EP1978120B1 - Aluminium-silicon alloy and method for production of same - Google Patents

Aluminium-silicon alloy and method for production of same Download PDF

Info

Publication number
EP1978120B1
EP1978120B1 EP20080075254 EP08075254A EP1978120B1 EP 1978120 B1 EP1978120 B1 EP 1978120B1 EP 20080075254 EP20080075254 EP 20080075254 EP 08075254 A EP08075254 A EP 08075254A EP 1978120 B1 EP1978120 B1 EP 1978120B1
Authority
EP
European Patent Office
Prior art keywords
weight
aluminium
carbon
silicon
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20080075254
Other languages
German (de)
French (fr)
Other versions
EP1978120A1 (en
Inventor
Kostyantyn Gzovsky Dr.-Ing.
Dr.-Ing. Babette Tonn Prof.
Hennadiy Zak Dr.-Ing.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Clausthal
Original Assignee
Technische Universitaet Clausthal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Clausthal filed Critical Technische Universitaet Clausthal
Publication of EP1978120A1 publication Critical patent/EP1978120A1/en
Application granted granted Critical
Publication of EP1978120B1 publication Critical patent/EP1978120B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys

Definitions

  • the invention relates to high and heat resistant silicon-containing aluminum casting alloys, their production and their use for the production of engine components.
  • Al casting alloys known. Al castings are widely used because of their low specific weight, ease of molding and ease of processing. Also, through various casting methods, complicated workpieces such as e.g. Make pistons, cylinder heads, crankcases or engine blocks.
  • Al-Si alloys A proven alloy group for the production of engine components are Al-Si alloys. These materials are typically held with silicon between 6 and 18 wt .-%, in some cases up to 24 wt .-% and with admixtures of magnesium from 1 to 1.5 wt .-%, copper between 1 and 4 wt. % and often also nickel between 1 and 3 wt.% alloyed (catalog "Aluminum Casting Alloys", VAW-IMCO).
  • a heat resistant alloy with reduced specific gravity is used in the DE-PS 747 355 described as particularly advantageous for pistons.
  • This material is characterized by a magnesium content between 4 and 12 wt .-% and a silicon content between 0.5 and 5 wt .-% of. Furthermore, between 0.2 and 5 wt .-% copper and / or nickel may be alloyed.
  • the high magnesium content leads to gas porosity due to the strong hydrogen absorption. The additional oxidation also involves the risk of oxide inclusions, which significantly degrade the mechanical properties of the casting.
  • an aluminum-silicon-magnesium alloy for molded parts in the automotive industry that contain about 6.0 to 8.0 wt% silicon, about 0.12 to about 0.25 wt% magnesium, less than or equal to about 0.35 wt.% Copper, less than or equal to about 4% zinc, less than or equal to about 0.6 wt.% Manganese and less than or equal to about 0.15 wt.% Iron, the casting being a T5 or T6 is subjected to heat treatment.
  • the alloy contains no titanium and no zirconium.
  • a cast alloy is known for the same purpose, this aluminum alloy being about 3.5 to 5.5% zinc, about 1 to 1.5% magnesium, less than about 1% silicon, less than about 0.3% manganese, and less than about 0.3% iron or other incidental impurities contains.
  • the alloy contains no titanium and no zirconium.
  • the intermetallic phases such as Al 6 Mn, Al 3 Fe, Al 7 Cr, Al 3 Ni, Al 8 Fe 2 Si, Al 7 Cu 4 Ni, Al 15 Mn 3 Si 2 , Al 5 FeSi, Al 3 Ti and Al 3 Zr is unaffected by thermal long-term stress and, with favorable design (in quantity, size, shape and distribution), can make a considerable contribution to increasing the mechanical properties of the Al-Si alloys for engine construction.
  • it is of particular importance that the homogeneous distribution and fine formation of the intermetallic phases in the cast structure is ensured in order not to impair the ductility of the alloy and its casting technology properties.
  • the invention has for its object to provide a suitable alloy for the production of engine components, which has high strength, heat resistance, good creep strength and sufficient ductility with low susceptibility to corrosion and is also inexpensive.
  • the aluminum-silicon casting alloy contains 5 to 18 wt .-%, in particular 12.5 to 14.5 wt .-% silicon.
  • the aluminum-silicon casting alloy according to the invention is preferably characterized by the fact that in its microstructure fine primary silicon (less than 50 ⁇ m) and refined eutectic are present simultaneously, as can be seen from the Schüff image. This condition is particularly desirable in near and hypereutectic Al-Si alloys.
  • the degree of finishing of the eutectic can be visually assessed by the foundry expert on the basis of the forms of formation of the eutectic silicon precipitates, for example with the aid of micrographs. For the visual assessment see also " Foundry practice "No. 11/12 - 1993, page 206-209, G. Chai, L. Bifferud," Effective refining with strontium ".
  • the carbon content according to the invention causes a change in the overall solidification behavior of the Al-Si casting alloys and brings about an excellent microstructure modification.
  • essential features of the structure modification by carbon are a considerable refining and homogeneous distribution of the intermetallic phases, a good refinement of the Al-Si eutectic and good refining of the primary silicon crystals. This results in a significant improvement of the mechanical and casting technology properties.
  • the basic constituents selected for the composition are melted together.
  • the melting temperature is preferably from 650 ° C to 1000 ° C, more preferably from 720 ° C to 950 ° C. Then it is poured into a mold. "Melted together” also covers the gradual metering of all components into a common melt.
  • Carbon can be used as elemental carbon, e.g. Graphite, but also be added in the form of a compound or master alloy.
  • the carbon content is achieved in particular by adding chemical carbon compounds and / or their mixtures. This can also be done by adding powdered carbides and carbonitrides, also in the form of a sintered product of carbides and carbonitrides.
  • a carbonaceous aluminum master alloy may be incorporated into the melt from the remainder of the alloyed ingredients or may be added in advance to the components to be melted.
  • the carbonaceous additives can contain not only carbon but also phosphorus and / or nitrogen.
  • a particularly preferred method of this invention is to use an aluminium-titanium-carbon master alloy.
  • castings produced from the alloy according to the invention can be subjected to all heat treatments.
  • the aluminum-silicon GUS alloys according to the invention are particularly suitable for casting pistons and other machine parts for internal combustion engines, for cylinder heads, crankcases, liners or engine blocks.
  • the solution of the object of the invention therefore also includes these uses.
  • the secondary alloy AlSi 12 CuNiMg was selected as representative of the large group of Al-Si casting alloys.
  • the experimental alloy was in cylindrical specimens with a casting temperature of 780 ° C in a reduced to 300 ° C. heated steel mold. Carbon was added using the self-made Al-Ti-C master alloy.
  • a medium-frequency induction furnace was used to produce the AlTi 6 C 1 alloy.
  • 2000 g of AlTi 6 pre-alloy was first melted at 1400 ° C.
  • To this melt was added 30 grams of graphite powder wrapped in aluminum foil.
  • the casting of the Al-Ti-C master alloy thus produced was carried out after a holding time of about 30 in a copper mold, the master alloy consists of an aluminum matrix, are embedded in the Al 3 Ti and TiC particles.
  • Table 1 shows the composition of the alloys investigated. ⁇ u> Table 1 ⁇ / u> Al-Si Cast Alloy Composition,% by Weight Si C Cu Ni mg Fe Mn Cr Ti Zn Erfg. Leg. 1 12.4 0,003 1.3 0.8 1.4 1.2 0.3 0.15 0.07 0.3 Compare Leg.2 12.6 - 1.5 0.9 1.6 1.3 0.4 0.13 0.05 0.4
  • the secondary alloy AlSi 12 CuNiMg has very coarse needle-shaped iron-containing phases in the cast structure (predominantly Al 5 FeSi needles), Fig. 1 .
  • alloying with the carbon causes both a well-refined eutectic and precipitates of small intermetallic phases in a very uniform distribution, Fig.2 ,
  • a hypereutectic Al-Si casting alloy was compared to the alloy of the invention having an approximately similar composition, Table 3. Both alloys were treated with an equal amount of phosphorus.
  • Table 3 ⁇ / u> Composition of hypereutectic Al-Si casting alloys, wt% Si Cu C mg Fe Mn Ti Zn P Erfg. Leg. 3 14.1 3.7 0.02 0.33 0.94 0.29 0.21 0.33 0,006 Comp. Leg. 4 14.6 4.1 - 0.32 0.73 0.28 0.22 0.35 0,006
  • the alloy 5 according to the invention has a good strength for a casting alloy, as results from the above-mentioned tabular data.
  • the alloy 5 according to the invention has a significantly better heat resistance than the comparative alloy 6, the R p0.2 value of which drops sharply at 250 ° C. after a preliminary storage at 250 ° C. when the mechanical properties are measured at 250 ° C.
  • heat-resistant we mean here an alloy whose R p0.2 value after storage at 250 ° C. for at least 50 h, tested at 250 ° C., is above 55 MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

Die Erfindung betrifft hoch- und warmfeste siliziumhaltige Aluminium-Gusslegierungen, deren Herstellung und deren Verwendung zur Herstellung von Motorenkomponenten.The invention relates to high and heat resistant silicon-containing aluminum casting alloys, their production and their use for the production of engine components.

Zur Reduzierung von Emissionen und Kraftstoffverbrauch sowie zur Steigerung der Motorleistung sind in den letzten Jahren die Verbrennungsdrucke und Verbrennungstemperaturen der Bennstoffmotoren bzw. Verbrennungskraftmaschinen, vor allem im Dieselmotor, gestiegen. Dies führte zu erhöhten Anforderungen an die thermomechanischen Belastungen für Motorenkomponenten.To reduce emissions and fuel consumption as well as to increase engine power, the combustion pressures and combustion temperatures of fuel engines and internal combustion engines have increased in recent years, especially in the diesel engine. This led to increased demands on the thermo-mechanical loads for engine components.

Im Stand der Technik sind insbesondere im Motorenbau. Al-Gussiegierungen bekannt. Al-Gussteile finden aufgrund ihres geringen spezifischen Gewichts, der einfachen Formgebung und leichten Verarbeitbarkeit vielseitig Verwendung. Ebenfalls lassen sich über verschiedene Gießverfahren komplizierte Werkstücke, wie z.B. Kolben, Zylinderköpfe, Kurbelgehäuse oder Motorblöcke herstellen.In the prior art, in particular in engine construction. Al casting alloys known. Al castings are widely used because of their low specific weight, ease of molding and ease of processing. Also, through various casting methods, complicated workpieces such as e.g. Make pistons, cylinder heads, crankcases or engine blocks.

Eine bewährte Legierungsgruppe zur Herstellung von Motorenkomponenten sind Al-Si-Legierungen. Diese Werkstoffe werden typischerweise mit Silizium-gehalten zwischen 6 und 18 Gew.-%, in Einzelfällen auch bis zu 24 Gew.-% sowie mit Beimengungen von Magnesium von 1 bis 1,5 Gew.-%, Kupfer zwischen 1 und 4 Gew.-% und häufig auch Nickel zwischen 1 bis 3 Gew.-% legiert (Katalog "Aluminium-Gusslegierungen", VAW-IMCO).A proven alloy group for the production of engine components are Al-Si alloys. These materials are typically held with silicon between 6 and 18 wt .-%, in some cases up to 24 wt .-% and with admixtures of magnesium from 1 to 1.5 wt .-%, copper between 1 and 4 wt. % and often also nickel between 1 and 3 wt.% alloyed (catalog "Aluminum Casting Alloys", VAW-IMCO).

Um die Warmfestigkeit der Al-Si-Legierungen zu verbessern, wird z.B. gemäß der US 6 419 769 B1 empfohlen, den Kupfergehalt zwischen 5,6 und 8 Gew.-% einzustellen. Der Verbesserung der mechanischen Festigkeit stehen aber in diesem Fall eine Verschlechterung der Duktilität, Steigerung des spezifischen Gewichts sowie eine verminderte Korrosionsbeständigkeit gegenüber.In order to improve the heat resistance of the Al-Si alloys, for example, according to the US Pat. No. 6,419,769 B1 recommended to adjust the copper content between 5.6 and 8 wt .-%. However, in this case, the improvement of the mechanical strength is opposed to a deterioration in ductility, increase in specific gravity, and reduced corrosion resistance.

Eine warmfeste Legierung mit reduziertem spezifischem Gewicht wird in der DE-PS 747 355 als für Kolben besonders vorteilhaft beschrieben. Dieser Werkstoff zeichnet sich durch einen Magnesiumgehalt zwischen 4 und 12 Gew.-% und einen Siliziumgehalt zwischen 0,5 und 5 Gew.-% aus. Ferner können zwischen 0,2 und 5 Gew.-% Kupfer und/oder Nickel zulegiert sein. Der hohe Magnesiumgehalt führt wegen der starken Wasserstoffaufnahme zur Gasporosität. Die zusätzliche Oxidation birgt darüberhinaus die Gefahr von Oxideinschlüssen, die die mechanischen Eigenschaften des Gussteils erheblich verschlechtern.A heat resistant alloy with reduced specific gravity is used in the DE-PS 747 355 described as particularly advantageous for pistons. This material is characterized by a magnesium content between 4 and 12 wt .-% and a silicon content between 0.5 and 5 wt .-% of. Furthermore, between 0.2 and 5 wt .-% copper and / or nickel may be alloyed. The high magnesium content leads to gas porosity due to the strong hydrogen absorption. The additional oxidation also involves the risk of oxide inclusions, which significantly degrade the mechanical properties of the casting.

Belov N. et al. zeigen in "Multicomponent phase diagrams: applications for commercial aluminium alloys", 2005, Elsevier, Oxford, UK, XP009104020, ISBN: 0-080-44537-3, Seite 341 bis 345 , Al-C-Si-Phasendiagramme, die die Kristallstruktur reiner Aluminium-Kohlenstoff-Siliziumphasen angeben, jedoch keinen Aufschluss über deren Beeinflussung durch andere Legierungselemente, insbesondere nicht bei zunehmendem Gehalt an Titan, Zirkonium oder Eisen. Belov N. et al. in "Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys", 2005, Elsevier, Oxford, UK, XP009104020, ISBN: 0-080-44537-3, pages 341-345 , Al-C-Si phase diagrams, which indicate the crystal structure of pure aluminum-carbon silicon phases, but no information about their influence by other alloying elements, especially not with increasing content of titanium, zirconium or iron.

Chunxian Xu et al., beschrieben in "Modifying effect of Al-Ti-C-P Master Alloy on hypereutectic Al-Si Alloy", 2006, Beijing International Materials Week, 30. Juni 2006 (2006-06-30), Seiten 947 bis 951 die Verwendung einer ganz bestimmten, kristallographisch untersuchten Al-Ti-C-P Masterlegierung zur Gefügeverbesserung hypereutektischer Al-Si-Legierungen. Es gelingt eine Feinung des Primärsiliziums schon mit nur 2 Gew.-% des Al-Ti-C-P-Master Alloys. Chunxian Xu et al., Described in "Modifying effect of Al-Ti CP Master Alloy on Hypereutectic Al-Si Alloy", 2006, Beijing International Materials Week, June 30, 2006 (2006-06-30), pages 947-951 the use of a very specific, crystallographically investigated Al-Ti-CP master alloy to improve the microstructure of hypereutectic Al-Si alloys. It is possible to refine the primary silicon even with only 2 wt .-% of Al-Ti-CP-Master Alloys.

Aus der W020071051162 A2 ist eine Aluminium-Silizium-Magnesium-Legierung für Formgussteile in der Automobilindustrie bekannt, die etwa 6,0 bis 8,0 Gew.-% Silizium, etwa 0,12 bis etwa 0,25 Gew.-% Magnesium, weniger gleich oder etwa 0,35 Gew.-% Kupfer, weniger gleich oder etwa 4 % Zink, weniger gleich oder etwa 0,6 Gew.-% Mangan und weniger oder gleich etwa 0,15 Gew.-% Eisen enthält, wobei der Gusskörper einer T5 oder T6 Wärmebehandlung unterzogen wird. Die Legierung enthält kein Titan und kein Zirkonium.From the W020071051162 A2 For example, an aluminum-silicon-magnesium alloy is known for molded parts in the automotive industry that contain about 6.0 to 8.0 wt% silicon, about 0.12 to about 0.25 wt% magnesium, less than or equal to about 0.35 wt.% Copper, less than or equal to about 4% zinc, less than or equal to about 0.6 wt.% Manganese and less than or equal to about 0.15 wt.% Iron, the casting being a T5 or T6 is subjected to heat treatment. The alloy contains no titanium and no zirconium.

Aus der US 2005/0238529 A1 ist eine Gusslegierung für den gleichen Zweck bekannt, wobei diese Aluminiumlegierung etwa 3,5 bis 5,5 % Zink, von etwa 1 bis 1,5 % Magnesium, weniger als etwa 1 % Silizium, weniger als etwa 0,3 % Mangan und weniger als etwa 0,3 % Eisen oder andere zufällige Verunreinigungen enthält. Die Legierung enthält kein Titan und kein Zirkonium.From the US 2005/0238529 A1 For example, a cast alloy is known for the same purpose, this aluminum alloy being about 3.5 to 5.5% zinc, about 1 to 1.5% magnesium, less than about 1% silicon, less than about 0.3% manganese, and less than about 0.3% iron or other incidental impurities contains. The alloy contains no titanium and no zirconium.

Soweit sich bei den vorbekannten Al-Gusslegierungen über eine Wärmebehandlung festigkeitssteigernde Mg2Si- und Al2Cu-Ausscheidungen bilden, sind diese oberhalb 150 °C nicht stabil und daher den thermomechanischen Belastungen moderner Motoren nicht gewachsen. Dagegen bleiben die intermetallischen Phasen, wie Al6Mn, Al3Fe, Al7Cr, Al3Ni, Al8Fe2Si, Al7Cu4Ni, Al15Mn3Si2, Al5FeSi, Al3Ti und Al3Zr bei thermischer Langzeitbeanspruchung unbeeinflusst und können bei günstiger Ausbildung (in Menge, Größe, Form und Verteilung) einen erheblichen Beitrag zur Steigerung der mechanischen Eigenschaften der Al-Si-Legierungen für den Motorenbau leisten. Dabei ist jedoch von besonderer Bedeutung, dass die homogene Verteilung und feine Ausbildung der intermetallischen Phasen im Gussgefügte gewährleistet wird, um die Duktilität der Legierung und ihre gießtechnologischen Eigenschaften nicht zu beeinträchtigen.As far as strength-increasing Mg 2 Si and Al 2 Cu precipitates form in the previously known Al casting alloys via a heat treatment, they are not stable above 150 ° C. and therefore can not cope with the thermomechanical loads of modern motors. By contrast, the intermetallic phases, such as Al 6 Mn, Al 3 Fe, Al 7 Cr, Al 3 Ni, Al 8 Fe 2 Si, Al 7 Cu 4 Ni, Al 15 Mn 3 Si 2 , Al 5 FeSi, Al 3 Ti and Al 3 Zr is unaffected by thermal long-term stress and, with favorable design (in quantity, size, shape and distribution), can make a considerable contribution to increasing the mechanical properties of the Al-Si alloys for engine construction. However, it is of particular importance that the homogeneous distribution and fine formation of the intermetallic phases in the cast structure is ensured in order not to impair the ductility of the alloy and its casting technology properties.

Im Patent DE 101 17 298 C1 wird eine Möglichkeit zur Gefügemodifizierung der AlSi-Basislegierung durch Zugabe von bis zu 3 Gew.-% Seltenen Erden offenbart. Die Zusätze an Seltenen Erden bewirken eine wesentliche Feinung der intermetallischen Phasen, die eine erhebliche Verbesserung der mechanischen Eigenschaften insbesondere Dauerfestigkeit bei erhöhten Temperaturen, zur Folge hat. Die Seltenen Erden sind jedoch sehr teuer und werden in der Praxis selten eingesetzt.In the patent DE 101 17 298 C1 discloses a way to modify the texture of the AlSi base alloy by adding up to 3% by weight of rare earths. The additions of rare earths cause a significant refining of the intermetallic phases, which results in a considerable improvement of the mechanical properties, in particular fatigue strength at elevated temperatures. However, the rare earths are very expensive and rarely used in practice.

Der Erfindung liegt die Aufgabe zugrunde, eine für die Herstellung von Motorenkomponenten geeignete Legierung bereitzustellen, die eine hohe Festigkeit, Warmfestigkeit, gute Kriechfestigkeit sowie ausreichende Duktilität bei gleichzeitig geringer Korrosionsanfälligkeit aufweist und zudem preiswert ist.The invention has for its object to provide a suitable alloy for the production of engine components, which has high strength, heat resistance, good creep strength and sufficient ductility with low susceptibility to corrosion and is also inexpensive.

Diese Aufgabe wird erfindungsgemäß durch eine Al-Si-Gusslegierung mit den Merkmalen des Anspruchs 1, dem zugehörigen Herstellungsverfahren gemäß Anspruch 6 und der zugehörigen Verwendung nach Anspruch 12 gelöst.This object is achieved by an Al-Si casting alloy with the features of claim 1, the associated manufacturing method according to claim 6 and the associated use according to claim 12.

Vorzugsweise enthält die Aluminium-Silizium-Gusslegierung 5 bis 18 Gew.-%, insbesondere 12,5 bis 14,5 Gew.-% Silizium.Preferably, the aluminum-silicon casting alloy contains 5 to 18 wt .-%, in particular 12.5 to 14.5 wt .-% silicon.

Weitere Elemente sind in der Legierung vorhanden, wie oben angegeben Hierbei handelt es sich um Zusätze, die im Vergleich
mit Aluminium und Silizium in untergeordneter Menge beigegeben wurden. So können beispielsweise die folgenden Mengen an zusätzlichen Legierungsbestandteilen für das gewünschte Eigenschaftsprofil von Vorteil sein:

  • 0,1 bis 1,5 Gew.%, insbesondere 0,1 bis 0,6 Gew.-% Magnesium;
  • bis 0,5 Gew.-% Titan;
  • bis 0,7 Gew.-%, insbesondere 0,4 Gew.-% Zirkonium;
  • 0,001 bis 1,2 Gew.-%, insbesondere 0,001 bis 0,6 Gew.-% Mangan;
  • bis 0,8 Gew.-% Eisen;
  • 0,001 bis 0,5 Gew.-%, insbesondere 0,1 bis 0,4 Gew.-% Kobalt;
  • 0,001 bis 0,5 Gew.-%, insbesondere 0,1 bis 0,4 Gew.-% Chrom;
  • 0,0001 bis 0,1 Gew.-%, insbesondere 0,005 bis 0,01 Gew.-% Beryllium;
  • 0,001 bis 2 Gew.-%, insbesondere 0,1 bis 1,5 Gew,-% Zink;
  • 0,001 bis 4 Gew.-%, insbesondere 0,3 bis 1,8 Gew.-% Kupfer;
  • 0,001 bis 4 Gew.-%, insbesondere 0,3 bis 3,0 Gew.-% Nickel;
  • 0,001 bis 0,4 Gew.-%, insbesondere 0,05 bis 0,2 Gew.-% Vanadium;
  • 0,0001 bis 1,2 Gew.-%, insbesondere 0,005 bis 0,5 Gew.-% Hafnium;
  • 0,0001 bis 0,6 Gew.-%, insbesondere 0,005 bis 0,4 Gew.-% Niob;
  • 0,0001 bis 0,4 Gew.-%, insbesondere 0,005 bis 0,2 Gew.-% Blei;
  • 0,0001 bis 0,08 Gew.-%, insbesondere 0,005 bis 0,04 Gew.-% Strontium;
  • 0,0001 bis 0,2 Gew.-%, insbesondere 0,002 bis 0,02 Gew.-% Natrium;
  • 0,0001 bis 0,006 Gew.-%, insbesondere 0,002 bis 0,004 Gew.-% Calcium;
  • 0,0001 bis 0.08 Gew.-%, insbesondere 0,01 bis 0,06 Gew.-% Bor;
  • 0,0001 bis 0,4 Gew.-%, insbesondere 0,05 bis 0,3 Gew.-% Cer;
  • 0,0001 bis 0,6 Gew.-%, insbesondere 0,05 bis 0,3 Gew.-% Scandium;
  • 0,0001 bis 0,1 Gew.-%, insbesondere 0,001 bis 0,01 Gew.-% Phosphor.
Other elements are present in the alloy, as stated above. These are additives that in comparison
were added with aluminum and silicon in a minor amount. For example, the following amounts of additional alloying ingredients may be beneficial for the desired property profile:
  • 0.1 to 1.5% by weight, in particular 0.1 to 0.6% by weight of magnesium;
  • to 0.5% by weight of titanium;
  • up to 0.7% by weight, in particular 0.4% by weight, of zirconium;
  • 0.001 to 1.2 wt .-%, in particular 0.001 to 0.6 wt .-% manganese;
  • up to 0.8% by weight of iron;
  • 0.001 to 0.5 wt .-%, in particular 0.1 to 0.4 wt .-% cobalt;
  • 0.001 to 0.5 wt .-%, in particular 0.1 to 0.4 wt .-% chromium;
  • 0.0001 to 0.1 wt .-%, in particular 0.005 to 0.01 wt .-% beryllium;
  • From 0.001 to 2% by weight, in particular from 0.1 to 1.5% by weight, of zinc;
  • 0.001 to 4 wt .-%, in particular 0.3 to 1.8 wt .-% copper;
  • 0.001 to 4 wt .-%, in particular 0.3 to 3.0 wt .-% nickel;
  • 0.001 to 0.4 wt .-%, in particular 0.05 to 0.2 wt .-% vanadium;
  • 0.0001 to 1.2 wt .-%, in particular 0.005 to 0.5 wt .-% hafnium;
  • 0.0001 to 0.6% by weight, especially 0.005 to 0.4% by weight of niobium;
  • 0.0001 to 0.4 wt .-%, in particular 0.005 to 0.2 wt .-% lead;
  • 0.0001 to 0.08 wt .-%, in particular 0.005 to 0.04 wt .-% strontium;
  • 0.0001 to 0.2% by weight, especially 0.002 to 0.02% by weight of sodium;
  • 0.0001 to 0.006 wt .-%, in particular 0.002 to 0.004 wt .-% calcium;
  • 0.0001 to 0.08% by weight, in particular 0.01 to 0.06% by weight of boron;
  • 0.0001 to 0.4% by weight, in particular 0.05 to 0.3% by weight of cerium;
  • From 0.0001 to 0.6% by weight, in particular from 0.05 to 0.3% by weight of scandium;
  • 0.0001 to 0.1 wt .-%, in particular 0.001 to 0.01 wt .-% phosphorus.

Die Aluminium-Silizium-Gusslegierung nach der Erfindung zeichnet sich vorzugsweise dadurch aus, dass in ihrem Gefüge feines Primärsilizium (kleiner als 50 µm) und veredeltes Eutektikum gleichzeitig vorliegen, wie anhand des Schüffbildes zu erkennen ist. Dieser Zustand ist bei nah- und übereutektischen Al-Si-Legierungen besonders anzustreben.The aluminum-silicon casting alloy according to the invention is preferably characterized by the fact that in its microstructure fine primary silicon (less than 50 μm) and refined eutectic are present simultaneously, as can be seen from the Schüff image. This condition is particularly desirable in near and hypereutectic Al-Si alloys.

Der Veredelungsgrad des Eutektikums kann vom Gießereifachmann anhand der Ausbildungsformen der eutektischen Silizium-Ausscheidungen visuell - beispielsweise mit Hilfe von Schliffbildern - beurteilt werden. Für die visuelle Beurteilung siehe auch " Gießerei-Praxis" Nr. 11/12 - 1993, Seite 206 - 209, G. Chai, L. Bäckerud, "Wirksame Veredelung mit Strontium ".The degree of finishing of the eutectic can be visually assessed by the foundry expert on the basis of the forms of formation of the eutectic silicon precipitates, for example with the aid of micrographs. For the visual assessment see also " Foundry practice "No. 11/12 - 1993, page 206-209, G. Chai, L. Bäckerud," Effective refining with strontium ".

Es hat sich gezeigt. dass der erfindungsgemäße Kohlenstoffgehalt eine Änderung des gesamten Erstarrungsverhaltens der Al-Si-Gusslegierungen bewirkt und eine ausgezeichnet Gefügemodifizierung mit sich bringt. Als wesentliche Merkmale der Gefügemodifizierung durch Kohlenstoff sind eine erhebliche Feinung und homogene Verteilung der intermetallischen Phasen, eine gute Veredelung des Al-Si-Eutektikums und gute Feinung der Primärsiliziumkristalle zu nennen. Das hat eine deutliche Verbesserung der mechanischen und gießtechnologischen Eigenschaften zur Folge.It has shown. that the carbon content according to the invention causes a change in the overall solidification behavior of the Al-Si casting alloys and brings about an excellent microstructure modification. As essential features of the structure modification by carbon are a considerable refining and homogeneous distribution of the intermetallic phases, a good refinement of the Al-Si eutectic and good refining of the primary silicon crystals. This results in a significant improvement of the mechanical and casting technology properties.

Durch Einstellung des erfindungsgemäßen Kohlenstoffgehaltes ist es auch möglich, die Konzentrationsgrenzen wichtiger Legierungskomponenten, wie Titan, Zirkonium, Eisen, Mangan, Chrom, Kobalt, Molybdän und je nach Anwendungsfall anderer Übergangselemente, zu höheren Werten zu verschieben, ohne Legierungsqualität dabei zu beeinträchtigen.By adjusting the carbon content according to the invention, it is also possible to shift the concentration limits of important alloy components, such as titanium, zirconium, iron, manganese, chromium, cobalt, molybdenum and, depending on the application of other transition elements, to higher values without impairing alloy quality.

Bei bekannten Al-Si-Legierungen mit Zirkonium-Gehalten von über 0,3 Gew.-%, Titan-Gehalten von über 0,3 Gew.-% oder Eisengehalten von über 0,6 Gew.-% bilden sich im Gefüge sehr lange nadelförmige spröde Phasen.In known Al-Si alloys with zirconium contents of more than 0.3% by weight, titanium contents of more than 0.3% by weight or iron contents of more than 0.6% by weight, the structure is very long acicular brittle phases.

Die Bildung dieser groben intermetallischen Phasen, wie sie bei den konventionellen Aluminiumlegierungen zu erwarten wäre, d. h. vor allem langer Nadeln intermetallischer Phasen mit Übergangselementen wie z. B. Al3Zr, Al3Ti und Al5FeSi, wird durch Kohlenstoff unterdrückt. Die für hohe Gehalte an Übergangselementen typischen sehr langen nadelförmigen. intermetallischen Phasen erscheinen in den kohlenstoffhaltigen Al-Si-Legierungen meist als "Chinesische Schrift" bzw. als kleine Plättchen bis zu maximal 30 - 40 µm Länge. Dies bringt wesentliche Vorteile mit sich, wie z. B. eine erhebliche Verbesserung der Kornfeinungswirkung der Übergangselemente, sowie eine deutliche Steigerung der mechanischen Eigenschaften, Warm-, Kriech- und Dauerfestigkeit der erfindungsgemäßen Legierung. Beim Gießen zeigt die Schmelze ein deutlich verbessertes Formfüllungs- und Fließverhalten, und an den fertigen Gussteilen kann eine merklich erhöhte Gussqualität und insbesondere eine wesentlich geringere Gasporosität nachgewiesen werden.The formation of these coarse intermetallic phases, as would be expected in the conventional aluminum alloys, ie especially long needles of intermetallic phases with transition elements such. As Al 3 Zr, Al 3 Ti and Al 5 FeSi, is suppressed by carbon. The very long needle-shaped ones typical for high contents of transition elements. Intermetallic phases appear in the carbon-containing Al-Si alloys mostly as "Chinese writing" or as small platelets up to a maximum of 30-40 μm in length. This brings significant benefits, such. As a significant improvement in the grain refining effect of the transition elements, as well as a significant increase in the mechanical properties, hot, creep and fatigue strength of the alloy of the invention. During casting, the melt shows a significantly improved mold filling and flow behavior, and the finished castings can be a significantly increased casting quality and in particular a significantly lower gas porosity can be detected.

Bei übereutektischen Al-Si-Legierungen ist die gleichzeitige Feinung des primären Siliziums, die Veredelung des eutektischen Siliziums sowie die möglichst kleine Ausbildung und homogene Verteilung der intermetallischen Phasen für die Einstellung des gewünschten Eigenschaftsprofils besonders wichtig. Diese seit langem angestrebte Modifizierung der Gefüge konnte bisher nicht erzielt werden, da sich die Wirkungen von Strontium und Phosphor gegenseitig aufheben. Durch Zulegieren der naheeutektischen und übereutektischen Al-Si-Legierungen (besonders für Kolben und Motorblöcke) mit dem Kohlenstoff bei gleichzeitiger Zugabe von bis zu 100 ppm Phosphor ist es gelungen, die gewünschte kombinierte Gefügebeeinflussung zu erreichen.In hypereutectic Al-Si alloys, the simultaneous refining of the primary silicon, the refinement of the eutectic silicon, and the smallest possible formation and homogeneous distribution of the intermetallic phases are particularly important for setting the desired property profile. This long-desired modification of the structure could not be achieved so far, since the effects of strontium and phosphorus cancel each other out. By Zulegieren the Near-eutectic and hypereutectic Al-Si alloys (especially for pistons and engine blocks) with the carbon and simultaneous addition of up to 100 ppm of phosphorus have achieved the desired combined microstructural influence.

Zur Verarbeitung der erfindungsgemäßen Legierung sind grundsätzlich alle Gießverfahren geeignet. Hierzu gehören u. a. Sandguss, Vollformguss, Schwerkraft-Kokillenguss, Niederdruck-Kokillenguss, Differenzdruck-Kokillenguss, Druckguss und Vakuum-Druckguss.For the processing of the alloy according to the invention, basically all casting methods are suitable. These include u. a. Sand casting, full mold casting, gravity die casting, low pressure die casting, differential die casting, die casting and vacuum die casting.

Für die Herstellung der erfindungsgemäßen Aluminium-Silizium-Gusslegierung ist vorzugsweise vorgesehen, dass die für die Zusammensetzung ausgewählten Grundbestandteile gemeinsam erschmolzen werden. Die Schmelztemperatur beträgt vorzugsweise von 650 °C bis 1000 °C, weiter vorzugsweise von 720 °C bis 950 °C. Anschließend wird in eine Gussform abgegossen. "Gemeinsam erschmolzen" erfasst auch das allmähliche Zudosieren aller Bestandteile in eine gemeinsame Schmelze. Kohlenstoff kann als elementarer Kohlenstoff, z.B. Graphit, aber auch in Form einer Verbindung oder Vorlegierung zugegeben werden.For the production of the aluminum-silicon casting alloy according to the invention, it is preferably provided that the basic constituents selected for the composition are melted together. The melting temperature is preferably from 650 ° C to 1000 ° C, more preferably from 720 ° C to 950 ° C. Then it is poured into a mold. "Melted together" also covers the gradual metering of all components into a common melt. Carbon can be used as elemental carbon, e.g. Graphite, but also be added in the form of a compound or master alloy.

Gemäß einer bevorzugten Ausführungsform wird der Kohlenstoffgehalt insbesondere dadurch erzielt, dass chemische Kohlenstoffverbindungen und/oder ihre Mischungen zugegeben werden. Dies kann auch erfolgen, indem pulverförmige Karbide und Karbonitride, auch in Form eines Sinterproduktes aus Karbiden und Karbonitriden zugegeben werden.According to a preferred embodiment, the carbon content is achieved in particular by adding chemical carbon compounds and / or their mixtures. This can also be done by adding powdered carbides and carbonitrides, also in the form of a sintered product of carbides and carbonitrides.

Alternativ kann eine kohlenstoffhaltige Aluminium-Vorlegierung in die Schmelze aus den übrigen für die Legierung vorgesehenen Bestandteilen eingebracht oder vorab den einzuschmelzenden Bestandteilen hinzugefügt werden.Alternatively, a carbonaceous aluminum master alloy may be incorporated into the melt from the remainder of the alloyed ingredients or may be added in advance to the components to be melted.

Die kohlenstoffhaltigen Zusätze können neben Kohlenstoff auch Phosphor und/oder Stickstoff enthalten.The carbonaceous additives can contain not only carbon but also phosphorus and / or nitrogen.

Ein besonders bevorzugtes Verfahren nach dieser Erfindung besteht darin, eine Alumnium-Titan-Kohlenstoff-Vorlegierung zu verwenden.A particularly preferred method of this invention is to use an aluminium-titanium-carbon master alloy.

Zwar ist aus der DE 37 29 937 A 1 bereits eine Komfeinung mit Al-Ti-C-Legierungen bekannt, diese bezieht sich jedoch ausdrücklich auf Al-Ti-Hauptlegierungen. Dabei werden lange bekannte Schwierigkeiten bei der Erhöhung des Kohlenstoffgehalts von Aluminium-Titan-Legierungen darauf zurückgeführt, dass es in diesen Zusammensetzungen schwierig ist, eine Benetzung zwischen dem Kohlenstoff und dem geschmolzenen Aluminium zu erzielen. Die beschriebenen Vorlegierungen sind bei der Herstellung von dünnem Flachmaterial, Folien oder Dosenmaterial besonders nützlich.Although is out of the DE 37 29 937 A 1 Already a refinement with Al-Ti-C alloys known, but this refers expressly to Al-Ti main alloys. In doing so, long-known difficulties in increasing the carbon content of aluminum-titanium alloys are attributed to the difficulty in these compositions in achieving wetting between the carbon and the molten aluminum. The described master alloys are particularly useful in the production of thin sheet, films or can material.

Auch ist die Zugabe von kohlenstoffhaltigen Vorlegierungen zu Reinaluminium und Aluminiumknetlegierungen mit dem Ziel der Kornfeinung als solches bekannt, wie z.B. in " Z. Metallkd. 91 (2000) Heft 10, S. 800 - 806 beschrieben. Die Wirkung von bekannten Al-Ti-C-Vorlegierungen beruht auf dem Einbringen von TiC-Teilchen, die als Keimbildner für den α-Mischkristall dienen, in die Schmelze und erfordert nach dem Stand der Technik eine strenge Einhaltung bestimmter Parameter bei der Schmelzeführung, wie z. B. möglichst niedrige Schmelzetemperaturen und möglichst kleine Siliziumgehalte, um die Stabilität der TiC-Partikel in der Schmelze zu gewährleisten und ihre Reaktion mit den anderen Legierungskomponenten zu vermeiden. Bei Silizium-Gehalten von über 3 Gew.-% kommt es nach Angaben von Greer u. a. (Advanced Engeneering Materials (2003) Nr. 1-2, Seiten 81 - 91 und " Continuous Casting, Ed. by K Ehrke and W. Schneider, DGM (2000 ), A. Tronche and A. L. Greer, "Effect of Solute Elements on the Grain Structures of Al-Ti-P and Al-Ti-C Grain-Refined Al Alloys", S. 218-222; 221, 222 ) zur Vergiftung von TiC durch Silizium, so dass die Kornfeinungswirkung von TiC auf die α-Aluminium-Mischkristallphase bei der Al-Si-Gusslegierungen verhindert wird. Die Wirkung des Kohlenstoffs auf die intermetallischen Verbindungen, das Primärsilizium sowie die eutektischen Phasen in Al-Si-Gusslegierungen ohne Auswirkung auf die α-Mischkristallphase (d.h. ohne Kornfeinungswirkung durch Kohlenstoff oder das Karbid in dieser Phase) war bisher nicht bekannt.Also, the addition of carbon-containing master alloys to pure aluminum and wrought aluminum alloys with the aim of grain refining is known as such, as in " Z. Metallkd. 91 (2000) Issue 10, pp. 800-806 described. The effect of known Al-Ti-C master alloys is based on the introduction of TiC particles, which serve as nucleating agent for the α-mixed crystal, in the melt and requires in the prior art strict compliance with certain parameters in the melt management, such as z. As low as possible melt temperatures and the smallest possible silicon contents to ensure the stability of the TiC particles in the melt and to avoid their reaction with the other alloy components. At silicon contents of more than 3 wt .-%, it is reported by Greer et al. (Advanced Engineering Materials (2003) No. 1-2, pages 81-91 and " Continuous Casting, Ed. by K Ehrke and W. Schneider, DGM (2000 ) A. Tronche and AL Greer, "Effect of Solute Elements on the Grain Structures of Al-Ti-P and Al-Ti-C Grain-Refined Al Alloys", pp. 218-222; 221, 222 ) for poisoning of TiC by silicon, so that the grain refining effect of TiC on the α-aluminum mixed crystal phase in the Al-Si casting alloys is prevented. The effect of carbon on the intermetallic compounds, the primary silicon and the eutectic phases in Al-Si casting alloys without effect on the α-mixed crystal phase (ie without grain refining effect by carbon or carbide in this phase) has not been known.

Obwohl im Gusszustand schon gute mechanische Werte vorhanden sind. können aus der erfindungsgemäßen Legierung hergestellte Gussteile allen Wärmebehandlungen unterzogen werden.Although good mechanical values already exist in the cast state. For example, castings produced from the alloy according to the invention can be subjected to all heat treatments.

Die erfindungsgemäßen Aluminium-Silizium-GUS$Iegierungen sind zum Gießen von Kolben und anderen Maschinenteilen für Verbrennungskraftmaschinen, für Zylinderköpfe, Kurbelgehäuse, Laufbuchsen oder Motorblöcke besonders geeignet. Die Lösung der Aufgabe der Erfindung umfasst daher auch diese Verwendungen.The aluminum-silicon GUS alloys according to the invention are particularly suitable for casting pistons and other machine parts for internal combustion engines, for cylinder heads, crankcases, liners or engine blocks. The solution of the object of the invention therefore also includes these uses.

Unter Bezugnahme auf die Figuren und Beispiele soll die Erfindung näher illustriert werden, ohne dass die Beispiele beschränkend zu verstehen wären. Der Fachmann kann die Erfindung mit Hilfe dessen, was in Beispielen und Figuren anschaulich erläutert ist, ohne weiteres im gesamten oben angegebenen Umfang ausführen.With reference to the figures and examples, the invention is to be further illustrated, without the examples being limiting. The person skilled in the art can easily carry out the invention with the aid of what is clearly illustrated in examples and figures throughout the scope given above.

Die Figuren zeigen Gefüge zu den Vorversuchen

  • Fig. 1 zeigt das Mikrogefüge einer AlSi12CuNiMg-Sekundärlegierung, x 500
  • Fig. 2 zeigt das Mikrogefüge einer erfindungsgemäß legierten Al-Si12CuNiMgSekundärlegierung unter Zugabe von Kohlenstoff, x 500
  • Fig. 3 zeigt das Mikrogefüge einer AlSi14Cu3Mg-Legierung mit Phosphorzugabe. x 100
  • Fig. 4 zeigt das Mikrogefüge einer erfindungsgemäß legierten Al-Si14Cu3MgLegierung unter Zugabe von Kohlenstoff und Phosphor, x 100
(Maßstab in den Figuren = 50 µm)The figures show structure for the preliminary tests
  • Fig. 1 shows the microstructure of an AlSi 12 CuNiMg secondary alloy, x 500
  • Fig. 2 shows the microstructure of an alloyed Al-Si 12 CuNiMg secondary alloy according to the invention with the addition of carbon, x 500
  • Fig. 3 shows the microstructure of an AlSi 14 Cu 3 Mg alloy with phosphorus addition. x 100
  • Fig. 4 shows the microstructure of an alloyed Al-Si 14 Cu 3 Mg alloy according to the invention with the addition of carbon and phosphorus, x 100
(Scale in the figures = 50 μm)

Beispiel 1 (nicht erfindungsgemäßer Vorversuch)Example 1 (preliminary experiment not according to the invention) Naheutektische Al-Si-Gusslegierung mit KohlenstoffNear-eutectic Al-Si casting alloy with carbon

Stellvertretend für die große Gruppe der Al-Si-Gusslegierung wurden die Sekundärlegierung AlSi12CuNiMg ausgewählt. Die Versuchslegierung wurde in zylindrischer Probekörper mit einer Gießtemperatur von 780 °C in eine geschlichtete auf 300 °C erwärmte Stahlkokille. Die Zugabe von Kohlenstoff erfolgte mit Hilfe der selbst hergestellten Al-Ti-C-Vorlegierung.The secondary alloy AlSi 12 CuNiMg was selected as representative of the large group of Al-Si casting alloys. The experimental alloy was in cylindrical specimens with a casting temperature of 780 ° C in a reduced to 300 ° C. heated steel mold. Carbon was added using the self-made Al-Ti-C master alloy.

Zur Herstellung der AlTi6C1-Vorlegierung kam ein Mittelfrequenz-Induktionsofen zum Einsatz. In einem Graphittiegel wurde zunächst 2000 g AlTi6-Vorlegierung bei 1400 °C erschmolzen. Dieser Schmelze wurde 30 g Graphitpulver, eingewickelt in Aluminiumfolie, zugegeben. Der Abguss der so hergestellten Al-Ti-C-Vorlegierung erfolgte nach einer Haltezeit von etwa 30 in eine Kupferform, Die Vorlegierung besteht aus einer Aluminium-Matrix, in der Al3Ti- und TiC-Teilchen eingelagert sind.A medium-frequency induction furnace was used to produce the AlTi 6 C 1 alloy. In a graphite crucible, 2000 g of AlTi 6 pre-alloy was first melted at 1400 ° C. To this melt was added 30 grams of graphite powder wrapped in aluminum foil. The casting of the Al-Ti-C master alloy thus produced was carried out after a holding time of about 30 in a copper mold, the master alloy consists of an aluminum matrix, are embedded in the Al 3 Ti and TiC particles.

Die Tabelle 1 zeigt die Zusammensetzung der untersuchten Legierungen. Tabelle 1. Zusammensetzung der Al-Si-Gusslegierung, Gew.-% Si C Cu Ni Mg Fe Mn Cr Ti Zn Erfg. Leg. 1 12,4 0,003 1,3 0,8 1,4 1,2 0,3 0,15 0,07 0,3 Vergl Leg.2 12.6 - 1,5 0,9 1,6 1,3 0,4 0,13 0,05 0,4 Table 1 shows the composition of the alloys investigated. <u> Table 1 </ u> Al-Si Cast Alloy Composition,% by Weight Si C Cu Ni mg Fe Mn Cr Ti Zn Erfg. Leg. 1 12.4 0,003 1.3 0.8 1.4 1.2 0.3 0.15 0.07 0.3 Compare Leg.2 12.6 - 1.5 0.9 1.6 1.3 0.4 0.13 0.05 0.4

Die Ergebnisse der metallographischen Untersuchungen sind in Tabelle 2 zusammengefasst. Tabelle 2. Veredelungsgrad und Länge der intermetallischen Teilchen in der untersuchten Legierung AlSi12CuNiMg Veredelungsgrad Länge der intermetallischen Teilchen, µm Erfg. Leg. 1 Grad 6: gut veredelt 20-30 Vergl. Leg. 2 Grad 3: teilveredelt 100-600 The results of the metallographic investigations are summarized in Table 2. <u> Table 2. </ u> The degree of improvement and the length of the intermetallic particles in the investigated alloy AlSi <sub> 12 </ sub> CuNiMg finishing degree Length of intermetallic particles, μm Erfg. Leg. 1 Grade 6: well finished 20-30 Comp. Leg. 2 Grade 3: partially finished 100-600

Die Sekundärlegierung AlSi12CuNiMg weist im Gussgefüge sehr grobe nadelförmige eisenhaltige Phasen (vorwiegend Al5FeSi-Nadeln) aus, Fig. 1. Dagegen bewirkt Zulegieren mit dem Kohlenstoff sowohl ein gut veredeltes Eutektikum als auch Ausscheidungen kleiner intermetallischer Phasen in einer sehr gleichmäßigen Verteilung, Fig.2.The secondary alloy AlSi 12 CuNiMg has very coarse needle-shaped iron-containing phases in the cast structure (predominantly Al 5 FeSi needles), Fig. 1 , In contrast, alloying with the carbon causes both a well-refined eutectic and precipitates of small intermetallic phases in a very uniform distribution, Fig.2 ,

Beispiel 2Example 2 Übereutektlsche Al-Si-Legierung mit KohlenstoffOverutectic Al-Si alloy with carbon

In diesem Beispiel ist eine übereutektische Al-Si-Gusslegierung mit der erfindungsgemäßen Legierung mit einer annähernd gleichen Zusammensetzung verglichen wurde, Tabelle 3. Beide Legierungen wurden mit einer gleichen Menge Phosphor behandelt. Tabelle 3. Zusammensetzung der übereutektische Al-Si-Gusslegierungen, Gew,-% Si Cu C Mg Fe Mn Ti Zn P Erfg. Leg. 3 14,1 3,7 0,02 0,33 0,94 0,29 0,21 0,33 0,006 Vergl. Leg. 4 14,6 4,1 - 0,32 0,73 0,28 0,22 0,35 0,006 In this example, a hypereutectic Al-Si casting alloy was compared to the alloy of the invention having an approximately similar composition, Table 3. Both alloys were treated with an equal amount of phosphorus. <u> Table 3 </ u> Composition of hypereutectic Al-Si casting alloys, wt% Si Cu C mg Fe Mn Ti Zn P Erfg. Leg. 3 14.1 3.7 0.02 0.33 0.94 0.29 0.21 0.33 0,006 Comp. Leg. 4 14.6 4.1 - 0.32 0.73 0.28 0.22 0.35 0,006

Eine gleichzeitige Felnung des Primärsiliziums und des Al-Si-Eutektikums war bisher nicht möglich, Fig. 3. Unsere Ergebnisse zeigen, dass sich Phosphor und Kohlenstoff in ihrer Wirkung nicht gegenseitig behindern. Auf dem Bild 4 ist es zu sehen, dass bei einem Kohlenstoffgehalt von 0,005 Gew.-% eine gute Feinung des primären Siliziums sowie einen akzeptablen Veredelungsgrad des eutektischen Siliziums erreicht werden kann. Auch die kompakte Ausbildung und homogene Verteilung der intermetallischen Phasen in der erfindungsgemäßen Legierung ist von großem technologischem Vorteil.A simultaneous filing of the primary silicon and the Al-Si eutectic was not possible until now, Fig. 3 , Our results show that phosphorus and carbon do not interfere with each other in their effect. Figure 4 shows that with a carbon content of 0.005% by weight a good refining of the primary silicon and an acceptable degree of finishing of the eutectic silicon can be achieved. The compact design and homogeneous distribution of the intermetallic phases in the alloy according to the invention is also of great technological advantage.

Beispiel 3Example 3 Verbesserung der mechanischen Eigenschaften der Al-Si-GusslegierungenImprovement of the mechanical properties of Al-Si cast alloys

Den positiven Einfluss von Kohlenstoff auf Al-Si-Legierungen geben auch die bereits im Gusszustand erzielten mechanischen Eigenschaften deutlich wieder, Tabelle 4 und Tabelle 5. Tabelle 4. Chemische Zusammensetzung der untersuchten Legierungen Si C Cu Ni Mg Fe Mn Zr Ti Zn Erfg. Leg. 5 11,8 0,025 1,8 0,8 0,7 0,7 0,3 0,1 0,18 0,4 Vergl. Leg. 6 12,5 - 1,5 1,1 1,1 0,4 0,3 - 0,15 0,1 Tabelle 5. Vergleich der mechanischen Eigenschaften bei RT und 250 °C Mechanische Eigenschaften Prüfung bei RT Mechanische Eigenschaften nach Vorauslagerung bei 259 °C/100 h Prüfung bei 250 °C Rm, MPa Rp0.2, MPa A5, % Rm, MPa Rp0,2 MPa A5, % Erfg. Leg. 5, F 241 171 0,6 147 105 3,2 Vergl. Leg. 6, F 225 152 0.7 112 83 9,3 Rm - Zugfestigkeit (MPa); Rp0,2 - Dehngrenze (MPa), A5 % - Bruchdehnung in % The positive influence of carbon on Al-Si alloys also clearly reflects the mechanical properties already achieved in the cast state, Table 4 and Table 5. <u> Table 4. </ u> Chemical composition of the alloys studied Si C Cu Ni mg Fe Mn Zr Ti Zn Erfg. Leg. 5 11.8 0,025 1.8 0.8 0.7 0.7 0.3 0.1 0.18 0.4 Comp. Leg. 6 12.5 - 1.5 1.1 1.1 0.4 0.3 - 0.15 0.1 Mechanical properties Testing at RT Mechanical properties after pre-storage at 259 ° C / 100 h test at 250 ° C R m, MPa R p0.2 , MPa A 5 ,% R m, MPa R p0.2 MPa A 5, % Erfg. Leg. 5, F 241 171 0.6 147 105 3.2 Comp. Leg. 6, F 225 152 0.7 112 83 9.3 R m - tensile strength (MPa); R p0.2 - yield strength (MPa), A 5 % - elongation at break in%

Die erfindungsgemäße Legierung 5 besitzt für eine Gusslegierung eine gute Festigkeit, wie sich aus den o. a. Tabellendaten ergibt. Die erfindungsgemäße Legierung 5 hat zusätzlich eine deutlich bessere Warmfestigkeit als die Vergleichslegierung 6, deren Rp0,2-Wert bei einer Messung der mechanischen Eigenschaften bei 250 °C nach Vorauslagerung bei 250 °C stark absinkt.The alloy 5 according to the invention has a good strength for a casting alloy, as results from the above-mentioned tabular data. In addition, the alloy 5 according to the invention has a significantly better heat resistance than the comparative alloy 6, the R p0.2 value of which drops sharply at 250 ° C. after a preliminary storage at 250 ° C. when the mechanical properties are measured at 250 ° C.

Unter "warmfest" verstehen wir hier eine Legierung, deren Rp0.2-Wert nach Vorauslagerung bei 250 °C über wenigstens 50 h, geprüft bei 250 °C, über 55 MPa beträgt.By "heat-resistant" we mean here an alloy whose R p0.2 value after storage at 250 ° C. for at least 50 h, tested at 250 ° C., is above 55 MPa.

Claims (12)

  1. Aluminium-silicon casting alloy having the following composition:
    - from 5 to 25% by weight of silicon,
    - from 0.0007 to 0.1% by weight of carbon,
    - from 0 to 4% by weight of each of the following alloy constituents, with preference being given to at least one of these constituents being present and their total being up to 10% by weight, preferably up to 6% by weight, more preferably up to 4% by weight:
    magnesium, manganese, iron, cobalt, copper, zinc, nickel, vanadium, niobium, molybdenum, chromium, tungsten, beryllium, lead, yttrium, cerium, scandium, hafnium, silver, zirconium, titanium, boron, strontium, sodium, potassium, calcium, antimony, sulphur, barium, phosphorus, with the proviso that
    - more than 0.3% by weight of Zr or more than 0.3% by weight of Ti or more than 0.6% by weight of Fe is present
    - and at least 65% by weight of aluminium including unavoidable impurities is present as balance to 100% by weight.
  2. Aluminium-silicon casting alloy according to Claim 1, characterized in that the alloy contains from 5 to 18% by weight, in particular from 12.5 to 14.5% by weight, of silicon.
  3. Aluminium-silicon casting alloy according to either Claim 1 or 2, characterized in that fine primary silicon and modified eutectic are simultaneously present in its microstructure.
  4. Aluminium-silicon casting alloy according to either Claim 2 or 3, characterized in that intermetallic phases are present as needles or small platelets having a length of up to 40 µm in its microstructure.
  5. Aluminium-silicon casting alloy according to any of Claims 1 to 4 which can be obtained by targeted setting of the carbon content to from 0.0007 to 0.1% by weight.
  6. Process for producing an aluminium-silicon casting alloy according to any of Claims 1 to 4, characterized in that the carbon content is set in a targeted manner by addition of carbon in any form.
  7. Process according to Claim 6, characterized in that the base constituents selected for the composition are melted together while being heated to a temperature in the range from 650°C to 1000°C, preferably from 720°C to 950°C, and are poured into a casting mould.
  8. Process according to Claim 6 or 7, characterized in that the carbon content is achieved by addition of chemical carbon compounds and/or mixtures thereof, in particular by addition of pulverulent carbides and carbonitrides, including in the form of a sintered product composed of carbides and carbonitrides.
  9. Process according to Claim 6 or 7, characterized in that a carbon-containing aluminium prealloy is introduced into the melt composed of the other constituents provided for the alloy or is added beforehand to the constituents to be melted.
  10. Process according to Claim 9, characterized in that an aluminium-titanium-carbon prealloy is used.
  11. Process according to any of Claims 6 to 10, characterized in that the prealloy also contains phosphorus in addition to carbon.
  12. Use of the aluminium casting alloy according to any of Claims 1 to 5 for casting highly thermally stressed machine elements, in particular pistons, cylinder heads, crankcases, bushes or engine blocks, in each case for internal combustion engines.
EP20080075254 2007-03-30 2008-03-31 Aluminium-silicon alloy and method for production of same Not-in-force EP1978120B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007015821 2007-03-30

Publications (2)

Publication Number Publication Date
EP1978120A1 EP1978120A1 (en) 2008-10-08
EP1978120B1 true EP1978120B1 (en) 2012-06-06

Family

ID=39629126

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20080075254 Not-in-force EP1978120B1 (en) 2007-03-30 2008-03-31 Aluminium-silicon alloy and method for production of same

Country Status (1)

Country Link
EP (1) EP1978120B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498777A (en) * 2014-12-09 2015-04-08 上海航天精密机械研究所 Method for preparing ZL205A alloy containing rare earth elements
DE102014224229A1 (en) 2014-11-27 2016-06-02 Federal-Mogul Nürnberg GmbH Method for producing an engine component, engine component and use of an aluminum alloy
US11008640B2 (en) * 2016-11-01 2021-05-18 Uacj Corporation Aluminum alloy for low-pressure casting
US11280292B2 (en) 2014-05-14 2022-03-22 Federal-Mogul Nurnberg Gmbh Method for producing an engine component, engine component, and use of an aluminum alloy

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008043871A1 (en) * 2008-11-19 2010-05-20 Robert Bosch Gmbh fuel pump
DE102009016111B4 (en) * 2009-04-03 2011-02-10 Technische Universität Clausthal Die castings from a hypereutectic aluminum-silicon casting alloy and process for its production
FR2950632B1 (en) * 2009-09-28 2011-11-04 Peugeot Citroen Automobiles Sa ALUMINUM ALLOYS FOR PRESSURE FOUNDRY
GB201102849D0 (en) * 2011-02-18 2011-04-06 Univ Brunel Method of refining metal alloys
CN102146542B (en) * 2011-03-26 2012-09-12 河南理工大学 High-strength and high-toughness cast Al-Si-Mg alloy
DE102011083971A1 (en) * 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
CN102433473B (en) * 2011-12-15 2013-05-15 贵州华科铝材料工程技术研究有限公司 WB-and-NaBH4-doped high-strength aluminum alloy and preparation method thereof
CN102433475B (en) * 2011-12-15 2013-05-15 贵州华科铝材料工程技术研究有限公司 High-strength and high-hardness aluminum alloy and preparation method thereof
CN102560206B (en) * 2012-02-27 2014-03-26 安徽省恒泰动力科技有限公司 Rare-earth aluminum alloy piston material and preparation method thereof
EP2653579B1 (en) * 2012-04-17 2014-10-15 Georg Fischer Druckguss GmbH & Co. KG Aluminium alloy
CN102644012B (en) * 2012-05-17 2013-08-07 天津立中合金集团有限公司 Preparation method of cocrystallized Al-Si alloy piston material
US9650699B1 (en) 2013-03-14 2017-05-16 Brunswick Corporation Nickel containing hypereutectic aluminum-silicon sand cast alloys
US10370742B2 (en) 2013-03-14 2019-08-06 Brunswick Corporation Hypereutectic aluminum-silicon cast alloys having unique microstructure
US9109271B2 (en) * 2013-03-14 2015-08-18 Brunswick Corporation Nickel containing hypereutectic aluminum-silicon sand cast alloy
CN103352978B (en) * 2013-06-06 2015-11-04 西安科技大学 Al 3ti/Al 3ni particle is collaborative strengthens sial base composite piston and preparation method
CN103484796B (en) * 2013-09-30 2017-01-11 龙口市大川活塞有限公司 Processing technology for engine piston material
EP2865772B1 (en) * 2013-10-23 2016-04-13 Befesa Aluminio, S.L. Aluminium casting alloy
EP2865773B1 (en) * 2013-10-23 2016-04-13 Befesa Aluminio, S.L. Aluminium casting alloy
KR101601413B1 (en) * 2014-05-02 2016-03-09 현대자동차주식회사 High elastic aluminum alloy
CN104831129B (en) * 2015-04-10 2017-03-15 凤阳爱尔思轻合金精密成型有限公司 Non-heat treated is from reinforcing alusil alloy and its preparation technology
CN105132761A (en) * 2015-09-18 2015-12-09 张家港市和伟五金工具厂 Aluminium alloy
CN106048331A (en) * 2016-07-28 2016-10-26 董超超 Aluminum alloy automobile wheel hub with good performance
CN106191563B (en) * 2016-08-16 2018-11-27 江苏中色锐毕利实业有限公司 A kind of auto parts and components silico-aluminum and preparation method thereof
ES2753164T3 (en) 2016-12-28 2020-04-07 Befesa Aluminio S L Aluminum alloy for casting
ES2753167T3 (en) 2016-12-28 2020-04-07 Befesa Aluminio S L Aluminum alloy for casting
ES2753168T3 (en) 2016-12-28 2020-04-07 Befesa Aluminio S L Aluminum alloy for casting
CN107083512A (en) * 2017-03-30 2017-08-22 合肥金同维低温科技有限公司 A kind of aluminum alloy materials for being used to manufacture freezer compressor cylinder block
CN107012345A (en) * 2017-04-22 2017-08-04 苏州南尔材料科技有限公司 A kind of preparation method of Al-Si-Cu alloy
CN107130152B (en) * 2017-06-06 2019-07-19 合肥饰界金属制品有限公司 High toughness Al-alloy material and preparation method thereof
CN107641744B (en) * 2017-09-26 2019-05-24 辽宁忠旺集团有限公司 A kind of alloy refining method
CN107988569A (en) * 2017-10-18 2018-05-04 中国航发北京航空材料研究院 A kind of age forming method of aluminium lithium alloy with muscle integral panel
US11313015B2 (en) * 2018-03-28 2022-04-26 GM Global Technology Operations LLC High strength and high wear-resistant cast aluminum alloy
CN109280820B (en) * 2018-10-26 2021-03-26 中国航发北京航空材料研究院 High-strength aluminum alloy for additive manufacturing and preparation method of powder of high-strength aluminum alloy
CN109706354A (en) * 2019-03-08 2019-05-03 安徽信息工程学院 A kind of material and preparation method thereof with good plasticity
CN109825745B (en) * 2019-03-08 2020-02-11 安徽信息工程学院 Alloy material with high comprehensive performance and preparation method thereof
RU2737902C1 (en) * 2019-08-22 2020-12-04 Акционерное общество "Объединенная компания РУСАЛ Уральский Алюминий" (АО "РУСАЛ Урал") Powdered aluminum material
CN111690850A (en) * 2020-07-15 2020-09-22 南通鸿劲金属铝业有限公司 Preparation process of cast aluminum alloy with high yield strength
CN114182141A (en) * 2020-09-14 2022-03-15 济南科为达新材料科技有限公司 Novel high-strength and high-toughness heat-resistant aluminum-silicon casting alloy
CN112553492A (en) * 2020-11-23 2021-03-26 西安工业大学 Preparation method of refiner for Al-Si alloy structure refinement
CN112760530A (en) * 2020-12-01 2021-05-07 浙江富丽华铝业有限公司 Production process of high-toughness corrosion-resistant damping aluminum profile for doors and windows
CN112695230B (en) * 2020-12-21 2022-04-05 青岛旭源电子有限公司 High-elongation heat-resistant aluminum alloy vehicle part and preparation method thereof
DE102021114484A1 (en) 2021-06-07 2022-12-08 Audi Aktiengesellschaft Aluminum cast alloy
CN113564398A (en) * 2021-07-06 2021-10-29 北京科技大学 Preparation method of powder metallurgy lithium-containing aluminum-based composite material added with sintering activator
DE102021131973A1 (en) 2021-12-03 2023-06-07 Audi Aktiengesellschaft Die-cast aluminum alloy
DE102021131935A1 (en) 2021-12-03 2023-06-07 Audi Aktiengesellschaft Die-cast aluminum alloy
CN114411020B (en) * 2022-01-13 2022-10-14 上海交通大学 Non-heat treatment reinforced high-strength high-toughness die-casting aluminum-silicon alloy
CN114592146B (en) * 2022-02-28 2022-11-15 南京工程学院 Blank for ultra-wide and ultra-thin power battery aluminum foil and preparation method thereof
CN115522103B (en) * 2022-10-31 2023-06-16 合肥工业大学 Novel refining modifier for hypoeutectic aluminum-silicon alloy and preparation and application methods thereof
DE102023106915A1 (en) 2023-03-20 2024-09-26 Federal-Mogul Nürnberg GmbH Method for producing a brake disc, brake disc and use of an aluminium alloy for producing a brake disc

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE747355C (en) 1937-10-30 1944-09-20 Mahle Kg Use of an aluminum alloy for pistons in internal combustion engines
CA1284896C (en) * 1984-10-23 1991-06-18 Paul S. Gilman Method for producing dispersion strengthened aluminum alloys
US4758273A (en) * 1984-10-23 1988-07-19 Inco Alloys International, Inc. Dispersion strengthened aluminum alloys
US4812290A (en) 1986-09-08 1989-03-14 Kb Alloys, Inc. Third element additions to aluminum-titanium master alloys
US6419769B1 (en) 1998-09-08 2002-07-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Aluminum-silicon alloy having improved properties at elevated temperatures and process for producing cast articles therefrom
DE10117298C1 (en) 2001-04-06 2002-10-17 Federal Mogul Nuernberg Gmbh Piston used in an internal combustion engine consists of an alloy based on aluminum and silicon with the addition of rare earth metals, and cerium and praseodymium
US20050238529A1 (en) * 2004-04-22 2005-10-27 Lin Jen C Heat treatable Al-Zn-Mg alloy for aerospace and automotive castings
US8083871B2 (en) * 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11280292B2 (en) 2014-05-14 2022-03-22 Federal-Mogul Nurnberg Gmbh Method for producing an engine component, engine component, and use of an aluminum alloy
DE102014224229A1 (en) 2014-11-27 2016-06-02 Federal-Mogul Nürnberg GmbH Method for producing an engine component, engine component and use of an aluminum alloy
CN104498777A (en) * 2014-12-09 2015-04-08 上海航天精密机械研究所 Method for preparing ZL205A alloy containing rare earth elements
US11008640B2 (en) * 2016-11-01 2021-05-18 Uacj Corporation Aluminum alloy for low-pressure casting

Also Published As

Publication number Publication date
EP1978120A1 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
EP1978120B1 (en) Aluminium-silicon alloy and method for production of same
DE10352932B4 (en) Cast aluminum alloy
DE102007023323B4 (en) Use of an Al-Mn alloy for high-temperature products
DE102009012073B4 (en) Use of an aluminum casting alloy
DE102012009125B4 (en) Highly hard weld-on alloy powder
DE69502867T2 (en) High strength aluminum alloy
DE102016219711B4 (en) Aluminum alloy for die casting and process for its heat treatment
EP2173916A2 (en) Cast aluminum alloy, and use thereof
DE2445462B2 (en) Use of a nickel alloy
DE102017114162A1 (en) HIGH STRENGTH AND HIGH CRYAN RESISTANT ALUMINUM ALLOY ALLOYS AND HPDC MOTOR BLOCKS
DE202006006518U1 (en) Aluminum casting alloy, useful in production of safety components, contains silicon
DE102020116868A1 (en) Nickel-cobalt alloy powder and method of manufacturing the powder
DE102019205267B3 (en) Die-cast aluminum alloy
DE60015240T2 (en) A method of supplying boron to a heavy metal-containing titanium aluminide alloy and heavy metal-containing titanium aluminide alloy
DE3344450A1 (en) ENGINE FASTENERS BASED ON ALUMINUM ALLOYS AND INTERMETALLIC COMPOUNDS AND METHOD FOR THE PRODUCTION THEREOF
EP2236637A2 (en) Pressure casting mould made of a hypereutectic aluminium silicon cast alloy and method for producing same
DE2415035B2 (en) Process for the powder-metallurgical production of a sliding piece of high strength, in particular a crown seal for rotary piston machines
EP1802781B1 (en) Aluminium-based alloy and moulded part consisting of said alloy
EP1647606B1 (en) High hardness and wear resistant nickel based alloy for use as high temperature tooling
DE2049546A1 (en)
DE10352453A1 (en) Method for producing metal matrix composite materials
DE102014217823A1 (en) Highly elastic hypereutectic aluminum alloy and process for its preparation
DE202008001976U9 (en) Fluid-tight sintered metal parts
DE102019107445A1 (en) High strength and high wear resistant cast aluminum alloy
DE102018113000A1 (en) SYSTEM AND METHOD FOR STABILIZING TRANSFER METAL REPLACEMENTS IN ALUMINUM ALLOY ALLOYS DURING PRIMARY FASTENING

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090408

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090520

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 561087

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008007369

Country of ref document: DE

Effective date: 20120802

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120906

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120907

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121006

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121008

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120917

26N No opposition filed

Effective date: 20130307

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008007369

Country of ref document: DE

Effective date: 20130307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120906

BERE Be: lapsed

Owner name: TECHNISCHE UNIVERSITAT CLAUSTHAL

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131129

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130402

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140325

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 561087

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008007369

Country of ref document: DE

Representative=s name: GRAMM, LINS & PARTNER PATENT- UND RECHTSANWAEL, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008007369

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001