulverizing, mixing, and pressing the mixed powder of both is provided, even if the sample is a coarse powder or a small piece, the Mg and the Si powder are brought into close contact with each other. This is because a state can be formed.
  • the matrix powder containing Mg it is preferable to use a powder having a particle diameter of 10 m or more from the viewpoint of explosion protection against dust explosion and the like.
  • the particle size of the matrix powder containing Mg is determined in terms of flowability and Z or a green compact having a uniform density distribution.
  • the thickness is preferably 50 m or more and 700 m or less, more preferably 150 ⁇ m or more and 500 ⁇ m or less.
  • the form of the matrix powder containing Mg is not particularly limited, and may be in the form of, for example, a powder, a chip, or a block.
  • the matrix powder containing Mg includes an alloy containing Mg or a powder consisting of Mg alone.
  • the matrix powder containing Mg is an alloy
  • Al, Zn, Mn, Zr, Ce, Li, and Ag may be included in addition to Mg. However, it is not limited to these.
  • AZ31, AZ91 and the like can be used as the matrix powder containing Mg.
  • the particle size and shape of the Si powder are not particularly limited.
  • the particle size is preferably from 10 to 500 ⁇ , more preferably from 10 to 200 m.
  • the shape is preferably a chip, a small piece, a lump or the like in addition to a sphere or a powder.
  • the ratio of the weight of Si to the weight of Mg contained in the matrix powder that is, (weight of Si powder) no (weight of Mg in matrix powder) 1 36.6 / 63. It should be: If the added amount of Si exceeds 36.6% by weight, all of the Mg in the matrix powder becomes theoretically Mg 2 Si (that is, Mg as a matrix does not remain). The material obtained in this case has a significantly lower strength and does not have the desired properties. Therefore, (weight of Si powder) / (weight of Mg in matrix powder) Force 36.6 / 63.4 or less, preferably 10/90 or less from the viewpoint of mechanical properties and machinability There should be.
  • a composite powder in which Si is dispersed in the matrix powder by mixing the matrix powder containing Mg and the silicon Si powder is prepared.
  • the preparation step includes a ) a step of blending the Si powder and the matrix powder to obtain a blended powder; and b) a step of pulverizing and / or crimping the obtained blended powder and Z or crushing. Is good. Further, the step b) is preferably repeated a plurality of times. Also, the step b) is preferably performed using a crusher.
  • the crusher should have a mechanical crushing capacity utilizing the impact energy of Pall Media. For example, it is better to be selected from the group consisting of a rotating pole mill, a vibrating pole mill, and a planetary pole mill.
  • FIG. 3 is a schematic diagram of the composite powder sample obtained in the preparation step
  • FIG. 4 is an observation image of the composite powder sample actually obtained in the preparation step by an optical microscope.
  • FIG. 3 shows that the Si particles are dispersed in the matrix.
  • Fig. 4 shows that Si particles (white) are dispersed in the matrix (black background).
  • the preparation process can be performed in various environments, for example, in the air. From the viewpoint of suppressing oxidation, it is preferable to perform the treatment in an inert gas atmosphere such as nitrogen gas or argon gas.
  • an inert gas atmosphere such as nitrogen gas or argon gas.
  • the obtained composite powder is filled in a container and pressurized to produce a green compact or a magnesium-based composite material precursor.
  • a process used in a conventional powder metallurgy method can be applied. For example, a method in which a container is filled with a mixed powder and cold isostatic pressing (CIP) is performed; or a method in which a powder is filled in a mold and compressed by upper and lower punches to create a green compact; But not limited to these.
  • CIP cold isostatic pressing
  • the pressure in the filling and pressurizing step is preferably 4 t / 7 cm 2 or more and 8 t / cm 2 or less.
  • the reason for the upper limit of the pressure is as follows. That is, increasing the pressure has little effect on increasing the density of the finally obtained composite material. Also, if the pressure is increased, adhesion between the mold used and the molded body occurs, which shortens the life of the mold, which is not preferable.
  • the magnesium-based composite material precursor or the green compact of the present invention can be formed by the above-described preparation step and filling / pressing step.
  • the magnesium-based composite material precursor or the green compact of the present invention is obtained by differential scanning calorimetry. (DSC), 150-650. At C, preferably 150 to 350 ° C., an exothermic peak accompanying the synthesis reaction of Mg 2 Si should be observed.
  • Fig. 5 shows the DSC measurement results of the following three samples. 1) 63.4 g of pure Mg (particle size: ⁇ ⁇ ⁇ ⁇ ) as a matrix powder containing Mg; and 36.6 g of Si powder (particle size: 38 ⁇ 111) by a pole mill. Time crushing, mixing, and pressing 'crushing' yields a composite powder in which fine Si particles are dispersed in a matrix (matrix) of Mg powder.
  • This powder was used as a sample according to the present invention without being compacted.
  • a sample (porosity: 9%) obtained by simply mixing the same components as in 1) and applying pressure at a pressure of 5.8 t / cm 2 . 3) 1) and 2) the same ingredients were mixed in a single pressure 1. 8 TZC m 2 and pressurized obtained sample (porosity: 5 2%). From Fig. 5, the sample of 1) is 150, though it is in the powder state without compacting. From around C to around 200 ° C, an exothermic peak associated with the synthesis reaction of Mg 2 Si was observed. On the other hand, in the sample of 2), an exothermic peak due to the synthesis reaction of Mg 2 Si was observed at around 500 ° C.
  • Mg 2 Si is generated by the reaction of Mg in the matrix powder with the Si powder, and the mag and shim-based composite material of the present invention is obtained. be able to. '
  • the heating atmosphere is not particularly limited. However, in order to suppress the oxidation of Mg or Mg-containing alloy in the matrix (precursor or green compact), the heating atmosphere may be an inert gas atmosphere such as nitrogen or argon, or a vacuum. Good to do.
  • the heating temperature is preferably set to 150 ° (or more and 350 ° C. or less). In order to synthesize Mg 2 Si in a relatively short time, however, the heating temperature is desirably 200 ° C or higher.
  • the holding time depends on the shape and dimensions of the precursor or green compact, but is preferably 1 minute or more and 30 minutes or less.
  • the magnesium-based composite material of the present invention preferably further includes a plastic working step such as a warm forging method or a warm extrusion method as needed. This closes the porosity in the material, which can increase the density of the composite and further improve its mechanical properties.
  • a plastic working step such as a warm forging method or a warm extrusion method as needed.
  • the Mg 2 Si thus obtained has the following characteristics.
  • the particle size of mg 2 S i is 1 0 ⁇ 2 0 0 ⁇ m, the M g 2 S i particles are formed in a state of being dispersed in Maguneshiumu based composite material obtained.
  • Mg 2 Si has a lower coefficient of thermal expansion than magnesium, has high rigidity and high hardness, and has low specific gravity and excellent heat resistance and corrosion resistance.
  • the obtained magnesium-based composite material of the present invention has excellent properties, for example, mechanical properties and corrosion resistance. If the composite material having these excellent properties contains 100 wt% of Mg 2 Si in the composite material, the content is preferably 3 wt% or more, and more preferably 5 wt%.
  • the composite material of the present invention has a property of any one of the above-mentioned A) and B) or a property obtained by variously combining two or more kinds of the properties as described above.
  • the tensile strength can be measured by a method based on the JIS standard. Further, the tensile strength can be measured by a method described later in Examples. In other words, the tensile strength was determined by preparing a test piece with a diameter of 3.5 mm and a parallel part of 14 mm as a test sample, mounting this test piece on a 10-ton autograph, and setting the displacement rate to 0.5 mmZ. A tensile test can be performed by applying a tensile load, and the value obtained by dividing the load when the test piece breaks by the fracture area of the sample can be measured as the tensile strength.
  • the dimensional change between the obtained composite material and the precursor or the green compact is small, for example, because it is manufactured in a process that does not pass through the liquid phase state of Mg. Therefore, the small dimensional change between the precursor and the composite material (ie, the final product) can be an advantage unlike the conventional method.
  • the following tubular furnace was prepared separately from the green compacts A-1 to A-7. That is, a tubular furnace into which nitrogen gas (gas flow rate: 3 dm 3 / min) was flown and whose temperature in the furnace was controlled at 580 ° C was prepared.
  • the green compacts A-1 to A-7 obtained above were introduced into this tubular furnace, heated and maintained for 15 minutes, and immediately solidified to a relative density of 99% or more by a powder forging method to obtain a magnesium-based material.
  • Composite materials B-1 to B-17 were obtained.
  • the conditions of the powder forging method were: mold temperature: 250 ° C; surface pressure: 8 tZ cm 2. Water-soluble lubrication was applied to the mold wall from the viewpoint of preventing solidification and adhesion of the mold. The agent was applied.
  • Table 1 shows the properties of the green compacts A-1 to A-7 and the magnesium-based composite materials B-1 to B-7 obtained above.
  • “porosity” is a value calculated by the method described above.
  • Table 1 shows the reaction synthesis onset temperature of 2 Si obtained by DS.C measurement (in Table 1, simply referred to as “reaction onset temperature”).
  • the mechanical properties (hardness, tensile strength and elongation at break) of No, and magnesium based composite materials B-1 to B-7 are also shown.
  • the presence or absence of the Mg liquid phase was determined by observing whether or not there was an endothermic peak at around 65 ° C. in the DSC measurement results. That is, when there is an endothermic peak, it is due to the latent heat at the time of appearance of the liquid phase of Mg, and it was set as “Mg liquid phase” force S “Yes”.
  • the hardness was measured with a micro Vickers hardness tester under a load of 49 N. ⁇ Measurement of tensile strength>
  • test piece having a diameter of 3.5 mm and a parallel portion of 14 mm was prepared as a test sample.
  • This test piece was mounted on a 10-ton autograph, and a tensile test was performed by applying a tensile load at a displacement speed of 0.5 mm / min. The value obtained by dividing the load when the test piece fractured by the fracture area of the sample was defined as the tensile strength.
  • the elongation at break was calculated from the maximum displacement in a region (plastic deformation region) away from a straight line having a certain slope in the load-displacement curve sampled on the sheet of paper during the tensile test.
  • Green compact A- 1 to 5 has a porosity in accordance with the present invention, by a Mochiiruko this, M g 2 S i in a solid state without occurrence of the liquid phase of M g could be formed.
  • a composite material B-1 to 5 in which fine Mg 2 Si was dispersed in a magnesium base was obtained. As shown in Table 1, the material had excellent mechanical properties. It was confirmed.
  • AZ91D magnesium alloy powder (average particle size: 61 // m; nominal composition: Mg—9A 1—l Zn / mass%) 8 5 parts by weight and Si powder (average particle size: 64 / m) 15 parts by weight were prepared. After blending both, the mixture was uniformly mixed using a pole mill to obtain a mixed powder. The obtained mixed powder was filled into a circular mold having a diameter of 11.3 mm, and a load of a surface pressure of 5 tZcm 2 was applied to produce a green compact A-8. The measured porosity was 12.3%, which satisfied the range specified by the present invention.
  • the obtained green compact A-8 was heated and held at a ripening temperature shown in Table 2 for 30 minutes in a tubular furnace into which nitrogen gas (gas flow rate: 2 dm 3 / min) was introduced. Then, it was cooled down to room temperature in the furnace to obtain composite materials B-8 to B-14. With respect to this material B-8 to 14, the presence or absence of the synthesis of Mg 2 Si and the remaining state of Si were confirmed by observing the structure with an optical microscope and performing X-ray diffraction. Table 2 also shows the results. Table 2. Properties of green compact A-8 and composite material B_8 ⁇ "! 4
  • pure Mg powder (average particle size: 112 ⁇ m) and Si powder (average particle size: 64 ⁇ m) were prepared, and they were mixed so as to have the composition shown in Table 3.
  • a mixed powder was obtained.
  • the obtained mixed powder was filled in a circular mold having a diameter of 11.3 mm, and a load of a surface pressure of 6 t / cm 2 was applied to produce green compacts A-9 to A-15.
  • the porosity of each of these molded products A-9 to A-15 was measured to be 8.9 to 11%, which satisfied the range specified by the present invention.
  • the obtained green compact A-16 to 22 was converted into a tubular furnace into which a nitrogen gas (gas flow rate: 3 dm 3 / min) was introduced and the furnace temperature was controlled at 580 ° C. And heat it for 15 minutes * and hold it. Then, composite materials B-22 to B-28 were obtained.
  • the conditions of the powder forging method were: mold temperature: 250 ° C, surface pressure: 8 t / cm 2, and a water-soluble lubricant on the mold wall from the viewpoint of preventing adhesion between the solidified body and the mold. was applied.
  • the average corrosion rates of the obtained composite materials B-22 to B-28 were measured.
  • a cube (10 mm X 10 mm X thickness 1 Omm) was machined from each material B-22 to B-28, and polished with emery paper to obtain a test piece.
  • the test pieces were evaluated for corrosion resistance by a 5% salt spray test (100 hr).
  • the average corrosion rate was calculated from the weight change before and after the test and used as an index for corrosion resistance evaluation.
  • Table 4 also shows the results.
  • Table 4 also shows the amount of Mg 2 Si (calculated from the composition). Table 4. Properties of green compacts A-16-22 and composite material B-22-28
  • Table 4 shows that composite materials B-22 to 26 have excellent corrosion resistance. On the other hand, it can be seen that the materials B-27 and 28 having a small amount of Mg 2 Si have low corrosion resistance.
  • a composite powder X-101 85 parts by weight of pure Mg powder (average particle size: 168 m) and 15 parts by weight of Si powder (average particle size: 5'8111) were prepared. After blending both, the powder was mechanically ground, mixed and pressed by using a rotating pole mill for 5 hours to obtain a composite powder X-101. The obtained composite powder X—101 was filled in a circular mold having a diameter of 34 mm, A green compact A-101 was produced by applying a load of a surface pressure of 6 tZcm 2 . Further, a green compact A-102 having the same composition as that of the green compact A-101 was produced without performing a treatment using a rotary pole mill for 5 hours.
  • the following tubular furnace was prepared separately from the green compact A-101. That is, a tubular furnace into which nitrogen gas (gas flow rate: 3 dm 3 / ni i ri) was introduced and whose temperature was controlled in the vicinity of 100 to 500 ° C shown in Table 1 was prepared. .
  • the green compact A-101 or A-102 obtained above was introduced into this tubular furnace, heated and maintained for 5 minutes, and immediately solidified by powder forging to obtain a relative density of 99% or more, and the magnesium was melted.
  • the base composite materials B-101 to B-110 were obtained.
  • the conditions for the powder forging method were: mold temperature: 250 ° C; surface pressure: 8 tZcm 2. From the viewpoint of preventing adhesion between the solidified body and the mold, water-soluble lubrication was applied to the mold wall surface. The agent was applied.
  • Table 101 shows the properties of the green compacts A-101 or A-102 and the magnesium-based composite materials B-101 to B-110 obtained above.
  • Table 101 shows the properties of the green compacts A-101 or A-102 and the magnesium-based composite materials B-101 to B-110 obtained above.
  • R n No—101 to 105 the composite powder according to the present invention is used, and the heating temperature is as low as 150 ° C. to 343 ° C., so that a high hardness composite material can be obtained.
  • Run Nos. 106-107 use the composite powder according to the present invention. Therefore, generation of Mg 2 Si was confirmed, but the hardness was lower than desired. This is probably because the heating temperature was too high and the Mg 2 Si particles grew coarsely.
  • Run No. 108 uses the composite powder according to the present invention, but since the heating temperature is too low, generation of Mg 2 Si cannot be confirmed and, of course, the hardness is insufficient. Was. In Run Nos. 109 to 110, generation of Mg 2 Si was not confirmed because the composite powder according to the present invention was not used and the heating temperature was too low. Of course, the hardness was also insufficient.
  • AZ91D magnesium alloy powder (average particle size: 61 ⁇ m; nominal composition: Mg—9A1—lZnZma ss%) and Si powder (average particle size: 64 ⁇ ) 10 Parts by weight.
  • mechanical crushing, mixing and compression treatment were performed for 4 hours using a vibration ball mill to obtain a composite powder.
  • the obtained composite powder was filled in a circular mold having a diameter of 34 mm, and a load of a surface pressure of 6 tZ cm 2 was applied to produce a green compact A-103.
  • the composition was the same as that of the green compact A-103, the green compact A-104 was produced without performing the vibration pole mill treatment for 4 hours.
  • the following tubular furnace was prepared separately from the green compact A-103 or A-104. That is, a tubular furnace into which nitrogen gas (gas flow rate: 3 dmVmin) was introduced and whose temperature in the furnace was controlled at around 80 to 530 ° C shown in Table 1 was prepared.
  • the green compact A-103 or A-104 obtained above was introduced into this tubular furnace, heated and maintained for 5 minutes, and immediately solidified by powder forging to a relative density of 99% or more, and the magnesium-based composite material was obtained.
  • B—11 1 to B—120 were obtained.
  • the conditions of the powder forging method, mold temperature: 250 ° C; ⁇ Pimen ⁇ : 8 t a Bruno cm 2, solidified and the mold wall from the viewpoint of adhesion prevention of the mold soluble Lubricant was applied.
  • Table 102 shows the properties of the green compacts A-103 or A-104 and the magnesium-based composite materials B-11 to B-120 obtained above.
  • “presence / absence of Mg 2 Si” was observed by X-ray diffraction.
  • “Hardness” is a value measured by a scale E Rockwell measuring device as described above. Table 102. Properties of green compacts A-103-104 and composite material B-111-120
  • R n No. 1 11 to 1 15 use the composite powder according to the present invention, and have a heating temperature of .150 ° C. to 346 ° C. to obtain a high hardness composite material. Came out.
  • Run Nos. 116 to 117 since the composite powder according to the present invention was used, generation of Mg 2 Si was confirmed, but the hardness was lower than desired. This is probably because the heating temperature was too high and the Mg 2 Si particles grew coarsely.
  • Run No. 118 uses a composite powder according to the present invention, but since the heating temperature is too low, generation of Mg 2 Si cannot be confirmed and, of course, the hardness is insufficient. there were.
  • Run Nos. 109 to 110 generation of Mg 2 Si was not confirmed because the composite powder according to the present invention was not used and the heating temperature was too low. Of course, the hardness was also insufficient.
  • a disk (diameter 50 mm, thickness 3 mm) made of pure Mg (purity 99.85%) and the composite powder X-101 of Example 101 were prepared. Prepare a state in which the composite powder X-101 is placed on one side of a disk, and introduce it into a furnace controlled at 160 ° C into which nitrogen gas (gas flow rate: 3 dm 3 / min) has been introduced. And heated and held for 5 minutes. Then, a surface pressure of 8 tZcm 2 was applied using a hydraulic press to produce a clad plate material in which the magnesium-based composite powder was in close contact with the magnesium circular plate. Again, put it in a furnace under a nitrogen gas atmosphere After insertion, temperature: 250 ° C., holding time: 10 minutes.
  • the obtained composite material was checked for the presence of Mg 2 Si peaks by X-ray diffraction, polished with emery paper, and evaluated for corrosion resistance by a 5% salt spray test (lOOhr). The average corrosion rate was calculated from the weight change before and after the test, and used as an index for corrosion resistance evaluation.
  • the magnesium-based composite material of the present invention has high strength, high abrasion resistance and high corrosion resistance in addition to weight reduction, for example, structural component materials such as automobile parts and home electric appliance parts where these properties are desired simultaneously. And it can be used as medical welfare or protective equipment such as nursing beds, wheelchairs, canes, and walking cars.
  • the magnesium-based composite powder used in the production method of the present invention can be applied as follows. That is, while being placed on the magnesium alloy plate, plastic working such as pressurization / compression / "rolling" is performed at room temperature or warm temperature, and then the heating step used in the present invention is provided.
  • can Maguneshiumu based composite powder of the present invention is to produce a clad sheet was pressure bonded. That is, only the magnesium alloy sheet table surface, a clad plate of Mg 2 S i particles are dispersed, the Mg 2 S i particles it can be prepared Maguneshiumu alloy plate and firmly bonded to that plate.
  • the clad sheet has excellent corrosion resistance and wear resistance by uniform dispersion of M g 2 S i particles particles, structural lightweight piping Can be used as a part.

Abstract

A method for producing a magnesium base composite material, which comprises a step of compounding a matrix powder having Mg with a Si powder to provide a mixed powder, a step of packing a container with the mixed powder and apply a pressure to the powder so as to prepare a compact formed article having a porosity of 35 % or less, and holding the compact formed article at an elevated temperature in an inert gas atmosphere or in vacuum, to thereby form Mg2Si. A magnesium base composite material produced by the above powder metallurgical method is suppressed in the growth of a magnesium crystal grain as a matrix or a Mg2Si particle to a coarse one, and as a result, exhibits excellent mechanical properties such as strength and hardness.

Description

明 細 .書  Specification
マグネシウム基複合材料 技術分野  Magnesium-based composite materials
本発明は, 優れた機械的特性および耐食性を有するマグネシゥム基複合材料、 その前駆体であるマグネシゥム基複合材料前駆体、 及ぴそれらの製造方法に関す る。 背景技術  The present invention relates to a magnesium-based composite material having excellent mechanical properties and corrosion resistance, a precursor of the magnesium-based composite material as a precursor thereof, and a method for producing the same. Background art
従来よりマグネシウムシリサイド (M g 2 S i ) 粒子が分散したマグネシウム 基複合材料に関する研究開発は、 精力的に進められている。 例えば, 特開平 6 - 8 1 0 6 8号公報は、 高 S i含有のマグネシウム合金を半溶融状態で射出成形す る際にマトリッタスの M gと S i との反応によって M g 2 S iを合成し、 この M g 2 S i粒子が分散したマグネシウム基複合材料の製造方法を開示している。 また、 特開平 8— 4 1 5 6 4号公報は、 铸造法による M g 2 S i粒子及ぴ S i C粒子が分散したマグネシウム基複合材料を開示している。 さらに、 特開 2 0 0 0 - 1 7 3 5 2号公報は、 球状の M g 2 S i粒子が分散したマグネシウム基複合 材料、 及びその鎵造法による製法を開示している。 発明の開示 . Research for conventionally magnesium silicide (M g 2 S i) magnesium particles dispersed matrix composite, are vigorously pursued. For example, JP-A-6 - 8 1 0 6 8 publication is that the M g 2 S i by reaction with high S i of Matorittasu magnesium alloy containing in you injection molding a semi-molten state M g and S i It discloses a method for producing a magnesium-based composite material which is synthesized and in which the Mg 2 Si particles are dispersed. Japanese Patent Application Laid-Open No. 8-41564 discloses a magnesium-based composite material in which Mg 2 S i particles and S i C particles are dispersed by a forging method. Further, JP-2 0 0 0 - 1 7 3 5 2 discloses the spherical M g 2 S i particles discloses magnesium-based composite material dispersed, and the process according to the鎵造method. DISCLOSURE OF THE INVENTION.
しかしながら、 上述のマグネシウム基複合材料に関する製造方法はいずれも、 鏡造法又は含浸法などの溶解法を基調としている。 即ち、 これらの方法は、 マト リックスを構成するマグネシゥム又はマグネシゥム合金を一旦溶解させた後に、 凝固 '固化する工程を経ている。 このため、 マトリックスのマグネシウムの結晶 粒径および M g 2 S i粒子の粗大成長が観察され、 且つこれによる強度 .硬度等 の機械的特性の低下が観察される。 ' However, the above-mentioned production methods for the magnesium-based composite material are all based on a dissolution method such as a mirror manufacturing method or an impregnation method. That is, in these methods, a magnesium or a magnesium alloy constituting the matrix is once melted and then solidified and solidified. For this reason, the crystal grain size of magnesium in the matrix and the coarse growth of Mg 2 Si particles are observed, and the resulting reduction in mechanical properties such as strength and hardness is observed. '
また、 上述の溶解法を基調とする製法は、 それ自体、 消費エネルギー増加が避 けられず、 コスト面における課題を伴っていた。  In addition, the production method based on the above-described dissolving method itself had an issue of cost inevitably increasing energy consumption.
本発明の目的は、 マトリックスのマグネシゥムの結晶粒径および M g 2 S i粒 子の粗大成長を抑制し、 これによつて強度 ·硬度等の機械的特性及び耐蝕性が高 基複合材料を提供することにある。 It is an object of the present invention to provide a crystal grain size and a Mg 2 Si grain size of a matrix magnesium. An object of the present invention is to provide a high-base composite material which suppresses coarse growth of the element and thereby has high mechanical properties such as strength and hardness and corrosion resistance.
また、 本発明の目的は、 上記目的の他に、 又は上記目的に加えて、 上述の溶解 法よりも低コス トのマグネシウム基複合材料の製造方法を提供することにある。 さらに、 本発明の目的は、 上記目的の他に、 又は上記目的に加えて、 上記マグ ネシゥム基複合材料の前駆体及びその製造方法を提供することにある。  Another object of the present invention is to provide a method for producing a magnesium-based composite material which is lower in cost than the above-mentioned dissolving method in addition to or in addition to the above-mentioned objects. It is a further object of the present invention to provide a precursor of the magnesium-based composite material and a method for producing the same, in addition to or in addition to the above objects.
本発明者らは、 鋭意検討の結果、 従来の铸造溶解法によらず、 粉末冶金法を基 本とするマグネシウム基複合材料の製造方法により、 上記課題が解決できること を見出した。  As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved by a method for producing a magnesium-based composite material based on a powder metallurgy method, instead of a conventional structure melting method.
本発明のある面において、 本発明者らは、 Mgを含むマトリックス粉末と S i 粉末との混合粉末を圧粉成形する過程で Mg粉末表面の酸化皮膜 (MgO) を機 械的に破壊 ·分断して活性な Mg新生面を S i粉末との接触領域を増加させるこ とで Mgの融点以下の固相温度域で両者の反応が進行することを見出した。 この 知見に基づいて、 S i粉末を Mgを含むマトリックス粉末の表面及びノ又は内部 に分散させることで、 S i粉末と Mgを含むマトリックス粉末との間には Mg O が存在せず、 両者が密着した状態となり、 Mgと S iとの反応がより容易に進行 することを見出した。 '  In one aspect of the present invention, the present inventors mechanically destroyed / divided an oxide film (MgO) on the surface of Mg powder during the process of compacting a mixed powder of a matrix powder containing Mg and Si powder. By increasing the contact area between the active Mg nascent surface and the Si powder, it was found that both reactions proceed in the solid phase temperature range below the melting point of Mg. Based on this finding, by dispersing the Si powder on the surface and inside or inside the matrix powder containing Mg, there is no MgO between the Si powder and the matrix powder containing Mg, It was found that the adhered state was established, and the reaction between Mg and Si proceeded more easily. '
具体的には、 本発明者らは、 以下の発明を見出した。  Specifically, the present inventors have found the following invention.
< 1 > マグネシウム (Mg) を有してなるマトリックス粉末とシリコン (S i ) 粉末とを配合して混合粉末を準備する工程;該混合粉末を容器に充填し加圧 することで空孔率が 3 5 %以下の圧粉成形体を作製する工程;及び該圧粉成形体 を不活性ガス雰囲気又は真空中で加熱保持して、 マトリックス粉末中の Mgと S i粉末との反応によってマグネシウムシリサイド (Mg 2S i ) を生成する工程 を有するマグネシゥム基複合材料の製造方法。 <1> a step of blending a matrix powder having magnesium (Mg) and silicon (S i) powder to prepare a mixed powder; filling the mixed powder into a container and pressurizing to increase the porosity. A step of producing a green compact of 35% or less; and heating and maintaining the green compact in an inert gas atmosphere or vacuum, and by reacting magnesium in the matrix powder with Si powder, magnesium silicide ( A method for producing a magnesium-based composite material, comprising: producing Mg 2 S i).
< 2 > 上記く 1 >の方法において、 Mg 2S iは、 マグネシウム基複合材料 に分散されているのがよい。 <2> In the above method <1>, Mg 2 Si is preferably dispersed in a magnesium-based composite material.
< 3 > 上記く 1〉又は < 2 >の方法の準備工程において、 (S i粉末の重 量) Z (マトリ ックス粉末中の Mgの重量) は、 3 6. 6/63. 4以下、 好ま しくは 10Z90以下であるのがよい。 < 4 > 上記く 1 >〜く 3 >のいずれかの方法において、 加熱を、 3 50°C以 上で行うのがよい。 <3> In the preparation step of the above method 1) or <2>, (weight of Si powder) Z (weight of Mg in the matrix powder) is preferably 36.6 / 63.4 or less. Or less than 10Z90. <4> In any one of the above methods <1> to <3>, heating is preferably performed at 350 ° C or higher.
< 5 > 上記く 1 >〜< 4 >のいずれかの方法において、 Mg 2S iは、 マグ ネシゥム基複合材料を 100 w t %としたとき、 3w t%以上、 好ましくは 5 w ΐ %以上であるのがよい。 <5> In any one of the above methods 1> to <4>, Mg 2 Si is 3 wt% or more, preferably 5 wt% or more when the magnesium based composite material is 100 wt%. There should be.
< 6 > マグネシウム (Mg) を有してなるマトリックス粉末とシリコン (S i) 粉末とを配合してなるマグネジゥム基複合材料前駆体であって、 該前駆体の 空孔率が 3 5 %以下であるマグネシウム基複合材料前駆体。  <6> A precursor of a magnesium based composite material obtained by mixing a matrix powder containing magnesium (Mg) and a silicon (Si) powder, wherein the precursor has a porosity of 35% or less. A magnesium-based composite precursor.
< 7> 上記 < 6〉において、 前駆体が、 示差走査熱量分析 (DSC) 測定に おいて、 Mg2S i由来の発熱ピークを 1 50〜6 50°C、 好ましくは 3 50〜 650°Cに有するのがよい。 <7> In the above item <6>, the precursor exhibits an exothermic peak derived from Mg 2 Si at a temperature of 150 to 650 ° C, preferably 350 to 650 ° C in a differential scanning calorimetry (DSC) measurement. It is better to have.
< 8 > 上記 < 6 >又は < 7〉において、 前駆体は、 (S i粉末の重量) / (マトリックス粉末中の Mgの重量) が 36. 6/6 3. 4以下であるのがよい。 <8> In the above item <6> or <7>, the precursor preferably has (weight of Si powder) / (weight of Mg in the matrix powder) of 36.6 / 63.4 or less.
< 9 > マグネシウム (Mg) を有してなるマトリックス粉末とシリコン (S i) 粉末とを配合してなるマグネシウム基複合材料前駆体であって、 該前駆体は、 示差走查熱量分析 (DS C) 測定において、 Mg 2S i由来の発熱ピークを 1 50〜 6 50°C、 好ましくは 350〜 6 50 °Cに有するマグネシウム基複合材 料前駆体。 <9> A magnesium-based composite material precursor obtained by blending a matrix powder having magnesium (Mg) and a silicon (Si) powder, wherein the precursor is a differential scanning calorimeter (DSC). ) A magnesium-based composite material precursor having an exothermic peak derived from Mg 2 Si at 150 to 650 ° C, preferably 350 to 650 ° C in the measurement.
< 10 > 上記く 6〉において、 前駆体は、 (S i粉末の重量) / (マトリツ タス粉末中の Mgの重羞) が 36. 6/6 3. 4以下であるのがよい。  <10> In the above item 6>, the precursor preferably has a ratio of (weight of Si powder) / (weight of Mg in the matrix powder) of 36.6 / 63.4 or less.
< 1 1 > マグネシウム (Mg) を有してなるマトリックス粉末とシリコン (S i) 粉末とを配合して混合粉末を準備する工程;及ぴ該混合粉末を容器に充 填し加圧することで空孔率が 35 %以下のマグネシウム基複合材料前駆体を作製 する工程を有するマグネシゥム基複合材料前駆体の製造方法。  <11> A step of preparing a mixed powder by blending a matrix powder containing magnesium (Mg) and a silicon (Si) powder; and filling the mixed powder into a container and pressing the container to make it empty. A method for producing a magnesium-based composite material precursor, comprising a step of producing a magnesium-based composite material precursor having a porosity of 35% or less.
く 1 2〉 上記く 1 1 >の方法の準備工程において、 (S i粉末の重量) ノ (マトリックス粉末中の Mgの重量) は、 36. 6/63. 4以下、 好ましくは 10/90以下であるのがよい。  1 2> In the preparation step of the method 1 1> above, (weight of Si powder) no (weight of Mg in the matrix powder) is 36.6 / 63.4 or less, preferably 10/90 or less. It is good.
< 1 3 > マグネシウム (Mg) を有してなるマトリックス中にマグネシウム シリサイ ド (Mg 2S i ) が分散してなるマグネシウム基複合材料であって、 以 下の A) 及ぴ B) から選ばれる少なくとも 1種の特性を有するマグネシウム基複 合材料: <13> A magnesium-based composite material in which magnesium silicide (Mg 2 S i) is dispersed in a matrix having magnesium (Mg). A magnesium-based composite material having at least one property selected from the following A) and B):
A) 前記マグネシウム基複合材料のロックウェル硬度 (Eスケール) が 40以 上 1 05以下、 好ましくは 40以上 95以下であるか、 及び/又は前記マグネシ ゥム基複合材料のロックウェル硬度 (Eスケール) が前記マグネシウム基複合材 料のマグネシウムシリサイ ドを除いた素地材料のロックウェル硬度 (Eスケー ル) よりも 20以上 80以下、 好ましくは 20以上 40以下の値で大きい;及ぴ A) The magnesium-based composite material has a Rockwell hardness (E scale) of 40 or more and 105 or less, preferably 40 or more and 95 or less, and / or the Rockwell hardness (E scale) of the magnesium-based composite material. Is larger than the Rockwell hardness (E scale) of the base material excluding the magnesium silicide of the magnesium-based composite material by a value of 20 to 80, preferably 20 to 40;
B) 前記マグネシウム基複合材料の引張強度が 10 OMP a以上 35 OMP a 以下、 好ましくは 1 0 OMP a以上 28 OMP a以下である力、 及び Z又は前記 マグネシウム基複合材料の引張強度が前記素地材料の引張強度よりも 2 OMP a 以上 1 0 OMP a以下、 好ましくは 2 OMP a以上 5 OMP a以下の値で大きい。 B) a force wherein the tensile strength of the magnesium-based composite material is 10 OMPa or more and 35 OMPa or less, preferably 10 OMPa or more and 28 OMPa or less; and Z or the tensile strength of the magnesium-based composite material is the base material. The tensile strength is greater than 2 OMPa and less than 10 OMPa, preferably greater than 2 OMPa and less than 5 OMPa.
< 14 > 上記く 1 3 >において、 Mg 2 S iは、 マグネシウム基複合材料を 1 00 w 1: %としたとき、 3 w t %以上、 好ましくは 5 w t °/0以上であるのがよ レ、。 <14> In the above <13>, Mg 2 S i should be at least 3 wt%, preferably at least 5 wt ° / 0 , when the magnesium-based composite material is 100 w 1:%. ,.
< 1 5 > マグネシウム (Mg ) を有してなるマトリックス粉末とシリコン (S i ) 粉末とを配合して S iがマトリックス粉末中に分散してなる複合粉末を 準備する工程;及び該複合粉末を不活性ガス雰囲気又は真空中で加熱保持してマ グネシゥムシリサイド (Mg 2S i ) を生成する工程を有するマグネシウム基複 合材料の製造方法。 <15> a step of blending a matrix powder containing magnesium (Mg) and silicon (S i) powder to prepare a composite powder in which Si is dispersed in the matrix powder; and A method for producing a magnesium-based composite material, comprising a step of generating magnesium silicide (Mg 2 S i) by heating and holding in an inert gas atmosphere or vacuum.
< 1 6 > 上記 < 1 5〉において、 準備工程後に、 前記複合粉末を容器に充填 し加圧して圧粉成形体を作製する工程をさらに有し、 該圧粉成形体を加熱保持し てマグネシゥムシリサィド (Mg 2 S i ) を生成する工程を有するのがよい。 <16> In the above item <15>, after the preparation step, the method may further comprise a step of filling the composite powder into a container and pressurizing to produce a green compact, and heating and holding the green compact to form a magnesium compact. The method should preferably include a step of producing mussilide (Mg 2 S i).
< 1 7 > 上記く 1 5 >又はく 1 6 >において、 Mg 2 S iは、 マグネシウム 基複合材料に分散されているのがよい。 <17> In the above item <15> or <16>, Mg 2 Si is preferably dispersed in a magnesium-based composite material.
< 1 8 > 上記く 1 5〉〜く 1 7〉のいずれかにおいて、 準備工程は、 a) 前 記 S i粉末と前記マトリックス粉末とを配合して配合粉末を得る工程;及ぴ b ) 配合粉末を粉砕及ぴ Z又は圧着及ぴ Z又は破砕する工程を有するのがよい。  <18> In any one of the above items 15> to 17>, the preparing step may include: a) a step of mixing the Si powder and the matrix powder to obtain a compounded powder; and b) compounding It is preferable to have a step of crushing and / or pressing and / or crushing the powder.
< 1 9 > 上記く 18〉において、 準備工程は、 b) 工程を複数回繰り返すの がよい。 < 20 > 上記く 18 >又はく 1 9〉において、 準備工程の前記 b ) の工程を、 粉砕機を用いて行うのがよい。 <19> In the above <18>, the preparation step is preferably performed by repeating step b) a plurality of times. <20> In the above <18> or <19>, it is preferable that the step b) in the preparation step is performed using a crusher.
< 2 1 > 上記く 20〉において、 粉碎機は、 ボールメディアによる衝搫エネ ルギーを利用した機械的な粉砕処理能力を有するのがよい。  <21> In the above item <20>, the crusher preferably has a mechanical crushing treatment capacity using impact energy by ball media.
< 22 > 上記 < 20〉又はく 21〉において、 粉砕機は、 回転ポールミル、 振動ポールミル、 遊星ポールミルからなる群から選ばれるのがよレ、。  <22> In the above item <20> or <21>, the crusher may be selected from the group consisting of a rotary pole mill, a vibrating pole mill, and a planetary pole mill.
< 23 > 上記 < 1 5 >〜< 22 >のいずれかにおいて、 準備工程において、 (S i粉末の重量) Z (マトリックス粉末中の Mgの重量) は、 36. 6/6 3. <23> In any one of the above <15> to <22>, in the preparation step, (weight of Si powder) Z (weight of Mg in matrix powder) may be 36.6 / 6/3.
4以下であるのがよい。 It is better to be 4 or less.
< 24 > 上記く 1 5 >〜< 23 >のいずれかにおいて、 加熱を、 1 50°C〜 6 50°C、 好ましくは 1 50°C以上 3 50 °C以下で行うのがよい。  <24> In any one of the above <15> to <23>, the heating may be performed at 150 to 650 ° C, preferably at 150 to 350 ° C.
< 2 5 > 上記く 1 5 >〜< 24 >のいずれかにおいて、 Mg 2 S iは、 マグ ネシゥム基複合材料を 100 w t %としたとき、 3 w t %以上、 好ましくは 5 w t%以上であるのがよい。 In any one of <2 5> above rather 1 5> ~ <24>, Mg 2 S i , when it has a mug Neshiumu based composite material as 100 wt%, 3 wt% or more, preferably 5 wt% or more Is good.
< 2 6 > マグネシウム (Mg) を有してなるマトリ ックス粉末とシリ コン (S i ) 粉末とを配合してなり且つマトリックス粉末中に S i粉末が分散されて なるマグネシゥム基複合材料前駆体。  <26> A magnesium-based composite material precursor obtained by mixing a matrix powder containing magnesium (Mg) and a silicon (Si) powder and dispersing the Si powder in a matrix powder.
< 27> 上記 < 26 >において、 前駆体が、 示差走査熱量分析 (D S C) 測 定において、 Mg 2S i由来の発熱ピークを 1 50〜650°C、 好ましくは 1 5 0〜3 50°Cに有するのがよレ、。 <27> In the above item <26>, the precursor may have an exothermic peak derived from Mg 2 Si at a temperature of 150 to 650 ° C, preferably 150 to 350 ° C in a differential scanning calorimetry (DSC) measurement. It's good to have it.
< 2 8 > 上記く 26 >又はく 2 7〉において、 前駆体は、 (S i粉末の重 量) Z (マトリックス粉末中の Mgの重量) が 36. 6/6 3. 4以下であるの がよい。  <28> In the above <26> or <27>, the precursor may have a (weight of Si powder) Z (weight of Mg in the matrix powder) of 36.6 / 63.4 or less. Is good.
< 2 9 > マグネシウム (Mg) を有してなるマトリックス粉末とシリコン (S i ) 粉末とを配合してなるマグネシウム基複合材料前駆体であって、 該前駆 体は、 示差走査熱量分析 (D S C) 測定において、 Mg2S i由来の発熱ピーク を 1 50〜6 50°C、 好ましくは 1 5 0〜3 50。Cに有するマグネシウム基複合 材料前駆体。 <29> A magnesium-based composite material precursor obtained by mixing a matrix powder having magnesium (Mg) and a silicon (S i) powder, wherein the precursor is characterized by differential scanning calorimetry (DSC) In the measurement, the exothermic peak derived from Mg 2 Si is 150 to 650 ° C., preferably 150 to 350. Magnesium-based composite material precursor contained in C.
< 30 > 上記 < 29 >において、 前駆体は、 (S i粉末の重量) / (マトリ ックス粉末中の Mgの重量) が 36. 6/6 3. 4以下であるのがよい。<30> In the above item <29>, the precursor is (weight of Si powder) / (matrix (Weight of Mg in the powder) should be 36.6 / 63.4 or less.
< 3 1 > マグネシウム (Mg) を有してなるマトリックス粉末とシリコン (S i ) 粉末とを配合して S iがマトリックス粉末中に分散してなる複合粉末を 準備する工程;及び該複合粉末を容器に充填し加圧してマグネシウム基複合材料 前駆体を作製する工程を有するマグネシウム基複合材料前駆体の製造方法。 <31> a step of blending a matrix powder containing magnesium (Mg) with silicon (S i) powder to prepare a composite powder in which Si is dispersed in the matrix powder; and A method for producing a magnesium-based composite material precursor, comprising a step of filling a container and pressurizing to produce a magnesium-based composite material precursor.
< 3 2 > 上記く 3 1〉において、 準備工程は、 a) S i粉末とマトリ ックス 粉末とを配合して配合粉末を得る工程;及び b) 配合粉末を粉碎及ぴ Z又は圧着 及ぴノ又は破砕する工程を有するのがよい。  <3 2> In the above item 3 1>, the preparation step includes: a) a step of blending the Si powder and the matrix powder to obtain a blended powder; and b) pulverizing the blended powder and applying Z Alternatively, a step of crushing may be provided.
く 3 3〉 上記く 3 2>において、 準備工程は、 b) を複数回繰り返すのがよ い。  3 3> In the above 3 2>, the preparation step should be repeated b) several times.
< 34 > 上記く 32 >又はく 3 3〉において、 準備工程の b) の工程を、 粉 砕機を用いて行うのがよい。  <34> In the above <32> or <33>, the step b) of the preparation step may be performed using a pulverizer.
< 3 5 > 上記く 34〉において、 粉碎機は、 ボールメディアによる衝擊エネ ルギーを利用した機械的な粉碎処理能力を有するのがよい。  <35> In the above item <34>, the crusher preferably has a mechanical crushing capacity using impact energy by ball media.
< 3 6 > 上記く 34>又はく 3 5 >において、 粉砕機は、 回転ボールミル、 振動ポールミル、 遊星ボールミルからなる群から選ばれるのがよい。  <36> In the above item <34> or <3>, the crusher is preferably selected from the group consisting of a rotary ball mill, a vibrating pole mill, and a planetary ball mill.
< 3 7 > 上記く 3 1 >〜< 36〉のいずれかにおいて、 準備工程において、 (S i粉末の重量) Z (マトリ ックス粉末中の Mgの重量) は、 36. 6/6 3. <37> In any one of <31> to <36> above, in the preparation step, (weight of Si powder) Z (weight of Mg in the matrix powder) is 36.6 / 6 3.
4以下であるのがよい。 It is better to be 4 or less.
く 38〉 マグネシウム (Mg) を有してなるマトリックス中にマグネシウム シリサイド (Mg 2S i) が分散してなるマグネシウム基複合材料であって、 以 下の A) 及ぴ B) から選ばれる少なくとも 1種の特性を有するマグネシウム基複 合材料: 38> A magnesium-based composite material in which magnesium silicide (Mg 2 Si) is dispersed in a matrix containing magnesium (Mg), and at least one selected from the following A) and B): Magnesium based composites with different properties:
A) 前記マグネシウム基複合材料のロックウェル硬度 (Eスケール) が 40以 上 1 05以下、 好ましくは 40以上 95以下であるか、 及ぴ Z又は前記マグネシ ゥム基複合材料のロックウェル硬度 (Eスケール) が前記マグネシウム基複合材 料のマグネシウムシリサイ ドを除いた素地材料のロックウェル硬度 (Eスケー ル) よりも 20以上 80以下、 好ましくは 20以上 40以下の値で大きい;及び A) The magnesium-based composite material has a Rockwell hardness (E scale) of 40 or more and 105 or less, preferably 40 or more and 95 or less; and Z or the Rockwell hardness (E) of the magnesium-based composite material. Is larger than the Rockwell hardness (E scale) of the base material excluding the magnesium silicide of the magnesium-based composite material by a value of 20 to 80, preferably 20 to 40; and
B) 前記マグネシウム基複合材料の引張強度が 10 OMP a以上 3 5 OMP a 以下、 好ましくは 10 OMP a以上 28 OMP a以下であるか、 及び/又は前記 マグネシウム基複合材料の引張強度が前記素地材料の引張強度よりも 2 OMP a 以上 1 0 OMP a以下、 好ましくは 2 OMP a以上 5 OMP a以下の値で大きい。 B) The tensile strength of the magnesium-based composite material is 10 OMPa or more and 35 OMPa Or less, preferably not less than 10 OMPa and not more than 28 OMPa, and / or the tensile strength of the magnesium-based composite material is not less than 2 OMPa and not more than 10 OMPa, preferably not more than 2 OMPa, than the tensile strength of the base material. Greater than a and less than 5 OMPa.
< 3 9 > 上記く 38〉において、 Mg 2S iは、 前記マグネシウム基複合材 料を 1 00w t%としたとき、 3w t %以上、 好ましくは 5 w t %以上であるの がよい。 図面の簡単な説明 <39> In the above item <38>, Mg 2 Si may be at least 3 wt%, preferably at least 5 wt%, when the magnesium-based composite material is 100 wt%. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 Mgを有してなるマトリックス粉末とシリコン S i粉末とが均一に交 じり合った混合粉末の模式図である。  FIG. 1 is a schematic diagram of a mixed powder in which a matrix powder containing Mg and a silicon Si powder are uniformly mixed.
図 2は、 ある空孔率を有する圧粉成形体の示差熱量分析 (DS C) の測定結果 を示すグラフである。  FIG. 2 is a graph showing the results of differential calorimetric analysis (DSC) of a compact having a certain porosity.
図 3は、 シリコン S i粉末が Mgを有してなるマトリックス粉末中に分散して なる、 本発明の複合粉末の模式図である。  FIG. 3 is a schematic diagram of a composite powder of the present invention in which silicon Si powder is dispersed in a matrix powder containing Mg.
図 4は、 本発明の複合粉末の光学顕微鏡による観察像を示す図である。  FIG. 4 is a view showing an image of the composite powder of the present invention observed by an optical microscope.
図 5は、 3つの試料の D S C測定の結果を示すグラフである。 発明を実施するための最良の形態  FIG. 5 is a graph showing the results of DSC measurement of three samples. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明は、 ある面において、 上述のように、 マトリ ックス粉末に含まれる Mg の表面に存在した酸化膜、 即ち Mg Oを存在させることなく、 Mgと S i粉末と を密着させる状態を調整し、 Mgと S iとの反応がより容易に進行することにそ の特徴がある。  According to the present invention, in one aspect, as described above, an oxide film existing on the surface of Mg contained in the matrix powder, that is, a state in which Mg and Si powder are brought into close contact with each other without the presence of MgO is adjusted. The feature is that the reaction between Mg and Si proceeds more easily.
なお、 本発明のある面について、 マグネシウム基複合材料前駆体の製造方法、 得られた前駆体、 前駆体からのマグネシウム基複合材料の製造方法、 及ぴ得られ たマグネシウム基複合材料の順で説明する。 また、 本発明の他の面についても、 上記と同様の順序で説明する。  One aspect of the present invention will be described in the order of a method for manufacturing a magnesium-based composite material precursor, an obtained precursor, a method for manufacturing a magnesium-based composite material from the precursor, and an obtained magnesium-based composite material. I do. Further, other aspects of the present invention will be described in the same order as described above.
<マグネシゥム基複合材料前駆体の製造方法 A > <Production method A of magnesium based composite material precursor>
本発明のある面のマグネシウム基複合材料前駆体 (以降、 特記しない限り 「前 駆体」 と略記する) の製造方法は、 混合粉末の準備工程と該混合粉末を加圧して 前駆体を作製する工程とを有する。 Magnesium-based composite material precursor according to one aspect of the present invention (hereinafter, unless otherwise specified, The abbreviated precursor) has a step of preparing a mixed powder and a step of pressing the mixed powder to produce a precursor.
混合粉末の準備工程において、 マグネシウム (Mg) を有してなるマトリック ス粉末とシリコン (S i ) 粉末とを配合して混合粉末を準備する。  In the step of preparing a mixed powder, a matrix powder comprising magnesium (Mg) and a silicon (S i) powder are blended to prepare a mixed powder.
M gを有してなるマトリ.ックス粉末は、 粉塵爆発等に対する防爆の観点から粒 径が 10 μπι以上の粉末を用いるのが好ましい。 この点を満たせば、 Mgを有し てなるマトリックス粉末の形態は、 特に限定されないが、 例えば粉末、 チップ、 又は塊状小片等の形態であるのがよい。  As the matrix powder having Mg, it is preferable to use a powder having a particle diameter of 10 μπι or more from the viewpoint of explosion protection against dust explosion and the like. If this point is satisfied, the form of the matrix powder containing Mg is not particularly limited, but is preferably in the form of, for example, a powder, a chip, or a lump.
また、 Mgを有してなるマトリ ックス粉末には、 Mgを含む合金、 又は Mgの みからなるものが含まれる。  In addition, the matrix powder containing Mg includes an alloy containing Mg, or a powder composed of only Mg.
Mgを有してなるマ トリ ックス粉末が合金である場合、 Mg以外に含まれるも のとして、 A l、 Z n、 Mn、 Z r、 C e、 L i及ぴ A g等を挙げることができ るが、 これらに限定されない。  When the matrix powder containing Mg is an alloy, Al, Zn, Mn, Zr, Ce, Li, Ag and the like may be included in addition to Mg. Yes, but not limited to.
S i粉末は、 圧粉成形体又は前駆体の作製工程において、 Mgを有してなるマ トリックス粉末との機械的な結合を向上させる点で、 その粒径が 1 0〜50 m、 好ましくは 1 0〜 200 mであるのがよい。  The Si powder has a particle size of 10 to 50 m, preferably from 50 to 50 m, in terms of improving mechanical bonding with a matrix powder containing Mg in a step of producing a green compact or a precursor. It should be between 10 and 200 m.
準備工程において、 S iの重量とマトリックス粉末中に含まれる Mgの重量と との比、 即ち (S i粉末の重量) / (マトリックス粉末中の Mgの重量) 、 3 6. 6/63. 4以下であるのがよい。 S iの添加量が 36. 6重量%を越える と、 理論上、 マトリックス粉末中の Mgがすべて Mg 2S i となる (即ち、 マト リ ックスとしての Mgが残存しなくなる) 。 この場合に得られる材料は、 強度が 著しく低く、 所望の特性を有しない。 したがって、 (S i粉末の重量) Z (マト リ ックス粉末中の Mgの重量) 力 36. 6/63. 4以下、 好ましくは、 機械 的特性および被削性の観点から、 10/90以下であるのがよい。 In the preparation process, the ratio of the weight of Si to the weight of Mg contained in the matrix powder, that is, (weight of Si powder) / (weight of Mg in matrix powder), 36.6 / 63.4 It should be: If the added amount of Si exceeds 36.6% by weight, theoretically all of the Mg in the matrix powder becomes Mg 2 Si (that is, Mg as a matrix does not remain). The material obtained in this case has a significantly lower strength and does not have the desired properties. Therefore, (weight of Si powder) Z (weight of Mg in matrix powder) Force 36.6 / 63.4 or less, preferably 10/90 or less from the viewpoint of mechanical properties and machinability There should be.
上記の Mgを有してなるマトリックス粉末とシリコン S i粉末とを配合して混 合粉末を準備する。 混合する際には、 従来から用いられている混合粉砕機を使用 することができる。 例えば、 V型ミキサー又はポールミルなどを挙げることがで きるがこれらに限定されない。  A mixed powder is prepared by blending the above matrix powder containing Mg and silicon Si powder. For mixing, a conventional mixing and crushing machine can be used. For example, a V-type mixer or a pole mill can be mentioned, but not limited thereto.
混合は、 種々の環境下、 例えば大気中で行うことができる。 望ましくは、 微粒 子を用いる場合、 混合容器の中に窒素ガスやアルゴンガスなどの不活性ガスを充 填することにより、 混合過程での粉末表面の酸化を防止するのがよい。 The mixing can be performed in various environments, for example, in the atmosphere. Preferably, fine particles When a powder is used, it is preferable to prevent the oxidation of the powder surface during the mixing process by filling the mixing vessel with an inert gas such as nitrogen gas or argon gas.
上記混合を行うことにより、 図 1に示すように、 Mgを有してなるマトリック ス粉末とシリコン S i粉末とが均一に交じり合った混合粉末を得ることができる。 次いで、 得られた混合粉末を容器に充填し加圧することで空孔率が 35%以下 のマグネシゥム基複合材料前駆体又は圧粉成形体を作製する。  By performing the above mixing, as shown in FIG. 1, a mixed powder in which a matrix powder containing Mg and a silicon Si powder are uniformly mixed can be obtained. Next, the obtained mixed powder is filled in a container and pressurized to produce a magnesium-based composite material precursor or a green compact having a porosity of 35% or less.
前駆体又は圧粉成形体を得るための圧粉固化する方法として、 従来の粉末冶金 法で用いられているプロセスを適用することができる。 例えば、 容器に混合粉末 を充填して冷間等圧成形 (C I P) する方法;又は金型に粉末を充填した状態で 上下パンチにより圧縮することで圧粉体を創製する方法;などを挙げることがで きるが、 これらに限定されない。  As a method for solidifying a precursor or a green compact to obtain a green compact, a process used in a conventional powder metallurgy method can be applied. For example, a method in which a container is filled with a mixed powder and cold isostatic pressing (CIP) is performed; or a method in which a powder is filled in a mold and compressed by upper and lower punches to create a green compact; But not limited to these.
得られた前駆体又は圧粉成形体は、 その空孔率が 3 5%以下、 好ましくは 2 0%以下であるのがよい。 空孔率をこの値とする意義は、 次のような作用による ものと考えられる。 即ち、 マトリックス粉末の表面は一般に、 酸化皮膜 (Mg O) で覆われている。 この Mg Oは他の酸化物に比べて生成自由エネルギーが小 さく安定であるため、 この Mg O表面皮膜が Mgと S i粉末との反応を抑制する。 そのため, 従来法では Mgの融点 (6 50°C) 以上に加熱して Mgの液相を生成 する工程を設け、 その後に、 マトリックス粉末中の Mgと S i粉末との反応を促 進させて Mg 2S iを合成していた。 この昇温工程において、 铸造溶解法と同様 のマトリックスおよび Mg 2 S iの粒径粗大成長の問題が生じていた。 The obtained precursor or green compact has a porosity of 35% or less, preferably 20% or less. The significance of setting the porosity to this value is considered to be due to the following effects. That is, the surface of the matrix powder is generally covered with an oxide film (MgO). Since this MgO has a small free energy of formation compared to other oxides and is stable, this MgO surface film suppresses the reaction between Mg and Si powder. For this reason, in the conventional method, a step of generating a liquid phase of Mg by heating above the melting point of Mg (650 ° C) is provided, and then the reaction between the Mg in the matrix powder and the Si powder is promoted. Mg 2 Si was synthesized. In this heating step, there was a problem of the same matrix and coarse growth of Mg 2 Si as in the structure melting method.
—方、 本発明は、 前駆体又は圧粉成形体を作製する工程において、 その空孔率 が 35%以下になるように、 混合粉末を加圧する。 この工程において、 粉末同士 の粒子再配列による表面摩擦おょぴ粒子の塑性変形によって M g O表面皮膜が機 械的に分断 ·破壊され, その部分に活性な Mgマトリッタスの新生面が出現する。 この Mg新生面は、 その後に、 昇温加熱することで、 S i粉末と反応して Mg 2 S iを合成する。 ここで、 空孔率の値が低ければ低いほど、 Mg新生面の面積が 多くなり、 ひいては Mg 2S iの合成温度がより低温側に移行する。 したがって、 前駆体又は圧粉成形体の空孔率はより低いことが好ましく、 より好ましくは 2 0%以下であるのがよい。 なお、 逆に、 前駆体又は粉末成形体の空孔率が大きす ぎると、 MgO皮膜の破壊が +分でないため、 Mg新生面の形成領域が小さくな る。 その結果、 Mg 2S iの合成温度がより高温側、 例えば Mgの融点以上の液 相領域に移行せざるを得なくなり、 粗大な Mg 2S i粒子の形成を伴うこととな る。 On the other hand, in the present invention, in the step of producing a precursor or a green compact, the mixed powder is pressurized so that the porosity is 35% or less. In this process, the surface of the MgO surface film is mechanically cut and broken by the plastic deformation of the particles due to the surface friction due to the rearrangement of the particles between the powders, and a new surface of active Mg matrices appears in that part. The new Mg surface is then heated and heated to react with the Si powder to synthesize Mg 2 Si. Here, the lower the value of the porosity, the larger the area of the Mg nascent surface, and consequently the synthesis temperature of Mg 2 Si shifts to a lower temperature side. Therefore, the porosity of the precursor or the green compact is preferably lower, more preferably 20% or less. Conversely, the porosity of the precursor or powder compact increases. In this case, the area of formation of the new Mg surface becomes smaller because the MgO film is not destroyed by more than + minutes. As a result, Mg 2 S i synthesis temperature is hotter side, for example, forced to shift to above the melting point of the liquid phase region of the Mg, that Do and that with the formation of coarse Mg 2 S i particles.
くマグネシゥム基複合材料前駆体又は圧粉成形体 A > Magnesium-based composite material precursor or green compact A>
本発明のある面のマグネシゥム基複合材料前駆体又は圧粉成形体は、 上述の空 孔率を有する。 この空孔率は、 次のように測定することができる。  The magnesium-based composite material precursor or green compact according to one aspect of the present invention has the above porosity. This porosity can be measured as follows.
まず、 上記前駆体又は圧粉成形体を構成する元素の密度と組成 ·成分から真密 度 (A) を求めておく。 また、 得られた上記前駆体又は圧粉成形体について、 J I S R l 643に準拠して、 その密度 (B) を測定する。 この A及ぴ Bを用い て、 空孔率 (V) を次の式 Iにより求めることができる。  First, the density (A) is determined from the density, composition, and composition of the elements constituting the precursor or the green compact. Further, the density (B) of the obtained precursor or green compact is measured in accordance with JIS Rl643. Using these A and B, the porosity (V) can be obtained by the following equation I.
V= 100- { 1 00 X (B/A) } (式 I )  V = 100- {100 X (B / A)} (Formula I)
なお、 本明細書において、 「空孔率」 とは、 特記しない限り、 この測定方法に より求められる値をいう。  In this specification, “porosity” refers to a value obtained by this measurement method, unless otherwise specified.
また、 本発明のマグネシウム基複合材料前駆体又は圧粉成形体は、 示差走查熱 量分析 (DSC) による測定において、 1 50〜6 50。C、 好ましくは 350〜 6 50°Cにおいて、 発熱ピークを有するのがよい。  The magnesium-based composite material precursor or the green compact of the present invention has a value of 150 to 650 as measured by differential scanning calorimetry (DSC). It should have an exothermic peak at C, preferably at 350 to 650 ° C.
一例として、 空孔率を変化させた条件で調製した本発明の前駆体又は圧粉成形 体を示差熱量分析 (DSC) によって測定した結果を図 2に示す。 空孔率が 9%、 1 9%及び 32%である前駆体は、 上述の範囲、 即ち 1 50〜650°C、 好まし くは 3 50〜6 5 0°Cに発熱ピークを有し、 吸熱ピークは観察されない。 なお、 後述するが、 この発熱ピークで、 Mgと S iとの固相状態での反応により、 Mg 2S iが合成されている。 As an example, FIG. 2 shows the results of measurement of the precursor or the compact of the present invention prepared under the condition of changing the porosity by differential calorimetry (DSC). Precursors with porosity of 9%, 19% and 32% have an exothermic peak in the above mentioned range, i.e. 150-650 ° C, preferably 350-650 ° C, No endothermic peak is observed. As will be described later, Mg 2 Si is synthesized by the reaction of Mg and Si in the solid state at this exothermic peak.
—方、 空孔率が 52%である前駆体は、 Mgの融点 (6 50°C) において Mg の液相出現による吸熱ピークが観察される。 なお、 この場合、 液相状態において Mg 2 S iが合成されている。 On the other hand, in the precursor with a porosity of 52%, an endothermic peak due to the appearance of the liquid phase of Mg is observed at the melting point of Mg (650 ° C). In this case, Mg 2 Si is synthesized in a liquid state.
前駆体又は圧粉成形体の空孔率が低下するにつれて最高発熱量を伴う温度 (発 熱ピークの温度). 、 即ち Mg 2S iの合成開始温度が低温側に移行する。 最高発 熱量を伴う温度 (発熱ピークの温度) が Mgの融点 (650°C) よりも低いこと は、 合成反応が固相状態で完了していることを意味する。 Temperature with the highest heating value as the porosity of the precursor or the green compact is lowered (temperature of heat generation peak)., I.e. synthesis initiation temperature of Mg 2 S i is shifted to the low temperature side. The temperature with the highest calorific value (exothermic peak temperature) is lower than the melting point of Mg (650 ° C) Means that the synthesis reaction is completed in the solid state.
<前駆体からのマグネシゥム基複合材料の製造方法 A >  <Method A for producing magnesium based composite material from precursor>
上述の前駆体又は圧粉成形体を加熱することにより、 マトリックス粉末中の M gと S i粉末との反応によって Mg2S iが生成し、 本発明のマグネシウム基複 合材料が得られる。 By heating the precursor or the compact, the Mg 2 Si is generated by the reaction between the Mg in the matrix powder and the Si powder, and the magnesium-based composite material of the present invention is obtained.
加熱雰囲気は、 特に限定されないが、 マトリックス (前駆体又は圧粉成形体) 中の Mg又は Mg含有合金の酸化を抑制する目的から、 窒素又はアルゴンなどの 不活性ガス雰囲気下、 もしくは真空中とするのがよい。  The heating atmosphere is not particularly limited. However, in order to suppress the oxidation of Mg or the Mg-containing alloy in the matrix (precursor or green compact), the heating atmosphere is in an inert gas atmosphere such as nitrogen or argon, or in a vacuum. Is good.
加熱温度は、 図 2の結果からもわかるように、 1 5 0°C以上、 好ましくは 3 5 0°C以上、 より好ましくは 450°C以上とするのがよい。 なお、 比較的短時間で Mg 2S iを合成させるためには、 加熱温度を 450°C以上とするのが望ましい。 このことより、 本発明は、 圧粉成形の際に、 表面酸化皮膜 (MgO) を機械的 に分断及び/又は破壊し、 その結果、 従来の製法の温度域よりも低い温度域、 即 ち 650。Cよりも低い温度域で、 Mg 2S iを合成することができる。 As can be seen from the results shown in FIG. 2, the heating temperature is set to 150 ° C. or higher, preferably 350 ° C. or higher, and more preferably 450 ° C. or higher. In order to synthesize Mg 2 Si in a relatively short time, it is desirable to set the heating temperature to 450 ° C or higher. Accordingly, the present invention mechanically divides and / or breaks the surface oxide film (MgO) during compaction, and as a result, the temperature range is lower than the temperature range of the conventional manufacturing method, namely, 650. . Mg 2 Si can be synthesized in a temperature range lower than C.
<マグネシゥム基複合材料 A > <Magnesium-based composite material A>
このようにして得られた Mg 2S iは、 次の特性を有する。 . The Mg 2 Si thus obtained has the following characteristics. .
Mg 2 S iの粒径は、 1 0〜 200 πιであり、 該 Mg 2S i粒子は、 得られ たマグネシゥム基複合材料に分散された状態で形成される。 The particle size of Mg 2 Si is 10 to 200 πι, and the Mg 2 Si particles are formed in a state of being dispersed in the obtained magnesium based composite material.
また、 一般的に、 Mg 2S iは、 熱膨張率がマグネシウムよりも小さく、 高剛 性 ·高硬度を有し、 しかも低比重で耐熱性 ·耐食性に優れている。 In general, Mg 2 Si has a lower coefficient of thermal expansion than magnesium, has high rigidity and high hardness, and has low specific gravity and excellent heat resistance and corrosion resistance.
したがって、 上記 Mg 2S iの特性を有することから、 得られた本発明のマグ ネシゥム基複合材料は、 優れた特性、 例えば機械的特性および耐食性、 を有する。 これらの優れた特性を有する複合材料は、 その中に含まれる Mg2S iが、 複合 材料 100w t %であると、 3w t %以上、 好ましくは 5 w 1; %以上であるのが よい。 Therefore, having the above-mentioned properties of Mg 2 Si, the obtained magnesium-based composite material of the present invention has excellent properties, for example, mechanical properties and corrosion resistance. When the composite material having these excellent properties contains 100 wt% of Mg 2 Si in the composite material, the content is preferably 3 wt% or more, and more preferably 5 w 1;% or more.
特に、 本発明の複合材料は、 以下に記載する A) 及び B) のうちのいずれか 1 種の特性又は 2種以上の特性を種々組合せた特性を有する。  In particular, the composite material of the present invention has a property of any one of the following A) and B) or a property obtained by variously combining two or more properties.
即ち、 A) i)前記マグネシウム基複合材料のロックウェル硬度 (Eスケール) が 40以上 1 0 5以下、 好ましくは 40以上 95以下である力 及ぴ Z又は ii) 前記マグネシゥム基複合材料のロックゥエル硬度 (Eスケール) が前記マグネシ ゥム基複合材料からマグネシゥムシリサィドを除いた素地材料の口ックウヱル硬 度 (Eスケール) よりも 20以上 80以下、 好ましくは 20以上 40以下の値で 大きい;及ぴ A) i) a force in which the Rockwell hardness (E scale) of the magnesium-based composite material is 40 or more and 105 or less, preferably 40 or more and 95 or less; and Z or ii) The rock hardness (E scale) of the magnesium-based composite material is 20 or more and 80 or less, and preferably 20 or less, than the mouth hardness (E scale) of the base material obtained by removing the magnesium silicate from the magnesium-based composite material. Greater than or equal to 40 and less; and
B) i)前記マグネシウム基複合材料の引張強度が l O OMP a以上 3 50MP a以下、 好ましくは 1 0 OMP a以上 28 OMP a以下であるか、 及ぴ Z又は ii)前記マグネシウム基複合材料の引張強度が前記素地材料の引張強度よりも 2 OMP a以上 1 0 OMP a以下、 好ましくは 2 OMP a以上 5 OMP a以下の値 で大きい。  B) i) the tensile strength of the magnesium-based composite material is l O OMPa or more and 350 MPa or less, preferably 10 OMPa or more and 28 OMPa or less; and Z or ii) the magnesium-based composite material The tensile strength is greater than the tensile strength of the base material by a value of 2 OMPa to 10 OMPa, preferably 2 OMPa to 5 OMPa.
より具体的には、 本発明の複合材料は、 Aに関しては A_ i) 、 A— i i) 、 A- i ) を満たし且つ A— i i ) を満たす、 いずれかの特性を有するか、 及び Z 又は、 Bに関しては B— i) 、 B- i i ) 、 B- i ) を満たし且つ B— i i ) を 満たす、 いずれかの特性を有する。 また、 本発明の複合材料は、 Aに関してのい ずれかの特性と Bに関してのいずれかの特性とを同時に満たす特性を有すること もできる。  More specifically, the composite material of the present invention satisfies A_i), A-ii), A-i) with respect to A and satisfies A-ii), and has any property; and Z or , B have any of the characteristics satisfying B-i), B-ii), B-i) and satisfying B-ii). Further, the composite material of the present invention can also have a property that satisfies any of the properties regarding A and any of the properties regarding B at the same time.
<マグネシウム基複合材料前駆体の製造方法 B >  <Production method B of magnesium-based composite material precursor>
本発明の他の面のマグネシウム基複合材料前駆体 (以降、 特記しない限り 「前 駆体」 と略記する) の製造方法は、 複合粉末の準備工程と該複合粉末を加圧して 前駆体を作製する工程とを有する。  According to another aspect of the present invention, a method for producing a precursor of a magnesium-based composite material (hereinafter abbreviated as “precursor” unless otherwise specified) includes a step of preparing a composite powder and a step of pressurizing the composite powder to produce a precursor. And
複合粉末の準備工程において、 マグネシウム (Mg) を有してなるマトリック ス粉末とシリコン (S i) 粉末とを配合して S iがマトリックス粉末中に分散し てなる複合粉末を準備する。  In the step of preparing a composite powder, a matrix powder comprising magnesium (Mg) and a silicon (Si) powder are blended to prepare a composite powder in which Si is dispersed in a matrix powder.
Mgを有してなるマトリ ックス粉末及び S i粉末の粒径及ぴ形状は、 特に限定 されない。 なぜならば、 後述するように、 両者の混合粉末を機械的に粉砕 ·混 合 ·圧着を繰り返す工程を設ければ、 粗大な粉末又は小片試料であっても、 Mg と S i粉末とを密着させる状態を形成することができるからである。 但し、 Mg を有してなるマトリックス粉末は、 その粒径が粉塵爆発等に対する防爆の観点か ら粒径が 1 0 m以上の粉末を用いるのがよい。 また、 Mgを有してなるマトリ ックス粉末の粒径は、 流動性の点及ぴ Z又は均一な密度分布を有する圧粉成形体 (前駆体) を形成する点で、 50 m以上 700 m以下であるのが好ましく、 より好ましくは 1 50 μ m以上 500 μ m以下であるのがよい。 さらに、 Mgを 有してなるマトリックス粉末の形態は、 特に限定されず、 例えば粉末、 チップ、 又は塊状小片等の形態とすることができる。 The particle size and shape of the matrix powder and the Si powder containing Mg are not particularly limited. This is because, as described later, if a process of mechanically pulverizing, mixing, and pressing the mixed powder of both is provided, even if the sample is a coarse powder or a small piece, the Mg and the Si powder are brought into close contact with each other. This is because a state can be formed. However, as the matrix powder containing Mg, it is preferable to use a powder having a particle diameter of 10 m or more from the viewpoint of explosion protection against dust explosion and the like. In addition, the particle size of the matrix powder containing Mg is determined in terms of flowability and Z or a green compact having a uniform density distribution. From the viewpoint of forming the (precursor), the thickness is preferably 50 m or more and 700 m or less, more preferably 150 μm or more and 500 μm or less. Further, the form of the matrix powder containing Mg is not particularly limited, and may be in the form of, for example, a powder, a chip, or a block.
また、 Mgを有してなるマトリックス粉末には、 Mgを含む合金、 又は Mgの みからなるものが含まれる。  Further, the matrix powder containing Mg includes an alloy containing Mg or a powder consisting of Mg alone.
Mgを有してなるマトリックス粉末が合金である場合、 Mg以外に含まれるも のとして、 A l、 Z n、 Mn、 Z r、 C e、 L i及ぴ A g等を挙げることができ るが、 これらに限定されない。  When the matrix powder containing Mg is an alloy, Al, Zn, Mn, Zr, Ce, Li, and Ag may be included in addition to Mg. However, it is not limited to these.
より具体的には、 Mgを有してなるマトリックス粉末として、 AZ 3 1、 AZ 9 1などを用いることができる。  More specifically, AZ31, AZ91 and the like can be used as the matrix powder containing Mg.
S i粉末の粒径及ぴ形状は、 上述のように、 特に限定されない。 但し、 その粒 径が 1 0〜500 μιη、 より好ましくは 10〜 200 mであるのがよい。 また、 その形状は、 球状、 粉末の他に、 チップ、 小片、 塊状などであるのがよい。  As described above, the particle size and shape of the Si powder are not particularly limited. However, the particle size is preferably from 10 to 500 μιη, more preferably from 10 to 200 m. The shape is preferably a chip, a small piece, a lump or the like in addition to a sphere or a powder.
準備工程において、 S iの重量とマトリックス粉末中に含まれる Mgの重量と との比、 即ち (S i粉末の重量) ノ (マトリックス粉末中の Mgの重量) 1 3 6. 6/63. 4以下であるのがよい。 S iの添加量が 36. 6重量%を越える と、 理論上、 マトリックス粉末中の Mgがすべて Mg 2S i となる (即ち、 マト リックスとしての Mgが残存しなくなる) 。 この場合に得られる材料は、 強度が 著しく低く、 所望の特性を有しない。 したがって、 (S i粉末の重量) / (マト リックス粉末中の Mgの重量) 力 36. 6/6 3. 4以下、 好ましくは、 機械 的特性および被削性の観点から、 10/90以下であるのがよい。 In the preparation process, the ratio of the weight of Si to the weight of Mg contained in the matrix powder, that is, (weight of Si powder) no (weight of Mg in matrix powder) 1 36.6 / 63. It should be: If the added amount of Si exceeds 36.6% by weight, all of the Mg in the matrix powder becomes theoretically Mg 2 Si (that is, Mg as a matrix does not remain). The material obtained in this case has a significantly lower strength and does not have the desired properties. Therefore, (weight of Si powder) / (weight of Mg in matrix powder) Force 36.6 / 63.4 or less, preferably 10/90 or less from the viewpoint of mechanical properties and machinability There should be.
上記の Mgを有してなるマトリックス粉末とシリコン S i粉末とを配合して S iがマトリックス粉末中に分散してなる複合粉末を準備する。  A composite powder in which Si is dispersed in the matrix powder by mixing the matrix powder containing Mg and the silicon Si powder is prepared.
ここで、 準備工程は、 a) S i粉末とマトリ ックス粉末とを配合して配合粉末 を得る工程;及び b) 得られた配合粉末を粉碎及び/又は圧着及び Z又は破砕す る工程を有するのがよい。 さらに、 この b) 工程を複数回繰り返すのがよい。 また、 b) 工程は、 粉砕機を用いて行うのがよい。 粉砕機は、 ポールメディア による衝撃エネルギーを利用した機械的な粉碎処理能力を有するのがよく、 例え ば回転ポールミル、 振動ポールミル、 遊星ポールミルからなる群から選ばれるの がよい。 このような機械的な粉砕 ·混合 ·圧着 ·破碎を行うことにより、 S i粉 末を微細に粉碎してマトリックス粉末中に分散させることができる。 また、 これ により、 S i粒子の比表面積が増加し且つ M gとの接触領域を増加させることが でき、 S iと M gとの反応をさらに促進することができる。 Here, the preparation step includes a ) a step of blending the Si powder and the matrix powder to obtain a blended powder; and b) a step of pulverizing and / or crimping the obtained blended powder and Z or crushing. Is good. Further, the step b) is preferably repeated a plurality of times. Also, the step b) is preferably performed using a crusher. The crusher should have a mechanical crushing capacity utilizing the impact energy of Pall Media. For example, it is better to be selected from the group consisting of a rotating pole mill, a vibrating pole mill, and a planetary pole mill. By performing such mechanical pulverization, mixing, pressing, and crushing, the Si powder can be finely pulverized and dispersed in the matrix powder. This also increases the specific surface area of the Si particles and can increase the contact area with Mg, further promoting the reaction between Si and Mg.
図 3は、 この準備工程によって得られた複合粉末試料の模式図であり、 図 4は、 準備工程によって実際に得られた複合粉末試料の光学顕微鏡による観察像である。 図 3は、 S i粒子がマトリックス中に分散していることを示している。 同様に、 図 4も、 S i粒子 (白色) がマトリックス (黒の背景) 中に分散していることが わかる。  FIG. 3 is a schematic diagram of the composite powder sample obtained in the preparation step, and FIG. 4 is an observation image of the composite powder sample actually obtained in the preparation step by an optical microscope. FIG. 3 shows that the Si particles are dispersed in the matrix. Similarly, Fig. 4 shows that Si particles (white) are dispersed in the matrix (black background).
なお、 準備工程は、 種々の環境下、 例えば大気中で行うことができる。 酸化抑 制の観点から、 望ましくは、 窒素ガスやアルゴンガスなどの不活性ガス雰囲気下 で行うのがよい。  The preparation process can be performed in various environments, for example, in the air. From the viewpoint of suppressing oxidation, it is preferable to perform the treatment in an inert gas atmosphere such as nitrogen gas or argon gas.
次いで、 得られた複合粉末を容器に充填し加圧して圧粉成形体又はマグネシゥ ム基複合材料前駆体を作製する。  Next, the obtained composite powder is filled in a container and pressurized to produce a green compact or a magnesium-based composite material precursor.
前駆体又は圧粉成形体を得るための圧粉固化する方法として、 従来の粉末冶金 法で用いられているプロセスを適用することができる。 例えば、 容器に混合粉末 を充填して冷間等圧成形 (C I P ) する方法;又は金型に粉末を充填した状態で 上下パンチにより圧縮することで圧粉体を創製する方法;などを挙げることがで きるが、 これらに限定されない。  As a method for solidifying a precursor or a green compact to obtain a green compact, a process used in a conventional powder metallurgy method can be applied. For example, a method in which a container is filled with a mixed powder and cold isostatic pressing (CIP) is performed; or a method in which a powder is filled in a mold and compressed by upper and lower punches to create a green compact; But not limited to these.
充填加圧工程の際の圧力は、 4 t /7 c m 2以上 8 t / c m 2以下であるのがよ い。 圧力の上限についての理由は次による。 即ち、 圧力を高くしても、 最終的に 得られる複合材料の密度の上昇における効果が少ない。 また、 圧力を高くすると、 用いる金型と成形体との間で凝着が生じ、 金型の寿命を低下させるため、 好まし くない。 The pressure in the filling and pressurizing step is preferably 4 t / 7 cm 2 or more and 8 t / cm 2 or less. The reason for the upper limit of the pressure is as follows. That is, increasing the pressure has little effect on increasing the density of the finally obtained composite material. Also, if the pressure is increased, adhesion between the mold used and the molded body occurs, which shortens the life of the mold, which is not preferable.
<マグネシウム基複合材料前駆体又は圧粉成形体 B >  <Magnesium-based composite material precursor or green compact B>
上記の準備工程及び充填 ·加圧工程により、 本発明のマグネシウム基複合材料 前駆体又は圧粉成形体を形成することができる。  The magnesium-based composite material precursor or the green compact of the present invention can be formed by the above-described preparation step and filling / pressing step.
本発明のマグネシゥム基複合材料前駆体又は圧粉成形体は、 示差走查熱量分析 (D S C) による測定において、 1 5 0〜6 50。C、 好ましくは 1 5 0〜3 5 0°Cにおいて、 Mg2S iの合成反応に伴う発熱ピークが観察されるのがよい。 一例として、 以下の 3つの試料の D S C測定結果を図 5に示す。 1) Mgを有 してなるマトリ ックス粉末として純 Mg (粒径: Ι Ι Ι μιη) 6 3. 4 g ;及び S i粉末 (粒径: 38 ^ 111) 36. 6 gとをポールミルで 2時間粉砕 ·混合 ·圧 着 '破碎させることで、 微細な S i粒子が Mg粉末の素地 (マトリックス) 中に 分散した複合粉末が得られる。 この粉末を圧粉成形することなく粉末状態のまま を本発明の試料とした。 2) 1) と同じ成分を単に混合し、 圧力 5. 8 t/cm 2で加圧して得られた試料 (空孔率: 9%) 。 3) 1) 及び 2) と同じ成分を単 に混合し、 圧力 1. 8 tZc m2で加圧して得られた試料 (空孔率: 5 2%) 。 図 5から、 1) の試料は、 圧粉成形しない粉末状態であるにも関わらず、 1 5 0。C付近から 200°C付近に、 Mg 2S iの合成反応に伴う発熱ピークが観察さ れた。 一方、 2) の試料は、 500°C付近に Mg 2S iの合成反応に伴う発熱ピ ークが観察された。 また、 3 ) は 650 °C (Mgの融点) で M gの融点に伴う吸 熱ピークが観察された。 これから、 1) の試料は、 Mgの融点以下であって、 2) の試料よりも著しく低温側で Mg 2 S iが合成されることがわかる。 The magnesium-based composite material precursor or the green compact of the present invention is obtained by differential scanning calorimetry. (DSC), 150-650. At C, preferably 150 to 350 ° C., an exothermic peak accompanying the synthesis reaction of Mg 2 Si should be observed. As an example, Fig. 5 shows the DSC measurement results of the following three samples. 1) 63.4 g of pure Mg (particle size: Ι Ι Ι Ιμιη) as a matrix powder containing Mg; and 36.6 g of Si powder (particle size: 38 ^ 111) by a pole mill. Time crushing, mixing, and pressing 'crushing' yields a composite powder in which fine Si particles are dispersed in a matrix (matrix) of Mg powder. This powder was used as a sample according to the present invention without being compacted. 2) A sample (porosity: 9%) obtained by simply mixing the same components as in 1) and applying pressure at a pressure of 5.8 t / cm 2 . 3) 1) and 2) the same ingredients were mixed in a single pressure 1. 8 TZC m 2 and pressurized obtained sample (porosity: 5 2%). From Fig. 5, the sample of 1) is 150, though it is in the powder state without compacting. From around C to around 200 ° C, an exothermic peak associated with the synthesis reaction of Mg 2 Si was observed. On the other hand, in the sample of 2), an exothermic peak due to the synthesis reaction of Mg 2 Si was observed at around 500 ° C. In 3), an endothermic peak was observed at 650 ° C (melting point of Mg) accompanying the melting point of Mg. From this, it can be seen that the sample of 1) has a temperature lower than the melting point of Mg, and Mg 2 Si is synthesized at a significantly lower temperature than the sample of 2).
<前駆体からのマグネシゥム基複合材料の製造方法 B > <Production method B of magnesium based composite material from precursor>
上述の前駆体又は圧粉成形体を加熱することにより、 マトリックス粉末中の M gと S i粉末との反応によって Mg 2 S iが生成し、 本発明のマグ^、シゥム基複 合材料を得ることができる。 ' By heating the above-mentioned precursor or green compact, Mg 2 Si is generated by the reaction of Mg in the matrix powder with the Si powder, and the mag and shim-based composite material of the present invention is obtained. be able to. '
加熱雰囲気は、 特に限定されないが、 マトリ ックス (前駆体又は圧粉成形体) 中の Mg又は Mg含有合金の酸化を抑制する目的から、 窒素又はアルゴンなどの 不活性ガス雰囲気下、 もしくは真空中とするのがよい。  The heating atmosphere is not particularly limited. However, in order to suppress the oxidation of Mg or Mg-containing alloy in the matrix (precursor or green compact), the heating atmosphere may be an inert gas atmosphere such as nitrogen or argon, or a vacuum. Good to do.
加熱温度は、 上述の図 5の DS C結果からもわかるように、 1 50°( 以上3 5 0°C以下とするのがよい。 比較的短時間で Mg2S iを合成させるためには、 加 熱温度を 200°C以上とするのが望ましい。 As can be seen from the DSC results in FIG. 5 described above, the heating temperature is preferably set to 150 ° (or more and 350 ° C. or less). In order to synthesize Mg 2 Si in a relatively short time, However, the heating temperature is desirably 200 ° C or higher.
なお、 前駆体又は圧粉成形体の形状及ぴ寸法によって、 ある温度である時間保 持することが好ましい。 特に、 加熱工程の際、 前駆体又は圧粉成形体の表層部と 内部との温度差による M g 2 S i粒子の不均一生成が生じないようにするのが好 ましい。 一方、 保持時間を長くすることによる Mg 2 S i粒子及び Mg結晶粒の 粗大成長を抑えるのが好ましい。 保持時間は、 前駆体又は圧粉成形体の形状及び 寸法によって依存するが、 1分以上であって、 30分以下であるのがよい。 Note that it is preferable to hold at a certain temperature for a certain time depending on the shape and dimensions of the precursor or the green compact. In particular, during the heating step, it is preferable to prevent non-uniform generation of Mg 2 Si particles due to a temperature difference between the surface layer and the inside of the precursor or the green compact. Good. On the other hand, it is preferable to suppress the coarse growth of the Mg 2 Si particles and the Mg crystal grains by increasing the holding time. The holding time depends on the shape and dimensions of the precursor or green compact, but is preferably 1 minute or more and 30 minutes or less.
本発明のマグネシウム基複合材料において、 必要に応じて温間鍛造法や温間押 出法といった塑性加工工程をさらに有するのがよい。 これにより材料中の空孔が 閉鎖され、 複合材料の密度を増加させて機械的特性をさらに向上させることが可 能である。 具体的には、 上記の加熱工程直後の複合材料を直接、 温間塑性加工を 施す方法;及び加熱工程後の複合材料を再度加熱後、 温間塑性加工を施す方法な どを挙げることができる。 但し、 経済性の観点からは前者の方法は有利である。 <マグネシゥム基複合材料 B >  The magnesium-based composite material of the present invention preferably further includes a plastic working step such as a warm forging method or a warm extrusion method as needed. This closes the porosity in the material, which can increase the density of the composite and further improve its mechanical properties. Specifically, a method in which the composite material immediately after the heating step is directly subjected to warm plastic working; and a method in which the composite material after the heating step is heated again and then subjected to warm plastic working can be exemplified. . However, the former method is advantageous from an economic point of view. <Magnesium-based composite material B>
このようにして得られた Mg 2 S iは、 次の特性を有する。 The Mg 2 Si thus obtained has the following characteristics.
Mg 2 S iの粒径は、 1 0〜2 0 0 ί mであり、 該 M g 2 S i粒子は、 得られ たマグネシゥム基複合材料に分散された状態で形成される。 The particle size of mg 2 S i is 1 0~2 0 0 ί m, the M g 2 S i particles are formed in a state of being dispersed in Maguneshiumu based composite material obtained.
また、 一般的に、 Mg 2 S iは、 熱膨張率がマグネシウムよりも小さく、 高剛 性 ·高硬度を有し、 しかも低比重で耐熱性 ·耐食性に優れている。 In general, Mg 2 Si has a lower coefficient of thermal expansion than magnesium, has high rigidity and high hardness, and has low specific gravity and excellent heat resistance and corrosion resistance.
したがって、 上記 Mg 2 S iの特性を有することから、 得られた本発明のマグ ネシゥム基複合材料は、 優れた特性、 例えば機械的特性および耐食性、 を有する。 これらの優れた特性を有する複合材料は、 その中に含まれる Mg 2S iが、 複合 材料 1 00 w t %であると、 3w t%以上、 好ましくは 5 w t%であるのがよい。 特に、 本発明の複合材料は、 上述と同様に、 上記 A) 及ぴ B) のうちのいずれ か 1種の特性又は 2種以上の特性を種々組合せた特性を有する。 Therefore, having the above-mentioned properties of Mg 2 Si, the obtained magnesium-based composite material of the present invention has excellent properties, for example, mechanical properties and corrosion resistance. If the composite material having these excellent properties contains 100 wt% of Mg 2 Si in the composite material, the content is preferably 3 wt% or more, and more preferably 5 wt%. In particular, the composite material of the present invention has a property of any one of the above-mentioned A) and B) or a property obtained by variously combining two or more kinds of the properties as described above.
なお、 本発明において、 引張強度は、 J I S規格に準拠する方法で測定するこ とができる。 また、 引張強度は、 実施例で後述する方法で測定することもできる。 即ち、 引張強度は、 試験試料として直径: φ 3. 5 mm, 平行部: 14 mmの試 験片を用意し、 この試験片を 10 t o nオートグラフに装着して変位速度 0. 5 mmZ分で引張荷重を付与して引張試験を行い、 試験片が破断した際の荷重を試 料の破断面積で除した値を引張強度として測定することもできる。  In the present invention, the tensile strength can be measured by a method based on the JIS standard. Further, the tensile strength can be measured by a method described later in Examples. In other words, the tensile strength was determined by preparing a test piece with a diameter of 3.5 mm and a parallel part of 14 mm as a test sample, mounting this test piece on a 10-ton autograph, and setting the displacement rate to 0.5 mmZ. A tensile test can be performed by applying a tensile load, and the value obtained by dividing the load when the test piece breaks by the fracture area of the sample can be measured as the tensile strength.
本発明の製造方法、 即ち粉末冶金法を用いることにより、 Mgの液相を出現さ せることなく、 固相状態において Mg 2S iの合成が可能である。 その結果、 マ トリッタスの Mgは微細結晶粒を有し, かつ Mg 2S i も微細にマトリックス中 に分散することで、 上記の優れた特性、 例えば優れた機械的特性および耐食性、 を有するマグネシウム基複合材料を経済性よく調製することができる。 By using the production method of the present invention, that is, the powder metallurgy method, it is possible to synthesize Mg 2 Si in a solid state without causing a liquid phase of Mg to appear. As a result, Trittas Mg has fine crystal grains, and Mg 2 Si is also finely dispersed in the matrix, making it possible to economically produce a magnesium-based composite material with the above excellent properties, such as excellent mechanical properties and corrosion resistance. It can be prepared well.
なお、 得られた複合材料と、 前駆体又は圧粉成形体とでは、 Mgの液相状態を 経ない工程で作製されるなどの理由から、 その寸法変化が小さい。 したがって、 前駆体と複合材料 (即ち最終製品) との寸法変化が小さいということは、 従来法 と異なり、 これを利点として挙げることもできる。 実施例  The dimensional change between the obtained composite material and the precursor or the green compact is small, for example, because it is manufactured in a process that does not pass through the liquid phase state of Mg. Therefore, the small dimensional change between the precursor and the composite material (ie, the final product) can be an advantage unlike the conventional method. Example
以下、 実施例に基づいて、 本発明をさらに詳細に説明するが、 本発明は本実施 例に限定されるものではない。  Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the examples.
(実施例 1 )  (Example 1)
出発原料として純 Mg粉末 (平均粒径: 1 1 2 m) 90重量部と S i粉末 (平均粒径: 64 Am) 10重量部とを準備した。 双方を配合した後、 ポールミ ルを用いて均一に混合して、 混合粉末を得た。 得られた混合粉末を直径 34mm の円形金型に充填し、 面圧 2〜7 t/c m2の範囲内で荷重を付与して圧粉成形 体 A— 1〜A— 7を作製した。 As starting materials, 90 parts by weight of pure Mg powder (average particle diameter: 112 m) and 10 parts by weight of Si powder (average particle diameter: 64 Am) were prepared. After blending both, they were uniformly mixed using a Paul mill to obtain a mixed powder. The obtained mixed powder was filled in a circular mold having a diameter of 34 mm, and a load was applied within a range of a surface pressure of 2 to 7 t / cm 2 to produce green compacts A-1 to A-7.
圧粉成形体 A— 1〜A— 7とは別個に、 次のような管状炉を準備した。 即ち、 窒素ガス (ガス流量: 3 dm3/m i n) を流入した管状炉であって、 その炉内 温度を 580°Cに管理した状態の管状炉を準備した。 この管状炉に上述で得られ た圧粉成形体 A— 1〜A— 7を揷入して 1 5分間加熱保持した後、 直ちに粉末鍛 造法によって相対密度 99 %以上に固化してマグネシウム基複合材料 B— 1〜 B 一 7を得た。 なお、 粉末鍛造法の条件は、 金型温度: 250°C;及び面圧: 8 t Z c m2であり、 固化体と金型との凝着防止の観点から金型壁面には水溶性潤滑 剤を塗布した。 The following tubular furnace was prepared separately from the green compacts A-1 to A-7. That is, a tubular furnace into which nitrogen gas (gas flow rate: 3 dm 3 / min) was flown and whose temperature in the furnace was controlled at 580 ° C was prepared. The green compacts A-1 to A-7 obtained above were introduced into this tubular furnace, heated and maintained for 15 minutes, and immediately solidified to a relative density of 99% or more by a powder forging method to obtain a magnesium-based material. Composite materials B-1 to B-17 were obtained. The conditions of the powder forging method were: mold temperature: 250 ° C; surface pressure: 8 tZ cm 2. Water-soluble lubrication was applied to the mold wall from the viewpoint of preventing solidification and adhesion of the mold. The agent was applied.
表 1に、 上記で得られた圧粉成形体 A— 1〜A— 7及びマグネシウム基複合材 料 B— 1〜B— 7の特性を示す。 表 1において、 「空孔率」 は、 上述した方法に より算出した値である。 また、 表 1には、 DS.C測定によって得られた 2S iの反応合成開始温度 (表 1中、 単に 「反応開始温度」 と表記) 、 Mg液相の有 無、 及びマグネシウム基複合材料 B— 1〜B— 7の機械的特性 (硬度、 引張り強 さ及び破断伸び) も示す。 Table 1 shows the properties of the green compacts A-1 to A-7 and the magnesium-based composite materials B-1 to B-7 obtained above. In Table 1, “porosity” is a value calculated by the method described above. Also, Table 1 shows the reaction synthesis onset temperature of 2 Si obtained by DS.C measurement (in Table 1, simply referred to as “reaction onset temperature”). The mechanical properties (hardness, tensile strength and elongation at break) of No, and magnesium based composite materials B-1 to B-7 are also shown.
なお、 「M g液相の有無」 は、 D S C測定結果において 6 5 0 °C付近に吸熱ピ ークがあるか否かにより観察した。 即ち、 吸熱ピークがある場合、 M gの液相出 現時の潜熱によるものであり、 「M g液相」 力 S 「有り」 とした。  The presence or absence of the Mg liquid phase was determined by observing whether or not there was an endothermic peak at around 65 ° C. in the DSC measurement results. That is, when there is an endothermic peak, it is due to the latent heat at the time of appearance of the liquid phase of Mg, and it was set as “Mg liquid phase” force S “Yes”.
また、 硬度、 引張り強さ及び破断伸びの測定は、 それぞれ以下のように行った。 <硬度の測定 >  The hardness, tensile strength and elongation at break were measured as follows. <Measurement of hardness>
荷重 4 9 Nのもとでマイクロビッカース硬度計によって硬さ測定を行った。 <引張り強さの測定〉  The hardness was measured with a micro Vickers hardness tester under a load of 49 N. <Measurement of tensile strength>
試験試料として、 直径 φ 3 . 5 mm, 平行部: 1 4 mmの試験片を用意した。 この試験片を 1 0 t o nオートグラフに装着して変位速度 0 . 5 mm/分で引張 荷重を付与して引張試験を行った。 試験片が破断した際の荷重を試料の破断面積 で除した値を引張強度とした。  A test piece having a diameter of 3.5 mm and a parallel portion of 14 mm was prepared as a test sample. This test piece was mounted on a 10-ton autograph, and a tensile test was performed by applying a tensile load at a displacement speed of 0.5 mm / min. The value obtained by dividing the load when the test piece fractured by the fracture area of the sample was defined as the tensile strength.
く破断伸びの測定〉 Measurement of elongation at break>
破断伸ぴは、 引張試験過程でチヤ一ト紙上に採取される荷重—変位曲線におい て一定の傾きを有した直線から離れた領域 (塑性変形域) での最大変位量から算 出した。 The elongation at break was calculated from the maximum displacement in a region (plastic deformation region) away from a straight line having a certain slope in the load-displacement curve sampled on the sheet of paper during the tensile test.
表 1. 圧粉成形体 A—"!〜 7及び複合材料 B—"!〜 7の特性 Table 1. Properties of green compact A-"! ~ 7 and composite material B-"! ~ 7
Run 圧粉成形体 空孔率 反応開始温度 M g液相の 複 ra'材料 機械的特性 Run Green compacts Porosity Reaction initiation temperature M g Liquid phase composite ra 'material Mechanical properties
No. (%) (°C) 有無 硬度 H V 引張り強さ (MPa) 破断伸び (%) No. (%) (° C) Presence or absence Hardness H V Tensile strength (MPa) Elongation at break (%)
1 A— 1 9.2 423 なし B— 1 1 23 267 4. 41 A—1 9.2 423 None B—1 1 23 267 4.4
2 A-2 15.3 452 なし B-2 1 20 262 4. 82 A-2 15.3 452 None B-2 1 20 262 4.8
3 A— 3 24.8 484 なし B-3 1 1 8 260 4. 93 A—3 24.8 484 None B-3 1 1 8 260 4.9
4 A— 4 29.5 496 なし B-4 1 1 4 258 4. 24 A— 4 29.5 496 None B-4 1 1 4 258 4.2
5 A— 5 33.2 51 1 なし B-5 1 1 2 251 3. 85 A— 5 33.2 51 1 None B-5 1 1 2 251 3.8
6 A— 6 38.9 535 有り B-6 1 07 202 2. 16 A— 6 38.9 535 Yes B-6 1 07 202 2.1
7 A— 7 42.2 541 有り B-7 1 04 1 97 1. 7 7 A— 7 42.2 541 Yes B-7 1 04 1 97 1.7
圧粉成形体 A— 1〜5は、 本発明にしたがった空孔率を有し、 これを用いるこ とにより、 M gの液相を出現させることなく固相状態で M g 2 S iを形成するこ とができた。 また、 その結果、 微細な Mg 2S iがマグネシウム素地中に分散し た複合材料 B— 1〜5が得られ、 該材料は、 表 1に示されるように、 優れた機械 的特性を有することを確認した。 Green compact A- 1 to 5 has a porosity in accordance with the present invention, by a Mochiiruko this, M g 2 S i in a solid state without occurrence of the liquid phase of M g Could be formed. As a result, a composite material B-1 to 5 in which fine Mg 2 Si was dispersed in a magnesium base was obtained. As shown in Table 1, the material had excellent mechanical properties. It was confirmed.
一方、 圧粉成形体 A— 6及び 7は、 本発明の規定外の空孔率を有し、 これを用 いて複合材料を形成すると、 Mg 2S iが固相状態のみならず液相状態でも形成 される。 したがって、 粗大な Mg 2S iが形成された複合材料 B— 6及び 7が得 られ、 それにより複合材料 B— 6及び 7の機械的特性は、 表 1にあるように、 著 しく低下したものであった。 On the other hand, a green compact A- 6 and 7, the porosity has, to form a composite material have use this liquid phase not Mg 2 S i is solid state only defined outside of the invention But it is formed. Accordingly, coarse Mg 2 S i is formed composites B- 6 and 7 is obtained, whereby the mechanical properties of the composite material B- 6 and 7, as shown in Table 1, those markedly properly lowered Met.
(実施例 2) (Example 2)
出発原料として、 AZ91D マグネシウム合金粉末 (平均粒子径: 61 // m;公称 組成: Mg— 9A 1— l Z n /m a s s %) 8 5重量部と S i粉末 (平均粒径: 64 / m) 1 5重量部とを準備した。 双方を配合した後、 ポールミルを用いて均 一に混合して、 混合粉末を得た。 得られた混合粉末を直径 1 1. 3mmの円形金 型に充填し、 面圧 5 tZc m2の荷重を付与して圧粉成形体 A— 8を作製した。 この空孔率を測定したところ、 本発明が規定する範囲を満足する 12. 3%であ つた。 As starting materials, AZ91D magnesium alloy powder (average particle size: 61 // m; nominal composition: Mg—9A 1—l Zn / mass%) 8 5 parts by weight and Si powder (average particle size: 64 / m) 15 parts by weight were prepared. After blending both, the mixture was uniformly mixed using a pole mill to obtain a mixed powder. The obtained mixed powder was filled into a circular mold having a diameter of 11.3 mm, and a load of a surface pressure of 5 tZcm 2 was applied to produce a green compact A-8. The measured porosity was 12.3%, which satisfied the range specified by the present invention.
得られた圧粉成形体 A— 8を、 窒素ガス (ガス流量: 2 d m3/m i n) を流 入した管状炉の中で、 表 2記載の各加熟温度で 30分間加熱 ·保持し、 その後炉 内で常温まで冷却して複合材料 B— 8〜B— 14を得た。 この材料 B— 8〜14 に関して、 光学顕微鏡による組織観察おょぴ X線回折を行うことにより、 Mg 2 S iの合成の有無及び S iの残存状況を確認した。 この結果も表 2に示す。 表 2. 圧粉成形体 A— 8及び複合材料 B_8〜"! 4の特性 The obtained green compact A-8 was heated and held at a ripening temperature shown in Table 2 for 30 minutes in a tubular furnace into which nitrogen gas (gas flow rate: 2 dm 3 / min) was introduced. Then, it was cooled down to room temperature in the furnace to obtain composite materials B-8 to B-14. With respect to this material B-8 to 14, the presence or absence of the synthesis of Mg 2 Si and the remaining state of Si were confirmed by observing the structure with an optical microscope and performing X-ray diffraction. Table 2 also shows the results. Table 2. Properties of green compact A-8 and composite material B_8 ~ "! 4
Figure imgf000023_0001
複合材料 Β— 8〜Β— 1 2からわかるように、 適正な温度域で加熱することに よって、 Mgと S iとの反応が進行して Mg 2 S iが合成されることを確認した。 また、 これらの材料において、 添加した S i粉末は全て Mgとの反応に寄与し、 その結果、 S i粉末は、 Mg2S i合成反応後に材料中に残存しないことを確認 した。
Figure imgf000023_0001
As can be seen from the composite materials Β-8 to 1-12, it was confirmed that the reaction between Mg and Si progressed and Mg 2 Si was synthesized by heating in an appropriate temperature range. Also, in these materials, it was confirmed that the added Si powder all contributed to the reaction with Mg, and as a result, the Si powder did not remain in the material after the Mg 2 Si synthesis reaction.
一方, 複合材料 B— 1 3及ぴ 14からわかるように、 適正な加熱温度域よりも 低い温度域とすると、 Mgと S i との反応が進行せず、 Mg2S iが合成されな いことを確認した。 また、 複合材料 B— 1 3及ぴ 14は、 S i粉末が残存してい ることを確認した。 On the other hand, as can be seen from the composite materials B-13 and 14, when the temperature range is lower than the appropriate heating temperature range, the reaction between Mg and Si does not proceed, and Mg 2 Si is not synthesized. It was confirmed. In addition, it was confirmed that Si powder remained in the composite materials B-13 and 14.
(実施例 3 ) , (Example 3),
出発原料として純 M g粉末 (平均粒径: 1 1 2 μ m) と S i粉末 (平均粒径: 64 ^m) とを準備し、 表 3に示す配合組成となるように両者を混合し、 混合粉 末を得た。 得られた混合粉末を直径 1 1. 3 mmの円形金型に充填し、 面圧 6 t / cm2の荷重を付与して圧粉成形体 A— 9〜A— 1 5を作製した。 これら成形 体 A— 9〜 A— 1 5の空孔率を測定したところ、 いずれも本発明が規定する範囲 を満足する 8. 9〜 1 1 %であった。 As starting materials, pure Mg powder (average particle size: 112 μm) and Si powder (average particle size: 64 ^ m) were prepared, and they were mixed so as to have the composition shown in Table 3. A mixed powder was obtained. The obtained mixed powder was filled in a circular mold having a diameter of 11.3 mm, and a load of a surface pressure of 6 t / cm 2 was applied to produce green compacts A-9 to A-15. The porosity of each of these molded products A-9 to A-15 was measured to be 8.9 to 11%, which satisfied the range specified by the present invention.
得られた圧粉成形体 A— 9〜 A— 1 5を、 窒素ガス (ガス流量: 2 dm3/ni i n) を流入した管状炉であって、 炉内温度を 580°Cに管理した管状炉に揷入 して、 30分間加熱 ·保持し、 その後炉内で常温まで冷却して複合材料 B— 1 5 〜B— 21を得た。 この材料 B— 1 5〜2 1に関して、 外観を観察すると共に、 T/JP02/02968 A tubular furnace in which nitrogen gas (gas flow rate: 2 dm 3 / ni in) was introduced into the obtained green compacts A-9 to A-15, and wherein the temperature in the furnace was controlled to 580 ° C. It was placed in a furnace, heated and maintained for 30 minutes, and then cooled to room temperature in the furnace to obtain composite materials B-15 to B-21. Observe the appearance of this material B—15 to 21 and T / JP02 / 02968
X線回折測定により、 材料を構成する元素及び化合物を同定した c この結果も表 3に示す。 表 3. 圧粉成形体 A— 9〜15及び複合材料 B— 15〜21の特性 The elements and compounds constituting the material were identified by X-ray diffraction measurement. C The results are also shown in Table 3. Table 3. Properties of green compacts A-9-15 and composite materials B-15-21
Figure imgf000024_0001
出発原料の Mgと S iとの配合比をある適正値にすること (A— 9〜1 3) に より、 良好な形状及ぴ外観を有する複合材料であって Mg 2 S i及び Mgを含有 する複合材料 (B— 1 5〜1 9) が得られる一方、 配合比が適正値でない場合 (A— 1 4及ぴ 1 5) 、 Mg 2 S i及び S iを含有する材料であって十分な強度 が有さず搬送時に欠損が生じる材料 (B— 20及び 2 1) を得ることが表 3から ゎカゝる。
Figure imgf000024_0001
By setting the mixing ratio of Mg and Si of the starting materials to a certain appropriate value (A-9-13), it is a composite material with good shape and appearance, containing Mg 2 Si and Mg When the compounding ratio is not an appropriate value (A-14 and 15), a composite material containing Mg 2 Si and Si can be obtained. Table 3 shows that it is possible to obtain materials (B-20 and 21) that do not have high strength and cause breakage during transportation.
(実施例 4) (Example 4)
出発原料として純 Mg粉末 (平均粒子径: 2 23 ^ m) と S i粉末 (平均粒 径: 105 m) とを準備し、 表 4に示す配合組成となるように両者を混合して、 混合粉末を得た。 得られた混合粉末を直径 34mmの円形金型に充填し、 面圧 6 tZc m 2の荷重を付与して圧粉成形体 A— 1 6〜A— 22を作製した。 なお、 圧粉成形体 A— 1 6〜 22の空孔率は、 本発明が規定する範囲を満足する 8. 3 〜 10. 7 %であった。 Prepare pure Mg powder (average particle size: 223 ^ m) and Si powder (average particle size: 105 m) as starting materials, mix them to achieve the composition shown in Table 4, and mix. A powder was obtained. The obtained mixed powder was filled in a circular mold having a diameter of 34 mm, and a load of a surface pressure of 6 tZcm 2 was applied to produce green compacts A-16 to A-22. The porosity of the green compacts A-16 to 22 was 8.3 to 10.7%, which satisfied the range specified by the present invention.
得られた圧粉成形体 A— 1 6〜 22を、 窒素ガス (ガス流量: 3 dm3/m i n) を流入した管状炉であって、 炉内温度を 580°Cに管理した管状炉に揷入し て、 1 5分間加熱 *保持し、 その後直ちに粉末鍛造法によって相対密度 9 9%以 に固化して複合材料 B— 22〜B— 28を得た。 なお, 粉末鍛造法の条件は、 金型温度: 2 50°C、 面圧: 8 t/c m2とし、 固化体と金型との凝着防止の観 点から金型壁面に水溶性潤滑剤を塗布した。 The obtained green compact A-16 to 22 was converted into a tubular furnace into which a nitrogen gas (gas flow rate: 3 dm 3 / min) was introduced and the furnace temperature was controlled at 580 ° C. And heat it for 15 minutes * and hold it. Then, composite materials B-22 to B-28 were obtained. The conditions of the powder forging method were: mold temperature: 250 ° C, surface pressure: 8 t / cm 2, and a water-soluble lubricant on the mold wall from the viewpoint of preventing adhesion between the solidified body and the mold. Was applied.
<平均腐食速度 > <Average corrosion rate>
得られた複合材料 B— 22〜B— 28について、 平均腐食速度を測定した。 こ れは、 各々の材料 B— 22〜B— 28から、 立方体 ( 10 mmX 10 mmX厚さ 1 Omm) を機械加工により採取した後、 エメリー紙で研磨して試験片を得た。 この試験片を 5%塩水噴霧試験 (lOOhr) による耐食性評価を行った。 試験前後 の重量変化量から平均的な腐食速度を算出し、 耐食性評価の指標とした。 この結 果も表 4に示す。 なお、 表 4には、 Mg 2S i量 (配合組成からの計算値) も示 す。 表 4. 圧粉成形体 A— 16〜22及び複合材料 B— 22〜28の特性 The average corrosion rates of the obtained composite materials B-22 to B-28 were measured. In this method, a cube (10 mm X 10 mm X thickness 1 Omm) was machined from each material B-22 to B-28, and polished with emery paper to obtain a test piece. The test pieces were evaluated for corrosion resistance by a 5% salt spray test (100 hr). The average corrosion rate was calculated from the weight change before and after the test and used as an index for corrosion resistance evaluation. Table 4 also shows the results. Table 4 also shows the amount of Mg 2 Si (calculated from the composition). Table 4. Properties of green compacts A-16-22 and composite material B-22-28
Figure imgf000025_0001
複合材料 B— 22〜26は優れた耐食性を有することが表 4からわかる。 一方、 Mg 2S i量が少ない材料 B— 27及び 28はその耐食性が低いことがわかる。
Figure imgf000025_0001
Table 4 shows that composite materials B-22 to 26 have excellent corrosion resistance. On the other hand, it can be seen that the materials B-27 and 28 having a small amount of Mg 2 Si have low corrosion resistance.
(実施例 1 01) (Example 101)
出発原料として純 Mg粉末 (平均粒径: 1 6 8 m) 8 5重量部と S i粉末 (平均粒径: 5'8 111) 1 5重量部とを準備した。 双方を配合した後、 回転ポー ルミルを用いて 5時間機械的に粉碎 ·混合 ·圧着処理を施して、 複合粉末 X— 1 0 1を得た。 得られた複合粉末 X— 1 01を直径 34 mmの円形金型に充填し、 面圧 6 tZcm2の荷重を付与して圧粉成形体 A— 101を作製した。 また、 圧粉成形体 A— 101と同一組成ではあるが、 回転ポールミル : 5時間 の処理を行わずに、 圧粉成形体 A— 102を作製した。 As starting materials, 85 parts by weight of pure Mg powder (average particle size: 168 m) and 15 parts by weight of Si powder (average particle size: 5'8111) were prepared. After blending both, the powder was mechanically ground, mixed and pressed by using a rotating pole mill for 5 hours to obtain a composite powder X-101. The obtained composite powder X—101 was filled in a circular mold having a diameter of 34 mm, A green compact A-101 was produced by applying a load of a surface pressure of 6 tZcm 2 . Further, a green compact A-102 having the same composition as that of the green compact A-101 was produced without performing a treatment using a rotary pole mill for 5 hours.
圧粉成形体 A— 101とは別個に、 次のような管状炉を準備した。 即ち、 窒素 ガス (ガス流量: 3 dm3/ni i ri) を流入した管状炉であって、 その炉内温度 を表 1に示す 100〜500°C近辺に管理した状態の管状炉を準備した。 この管 状炉に上述で得られた圧粉成形体 A— 101又は A— 102を揷入して 5分間加 熱保持した後、 直ちに粉末鍛造法によって相対密度 99%以上に固化してマグネ シゥム基複合材料 B— 101〜B— 1 10を得た。 なお、 粉末鍛造法の条件は、 金型温度: 250°C;及ぴ面圧: 8 tZcm2であり、 固化体と金型との凝着防 止の観点から金型壁面には水溶性潤滑剤を塗布した。 The following tubular furnace was prepared separately from the green compact A-101. That is, a tubular furnace into which nitrogen gas (gas flow rate: 3 dm 3 / ni i ri) was introduced and whose temperature was controlled in the vicinity of 100 to 500 ° C shown in Table 1 was prepared. . The green compact A-101 or A-102 obtained above was introduced into this tubular furnace, heated and maintained for 5 minutes, and immediately solidified by powder forging to obtain a relative density of 99% or more, and the magnesium was melted. The base composite materials B-101 to B-110 were obtained. The conditions for the powder forging method were: mold temperature: 250 ° C; surface pressure: 8 tZcm 2. From the viewpoint of preventing adhesion between the solidified body and the mold, water-soluble lubrication was applied to the mold wall surface. The agent was applied.
表 101に、 上記で得られた圧粉成形体 A— 101又は A— 102及びマグネ シゥム基複合材料 B— 10 1〜B— 1 10の特性を示す。 表 101において、 Table 101 shows the properties of the green compacts A-101 or A-102 and the magnesium-based composite materials B-101 to B-110 obtained above. In Table 101,
「Mg 2S iの有無」 は、 X線回折により観察した。 また、 「硬度」 は、 スケー ル Eのロックゥエル測定器により測定した値である。 表 101. 圧粉成形体 A— 101~102及び複合材料 B— 102〜110の特性 “Presence or absence of Mg 2 Si” was observed by X-ray diffraction. The “hardness” is a value measured by a scale E Rockwell measuring instrument. Table 101. Properties of green compacts A-101-102 and composite materials B-102-110
Figure imgf000026_0001
Figure imgf000026_0001
R n No— 101〜 105ほ、 本発明にしたがった複合粉末を用いており- 且つ加熱温度も 150 °C〜 343 °Cと低温で、 高硬度の複合材料を得ることがで きた。 Run No. 106〜107は、 本発明にしたがった複合粉末を用いて いるため、 Mg2S iの発生は確認できたが、 その硬度は所望のものよりは低下 していた。 これは、 加熱温度が高すぎて Mg 2S i粒子が粗大成長したためと考 えられる。 さらに、 Ru n No. 108は、 本発明にしたがった複合粉末を用 いているが、 加熱温度が低すぎるため、 Mg2S iの発生は確認できず、 勿論、 硬度も不十分なものであった。 Run No. 109〜 1 10は、 本発明にした がった複合粉末を用いておらず、 且つ加熱温度が低すぎるため、 Mg2S iの発 生は確認できなかった。 勿論、 硬度も不十分なものであった。 R n No—101 to 105, the composite powder according to the present invention is used, and the heating temperature is as low as 150 ° C. to 343 ° C., so that a high hardness composite material can be obtained. Run Nos. 106-107 use the composite powder according to the present invention. Therefore, generation of Mg 2 Si was confirmed, but the hardness was lower than desired. This is probably because the heating temperature was too high and the Mg 2 Si particles grew coarsely. Further, Run No. 108 uses the composite powder according to the present invention, but since the heating temperature is too low, generation of Mg 2 Si cannot be confirmed and, of course, the hardness is insufficient. Was. In Run Nos. 109 to 110, generation of Mg 2 Si was not confirmed because the composite powder according to the present invention was not used and the heating temperature was too low. Of course, the hardness was also insufficient.
(実施例 102) (Example 102)
•出発原料として、 AZ 91 Dマグネシゥム合金粉末 (平均粒子径: 61 μ m; 公称組成: Mg— 9A 1— l Z nZma s s %) 90重量部と S i粉末 (平均粒 径: 64 πι) 10重量部とを準備した。 双方を配合した後、 振動ボールミルを 用いて 4時間、 機械的に粉砕 ·混合 ·圧着処理を施して、 複合粉末を得た。 得ら れた複合粉末を直径 34 mmの円形金型に充填し、 面圧 6 tZ c m2の荷重を付 与して圧粉成形体 A— 103を作製した。 • As starting materials, 90 parts by weight of AZ91D magnesium alloy powder (average particle size: 61 μm; nominal composition: Mg—9A1—lZnZma ss%) and Si powder (average particle size: 64 πι) 10 Parts by weight. After blending both, mechanical crushing, mixing and compression treatment were performed for 4 hours using a vibration ball mill to obtain a composite powder. The obtained composite powder was filled in a circular mold having a diameter of 34 mm, and a load of a surface pressure of 6 tZ cm 2 was applied to produce a green compact A-103.
また、 圧粉成形体 A— 103と同一組成ではあるが、 振動ポールミル: 4時間 の処理を行わずに、 圧粉成形体 A— 104を作製した。  Further, although the composition was the same as that of the green compact A-103, the green compact A-104 was produced without performing the vibration pole mill treatment for 4 hours.
圧粉成形体 A— 103又は A— 104とは別個に、 次のような管状炉を準備し た。 即ち、 窒素ガス (ガス流量: 3 dmVm i n) を流入した管状炉であって、 その炉内温度を表 1に示す 80〜530°C近辺に管理した状態の管状炉を準備し た。 この管状炉に上述で得られた圧粉成形体 A— 103又は A— 104を揷入し て 5分間加熱保持した後、 直ちに粉末鍛造法によって相対密度 99%以上に固化 してマグネシウム基複合材料 B— 1 1 1〜B— 120を得た。 なお、 粉末鍛造法 の条件は、 金型温度: 250°C;及ぴ面圧: 8 tノ cm2であり、 固化体と金型 との凝着防止の観点から金型壁面には水溶性潤滑剤を塗布した。 The following tubular furnace was prepared separately from the green compact A-103 or A-104. That is, a tubular furnace into which nitrogen gas (gas flow rate: 3 dmVmin) was introduced and whose temperature in the furnace was controlled at around 80 to 530 ° C shown in Table 1 was prepared. The green compact A-103 or A-104 obtained above was introduced into this tubular furnace, heated and maintained for 5 minutes, and immediately solidified by powder forging to a relative density of 99% or more, and the magnesium-based composite material was obtained. B—11 1 to B—120 were obtained. The conditions of the powder forging method, mold temperature: 250 ° C;及Pimen圧: 8 t a Bruno cm 2, solidified and the mold wall from the viewpoint of adhesion prevention of the mold soluble Lubricant was applied.
表 102に、 上記で得られた圧粉成形体 A— 103又は A— 104及びマグネ シゥム基複合材料 B— 1 1 1〜B— 1 20の特性を示す。 表 102において、 「Mg 2S iの有無」 は、 X線回折により観察した。 また、 「硬度」 は、 上述と 同様に、 スケール Eのロックウェル測定器により測定した値である。 表 102. 圧粉成形体 A— 103~104及び複合材料 B— 111〜120の特性 Table 102 shows the properties of the green compacts A-103 or A-104 and the magnesium-based composite materials B-11 to B-120 obtained above. In Table 102, “presence / absence of Mg 2 Si” was observed by X-ray diffraction. “Hardness” is a value measured by a scale E Rockwell measuring device as described above. Table 102. Properties of green compacts A-103-104 and composite material B-111-120
Figure imgf000028_0001
Figure imgf000028_0001
R n No. 1 1 1〜1 1 5は、 本発明にしたがった複合粉末を用いており、 且つ加熱温度も.1 50°C〜346°Cと低温で、 高硬度の複合材料を得ることがで きた。 Run No. 1 16〜1 1 7は、 本発明にしたがった複合粉末を用いて いるため、 Mg2S iの発生は確認できたが、 その硬度は所望のものよりは低下 していた。 これは、 加熱温度が高すぎて Mg 2S i粒子が粗大成長したためと考 えられる。 さらに、 Ru n No. 1 18は、 本発明にしたがった複合粉末を用 いているが、 加熱温度が低すぎるため、 Mg 2S iの発生は確認できず、 勿論、 硬度も不十分 ¾ものであった。 Run No. 10 9〜 1 1 0は、 本発明にした がった複合粉末を用いておらず、 且つ加熱温度が低すぎるため、 Mg2S iの発 生は確認できなかった。 勿論、 硬度も不十分なものであった。 R n No. 1 11 to 1 15 use the composite powder according to the present invention, and have a heating temperature of .150 ° C. to 346 ° C. to obtain a high hardness composite material. Came out. In Run Nos. 116 to 117, since the composite powder according to the present invention was used, generation of Mg 2 Si was confirmed, but the hardness was lower than desired. This is probably because the heating temperature was too high and the Mg 2 Si particles grew coarsely. Further, Run No. 118 uses a composite powder according to the present invention, but since the heating temperature is too low, generation of Mg 2 Si cannot be confirmed and, of course, the hardness is insufficient. there were. In Run Nos. 109 to 110, generation of Mg 2 Si was not confirmed because the composite powder according to the present invention was not used and the heating temperature was too low. Of course, the hardness was also insufficient.
(実施例 103) (Example 103)
純 Mg (純度 9 9. 85%) 製円板 (直径 50mm、 厚さ 3 mm) 及び実施例 1 0 1の複合粉末 X— 10 1を準備した。 円板の片面に複合粉末 X— 10 1を載 せた状態を調製し、 これを窒素ガス '(ガス流量: 3 dm3/m i n) を流入させ た 1 60°Cに管理した炉に揷入して 5分間加熱保持した。 その後、 油圧プレスを 用いて面圧 8 tZcm2を付与して、 マグネシウム基複合粉末がマグネシウム円 '板上に密着したクラッド板材を作製した。 これを再度、 窒素ガス雰囲気下の炉に 挿入して温度: 25 0°C、 保持時間: 10分の熱処理を施した。 A disk (diameter 50 mm, thickness 3 mm) made of pure Mg (purity 99.85%) and the composite powder X-101 of Example 101 were prepared. Prepare a state in which the composite powder X-101 is placed on one side of a disk, and introduce it into a furnace controlled at 160 ° C into which nitrogen gas (gas flow rate: 3 dm 3 / min) has been introduced. And heated and held for 5 minutes. Then, a surface pressure of 8 tZcm 2 was applied using a hydraulic press to produce a clad plate material in which the magnesium-based composite powder was in close contact with the magnesium circular plate. Again, put it in a furnace under a nitrogen gas atmosphere After insertion, temperature: 250 ° C., holding time: 10 minutes.
得られた複合材料について、 X線回折による Mg 2S iピークの有無を確認す ると共に, エメリー紙で研磨した後、 5%塩水噴霧試験 (lOOhr) による耐食性 評価を行った。 試験前後の重量変化量から平均的な腐食速度を算出し、 耐食性評 価の指標とした。 The obtained composite material was checked for the presence of Mg 2 Si peaks by X-ray diffraction, polished with emery paper, and evaluated for corrosion resistance by a 5% salt spray test (lOOhr). The average corrosion rate was calculated from the weight change before and after the test, and used as an index for corrosion resistance evaluation.
複合粉末 X— 1 0 1を載せてクラッド化した側の表面は、 X線回折の結果、 M g 2S iのピークが確認された。 また、 光学顕微鏡観察によるとマグネシウム基 複合材料と基材のマグネシウムとは良好な結合状態にあった。 一方、 複合粉末 X 一 1 0 1を載せていない側の表面は、 XRDの結果、 Mg 2 S iのピークが観察 されず、 マグネシウムのピークのみであった。 As a result of X-ray diffraction, a peak of Mg 2 S i was confirmed on the surface on the side where the composite powder X—101 was placed and clad. In addition, according to observation with an optical microscope, the magnesium-based composite material and magnesium as the base material were in a favorable bonding state. On the other hand, on the surface on which the composite powder X-101 was not placed, as a result of XRD, no Mg 2 Si peak was observed and only a magnesium peak was observed.
耐食性試験の結果、 クラッド化した側の表面での平均腐食速度は 0. 014 g ノ m2Zh rであるのに対して, クラッド化していない Mg板材では 0. 21 g /m2/h r出会った。 即ち、 マグネシウム基複合材料のクラッド化によって耐 食性が著しく向上することを確認した。 産業上の利用の可能性 As a result of the corrosion resistance test, the average corrosion rate on the surface on the clad side was 0.014 g nom 2 Zhr, while that of the non-clad Mg plate material was 0.21 g / m 2 / hr. Was. That is, it was confirmed that the corrosion resistance was significantly improved by cladding the magnesium-based composite material. Industrial applicability
本発明のマグネシウム基複合材料は、 軽量化に加えて、 高強度 ·高耐摩耗性 - 高耐食性を有することから、 例えばそれらの特性が同時に望まれる自動車用部品 や家電部品などの構造用部品材料;及び介護用ベッド、 車椅子、 杖、 歩行車など の医療用福祉用具又は保護具として利用することができる。  Since the magnesium-based composite material of the present invention has high strength, high abrasion resistance and high corrosion resistance in addition to weight reduction, for example, structural component materials such as automobile parts and home electric appliance parts where these properties are desired simultaneously. And it can be used as medical welfare or protective equipment such as nursing beds, wheelchairs, canes, and walking cars.
さらに、 本発明の製造方法で用いるマグネシウム基複合粉末は、 次のように応 用することができる。 即ち、 マグネシウム合金板上に乗せた状態で常温あるいは 温間で加圧 ·圧縮/ "圧延等の塑性加工を施して、 その後、 本発明で用いた加熱ェ 程を設けることによりマグネシウム合金板上に本発明のマグネシゥム基複合粉末 が圧着したクラッド板材を作製することができる。 即ち、 マグネシウム合金板表 面にのみ、 Mg 2S i粒子が分散したクラッド板材であって、 該 Mg 2S i粒子 がマグネシゥム合金板と強固に結合している板材を調製することができる。 この クラッド板材は M g 2 S i粒子粒子の均一分散によって優れた耐食性 ·耐摩耗性 を有し、 軽量配管等の構造用部品として使用することができる。 Further, the magnesium-based composite powder used in the production method of the present invention can be applied as follows. That is, while being placed on the magnesium alloy plate, plastic working such as pressurization / compression / "rolling" is performed at room temperature or warm temperature, and then the heating step used in the present invention is provided. can Maguneshiumu based composite powder of the present invention is to produce a clad sheet was pressure bonded. that is, only the magnesium alloy sheet table surface, a clad plate of Mg 2 S i particles are dispersed, the Mg 2 S i particles it can be prepared Maguneshiumu alloy plate and firmly bonded to that plate. the clad sheet has excellent corrosion resistance and wear resistance by uniform dispersion of M g 2 S i particles particles, structural lightweight piping Can be used as a part.

Claims

請 求 の 範 囲 The scope of the claims
1. マグネシウム (Mg) を有してなるマトリックス粉末とシリコン (S i) 粉末とを配合して混合粉末を準備する工程;該混合粉末を容器に充填し加圧する ことで空孔率が 3 5 %以下の圧粉成形体を作製する工程;及ぴ該圧粉成形体を不 活性ガス雰囲気又は真空中で加熱保持して、 前記マトリックス粉末中の Mgと S i粉末との反応によってマグネシウムシリサイ ド (Mg 2S i ) を生成する工程 を有するマグネシウム基複合材料の製造方法。 1. a step of preparing a mixed powder by blending a matrix powder comprising magnesium (Mg) and a silicon (Si) powder; filling the mixed powder into a container and pressurizing to increase the porosity to 35 5 % Of the green compact; heating and holding the green compact in an inert gas atmosphere or vacuum; and reacting the magnesium powder with the Si in the matrix powder by magnesium silicide. A method for producing a magnesium-based composite material, comprising: producing (Mg 2 Si).
2. 前記 Mg 2S iは、 前記マグネシウム基複合材料に分散されている請求項 1記載の 法。 2. The method according to claim 1, wherein the Mg 2 Si is dispersed in the magnesium-based composite material.
3. 前記準備工程において、 (S i粉末の重量) ノ (マトリ ックス粉末中の M gの重量) は、 36. 6/6 3. 4以下である請求項 1又は 2記載の方法。  3. The method according to claim 1, wherein in the preparation step, (weight of Si powder) no (weight of Mg in the matrix powder) is 36.6 / 63.4 or less.
4. 前記加熱を、 3 50 °C以上で行う請求項 1〜 3のいずれか 1項記載の方法。 4. The method according to claim 1, wherein the heating is performed at 350 ° C. or higher.
5. 前記 M g 2 S iは、 前記マグネシゥム基複合材料を 1 00 w t %としたと き、 3 w 1: %以上である請求項 1〜4のいずれか 1項記載の方法。 5. The method according to any one of claims 1 to 4, wherein the Mg 2 Si is 3 w1:% or more when the magnesium-based composite material is 100 wt%.
6. マグネシウム (Mg) を有してなるマトリックス粉末とシリコン (S i) 粉末とを配合してなるマグネシゥム基複合材料前駆体であって、 該前駆体の空孔 率が 35 %以下であるマグネシゥム基複合材料前駆体。  6. A magnesium-based composite material precursor obtained by blending a matrix powder containing magnesium (Mg) and a silicon (Si) powder, wherein the precursor has a porosity of 35% or less. Matrix composite precursor.
7. 前記前駆体が、 示差走査熱量分析 (D SC) 測定において、 Mg 2S i由 来の発熱ピークを 3 50〜6 50°Cに有する請求項 6記載の前駆体。 7. The precursor according to claim 6, wherein the precursor has an exothermic peak derived from Mg 2 Si at 350 to 650 ° C in differential scanning calorimetry (DSC) measurement.
8. 前記前駆体は、 (S i粉末の重量) / (マ ト リ ックス粉末中の Mgの重 量) が 36. 6/6 3. 4以下である請求項 6又は 7記載の前駆体。  8. The precursor according to claim 6, wherein the precursor has a ratio of (weight of Si powder) / (weight of Mg in matrix powder) of 36.6 / 63.4 or less.
9. マグネシウム (Mg) を有してなるマトリックス粉末とシリコン (S i) 粉末とを配合してなるマグネシウム基複合材料前駆体であって、 該前駆体は、 示 差走査熱量分析 (D S C) 測定において、 Mg 2S i由来の発熱ピークを 3 50 〜650°Cに有するマグネシウム基複合材料前駆体。 9. A magnesium-based composite precursor obtained by mixing a matrix powder having magnesium (Mg) and a silicon (Si) powder, wherein the precursor is measured by differential scanning calorimetry (DSC). The magnesium-based composite precursor having an exothermic peak derived from Mg 2 Si at 350 to 650 ° C.
10. 前記前駆体は、 ( S i粉末の重量) / (マトリックス粉末中の M gの重 量) が 36. 6/6 3. 4以下である請求項 9記載の前駆体。  10. The precursor according to claim 9, wherein the precursor has a ratio of (weight of Si powder) / (weight of Mg in matrix powder) of 36.6 / 63.4 or less.
1 1. マグネシウム (Mg) を有してなるマ トリックス粉末とシリ コン (S i ) 粉末とを配合して混合粉末を準備する工程;及ぴ該混合粉末を容器に充填し 加圧することで空孔率が 3 5 %以下のマグネシウム基複合材料前駆体を作製する 工程を有するマグネシゥム基複合材料前駆体の製造方法。 1 1. Matrix powder containing magnesium (Mg) and silicon (S i) a step of preparing a mixed powder by blending with a powder; and a step of filling the mixed powder into a container and pressurizing to produce a magnesium-based composite material precursor having a porosity of 35% or less. A method for producing a magnesium-based composite material precursor.
12. 前記準備工程において、 (S i粉末の重量) Z (マトリックス粉末中の Mgの重量) は、 36. 6/63. 4以下である請求項 1 1記載の方法。  12. The method according to claim 11, wherein in the preparation step, (weight of Si powder) Z (weight of Mg in the matrix powder) is 36.6 / 63.4 or less.
1 3. マグネシウム (Mg) を有してなるマトリ ックス中にマグネシウムシリ サイド (Mg 2S i ) が分散してなるマグネシウム基複合材料であって、 以下の A) 及ぴ B) から選ばれる少なくとも 1種の特性を有するマグネシウム基複合材 料: 1 3. A magnesium-based composite material in which magnesium silicide (Mg 2 S i) is dispersed in a matrix having magnesium (Mg), wherein at least one selected from the following A) and B) Magnesium based composite material with one kind of properties
A) 前記マグネシウム基複合材料のロックウェル硬度 (Eスケール) が 40以 上 95以下であるか、 及び/又は前記マグネシウム基複合材料のロックウェル硬 度 (Eスケール) が前記マグネシウム基複合材料のマグネシウムシリサイドを除 いた素地材料のロックウェル硬度 (Eスケール) よりも 20以上 40以下の値で 大きい;及び  A) The magnesium based composite material has a Rockwell hardness (E scale) of 40 or more and 95 or less, and / or the magnesium based composite material has a Rockwell hardness (E scale) of magnesium of the magnesium based composite material. Greater than the Rockwell hardness (E scale) of the base material excluding silicide by a value of 20 or more and 40 or less; and
B) 前記マグネシウム基複合材料の引張強度が 10 OMP a以上 28 OMP a 以下、 及び/又は前記マグネシゥム基複合材料の引張強度が前記素地材料の引張 強度よりも 2 OMP a以上 5 OMP a以下の値で大きい。  B) The tensile strength of the magnesium-based composite material is 10 OMPa or more and 28 OMPa or less, and / or the tensile strength of the magnesium-based composite material is 2 OMPa or more and 5 OMPa or less than the tensile strength of the base material. Big in.
14. 前記 M g 2 S iは、 前記マグネシゥム基複合材料を 1 00 w t °/0とした とき、 3 w t %以上である請求項 1 3記載の材料。 14. The material according to claim 13, wherein the Mg 2 Si is 3 wt% or more when the magnesium-based composite material is 100 wt ° / 0 .
1 5. マグネシウム (Mg) を有してなるマトリックス粉末とシリ コン (S i) 粉末とを配合して S iがマトリ ックス粉末中に分散してなる複合粉末を準備 する工程;及ぴ該複合粉末を不活性ガス雰囲気又は真空中で加熱保持してマグネ シゥムシリサイ ド (Mg 2S i ) を生成する工程を有するマグネシウム基複合材 料の製造方法。 1 5. A step of blending a matrix powder comprising magnesium (Mg) and a silicon (Si) powder to prepare a composite powder in which Si is dispersed in the matrix powder; and A method for producing a magnesium-based composite material, comprising a step of generating magnesium silicide (Mg 2 S i) by heating and maintaining a powder in an inert gas atmosphere or vacuum.
16. 前記準備工程後に、 前記複合粉末を容器に充填し加圧して圧粉成形体を 作製する工程をさらに有し、 該圧粉成形体を加熱保持してマグネシゥムシリサィ ド (Mg 2S i) を生成する工程を有する請求項 1 5記載の方法。 16. After the preparation step, the method further comprises the step of filling the composite powder into a container and pressurizing to produce a green compact, and heating and holding the green compact to form a magnesium silicide (Mg 2 S 16. The method of claim 15, further comprising the step of:
1 7. 前記 Mg 2S iは、 前記マグネシウム基複合材料に分散されている請求 項 1 5又は 16記載の方法。 1 7. The Mg 2 S i is claim 1 5 or 16 method wherein are dispersed in the magnesium-based composite material.
18. 前記準備工程は、 a) 前記 S i粉末と前記マトリックス粉末とを配合し て配合粉末を得る工程;及ぴ b) 配合粉末を粉碎及び Z又は圧着及びノ又は破碎 する工程を有する請求項 1 5〜1 7のいずれか 1項記載の方法。 18. The preparation step comprises: a) a step of blending the Si powder and the matrix powder to obtain a blended powder; and b) a step of crushing and Z or pressing and crimping or crushing the blended powder. 15. The method according to any one of 15 to 17.
1 9. 前記準備工程は、 前記 b) を複数回繰り返す工程をさらに有する請求項 1 8記載の方法。  19. The method of claim 18, wherein said preparing step further comprises the step of repeating b) a plurality of times.
20. 前記準備工程の前記 b) の工程を、 粉砕機を用いて行う請求項 1 8又は 1 9記載の方法。  20. The method according to claim 18 or 19, wherein the step b) of the preparing step is performed using a pulverizer.
2 1. 前記粉碎機は、 ボールメディアによる衝擊エネルギーを利用した機械的 な粉砕処理能力を有する請求項 20記載の方法。  21. The method according to claim 20, wherein the pulverizer has a mechanical pulverization processing capacity utilizing impact energy by a ball media.
22. 前記粉 機は、 回転ポールミル、 振動ポールミル、 遊星ポールミルから なる群から選ばれる請求項 20又は 21記載の方法。  22. The method according to claim 20 or 21, wherein the powder is selected from the group consisting of a rotary pole mill, a vibrating pole mill, and a planetary pole mill.
23. 前記準備工程において、 (S i粉末の重量) ノ (マトリ ックス粉末中の Mgの重量) は、 36. 6/63. 4以下である請求項 15〜 22のいずれか 1 項記載の方法。  23. The method according to any one of claims 15 to 22, wherein in the preparation step, (weight of Si powder) no (weight of Mg in the matrix powder) is 36.6 / 63.4 or less. .
24. 前記加熱を、 150°C以上 350°C以下で行う請求項 1 5〜23のいず れか 1項記載の方法。  24. The method according to any one of claims 15 to 23, wherein the heating is performed at 150 ° C or higher and 350 ° C or lower.
25. 前記 M g 2 S iは、 前記マグネシゥム基複合材料を 1 00 w t %とした とき、 3 w t %以上である請求項 1 5〜 24のいずれか 1項記載の方法。 25. The method according to any one of claims 15 to 24, wherein the Mg 2 S i is 3 wt% or more when the magnesium-based composite material is 100 wt%.
26. マグネシウム (Mg) を有してなるマトリックス粉末とシリ コン (S i) 粉末とを配合してなり且つ前記マトリ ックス粉末中に前記 S i粉末が分散さ れてなるマグネシゥム基複合材料前駆体。 ' 26. Magnesium-based composite material precursor obtained by blending a matrix powder containing magnesium (Mg) and a silicon (Si) powder and dispersing the Si powder in the matrix powder . '
2 7. 前記前駆体が、 示差走査熱量分析 (D S C) 測定において、 Mg 2 S i 由来の発熱ピークを 1 50〜35 0°Cに有する請求項 26記載の前駆体。 2 7. The precursor, in differential scanning calorimetry (DSC) measurement, the precursor of claim 26 having an exothermic peak derived from Mg 2 S i to 1 50~35 0 ° C.
28. 前記前駆体は、 (S i粉末の重量) Z (マトリックス粉末中の Mgの重 量) が 36. 6/6 3. 4以下である請求項 26又は 2 7記載の前駆体。 28. The precursor according to claim 26 or 27, wherein the precursor has (weight of Si powder) Z (weight of Mg in the matrix powder) of 36.6 / 63.4 or less.
2 9. マグネシウム (Mg) を有してなるマトリックス粉末とシリコン (S i ) 粉末とを配合してなるマグネシウム基複合材料前駆体であって、 該前駆体は、 示差走查熱量分析 (DSC) 測定において、 Mg 2S i由来の発熱ピークを 1 5 0〜 350 °Cに有するマグネシウム基複合材料前駆体。 2 9. A magnesium-based composite material precursor obtained by blending a matrix powder having magnesium (Mg) and a silicon (S i) powder, wherein the precursor is a differential scanning calorimeter (DSC) A magnesium-based composite precursor having an exothermic peak derived from Mg 2 Si at 150 to 350 ° C. in the measurement.
30. 前記前駆体は、 (S i粉末の重量) / (マトリ ックス粉末中の Mgの重 量) が 36. 6/6 3. 4以下である請求項 29記載の前駆体。 30. The precursor according to claim 29, wherein the precursor has a ratio of (weight of Si powder) / (weight of Mg in matrix powder) of 36.6 / 63.4 or less.
3 1. マグネシウム (Mg) を有してなるマトリ ックス粉末とシリ コン (S i) 粉末とを配合して S iがマトリ ックス粉末中に分散してなる複合粉末を準備 する工程;及ぴ該複合粉末を容器に充填し加圧してマグネシウム基複合材料前駆 体を作製する工程を有するマグネシゥム基複合材料前駆体の製造方法。 3 1. A process of blending a matrix powder containing magnesium (Mg) and a silicon (Si) powder to prepare a composite powder in which Si is dispersed in the matrix powder; A method for producing a magnesium-based composite material precursor, comprising a step of filling a composite powder into a container and pressurizing the container to produce a magnesium-based composite material precursor.
3 2. 前記準備工程は、 a) 前記 S i粉末と前記マトリ ックス粉末とを配合し て配合粉末を得る工程;及ぴ b) 配合粉末を粉碎及び/又は圧着及びノ又は破砕 する工程を有する請求項 31記載の方法。 3 2. The preparing step includes a) a step of blending the Si powder and the matrix powder to obtain a blended powder; and b) a step of crushing and / or pressing and blending or crushing the blended powder. 32. The method of claim 31.
3 3. 前記準備工程は、 前記 b) を複数回繰り返す工程をさらに有する請求項 3 2記載の方法。  33. The method according to claim 32, wherein said preparing step further comprises a step of repeating step b) a plurality of times.
34. 前記準備工程の前記 b) の工程を、 粉砕機を用いて行う請求項 3 2又は 3 3記載の方法。  34. The method according to claim 32 or 33, wherein the step b) of the preparing step is performed using a pulverizer.
3 5. 前記粉砕機は、 ボールメディアによる衝撃エネルギーを利用した機械的 な粉砕処理能力を有する請求項 34記載の方法。  35. The method according to claim 34, wherein the crusher has a mechanical crushing capacity utilizing impact energy from ball media.
3 6. 前記粉砕機は、 回転ポールミル、 振動ポールミル、 遊星ボールミルから なる群から選ばれる請求項 34又は 35記載の方法。  36. The method according to claim 34 or 35, wherein the crusher is selected from the group consisting of a rotary pole mill, a vibrating pole mill, and a planetary ball mill.
3 7. 前記準備工程において、 (S i粉末の重量) / (マトリックス粉末中の Mgの重量) は、 36. 6/63. 4以下である請求項 3 1〜 3 6のいずれか 1 項記載の方法。  3 7. The method according to any one of claims 31 to 36, wherein in the preparation step, (weight of Si powder) / (weight of Mg in matrix powder) is 36.6 / 63.4 or less. the method of.
38. マグネシウム (Mg) を有してなるマトリックス中にマグネシウムシリ サイド (Mg 2S i ) が分散してなるマグネシウム基複合材料であって、 以下の A) 及ぴ B) から選ばれる少なくとも 1種の特性を有するマグネシウム基複合材 料: 38. A magnesium-based composite material in which magnesium silicide (Mg 2 S i) is dispersed in a matrix having magnesium (Mg), wherein at least one selected from the following A) and B) Magnesium-based composite material having the following characteristics:
A) 前記マグネシウム基複合材料のロックウェル硬度 (Eスケール) が 40以 上 105以下であるか、 及び/又は前記マグネシウム基複合材料のロックウェル 硬度 (Eスケール) が前記マグネシウム基複合材料のマグネシウムシリサイドを 除いた素地材料のロックウェル硬度 (Eスケール) よりも 20以上 80以下の値 で大きい;及ぴ . B) 前記マグネシウム基複合材料の引張強度が 10 OMP a以上 35 OMP a 以下、 及び Z又は前記マグネシウム基複合材料の引張強度が前記素地材料の引張 強度よりも 2 OMP a以上 1 0 OMP a以下の値で大きい。 A) The Rockwell hardness (E scale) of the magnesium-based composite material is 40 or more and 105 or less, and / or the Rockwell hardness (E scale) of the magnesium-based composite material is magnesium silicide of the magnesium-based composite material. Exceeding the Rockwell hardness (E scale) of the base material excluding the value of 20 to 80; B) The tensile strength of the magnesium-based composite material is 10 OMPa or more and 35 OMPa or less, and the tensile strength of Z or the magnesium-based composite material is 2 OMPa or more and 10 OMPa or less than the tensile strength of the base material. Large in value.
3 9. 前記 M g 2 S iは、 前記マグネシゥム基複合材料を 1 00 w t %とした とき、 3 w t %以上である請求項 38記載の材料。 3 9. The M g 2 S i, the Maguneshiumu group when the composite material with 1 00 wt%, material according to claim 38, wherein at 3 wt% or more.
PCT/JP2002/002968 2001-09-25 2002-03-27 Magnesium base composite material WO2003027341A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/490,412 US20050016638A1 (en) 2001-09-25 2002-09-17 Magnesium base composite material
CNB028185315A CN100567529C (en) 2001-09-25 2002-09-17 Magnesium base composite material
JP2003530902A JP3668811B2 (en) 2001-09-25 2002-09-17 Method for producing magnesium-based composite material
EP02763033A EP1433862A4 (en) 2001-09-25 2002-09-17 Magnesium base composite material
PCT/JP2002/009502 WO2003027342A1 (en) 2001-09-25 2002-09-17 Magnesium base composite material
JP2005022078A JP4140851B2 (en) 2001-09-25 2005-01-28 Magnesium-based composite material, compacted compact for producing magnesium-based composite material, and compacted compact manufacturing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-292118 2001-09-25
JP2001292117 2001-09-25
JP2001-292117 2001-09-25
JP2001292118 2001-09-25

Publications (1)

Publication Number Publication Date
WO2003027341A1 true WO2003027341A1 (en) 2003-04-03

Family

ID=26622832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002968 WO2003027341A1 (en) 2001-09-25 2002-03-27 Magnesium base composite material

Country Status (2)

Country Link
US (1) US20050016638A1 (en)
WO (1) WO2003027341A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013609A1 (en) 2009-07-27 2011-02-03 学校法人東京理科大学 Aluminum/magnesium/silicon composite material and method for producing same, thermoelectric conversion member utilizing said composite material, thermoelectric conversion element, and thermoelectric conversion module
CN102517489A (en) * 2011-12-20 2012-06-27 内蒙古五二特种材料工程技术研究中心 Method for preparing Mg2Si/Mg composites by recovered silicon powder
CN102644000A (en) * 2012-02-20 2012-08-22 上海交通大学 Preparation method of high-toughness metal-based nanometer composite material
US8282748B2 (en) 2003-11-07 2012-10-09 Mahle Gmbh Process for producing metal matrix composite materials
CN103451463A (en) * 2013-08-27 2013-12-18 李艳 Preparation method of Mg2Si enhanced Mg alloy composite material
JP2017152691A (en) * 2016-02-24 2017-08-31 三菱マテリアル株式会社 Method of manufacturing magnesium-based thermoelectric conversion material, method of manufacturing magnesium-based thermoelectric conversion element, magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and thermoelectric converter

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007002016T5 (en) * 2006-09-01 2009-07-23 National Institute Of Advanced Industrial Science And Technology High strength non-flammable magnesium alloy
JP5741561B2 (en) * 2012-12-04 2015-07-01 日本軽金属株式会社 Pellicle frame and manufacturing method thereof
CN103193234B (en) * 2013-04-12 2014-07-23 太原理工大学 Method for preparing magnesium silicide-based powder thermoelectric material by utilizing polysilicon byproduct
WO2017146095A1 (en) * 2016-02-24 2017-08-31 三菱マテリアル株式会社 Method for manufacturing magnesium-based thermoelectric conversion material, method for manufacturing magnesium-based thermoelectric conversion element, magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and thermoelectric conversion device
JP6981094B2 (en) * 2017-08-15 2021-12-15 三菱マテリアル株式会社 Manufacture method of magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and magnesium-based thermoelectric conversion material
CN111979441A (en) * 2020-08-03 2020-11-24 中信戴卡股份有限公司 Preparation method of aluminum-based composite material
CN115491568B (en) * 2022-09-27 2023-03-21 太原理工大学 Preparation method of SiC particle reinforced magnesium matrix composite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054009A (en) * 1998-08-07 2000-02-22 Yazaki Corp Production of alloy powder and production of thermoelement using it
JP3035615B1 (en) * 1999-03-26 2000-04-24 工業技術院長 Metal short wire dispersed thermoelectric material and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4174214A (en) * 1978-05-19 1979-11-13 Rheocast Corporation Wear resistant magnesium composite

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054009A (en) * 1998-08-07 2000-02-22 Yazaki Corp Production of alloy powder and production of thermoelement using it
JP3035615B1 (en) * 1999-03-26 2000-04-24 工業技術院長 Metal short wire dispersed thermoelectric material and method for producing the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIDEKI OGINUMA ET AL.: "Mg2Si no koso gosei ni oyobosu genryo funmatsu no eikyo", FUNTAI FUNMATSU YAKIN KYOKAI KOEN GAIYOSHU (HEISEI 13NENDO SHUNKI), 22 May 2001 (2001-05-22), pages 152, XP002953172 *
KATSUYOSHI KONDO ET AL.: "Bulk mechanical alloying ni yori sakuseishita Mg-33.3at%Si funmatsu no hanno seisei kyodo", FUNTAI FUNMATSU YAKIN KYOKAI KOEN GAIYOSHU (HEISEI 12NENDO SHUKI), 18 October 2000 (2000-10-18), pages 156, XP002953174 *
KATSUYOSHI KONDO ET AL.: "Koso goseiho o riyoshita Mg2Si bunsan keikinzoku zairyo no sakusei", FUNTAI FUNMATSU YAKIN KYOKAI KOEN GAIYOSHU (HEISEI 13NENDO SHUNKI), 22 May 2001 (2001-05-22), pages 154, XP002953175 *
KATSUYOSHI KONDO ET AL.: "Mg2Si kinzokukan kagobutsu no koso gosei ni oyobosu keisei atsuryoku no eikyo", FUNTAI FUNMATSU YAKIN KYOKAI KOEN GAIYOSHU (HEISE 13NENDO SHUNKI), 22 May 2001 (2001-05-22), pages 153, XP002953173 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8282748B2 (en) 2003-11-07 2012-10-09 Mahle Gmbh Process for producing metal matrix composite materials
WO2011013609A1 (en) 2009-07-27 2011-02-03 学校法人東京理科大学 Aluminum/magnesium/silicon composite material and method for producing same, thermoelectric conversion member utilizing said composite material, thermoelectric conversion element, and thermoelectric conversion module
CN102517489A (en) * 2011-12-20 2012-06-27 内蒙古五二特种材料工程技术研究中心 Method for preparing Mg2Si/Mg composites by recovered silicon powder
CN102517489B (en) * 2011-12-20 2013-06-19 内蒙古五二特种材料工程技术研究中心 Method for preparing Mg2Si/Mg composites by recovered silicon powder
CN102644000A (en) * 2012-02-20 2012-08-22 上海交通大学 Preparation method of high-toughness metal-based nanometer composite material
CN103451463A (en) * 2013-08-27 2013-12-18 李艳 Preparation method of Mg2Si enhanced Mg alloy composite material
CN103451463B (en) * 2013-08-27 2015-11-25 朱育盼 A kind of Mg 2si strengthens the preparation method of Mg alloy composite materials
JP2017152691A (en) * 2016-02-24 2017-08-31 三菱マテリアル株式会社 Method of manufacturing magnesium-based thermoelectric conversion material, method of manufacturing magnesium-based thermoelectric conversion element, magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and thermoelectric converter

Also Published As

Publication number Publication date
US20050016638A1 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP4140851B2 (en) Magnesium-based composite material, compacted compact for producing magnesium-based composite material, and compacted compact manufacturing apparatus
WO2003027341A1 (en) Magnesium base composite material
JP3668811B2 (en) Method for producing magnesium-based composite material
ES2294677T3 (en) PROCEDURE FOR THE PREPARATION OF A MOLIBDEN ALLOY.
AU2004257411B2 (en) Method for the production of fine metal powder, alloy powder and composite powder
US9410228B2 (en) Metal matrix composite, and preparation method thereof
KR20070094032A (en) Metallic powder blends
Alias et al. A review on the preparation of magnesium-based alloys prepared by powder metallurgy and the evolution of microstructure and mechanical properties
EP1772213A1 (en) Magnesium-base composite powder, magnesium-base alloy material and method for production thereof
TW201111321A (en) Tough coated hard particles consolidated in a tough matrix material
Li et al. Microstructure refinement and strengthening mechanisms of bimodal-sized and dual-phased (TiCn-Al3Tim)/Al hybrid composites assisted ultrasonic vibration
JP4215126B2 (en) Magnesium-based composite material and method for producing the same
ZA200504183B (en) Superfine particulate diamond sintered product of high purity and high hardness and method for production thereof
Krasnowski et al. Bulk amorphous Al85Fe15 alloy and Al85Fe15-B composites with amorphous or nanocrystalline-matrix produced by consolidation of mechanically alloyed powders
Chao et al. Effect of composition and sintering temperature on mechanical properties of ZrO2 particulate-reinforced titanium-matrix composite
Jayasathyakawin et al. Experimental investigations on effect of silicon carbide on microstructure and mechanical properties in Mg-3 wt% Al alloy matrix using powder metallurgy
JP2009542916A (en) Metal powder mixture
Alshataif et al. Synthesis, structure, and mechanical response of Cr0. 26Fe0. 24Al0. 5 and Cr0. 15Fe0. 14Al0. 30Cu0. 13Si0. 28 nanocrystallite entropy alloys
Dutkiewicz et al. Microstructure and mechanical properties of nanocrystalline titanium and Ti–Ta–Nb alloy manufactured using various deformation methods
JP4730338B2 (en) COMPOSITE MATERIAL FOR INJECTION MOLDING COMPRISING CERAMIC DISPERSED MAGNESIUM COMPOSITE MATERIAL AND ITS MANUFACTURING METHOD
JPWO2004062837A1 (en) Magnesium composite powder and method for producing the same, magnesium-based composite material and method for producing the same
Lee et al. Shear localization of nanoscale W in metallic glass composites
Mardi et al. Enhancing compressive response of Mg-6Al alloy using Al2O3 nanoparticles
TWI298657B (en)
JPH07207302A (en) Production of aln dispersion type aluminum alloy composite material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TN TR TT UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE CH CY DE DK FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase