EP1647606B1 - High hardness and wear resistant nickel based alloy for use as high temperature tooling - Google Patents

High hardness and wear resistant nickel based alloy for use as high temperature tooling Download PDF

Info

Publication number
EP1647606B1
EP1647606B1 EP20050450151 EP05450151A EP1647606B1 EP 1647606 B1 EP1647606 B1 EP 1647606B1 EP 20050450151 EP20050450151 EP 20050450151 EP 05450151 A EP05450151 A EP 05450151A EP 1647606 B1 EP1647606 B1 EP 1647606B1
Authority
EP
European Patent Office
Prior art keywords
based alloy
mass
nickel based
alloy according
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20050450151
Other languages
German (de)
French (fr)
Other versions
EP1647606A1 (en
Inventor
Devrim Caliskanoglu
Reinholf Ebner
Matthias Jönzen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH
Original Assignee
Boehler Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehler Edelstahl GmbH filed Critical Boehler Edelstahl GmbH
Publication of EP1647606A1 publication Critical patent/EP1647606A1/en
Application granted granted Critical
Publication of EP1647606B1 publication Critical patent/EP1647606B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention relates to a nickel-based alloy.
  • the invention relates to a method for producing a nickel-based alloy article.
  • the invention comprises a tool consisting of a nickel-based alloy and a starting material for the production of tools.
  • Tools for cutting or non-cutting metal materials are subjected to a variety of stresses in use. These stresses are often mechanical, for example, by contact of the tool with a metallic material, which leads to wear of the tool. In addition, in the case of high operating temperatures, which are often given, also thermally induced loads, so that when using the tool in total, mechanical, thermal and thermomechanical stresses are given.
  • High-speed steels have a high hardness due to a high proportion of carbides distributed in the steel matrix and are correspondingly wear-resistant.
  • High-speed steels however, have a natural operational limit approximately at their tempering temperatures (about 530 to 560 ° C). At higher Operating temperatures, especially at temperatures of more than 600 ° C, soften tools made of high-speed steels and deform plastically. In addition, any surface coatings may detach. For tools with operating temperatures of more than 700 ° C, high-speed steels are therefore less suitable.
  • U.S. 4,727,740 discloses an alloy of 0.55-2.0 C, 10-28 Cr, 1-30 Fe, 0.01-4.5 Ti, 0.01-4.5 Al, 0.1-10 W, 0.1-10 Mo and balance Ni, if appropriate 0.1-3 Si, 0.1- 3 Mn, 1-8 Co at least one from the group 0.005-0.2 N, 0.01-1.5 Nb and Ta and at least one from the group 0.001-0.2 B and Zr.
  • nickel-based alloys suitable materials for components or components with operating temperatures of 700 ° C. or more are generally provided.
  • nickel base alloys per se have significantly lower hardnesses.
  • the hardness achieved thereby lies in a range which is sufficient for some high-temperature applications, for example for gas turbines, but not for applications in which high wear resistance is required.
  • Another object of the invention is to provide a high-strength nickel-based alloy with high hardness. Another object is to provide a method by which a high-strength, high-temperature resistant article of a nickel-based alloy with a homogeneous microstructure can be produced.
  • Another object of the invention is to provide a tool made of a nickel-based alloy, in particular a cutting tool or a thermally highly stressed tool, which has a high hardness and wear resistance.
  • a nickel-based alloy has been created, which is suitable for tools with operating temperatures of more than 700 ° C and at room temperature has a hardness in the range of those conventional high-speed steels. Since the matrix of the nickel-based alloy consists of ⁇ -phase, ie a phase with cubic face-centered lattice, a good temperature resistance is given.
  • the achieved high hardness is due to a dual hardening concept: By a proportion of at least 10% by volume of primary metal carbides, which are metal carbides precipitated from the melt, a basic hardness of the matrix of about 200 HV (Vickers hardness) is increased by about 250 HV. Precipitation hardening or the formation of ⁇ 'phases, for example Ni 3 Al, can then result in an additional hardness increase of about 200 HV in the sequence.
  • the proportion of metal carbides is at least 15% by volume, preferably at least 20% by volume.
  • metal carbides of the formula M 6 C, MC, M 2 C and / or M 23 C 6 are preferred because they are characterized by high hardness. It is particularly advantageous if at least 50% by volume of the metal carbides in the form of M 6 C are present, which form a favorable uniform, globular morphology.
  • the metal carbides are preferably formed as fine as possible in view of a homogeneous structure and then have an average size of 0.5 to 5 .mu.m, in particular 1 to 3 .mu.m.
  • a proportion of ⁇ '-phase is at least 10% by volume, in particular from 20 to 65% by volume. This causes on the one hand a high total hardness. On the other hand, an embrittlement of the alloy, which could be due to high carbide contents, effectively counteracted.
  • Carbon is provided in a content range of 0.5 to 1.8 mass%. A minimum content of 0.5% by mass is required to form metal carbides in the proportion of at least 10% by volume and thus to achieve a desired high hardness. Carbon contents of 1.8 mass% or more are not useful because with such high carbon contents, the solidus temperature of the nickel-based alloy is greatly lowered. An optimum range in terms of high hardness and high solidus temperature is given at carbon contents of 0.6 to 1.2 mass%.
  • Manganese is used for sulfur setting and solid solution strengthening and may be present in amounts up to 3.0% by weight in an alloy of the invention without adversely affecting the properties of the alloy.
  • chromium is provided with contents of 6.0 to 25.0 mass%. 6.0 mass% chromium is necessary to ensure sufficient carbide formation. Contents of more than 25.0 mass% are disadvantageous, because then forms a high amount of metal carbides of the formula M 23 C 6 network-like at the dendrite grain boundaries, sub-grain boundaries and grain boundaries of the ⁇ -phase or nickel-based. In the content range of 10 to 18% by weight of chromium, a formation of network-type carbides can be reduced to a favorable level with a high proportion of chromium carbides and / or chromium-containing carbides.
  • Molybdenum is a strong carbide former and is present in an amount of at least 8.0, preferably at least 10.0, mass% to achieve a high volume fraction of carbides in an alloy of the invention and to contribute to solid solution hardness. Contents of more than 18 mass% molybdenum are not appropriate: Although the carbide content can be further increased, a further increase in hardness is no longer achieved.
  • Tungsten acts similarly to molybdenum and is a strong carbide former and solid solution promoter, but less effective than molybdenum per unit mass. Therefore, tungsten is used only in combination with molybdenum and can then be present in amounts of up to 10% by mass. It is preferred to use tungsten in contents of 1.0 to 6.0% by mass, because tungsten has a positive effect in these concentrations for the stabilization of carbides of the formula M 6 C.
  • a sum (in mass%) of (molybdenum + 0.5 ⁇ tungsten) is more than 12.0%.
  • a content of carbides in the nickel-based alloy can be set to 20% by volume or more, which provides high hardness values of the alloy.
  • This element is also a strong carbide former and can be alloyed in levels up to 3.0 mass% to aid in carbide formation. At niobium contents higher than 1.5% by mass, MC type carbides can be particularly stabilized; However, niobium is then partially bound and then only partially available for the formation of ⁇ '-phase (or substitution of Al in the ⁇ '-phase).
  • niobium when added, a concentration of this element of 0.2 to 1.5 mass% is preferred.
  • Aluminum is important because this element is essential for the formation of ⁇ '-phase. In this context, it has been found that aluminum contents of at least 2.5 mass% are necessary in order to obtain a material with the desired high hardness. Higher contents than 6.0% by mass of aluminum can lead to an alloy in which the matrix consists of ⁇ '-phase, which is undesirable in the context of the invention. In practice, aluminum contents of 3.0 to 5.0% by mass have proven particularly useful.
  • FeNb alloys are mainly used. Iron thereby becomes part of the alloy and may be present in levels up to 20.0 mass%. Since higher concentrations of iron on the one hand suppress the formation of ⁇ '-phase and on the other hand promote the formation of carbides of the type M 23 C 6 , iron contents of 1.5 to 5.0 mass% are favorable.
  • Cobalt can reduce the solubility of aluminum in concentrations of up to 4.0% by weight of an alloy according to the invention and therefore lead to improved precipitation behavior of the ⁇ 'phase.
  • Titanium can be provided at levels of up to 3.0% by mass and, in addition to carbide formation, serves to form a .gamma. 'Phase in these concentration ranges. Greater concentrations than 3.0% by mass preferably cause formation of undesirable ⁇ -phase.
  • Hafnium can be used to substitute aluminum in the ⁇ '-phase and in this case be present in amounts up to 1.5 mass%.
  • Tantalum acts as a carbide-forming element and may be present at levels up to 2.0% by weight.
  • Zirconium is found to be effective at levels up to 0.5% by weight in order to avoid formation of carbide films at grain boundaries.
  • Vanadium is a high carbide-forming element and may be provided for purposes of carbide formation at levels up to 3.0% by weight.
  • boron may be present in amounts of up to 0.1% by weight, especially from 0.001 to 0.02% by weight. Boron can positively contribute to the hardness of an alloy by forming borides. Incidentally, a presence of boron causes a fine-tuning of the ⁇ -grain of the matrix.
  • Nickel forms the base of the alloy or is present in the highest concentration and forms the matrix of ⁇ -phase.
  • An alloy according to the invention further contains manufacturing-related impurities, such as sulfur, phosphorus, nitrogen and / or oxygen in a conventional extent known in the art.
  • the further object of the invention is achieved by a process for producing a nickel-based alloy article, wherein in a first step a melt containing (in% by mass) 0.5 to 1.8% carbon to 3.0% manganese 6.0 to 25.0% chrome 8.0 to 18.0% molybdenum to 10.0% tungsten to 3.0% niobium 2.5 to 6.0% aluminum to 20.0% iron to 4.0% cobalt to 3.0% titanium to 01.05% hafnium to 2.0% tantalum to 0.5% zircon to 3.0% vanadium,
  • Residue nickel and impurities is atomized to a powder, after which in a second step from the powder, a compact article is formed, after which the compact article is subjected to annealing in the temperature range between solution temperature of ⁇ '-phase and solidus temperature of the nickel-based alloy in a third step , whereupon the article is precipitation hardened in a fourth step.
  • an article made of a nickel-base alloy can be provided, which is resistant to high temperatures and high strength and at the same time has a substantially homogeneous structure over a cross section of the solid material. It is important that the melt composed according to the invention is atomized to a powder in a first step, because segregations or demixings are prevented by the associated rapid solidification and preferably eutectic carbides are homogeneously and finely precipitated from the melt. Subsequently, the powder thus produced is formed into a compact article, so that an isotropic solid material is available for further heat treatments.
  • the carbides are formed by annealing in the temperature range between solution temperature of ⁇ '-phase and solidus temperature. This decomposes the possibly existing Carbidnetzwerk and there are predominantly formed globular carbides, which contribute proportionately to the achieved hardness. In addition, any existing ⁇ 'phase is at least largely dissolved and the material is homogenized.
  • the fact that the solid material used is substantially homogeneous is a prerequisite for obtaining an article with isotropic properties after annealing.
  • the article may be subjected to hot working, such as rolling, before and / or after annealing become.
  • the article may be quenched after annealing, such as with water, oil, or by flowing air.
  • the article is subjected to precipitation hardening, in which ⁇ 'phase is precipitated. It is also homogeneously distributed and contributes to hardness similar to that of the globular carbides.
  • the second and the third step are carried out simultaneously by hot isostatic pressing at a temperature of more than 1120 ° C for more than four hours. It is exploited that the powder or the compacted article in the hot isostatic pressing is already at high temperature and does not need to be heated separately. In other words, the second and third steps can be combined without having to cool and heat the object between these steps.
  • the precipitation hardening is preferably carried out by aging the article for at least one hour at a temperature of from 700 to 950 ° C. and then cooling it. It is clear to the person skilled in the art that this step can also be carried out several times, with the temperatures being able to be selected variably from the second aging.
  • the further object of the invention to provide a tool made of a nickel-based alloy, in particular a cutting tool or thermally highly stressed tool, which has a high hardness is achieved by claim 22.
  • An inventive tool is advantageously used at temperatures of more than 700 ° C and at the same time has a high hardness and high wear resistance. Thus, it can be used in particular in applications in which a tool is subjected to a high abrasive load, such as cutting or forming.
  • the object of the invention to provide a homogeneous starting material for the production of tools, made of a nickel-based alloy, in particular cutting tool or thermally highly stressed tool, is characterized by a starting material for the production of tools, in particular cutting tools and thermally highly stressed forming tools containing 0.5 to 01.08% carbon to 3.0% manganese 6.0 to 25.0% chrome 8.0 to 18.0% molybdenum to 10.0% tungsten to 3.0% niobium 2.5 to 6.0% aluminum to 20.0% iron to 4.0% cobalt to 3.0% titanium to 1.5% hafnium to 2.0% tantalum to 0.5% zircon to 3.0% vanadium,
  • Residual nickel and production-related impurities wherein globular metal carbides are present in a proportion of at least 10% by volume.
  • Powders of alloys A, B, C and D whose compositions are shown in Table 1, were each prepared by Gasverdüsung a corresponding molten metal and compacting the powder at 1150 ° C and a pressure of 1000 bar hot isostatically to solid material.
  • the articles thus produced were then subjected to annealing at 1250 ° C. for two hours followed by quenching. Subsequently, the alloys were cured at 800 and 900 ° C, respectively. After cooling to room or ambient temperature, the articles were examined from alloys A to D.
  • Table 1 ⁇ / u> Chemical Compositions of Inventive Alloys A to D (% by Weight).
  • Microstructural investigations showed that in each case a homogeneous microstructure consisting of a nickel matrix ( ⁇ -matrix) and globally distributed globular metal carbides of the types M 6 C, M 2 C and / or M 23 C 6 were present.
  • a microstructure of Alloy A shows primarily globular carbides M 2 C and M 6 C having an average diameter of about 1 to 2 ⁇ m ( FIG. 1a ).
  • Alloy B also shows globular carbides, but of type M 6 C and M 23 C 6 ( FIG. 2a ).
  • alloys of the present invention can achieve Vickers hardnesses greater than 750 HV 5, as shown in Table 2.
  • a hardening increase of about 150 HV can be achieved by hardening or precipitating ⁇ '-phase.
  • the highest overall hardness is achieved in alloy D, in which exclusively M 6 C carbides are present.
  • Cutting and forming tools made from the alloy according to the invention have proven themselves in practice at operating temperatures of more than 700 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

Die Erfindung betrifft eine Nickelbasislegierung.The invention relates to a nickel-based alloy.

Weiter betrifft die Erfindung ein Verfahren zur Herstellung eines Gegenstandes aus einer Nickelbasislegierung.Furthermore, the invention relates to a method for producing a nickel-based alloy article.

Schließlich umfasst die Erfindung ein Werkzeug bestehend aus einer Nickelbasislegierung und ein Vormaterial zur Herstellung von Werkzeugen.Finally, the invention comprises a tool consisting of a nickel-based alloy and a starting material for the production of tools.

Werkzeuge für die spanabhebende oder spanlose Formgebung metallischer Materialien, beispielsweise Schneidwerkzeuge oder Umformwerkzeuge, sind beim Gebrauch vielfältigen Beanspruchungen ausgesetzt. Diese Beanspruchungen sind oftmals mechanisch bedingt, beispielsweise durch Kontakt des Werkzeuges mit einem metallischen Material, was zu Verschleiß des Werkzeuges führt. Daneben treten im Falle hoher Einsatztemperaturen, welche oftmals gegeben sind, auch thermisch bedingte Belastungen auf, so dass bei einem Einsatz des Werkzeuges in Summe mechanisch, thermisch und thermomechanisch bedingte Belastungen gegeben sind.Tools for cutting or non-cutting metal materials, such as cutting tools or forming tools, are subjected to a variety of stresses in use. These stresses are often mechanical, for example, by contact of the tool with a metallic material, which leads to wear of the tool. In addition, in the case of high operating temperatures, which are often given, also thermally induced loads, so that when using the tool in total, mechanical, thermal and thermomechanical stresses are given.

Bei der spanlosen wie auch der spanabhebenden Formgebung metallischer Werkstoffe geht ein Trend dahin, bei möglichst hohen Einsatztemperaturen zu arbeiten. Da Metalle mit zunehmender Temperatur weicher werden, ist bei höheren Temperaturen eine Umformung wesentlich erleichtert. Auch in Bezug auf eine spanabhebende Formgebung bringen höhere Temperaturen am Werkstück Vorteile, weil eine Spanabnahme erleichtert ist. Gewünscht werden daher Werkzeuge, welche bei möglichst hohen Temperaturen, insbesondere von mehr als 700°C, verschleißfest sind und eine lange Gebrauchsdauer haben.In the non-cutting as well as the cutting shaping of metallic materials, a trend is to work at the highest possible operating temperatures. As metals become softer with increasing temperature, forming is much easier at higher temperatures. Also in terms of a cutting shaping higher temperatures bring advantages on the workpiece, because a chip removal is facilitated. Therefore, tools are desired which are wear-resistant at the highest possible temperatures, in particular greater than 700 ° C., and have a long service life.

Bislang werden für Werkzeuge, welche einerseits hohen abrasiven Verschleiß ausgesetzt sind und andererseits bei Temperaturen von mehreren hundert Grad Celsius eingesetzt werden oder sich beim Einsatz auf solche Temperaturen erwärmen, z.B. Umformwerkzeuge oder Schneidwerkzeuge, vornehmlich herkömmliche Schnellarbeitsstähle eingesetzt. Schnellarbeitsstähle weisen auf Grund eines hohen Anteils an in der Stahlmatrix verteilten Carbiden eine hohe Härte auf und sind entsprechend verschleißfest. Schnellarbeitsstähle haben allerdings eine natürliche Einsatzgrenze in etwa bei ihren Anlasstemperaturen (ca. 530 bis 560 °C). Bei höheren Einsatztemperaturen, insbesondere bei Temperaturen von mehr als 600 °C, erweichen Werkzeuge aus Schnellarbeitsstählen und verformen sich plastisch. Überdies können sich eventuelle Oberflächenbeschichtungen ablösen. Für Werkzeuge mit Einsatztemperaturen von mehr als 700 °C sind Schnellarbeitsstähle deswegen wenig geeignet.So far, for tools which are exposed on the one hand high abrasive wear and on the other hand used at temperatures of several hundred degrees Celsius or heat when used at such temperatures, eg forming tools or cutting tools, mainly conventional high speed steels used. High-speed steels have a high hardness due to a high proportion of carbides distributed in the steel matrix and are correspondingly wear-resistant. High-speed steels, however, have a natural operational limit approximately at their tempering temperatures (about 530 to 560 ° C). At higher Operating temperatures, especially at temperatures of more than 600 ° C, soften tools made of high-speed steels and deform plastically. In addition, any surface coatings may detach. For tools with operating temperatures of more than 700 ° C, high-speed steels are therefore less suitable.

Es ist daher ein Bestreben, alternative Werkstoffe zu entwickeln, welche eine Härte und Verschleißfestigkeit ähnlich jener von Schnellarbeitsstählen aufweisen, jedoch bei höheren Temperaturen einsetzbar sind. US 4 727 740 offenbart eine Legierung aus 0.55-2.0 C, 10-28 Cr, 1-30 Fe, 0.01-4.5 Ti, 0.01-4.5 Al, 0.1-10 W, 0.1-10 Mo und Rest Ni, gegebenfalls 0.1-3 Si, 0.1- 3 Mn, 1-8 Co mindestens eine aus der Gruppe 0.005-0.2 N, 0.01-1.5 Nb und Ta und mindestens eine aus der Gruppe 0.001-0.2 B und Zr.It is therefore an attempt to develop alternative materials which have a hardness and wear resistance similar to that of high speed steels but can be used at higher temperatures. U.S. 4,727,740 discloses an alloy of 0.55-2.0 C, 10-28 Cr, 1-30 Fe, 0.01-4.5 Ti, 0.01-4.5 Al, 0.1-10 W, 0.1-10 Mo and balance Ni, if appropriate 0.1-3 Si, 0.1- 3 Mn, 1-8 Co at least one from the group 0.005-0.2 N, 0.01-1.5 Nb and Ta and at least one from the group 0.001-0.2 B and Zr.

Mit Nickelbasislegierungen sind grundsätzlich geeignete Werkstoffe für Komponenten oder Bauteile mit Einsatztemperaturen von 700 °C oder mehr gegeben. Im Vergleich mit Schnellarbeitsstählen weisen Nickelbasislegierungen per se allerdings deutlich niedrigere Härten auf. Es zwar ist möglich, durch legierungstechnische Maßnahmen die Härte von Nickelbasislegierungen zu steigern. Insbesondere kann durch Legierungsabstimmung und geeignete Wärmebehandlungen eine Ausscheidungshärtung z.B. über eine so genannte γ'-Phase (Ni3X, worin X = AI, Ti und/oder Nb) erreicht werden. Die dadurch erreichten Härten liegen aber in einem Bereich, der für einige Hochtemperaturapplikationen, beispielsweise für Gasturbinen ausreichend ist, nicht jedoch für Anwendungen, in welchen auch hohe Verschleißfestigkeit gefragt ist.With nickel-based alloys, suitable materials for components or components with operating temperatures of 700 ° C. or more are generally provided. In comparison with high speed steels, however, nickel base alloys per se have significantly lower hardnesses. It is possible to increase the hardness of nickel-based alloys by alloying measures. In particular, alloy precipitation and suitable heat treatments can achieve precipitation hardening, for example via a so-called γ 'phase (Ni 3 X, in which X = Al, Ti and / or Nb). However, the hardness achieved thereby lies in a range which is sufficient for some high-temperature applications, for example for gas turbines, but not for applications in which high wear resistance is required.

Andere Möglichkeiten einer Härtesteigerung von Nickelbasislegierungen sind denkbar, beispielsweise über primär aus der Schmelze ausgeschiedene Metallcarbide. Bei diesem Ansatz hat sich allerdings in verfahrenstechnischer Hinsicht insbesondere bei höheren Carbidgehalten gezeigt, dass bei Gussblöcken zu grobe Carbide und infolge einer ungleichmäßigen Erstarrung Entmischungen bzw. Seigerungen auftreten. Werden derartige Gussblöcke zur Herstellung von Werkzeugen eingesetzt, so können die erstellten Werkzeuge entsprechend den örtlichen Gefügeunterschieden bereichsweise völlig verschiedene mechanische Eigenschaften aufweisen. Ein inhomogenes Gefüge und die damit verbundenen Schwachstellen im Werkzeug können in der Folge vor allem auch zu vorzeitigen, unerwarteten Versagen des Werkzeuges führen.Other possibilities of increasing the hardness of nickel-based alloys are conceivable, for example via metal carbides precipitated primarily from the melt. In this approach, however, has shown in procedural terms, especially at higher carbide contents that occur in cast blocks to coarse carbides and as a result of uneven solidification segregations or segregations. If such ingots are used for the production of tools, then the tools created can have completely different mechanical properties in regions corresponding to the local structural differences. An inhomogeneous structure and the associated weak points in the tool can lead to premature, unexpected failure of the tool in the sequence.

Ausgehend vom vorgenannten Stand der Technik ist es Aufgabe der Erfindung, eine hochfeste Nickelbasislegierung mit hoher Härte anzugeben.
Eine weiteres Ziel besteht darin, ein Verfahren anzugeben, mit welchem ein hochfester, hochtemperaturbeständiger Gegenstand aus einer Nickelbasislegierung mit homogenen Gefüge herstellbar ist.
Based on the aforementioned prior art, it is an object of the invention to provide a high-strength nickel-based alloy with high hardness.
Another object is to provide a method by which a high-strength, high-temperature resistant article of a nickel-based alloy with a homogeneous microstructure can be produced.

Ein weiteres Ziel der Erfindung ist es, ein Werkzeug aus einer Nickelbasislegierung, insbesondere Schneidwerkzeug oder thermisch hochbelastetes Werkzeug, anzugeben, welches eine hohe Härte und Verschleißbeständigkeit aufweist.Another object of the invention is to provide a tool made of a nickel-based alloy, in particular a cutting tool or a thermally highly stressed tool, which has a high hardness and wear resistance.

Ferner ist es ein Ziel der Erfindung ein Vormaterial zur Herstellung von Werkzeugen, aus einer Nickelbasislegierung, insbesondere Schneidwerkzeug oder thermisch hochbelastetes Werkzeug, anzugeben, welches sich durch eine hohe Homogenität des Gefüges auszeichnet.Further, it is an object of the invention to provide a starting material for the production of tools, made of a nickel-based alloy, in particular cutting tool or thermally highly stressed tool, which is characterized by a high homogeneity of the structure.

Die gestellte Aufgabe löst eine Nickelbasislegierung nach Anspruch 1. Vorteilhafte Varianten einer erfindungsgemäßen Nickelbasislegierung sind Gegenstand der Ansprüche 2 bis 15.The stated object is achieved by a nickel-based alloy according to claim 1. Advantageous variants of a nickel-based alloy according to the invention are the subject matter of claims 2 to 15.

Die mit der Erfindung erzielten Vorteile sind insbesondere darin zu sehen, dass eine Nickelbasislegierung geschaffen wurde, welche sich für Werkzeuge mit Einsatztemperaturen von mehr als 700 °C eignet und bei Raumtemperatur eine Härte im Bereich jener herkömmlicher Schnellarbeitsstähle aufweist. Da die Matrix der Nickelbasislegierung aus γ-Phase, also einer Phase mit kubisch flächenzentriertem Gitter besteht, ist eine gute Temperaturbeständigkeit gegeben. Die erzielte hohe Härte ist auf ein duales Härtungskonzept zurückzuführen: Durch einen Anteil von mindestens 10 Volumen-% primärer Metallcarbide, das sind aus der Schmelze ausgeschiedene Metallcarbide, wird eine Grundhärte der Matrix von etwa 200 HV (Vickers Härte) um etwa 250 HV erhöht. Eine Ausscheidungshärtung bzw. die Bildung von γ'-Phasen, beispielsweise Ni3Al, kann dann in der Folge eine zusätzliche Härteerhöhung von etwa 200 HV erbringen.The advantages achieved by the invention are in particular to be seen in the fact that a nickel-based alloy has been created, which is suitable for tools with operating temperatures of more than 700 ° C and at room temperature has a hardness in the range of those conventional high-speed steels. Since the matrix of the nickel-based alloy consists of γ-phase, ie a phase with cubic face-centered lattice, a good temperature resistance is given. The achieved high hardness is due to a dual hardening concept: By a proportion of at least 10% by volume of primary metal carbides, which are metal carbides precipitated from the melt, a basic hardness of the matrix of about 200 HV (Vickers hardness) is increased by about 250 HV. Precipitation hardening or the formation of γ 'phases, for example Ni 3 Al, can then result in an additional hardness increase of about 200 HV in the sequence.

Um eine möglichst hohe Härte zu erreichen, ist es bevorzugt, dass der Anteil an Metallcarbiden zumindest 15 Volumen-%, vorzugsweise zumindest 20 Volumen-%, beträgt.In order to achieve the highest possible hardness, it is preferred that the proportion of metal carbides is at least 15% by volume, preferably at least 20% by volume.

Wiewohl Carbide aller Art einen Beitrag zur Härte leisten können, sind Metallcarbide der Formel M6C, MC, M2C und/oder M23C6 bevorzugt, weil sich diese durch hohe Härte auszeichnen. Dabei ist es insbesondere günstig, wenn zumindest 50 Volumen-% der Metallcarbide in Form von M6C vorliegen, welche eine günstige gleichmäßige, globulare Morphologie ausbilden. Die Metallcarbide sind im Hinblick auf ein homogenes Gefüge bevorzugt möglichst fein ausgebildet und weisen dann eine durchschnittliche Größe von 0.5 bis 5 µm, insbesondere 1 bis 3 µm, auf.Although carbides of all kinds can make a contribution to the hardness, metal carbides of the formula M 6 C, MC, M 2 C and / or M 23 C 6 are preferred because they are characterized by high hardness. It is particularly advantageous if at least 50% by volume of the metal carbides in the form of M 6 C are present, which form a favorable uniform, globular morphology. The metal carbides are preferably formed as fine as possible in view of a homogeneous structure and then have an average size of 0.5 to 5 .mu.m, in particular 1 to 3 .mu.m.

In einer günstigen Gefügeausbildung beträgt ein Anteil an γ'-Phase zumindest 10 Volumen-%, insbesondere 20 bis 65 Volumen-%. Dies bewirkt zum einen eine hohe Gesamthärte. Zum anderen wird einer Versprödung der Legierung, welche durch hohe Carbidgehalte bedingt sein könnte, effektvoll entgegengewirkt.In a favorable microstructure, a proportion of γ'-phase is at least 10% by volume, in particular from 20 to 65% by volume. This causes on the one hand a high total hardness. On the other hand, an embrittlement of the alloy, which could be due to high carbide contents, effectively counteracted.

Die Wirkungen der einzelnen Elemente in einer erfindungsgemäßen Legierung sowie die Wechselwirkungen zwischen den Elementen sind nachfolgend beschrieben.The effects of the individual elements in an alloy according to the invention and the interactions between the elements are described below.

Kohlenstoff (C):Carbon (C):

Kohlenstoff ist in einem Gehaltsbereich von 0.5 bis 1.8 Masse-% vorgesehen. Ein Mindestgehalt von 0.5 Masse-% ist erforderlich, um Metallcarbide im Anteil von zumindest 10 Volumen-% auszubilden und somit eine gewünscht hohe Härte zu erreichen. Kohlenstoffgehalte von 1.8 Masse-% und mehr sind nicht zweckmäßig, weil bei dermaßen hohen Kohlenstoffgehalten die Solidustemperatur der Nickelbasislegierung stark abgesenkt ist. Ein optimaler Bereich in Bezug auf hohe Härte und hohe Solidustemperatur ist bei Kohlenstoffgehalten von 0.6 bis 1.2 Masse-% gegeben.Carbon is provided in a content range of 0.5 to 1.8 mass%. A minimum content of 0.5% by mass is required to form metal carbides in the proportion of at least 10% by volume and thus to achieve a desired high hardness. Carbon contents of 1.8 mass% or more are not useful because with such high carbon contents, the solidus temperature of the nickel-based alloy is greatly lowered. An optimum range in terms of high hardness and high solidus temperature is given at carbon contents of 0.6 to 1.2 mass%.

Mangan (Mn):Manganese (Mn):

Mangan dient dem Abbinden von Schwefel und zur Mischkristallverfestigung und kann in Gehalten bis 3.0 Masse-% in einer erfindungsgemäßen Legierung anwesend sein, ohne nachteilige Auswirkungen auf die Eigenschaften der Legierung auszuüben.Manganese is used for sulfur setting and solid solution strengthening and may be present in amounts up to 3.0% by weight in an alloy of the invention without adversely affecting the properties of the alloy.

Chrom (Cr):Chrome (Cr):

In einer Legierung gemäß der Erfindung ist Chrom mit Gehalten von 6.0 bis 25.0 Masse-% vorgesehen. 6.0 Masse-% Chrom sind notwendig, um eine ausreichende Carbidbildung sicherzustellen. Gehalte von mehr als 25.0 Masse-% sind nachteilig, weil sich dann eine hohe Menge an Metallcarbiden der Formel M23C6 netzwerkartig an den Dendritenkorngrenzen, Subkorngrenzen und Korngrenzen der γ-Phase bzw. Nickelbasis bildet. Im Gehaltsbereich von 10 bis 18 Masse-% Chrom kann bei hohem Anteil von Chromcarbiden und/oder chromhältigen Carbiden eine Bildung netzwerkartiger Carbide auf ein günstiges Maß reduziert wird.In an alloy according to the invention chromium is provided with contents of 6.0 to 25.0 mass%. 6.0 mass% chromium is necessary to ensure sufficient carbide formation. Contents of more than 25.0 mass% are disadvantageous, because then forms a high amount of metal carbides of the formula M 23 C 6 network-like at the dendrite grain boundaries, sub-grain boundaries and grain boundaries of the γ-phase or nickel-based. In the content range of 10 to 18% by weight of chromium, a formation of network-type carbides can be reduced to a favorable level with a high proportion of chromium carbides and / or chromium-containing carbides.

Molybdän (Mo):Molybdenum (Mo):

Molybdän ist ein starker Carbidbildner und in einem Ausmaß von zumindest 8.0, bevorzugt zumindest 10.0, Masse-% vorgesehen, um einen hohen Volumenanteil an Carbiden in einer erfindungsgemäßen Legierung zu erzielen und zur Mischkristallhärte beizutragen. Gehalte von mehr als 18 Masse-% Molybdän sind nicht zweckmäßig: Zwar kann der Carbidgehalt weiter gesteigert werden, eine weitere Steigerung der Härte wird jedoch nicht mehr erzielt.Molybdenum is a strong carbide former and is present in an amount of at least 8.0, preferably at least 10.0, mass% to achieve a high volume fraction of carbides in an alloy of the invention and to contribute to solid solution hardness. Contents of more than 18 mass% molybdenum are not appropriate: Although the carbide content can be further increased, a further increase in hardness is no longer achieved.

Wolfram (W):Tungsten (W):

Wolfram wirkt ähnlich wie Molybdän und ist ein starker Carbidbildner und Mischkristallverfestiger, jedoch pro Masseneinheit weniger effektiv als Molybdän. Daher kommt Wolfram lediglich in Kombination mit Molybdän zum Einsatz und kann dann in Gehalten bis zu 10 Masse-% vorliegen. Bevorzugt ist es, Wolfram in Gehalten von 1.0 bis 6.0 Masse-% einzusetzen, weil sich Wolfram in diesen Konzentrationen positiv zur Stabilisierung von Carbiden der Formel M6C auswirkt.Tungsten acts similarly to molybdenum and is a strong carbide former and solid solution promoter, but less effective than molybdenum per unit mass. Therefore, tungsten is used only in combination with molybdenum and can then be present in amounts of up to 10% by mass. It is preferred to use tungsten in contents of 1.0 to 6.0% by mass, because tungsten has a positive effect in these concentrations for the stabilization of carbides of the formula M 6 C.

Im Hinblick auf das gleichzeitige Vorliegen von Molybdän und Wolfram in einer Legierung nach der Erfindung ist es besonders günstig, wenn eine Summe (in Masse-%) von (Molybdän + 0.5×Wolfram) mehr als 12.0 % beträgt. Ist diese Bedingung erfüllt, so kann ein Anteil an Carbiden in der Nickelbasislegierung auf 20 Volumen-% und mehr eingestellt werden, was hohe Härtewerte der Legierung erbringt.In view of the simultaneous presence of molybdenum and tungsten in an alloy according to the invention, it is particularly favorable if a sum (in mass%) of (molybdenum + 0.5 × tungsten) is more than 12.0%. When this condition is satisfied, a content of carbides in the nickel-based alloy can be set to 20% by volume or more, which provides high hardness values of the alloy.

Niob (Nb):Niobium (Nb):

Dieses Element ist ebenfalls ein starker Carbidbildner und kann in Gehalten bis 3.0 Masse-% zulegiert werden, um eine Carbidbildung zu unterstützen. Bei höheren Gehalten an Niob als 1.5 Masse-% können Carbide des Typs MC besonders stabilisiert werden; Niob ist dann allerdings teilweise gebunden und steht dann nur noch teilweise zum Aufbau von γ'-Phase zur Verfügung (bzw. Substitution von AI in der γ'-Phase).This element is also a strong carbide former and can be alloyed in levels up to 3.0 mass% to aid in carbide formation. At niobium contents higher than 1.5% by mass, MC type carbides can be particularly stabilized; However, niobium is then partially bound and then only partially available for the formation of γ'-phase (or substitution of Al in the γ'-phase).

Deswegen wird bei Zulegieren von Niob eine Konzentration dieses Elementes von 0.2 bis 1.5 Masse-% bevorzugt.Therefore, when niobium is added, a concentration of this element of 0.2 to 1.5 mass% is preferred.

Aluminium (AI):Aluminum (AI):

Aluminium kommt eine wichtige Bedeutung zu, da dieses Element für die Bildung von γ'-Phase wesentlich ist. In diesem Zusammenhang hat sich gezeigt, dass Aluminiumgehalte von zumindest 2.5 Masse-% notwendig sind, um einen Werkstoff mit der gewünscht hohen Härte zu erhalten. Höhere Gehalte als 6.0 Masse-% Aluminium können zu einer Legierung führen, in der die Matrix aus γ'-Phase besteht, was im Rahmen der Erfindung unerwünscht ist. In der Praxis haben sich Aluminiumgehalte von 3.0 bis 5.0 Masse-% besonders bewährt.Aluminum is important because this element is essential for the formation of γ'-phase. In this context, it has been found that aluminum contents of at least 2.5 mass% are necessary in order to obtain a material with the desired high hardness. Higher contents than 6.0% by mass of aluminum can lead to an alloy in which the matrix consists of γ'-phase, which is undesirable in the context of the invention. In practice, aluminum contents of 3.0 to 5.0% by mass have proven particularly useful.

Eisen (Fe):Iron (Fe):

Um bei der Herstellung einer erfindungsgemäßen Legierung Niob einzubringen, werden hauptsächlich FeNb-Legierungen verwendet. Eisen wird dadurch zu einem Bestandteil der Legierung und kann in Gehalten bis 20.0 Masse-% vorgesehen sein. Da höhere Konzentrationen an Eisen einerseits die Bildung von γ'-Phase unterdrücken und andererseits die Bildung von Carbiden des Typs M23C6 fördern, sind Eisengehalte von 1.5 bis 5.0 Masse-% günstig.In order to introduce niobium in the production of an alloy according to the invention, FeNb alloys are mainly used. Iron thereby becomes part of the alloy and may be present in levels up to 20.0 mass%. Since higher concentrations of iron on the one hand suppress the formation of γ'-phase and on the other hand promote the formation of carbides of the type M 23 C 6 , iron contents of 1.5 to 5.0 mass% are favorable.

Cobalt (Co):Cobalt (Co):

Cobalt kann in Konzentrationen bis zu 4.0 Masse-% einer erfindungsgemäßen Legierung die Löslichkeit von Aluminium herabsetzen und deswegen zu einem verbesserten Ausscheidungsverhalten der γ'-Phase führen.Cobalt can reduce the solubility of aluminum in concentrations of up to 4.0% by weight of an alloy according to the invention and therefore lead to improved precipitation behavior of the γ 'phase.

Titan (Ti):Titanium (Ti):

Titan kann in Gehalten bis zu 3.0 Masse-% vorgesehen sein und dient in diesen Konzentrationsbereichen neben einer Carbidbildung der Ausbildung einer γ'-Phase. Größere Konzentrationen als 3.0 Masse-% bewirken bevorzugt eine Bildung unerwünschter η-Phase.Titanium can be provided at levels of up to 3.0% by mass and, in addition to carbide formation, serves to form a .gamma. 'Phase in these concentration ranges. Greater concentrations than 3.0% by mass preferably cause formation of undesirable η-phase.

Hafnium (Hf):Hafnium (Hf):

Hafnium kann zur Substitution von Aluminium in der γ'-Phase eingesetzt werden und in diesem Fall in Gehalten bis 1.5 Masse-% vorliegen.Hafnium can be used to substitute aluminum in the γ'-phase and in this case be present in amounts up to 1.5 mass%.

Tantal (Ta):Tantalum (Ta):

Tantal wirkt als carbidbildendes Element und kann in Gehalten bis zu 2.0 Masse-% vorgesehen sein.Tantalum acts as a carbide-forming element and may be present at levels up to 2.0% by weight.

Zirkon (Zr):Zircon (Zr):

Zirkon erweist sich in Gehalten bis 0.5 Masse-% als wirksam, um eine Bildung von Karbidfilmen an den Komgrenzen zu vermeiden.Zirconium is found to be effective at levels up to 0.5% by weight in order to avoid formation of carbide films at grain boundaries.

Vanadium (V):Vanadium (V):

Vanadium ist ein stark carbid bildendes Element und kann zum Zwecke einer Carbidbildung in Gehalten bis 3.0 Masse-% vorgesehen sein.Vanadium is a high carbide-forming element and may be provided for purposes of carbide formation at levels up to 3.0% by weight.

Bor (B):Boron (B):

Wahlweise kann Bor in Gehalten bis 0.1 Masse-%, insbesondere von 0.001 bis 0.02 Masse-%, vorhanden sein. Bor kann durch die Bildung von Boriden positiv zur Härte einer Legierung beitragen. Eine Präsenz von Bor bewirkt im Übrigen eine Feinung des γ-Korns der Matrix.Optionally, boron may be present in amounts of up to 0.1% by weight, especially from 0.001 to 0.02% by weight. Boron can positively contribute to the hardness of an alloy by forming borides. Incidentally, a presence of boron causes a fine-tuning of the γ-grain of the matrix.

Nickel (Ni):Nickel (Ni):

Nickel bildet die Basis der Legierung bzw. liegt in der größten Konzentration vor und bildet die Matrix aus γ-Phase.Nickel forms the base of the alloy or is present in the highest concentration and forms the matrix of γ-phase.

Eine erfindungsgemäße Legierung enthält weiter herstellungsbedingte Verunreinigungen, wie Schwefel, Phosphor, Stickstoff und/oder Sauerstoff in einem dem Fachmann bekannten üblichen Ausmaß.An alloy according to the invention further contains manufacturing-related impurities, such as sulfur, phosphorus, nitrogen and / or oxygen in a conventional extent known in the art.

Das weitere Ziel der Erfindung wird durch ein Verfahren zur Herstellung eines Gegenstandes aus einer Nickelbasislegierung, wobei in einem ersten Schritt eine Schmelze enthaltend (in Masse-%) 0.5 bis 1.8 % Kohlenstoff bis 3.0 % Mangan 6.0 bis 25.0 % Chrom 8.0 bis 18.0 % Molybdän bis 10.0 % Wolfram bis 3.0 % Niob 2.5 bis 6.0 % Aluminium bis 20.0 % Eisen bis 4.0 % Cobalt bis 3.0 % Titan bis 1.5% Hafnium bis 2.0 % Tantal bis 0.5 % Zirkon bis 3.0 % Vanadium, The further object of the invention is achieved by a process for producing a nickel-based alloy article, wherein in a first step a melt containing (in% by mass) 0.5 to 1.8% carbon to 3.0% manganese 6.0 to 25.0% chrome 8.0 to 18.0% molybdenum to 10.0% tungsten to 3.0% niobium 2.5 to 6.0% aluminum to 20.0% iron to 4.0% cobalt to 3.0% titanium to 01.05% hafnium to 2.0% tantalum to 0.5% zircon to 3.0% vanadium,

Rest Nickel und Verunreinigungen, zu einem Pulver verdüst wird, wonach in einem zweiten Schritt aus dem Pulver ein kompakter Gegenstand geformt wird, wonach in einem dritten Schritt der kompakte Gegenstand einer Glühung im Temperaturbereich zwischen Lösungstemperatur von γ'-Phase und Solidustemperatur der Nickelbasislegierung unterworfen wird, worauf der Gegenstand in einem vierten Schritt ausscheidungsgehärtet wird, erreicht.Residue nickel and impurities, is atomized to a powder, after which in a second step from the powder, a compact article is formed, after which the compact article is subjected to annealing in the temperature range between solution temperature of γ'-phase and solidus temperature of the nickel-based alloy in a third step , whereupon the article is precipitation hardened in a fourth step.

Die verfahrensmäßig erzielten Vorteile sind vor allem darin zu sehen, dass ein Gegenstand aus einer Nickelbasislegierungen bereitgestellt werden kann, welcher hochtemperaturbeständig und hochfest ist und gleichzeitig ein im Wesentlichen homogenes Gefüge über einen Querschnitt des Vollmaterials aufweist. Dabei ist es wichtig, dass die erfindungsgemäß zusammengesetzte Schmelze in einem ersten Schritt zu einem Pulver verdüst wird, weil durch die damit einhergehende rasche Erstarrung Seigerungen bzw. Entmischungen unterbunden und vorzugsweise eutektische Carbide homogen und fein aus der Schmelze ausgeschieden werden. Anschließend wird das so erstellte Pulver zu einem kompakten Gegenstand geformt, so dass ein isotropes Vollmaterial für weitere Wärmebehandlungen zur Verfügung steht. Im vorgesehenen dritten Schritt erfolgt eine Einformung der Carbide durch eine Glühung im Temperaturbereich zwischen Lösungstemperatur von γ'-Phase und Solidustemperatur. Dabei zerfällt das eventuell vorhandene Carbidnetzwerk und es werden überwiegend globulare Carbide gebildet, welche anteilig zur erzielten Härte beitragen. Zudem wird allfällig vorhandene γ'-Phase zumindest größtenteils aufgelöst und der Werkstoff homogenisiert. Dass das eingesetzte Vollmaterial im Wesentlichen homogen ist, ist eine Voraussetzung dafür, dass nach der Glühung ein Gegenstand mit isotropen Eigenschaften erhalten wird. Wahlweise kann der Gegenstand vor und/oder nach der Glühung einer Warmumformung, beispielsweise einem Walzen, unterworfen werden. Ebenso versteht sich für den Fachmann, dass der Gegenstand nach der Glühung abgeschreckt werden kann, beispielsweise mit Wasser, Öl oder durch Anströmen mit Luft. Der Gegenstand wird einer Ausscheidungshärtung unterzogen, bei der γ'-Phase ausgeschieden wird. Diese ist ebenfalls homogen verteilt und trägt in einem Ausmaß ähnlich jenem der globularen Carbide zur Härte bei.The advantages achieved procedurally are to be seen above all in the fact that an article made of a nickel-base alloy can be provided, which is resistant to high temperatures and high strength and at the same time has a substantially homogeneous structure over a cross section of the solid material. It is important that the melt composed according to the invention is atomized to a powder in a first step, because segregations or demixings are prevented by the associated rapid solidification and preferably eutectic carbides are homogeneously and finely precipitated from the melt. Subsequently, the powder thus produced is formed into a compact article, so that an isotropic solid material is available for further heat treatments. In the planned third step, the carbides are formed by annealing in the temperature range between solution temperature of γ'-phase and solidus temperature. This decomposes the possibly existing Carbidnetzwerk and there are predominantly formed globular carbides, which contribute proportionately to the achieved hardness. In addition, any existing γ 'phase is at least largely dissolved and the material is homogenized. The fact that the solid material used is substantially homogeneous is a prerequisite for obtaining an article with isotropic properties after annealing. Optionally, the article may be subjected to hot working, such as rolling, before and / or after annealing become. It will also be understood by those skilled in the art that the article may be quenched after annealing, such as with water, oil, or by flowing air. The article is subjected to precipitation hardening, in which γ 'phase is precipitated. It is also homogeneously distributed and contributes to hardness similar to that of the globular carbides.

Unter Berücksichtigung der oben dargelegten Einzel- und Summenwirkungen der Elemente einer erfindungsgemäßen Legierung, kann es im Hinblick auf günstige Eigenschaften des Gegenstandes von Vorteil sein, wenn in der Schmelze (in Masse-%)

  • 0.6 bis 1.2 % Kohlenstoff und/oder
  • 10 bis 18 % Chrom und/oder
  • mehr als 10.0 % Molybdän und/oder
  • 1.0 bis 6.0 % Wolfram und/oder
  • 0.2 bis 1.5 % Niob und/oder
  • 3.0 bis 5.0 % Aluminium und/oder
  • 1.5 bis 5.0 % Eisen und/oder
  • bis 0.1 %, vorzugsweise 0.001 bis 0.02 %, Bor vorliegen
und/oder ein Anteil (in Masse-%) an (Molybdän + 0.5 Wolfram) mehr als 12.0 % beträgt.Taking into account the above-described individual and cumulative effects of the elements of an alloy according to the invention, it may be advantageous in view of favorable properties of the article if, in the melt (in% by mass)
  • 0.6 to 1.2% carbon and / or
  • 10 to 18% chromium and / or
  • more than 10.0% molybdenum and / or
  • 1.0 to 6.0% tungsten and / or
  • 0.2 to 1.5% niobium and / or
  • 3.0 to 5.0% aluminum and / or
  • 1.5 to 5.0% iron and / or
  • to 0.1%, preferably 0.001 to 0.02%, boron
and / or a proportion (in% by mass) of (molybdenum + 0.5 tungsten) is more than 12.0%.

Bevorzugt ist es, das Pulver durch heißisostatisches Pressen bei einer Temperatur von zumindest 1000 °C und einem Druck von zumindest 900 bar zu kompaktieren, um einen im Wesentlichen dichten Gegenstand zu erhalten, so dass bei den nachfolgenden Wärmebehandlungen durch Poren verursachte Schäden minimiert sind.It is preferred to compact the powder by hot isostatic pressing at a temperature of at least 1000 ° C and a pressure of at least 900 bar in order to obtain a substantially dense article so that damage caused by pores in the subsequent heat treatments is minimized.

Wenn eine Glühung zur Einformung der Carbide im Temperaturbereich von 1120 °C bis 1280 °C durchgeführt wird, kann vollständige Einformung der Carbide in moderaten Zeiten erreicht werden. Besonders bevorzugt ist es, wenn der zweite und der dritte Schritt durch heißisostatisches Pressen bei einer Temperatur von mehr als 1120 °C für mehr als vier Stunden gleichzeitig durchgeführt wird. Dabei wird ausgenützt, dass das Pulver bzw. der kompaktierte Gegenstand beim Heißisostatischen Pressen bereits auf hoher Temperatur ist und nicht gesondert aufgeheizt werden muss. Anders ausgedrückt: Zweiter und dritter Schritt können kombiniert werden, ohne dass der Gegenstand zwischen diesen Schritten abgekühlt und aufgeheizt werden muss.When annealing to form the carbides is carried out in the temperature range of 1120 ° C to 1280 ° C, complete incorporation of the carbides in moderate times can be achieved. It is particularly preferred if the second and the third step are carried out simultaneously by hot isostatic pressing at a temperature of more than 1120 ° C for more than four hours. It is exploited that the powder or the compacted article in the hot isostatic pressing is already at high temperature and does not need to be heated separately. In other words, the second and third steps can be combined without having to cool and heat the object between these steps.

Um eine günstige Durchhärtung zu erreichen, erfolgt das Ausscheidungshärten bevorzugt durch ein zumindest einstündiges Auslagern des Gegenstandes bei einer Temperatur von 700 bis 950 °C und anschließendes Abkühlen desselben. Für den Fachmann ist klar, dass dieser Schritt auch mehrmalig durchgeführt werden kann, wobei ab dem zweiten Auslagern die Temperaturen variabel gewählt werden können.In order to achieve a favorable through hardening, the precipitation hardening is preferably carried out by aging the article for at least one hour at a temperature of from 700 to 950 ° C. and then cooling it. It is clear to the person skilled in the art that this step can also be carried out several times, with the temperatures being able to be selected variably from the second aging.

Das weitere Ziel der Erfindung, ein Werkzeug aus einer Nickelbasislegierung, insbesondere Schneidwerkzeug oder thermisch hochbelastetes Werkzeug, anzugeben, welches eine hohe Härte aufweist, wird durch Anspruch 22 erreicht. Ein erfindungsgemäßes Werkzeug ist vorteilhaft bei Temperaturen von mehr als 700 °C einsetzbar und weist gleichzeitig eine hohe Härte bzw. eine hohe Verschleißfestigkeit auf. Somit kann es insbesondere bei Anwendungen, bei welchen ein Werkzeug in hohem Maße abrasiv beansprucht wird, wie bei einem Schneiden oder Umformen, zum Einsatz kommen.The further object of the invention to provide a tool made of a nickel-based alloy, in particular a cutting tool or thermally highly stressed tool, which has a high hardness is achieved by claim 22. An inventive tool is advantageously used at temperatures of more than 700 ° C and at the same time has a high hardness and high wear resistance. Thus, it can be used in particular in applications in which a tool is subjected to a high abrasive load, such as cutting or forming.

Das Ziel der Erfindung ein homogenes Vormaterial zur Herstellung von Werkzeugen, aus einer Nickelbasislegierung, insbesondere Schneidwerkzeug oder thermisch hochbelastetes Werkzeug, anzugeben, wird durch ein Vormaterial zur Herstellung von Werkzeugen, insbesondere Schneidwerkzeugen und thermisch hochbelastete Umformwerkzeugen, enthaltend 0.5 bis 1.8% Kohlenstoff bis 3.0 % Mangan 6.0 bis 25.0 % Chrom 8.0 bis 18.0 % Molybdän bis 10.0 % Wolfram bis 3.0 % Niob 2.5 bis 6.0 % Aluminium bis 20.0 % Eisen bis 4.0 % Cobalt bis 3.0 % Titan bis 1.5 % Hafnium bis 2.0 % Tantal bis 0.5 % Zirkon bis 3.0 % Vanadium, The object of the invention to provide a homogeneous starting material for the production of tools, made of a nickel-based alloy, in particular cutting tool or thermally highly stressed tool, is characterized by a starting material for the production of tools, in particular cutting tools and thermally highly stressed forming tools containing 0.5 to 01.08% carbon to 3.0% manganese 6.0 to 25.0% chrome 8.0 to 18.0% molybdenum to 10.0% tungsten to 3.0% niobium 2.5 to 6.0% aluminum to 20.0% iron to 4.0% cobalt to 3.0% titanium to 1.5% hafnium to 2.0% tantalum to 0.5% zircon to 3.0% vanadium,

Rest Nickel und herstellungsbedingte Verunreinigungen, wobei globulare Metallcarbide in einem Anteil von zumindest 10 Volumen-% vorliegen, erreicht.Residual nickel and production-related impurities, wherein globular metal carbides are present in a proportion of at least 10% by volume.

Der Vorteil eines derartigen Vormaterials zur Herstellung von Werkzeugen liegt insbesondere darin, dass homogenes Vormaterial zur Verfügung gestellt wird, welches mit geringem Aufwand endabmessungsnah herstellbar bzw. infolge moderater Härte auf Endabmessung des Werkzeugs bearbeitbar ist. Um dem herausgearbeiteten Werkzeug schließlich höchste Härte zu verleihen, braucht dieses lediglich einer Aushärtung unterworfen werden.The advantage of such a starting material for the production of tools is, in particular, that homogeneous starting material is provided, which can be produced with little effort near the final dimensions or, due to moderate hardness, can be machined to the final dimension of the tool. In order to finally give the finished tool the highest hardness, this only needs to be subjected to curing.

Im Folgenden ist die Erfindung anhand mehrer Beispiele noch weitergehend dargestellt.In the following, the invention is further illustrated by several examples.

Die Figuren zeigen:

  • Figur 1a: Ein Gefügebild einer erfindungsgemäßen Legierung A;
  • Figur 1b : Die Abhängigkeit der Härte einer Legierung A von der Auslagerungsdauer;
  • Figur 2a: Ein Gefügebild einer erfindungsgemäßen Legierung B;
  • Figur 2b: Die Abhängigkeit der Härte einer Legierung B von der Auslagerungsdauer.
The figures show:
  • FIG. 1a : A micrograph of an alloy A according to the invention;
  • FIG. 1b : The dependence of the hardness of an alloy A on the aging time;
  • FIG. 2a : A micrograph of an alloy B according to the invention;
  • FIG. 2b : The dependence of the hardness of an alloy B on the aging time.

Pulver aus Legierungen A, B,C und D, deren Zusammensetzungen aus Tabelle 1 ersichtlich sind, wurden jeweils durch Gasverdüsung einer entsprechenden Metallschmelze erstellt und die Pulver bei 1150 °C und einem Druck von 1000 bar heißisostatisch zu Vollmaterial kompaktiert. Die so erstellten Gegenstände wurden anschließend jeweils für zwei Stunden einer Glühung bei 1250 °C und einem nachfolgenden Abschrecken unterworfen. Anschließend wurden die Legierungen bei 800 bzw. 900 °C ausgehärtet. Nach Abkühlen auf Raum- bzw. Umgebungstemperatur wurden die Gegenstände aus Legierungen A bis D untersucht. Tabelle 1: Chemische Zusammensetzungen von erfindungsgemäßen Legierungen A bis D (Angaben in Masse-%). Element Legierung A Legierung B Legierung C Legierung D C [%] 1.04 0.95 0.8 0.7 Mn [%] 2.6 2.7 1.6 --- Cr [%] 13.1 20.0 21.4 21.9 Mo [%] 13.0 14.7 14.0 12.9 W [%] 3.1 4.5 4.0 2.9 Nb [%] --- --- 0.3 --- Al [%] 3.8 4.1 2.7 3.1 Fe [%] 4.5 3.9 3.0 2.7 Co [%] --- 2.8 2.2 3.3 Ti [%] --- --- --- 2.2 Ni [%] Rest Rest Rest Rest Powders of alloys A, B, C and D, whose compositions are shown in Table 1, were each prepared by Gasverdüsung a corresponding molten metal and compacting the powder at 1150 ° C and a pressure of 1000 bar hot isostatically to solid material. The articles thus produced were then subjected to annealing at 1250 ° C. for two hours followed by quenching. Subsequently, the alloys were cured at 800 and 900 ° C, respectively. After cooling to room or ambient temperature, the articles were examined from alloys A to D. <u> Table 1: </ u> Chemical Compositions of Inventive Alloys A to D (% by Weight). element Alloy A Alloy B Alloy C Alloy D C [%] 1:04 0.95 0.8 0.7 Mn [%] 2.6 2.7 1.6 --- Cr [%] 13.1 20.0 21.4 21.9 Not a word [%] 13.0 14.7 14.0 12.9 W [%] 3.1 4.5 4.0 2.9 Nb [%] --- --- 0.3 --- Al [%] 3.8 4.1 2.7 3.1 Fe [%] 4.5 3.9 3.0 2.7 Co [%] --- 2.8 2.2 3.3 Ti [%] --- --- --- 2.2 Ni [%] rest rest rest rest

Gefügeuntersuchungen zeigten, dass jeweils ein homogenes Gefüge bestehend aus einer Nickelmatrix (γ-Matrix) und in dieser homogen verteilte globulare Metallcarbide der Typen M6C, M2C und/oder M23C6 vorlagen. So zeigt beispielsweise ein Gefügebild der Legierung A vornehmlich globulare Carbide M2C und M6C mit einem durchschnittlichen Durchmesser von etwa 1 bis 2 µm (Figur 1a). Legierung B zeigt ebenfalls globulare Carbide, jedoch vom Typ M6C und M23C6 (Figur 2a).Microstructural investigations showed that in each case a homogeneous microstructure consisting of a nickel matrix (γ-matrix) and globally distributed globular metal carbides of the types M 6 C, M 2 C and / or M 23 C 6 were present. For example, a microstructure of Alloy A shows primarily globular carbides M 2 C and M 6 C having an average diameter of about 1 to 2 μm ( FIG. 1a ). Alloy B also shows globular carbides, but of type M 6 C and M 23 C 6 ( FIG. 2a ).

Nach einem Aushärten können erfindungsgemäße Legierungen Vickers Härten von mehr als 750 HV 5 erreichen, wie aus Tabelle 2 ersichtlich. Wie die Figuren 2a und 2b für die Legierungen A und B beispielhaft zeigen, kann durch ein Aushärten bzw. eine Ausscheidung von γ'-Phase eine Härtesteigerung von etwa 150 HV erzielt werden. Die insgesamt größte Härte wird in Legierung D erreicht, in welcher ausschließlich M6C-Carbide vorliegen. Tabelle 2: Gefügeausbildung und Härte von erfindungsgemäßen Legierungen A bis D). Legierung A Legierung B Legierung C Legierung D M2C + - - - Gefüge M6C + + + + M23C6 - + + - Carbidanteil [Volumen-%] ca. 30 ca. 25 ca. 22 ca. 16 Anteil γ'-Phase [Volumen-%] ca.50 ca. 40 ca. 40 ca. 40 Maximale Härte [HV 5] > 490 > 650 > 720 > 750 +...Phase ist vorhanden, -...Phase ist nicht vorhanden After curing, alloys of the present invention can achieve Vickers hardnesses greater than 750 HV 5, as shown in Table 2. As the FIGS. 2a and 2b For the alloys A and B by way of example, a hardening increase of about 150 HV can be achieved by hardening or precipitating γ'-phase. The highest overall hardness is achieved in alloy D, in which exclusively M 6 C carbides are present. <u> Table 2: </ u> Structure formation and hardness of alloys A to D according to the invention. Alloy A Alloy B Alloy C Alloy D M 2 C + - - - structure M 6 C + + + + M 23 C 6 - + + - Carbide content [% by volume] about 30 about 25 about 22 about 16 Proportion of γ'-phase [volume%] approx. 50 about 40 about 40 about 40 Maximum hardness [HV 5] > 490 > 650 > 720 > 750 + ... phase is present, -... phase does not exist

Schneid- und Umformwerkzeuge aus der erfindungsgemäßen Legierung haben sich in der Praxis bei Einsatztemperaturen von mehr als 700 °C bestens bewährt.Cutting and forming tools made from the alloy according to the invention have proven themselves in practice at operating temperatures of more than 700 ° C.

Claims (23)

  1. Precipitation hardened nickel based alloy, wherein primary metal carbides are present with a proportion of at least 10 % by volume, and which contains (in % by mass) 0.5 to 1.8 % of carbon up to 3.0 % of manganese 6.0 to 25.0 % of chromium 8.0 to 18.0 % of molybdenum up to 10.0 % of tungsten up to 3.0 % of niobium 2.5 to 6.0 % of aluminium up to 20.0 % of iron up to 4.0 % of cobalt up to 3.0 % of titanium up to 1.5 % of hafnium up to 2.0 % of tantalum up to 0.5 % of zirconium up to 3.0 % of vanadium,
    the rest being nickel and production conditioned impurities.
  2. Nickel based alloy according to claim 1, which contains (in % by mass) 0.6 to 1.2 % of carbon.
  3. Nickel based alloy according to claim 1 or 2, which contains (in % by mass) 10 to 18 % of chromium.
  4. Nickel based alloy according to any of claims 1 to 3, which contains (in % by mass) more than 10.0 % of molybdenum.
  5. Nickel based alloy according to any of claims 1 to 4, which contains (in % by mass) 1.0 to 6.0 % of tungsten.
  6. Nickel based alloy according to any of claims 1 to 5, wherein a sum (in % by mass) of (molybdenum + 0.5 x tungsten) amounts to more than 12.0 %.
  7. Nickel based alloy according to any of claims 1 to 6, which contains (in % by mass) 0.2 to 1.5 % of niobium.
  8. Nickel based alloy according to any of claims 1 to 7, which contains (in % by mass) 3.0 to 5.0 % of aluminium.
  9. Nickel based alloy according to any of claims 1 to 8, which contains (in % by mass) 1.5 to 5.0 % of iron.
  10. Nickel based alloy according to any of claims 1 to 9, which contains (in % by mass) up to 0.1 %, preferably 0.001 to 0.02 %, of boron.
  11. Nickel based alloy according to any of claims 1 to 10, wherein the proportion of metal carbides amounts to at least 15 % by volume, preferably to at least 20 % by volume.
  12. Nickel based alloy according to any of claims 1 to 11, wherein metal carbides of the formula M6C, MC, M2C and/or M23C6 are present.
  13. Nickel based alloy according to claim 12, wherein at least 50 % by volume of the metal carbides are present in the form of M6C.
  14. Nickel based alloy according to any of claims 1 to 13, wherein the metal carbides have an average size of 0.5 to 5 µm, particularly of 1 to 3 µm.
  15. Nickel based alloy according to any of claims 1 to 14, wherein a fraction of a γ'-phase amounts to at least 10 % by volume, particularly to 20 to 65 % by volume.
  16. Process for producing an object from a nickel based alloy, wherein, in a first step, a melt containing (in % by mass) 0.5 to 1.8 % of carbon up to 3.0 % of manganese 6.0 to 25.0 % of chromium 8.0 to 18.0 % of molybdenum up to 10.0 % of tungsten up to 3.0 % of niobium 2.5 to 6.0 % of aluminium up to 20.0 % of iron up to 4.0 % of cobalt up to 3.0 % of titanium up to 1.5 % of hafnium up to 2.0 % of tantalum up to 0.5 % of zirconium up to 3.0 % of vanadium,
    the rest being nickel and production conditioned impurities, is atomised to a powder, after which, in a second step, a compact object is formed from the powder, after which, in a third step, the compact object is subjected to annealing within a range of temperature between the solution temperature of the γ'-phase and the solidus temperature of the nickel based alloy, and the object is precipitation hardened thereafter in a fourth step.
  17. Process according to claim 16, wherein in a melt (in % by mass)
    0.6 to 1.2 % of carbon and/or
    10 to 18 % of chromium and/or
    more than 10 % of molybdenum and/or
    1.0 to 6.0 of tungsten and/or
    0.2 to 1.5 of niobium and/or
    3.0 to 5.0 % of aluminium and/or
    1.5 to 5.0 % of iron and/or
    up to 0.1 %, preferably 0.001 to 0.02 % of boron are present
    and/or a fraction (in % by mass) of (molybdenum + 0.5 x tungsten) amounts to more than 12.0 %.
  18. Process according to claim 16 or 17, wherein the powder is compacted by hot-isostatic compaction at a temperature of at least 1000°C and a pressure of at least 900 bar.
  19. Process according to any of claims 17 to 19, wherein annealing is carried out in a temperature range of 1120°C to 1280°C.
  20. Process according to any of claims 16 to 19, wherein the second and the third step are carried out simultaneously by hot-isostatic compaction at a temperature of more than 1120°C during more than four hours.
  21. Process according to any of claims 16 to 19, wherein precipitation hardening is effected by ageing the object during at least one hour at a temperature of 700 to 950°C and subsequent cooling the object.
  22. Tool, particularly cutting tool or thermally highly loaded transforming tool, which consists of a nickel based alloy according to any of claims 1 to 15.
  23. Starting material for producing tools, particularly cutting tools or thermally highly loaded transforming tools, which contains 0.5 to 1.8 % of carbon up to 3.0 % of manganese 6.0 to 25.0 % of chromium 8.0 to 18.0 % of molybdenum up to 10.0 % of tungsten up to 3.0 % of niobium 2.5 to 6.0 % of aluminium up to 20.0 % of iron up to 4.0 % of cobalt up to 3.0 % of titanium up to 1.5 % of hafnium up to 2.0 % of tantalum up to 0.5 % of zirconium up to 3.0 % of vanadium,
    the rest being nickel and production conditioned impurities, globular metal carbides being present in a proportion of at least 10 % by volume.
EP20050450151 2004-10-13 2005-09-09 High hardness and wear resistant nickel based alloy for use as high temperature tooling Not-in-force EP1647606B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT17132004A AT413544B (en) 2004-10-13 2004-10-13 HIGH-HARD NICKEL BASE ALLOY FOR WEAR-RESISTANT HIGH-TEMPERATURE TOOLS

Publications (2)

Publication Number Publication Date
EP1647606A1 EP1647606A1 (en) 2006-04-19
EP1647606B1 true EP1647606B1 (en) 2008-04-16

Family

ID=34842310

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050450151 Not-in-force EP1647606B1 (en) 2004-10-13 2005-09-09 High hardness and wear resistant nickel based alloy for use as high temperature tooling

Country Status (3)

Country Link
EP (1) EP1647606B1 (en)
AT (1) AT413544B (en)
DE (1) DE502005003720D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020093783A1 (en) * 2018-11-08 2020-05-14 青岛新力通工业有限责任公司 Anti-oxidation heat-resistant alloy and preparation method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799271B2 (en) 2006-06-16 2010-09-21 Compaction & Research Acquisition Llc Ni-base wear and corrosion resistant alloy
FR3105041B1 (en) * 2019-12-18 2023-04-21 Commissariat Energie Atomique Manufacturing process by hot isostatic pressing of a tool part
JP7176661B2 (en) * 2020-03-31 2022-11-22 日立金属株式会社 Alloys, alloy powders, alloy members and composite members
CN114574788B (en) * 2022-01-19 2022-08-30 长沙市萨普新材料有限公司 High-speed steel and preparation method and application thereof
CN114700495B (en) * 2022-04-07 2023-09-22 西安交通大学 Non-cracking high-wear-resistance corrosion-resistance nickel-based composite material and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842743A (en) * 1981-09-04 1983-03-12 Mitsubishi Metal Corp Cast ni alloy for guide shoe of inclined hot rolling mill for manufacturing seamless steel pipe
US4727740A (en) * 1981-09-04 1988-03-01 Mitsubishi Kinzoku Kabushiki Kaisha Thermal and wear resistant tough nickel based alloy guide rolls
US6200688B1 (en) * 1998-04-20 2001-03-13 Winsert, Inc. Nickel-iron base wear resistant alloy
US6238620B1 (en) * 1999-09-15 2001-05-29 U.T.Battelle, Llc Ni3Al-based alloys for die and tool application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020093783A1 (en) * 2018-11-08 2020-05-14 青岛新力通工业有限责任公司 Anti-oxidation heat-resistant alloy and preparation method

Also Published As

Publication number Publication date
AT413544B (en) 2006-03-15
EP1647606A1 (en) 2006-04-19
DE502005003720D1 (en) 2008-05-29
ATA17132004A (en) 2005-08-15

Similar Documents

Publication Publication Date Title
EP3228724B1 (en) Tool steel, in particular hot-work steel, and steel object
EP2253398B1 (en) Wear-resistant material
EP3994287B1 (en) Method for producing a nickel base alloy powder
DE2937724C2 (en) Steel product made by powder metallurgy with a high proportion of vanadium carbide
EP1249512B1 (en) Cold work steel for powder metallurgical production of parts
EP3409801B1 (en) Solid particles prepared by means of powder metallurgy, hard particle containing composite material, use of a composite material and method for manufacturing a component from a composite material
DE3043503A1 (en) CRYSTALINE METAL ALLOY
DE69213322T2 (en) Pre-alloyed vanadium-rich cold work tool steel particles and process for their production
EP2185738B1 (en) Production of alloys based on titanium aluminides
EP3851551A1 (en) Metal powder for an additive manufacturing method, uses of the metal powder, method for producing a component and component
DE69814896T2 (en) STEEL AND HEAT-TREATED TOOL MADE IN AN INTEGRATED POWDER METALLURGICAL PROCESS AND THE USE OF SUCH STEEL FOR TOOLS
EP1647606B1 (en) High hardness and wear resistant nickel based alloy for use as high temperature tooling
EP3994289B1 (en) Nickel based alloy for powder and method to produce such powder
DE102021106606A1 (en) Cobalt-chromium alloy powder
EP1249511B1 (en) High speed steel with good high temperature strength manufactured by powder metallurgy
DE102019135830A1 (en) Method of making a hot work steel article
DE69906782T2 (en) STEEL, USE OF THE STEEL, PRODUCT MADE THEREOF AND METHOD FOR THE PRODUCTION THEREOF
WO2021032893A1 (en) Tool steel for cold-working and high-speed applications
EP3323902A1 (en) Steel material containing hard particles prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material
EP3850114A1 (en) Corrosion-resistant and precipitation-hardening steel, method for producing a steel component, and steel component
EP3719158B1 (en) Use of a steel powder, method for producing a steel component by means of additive manufacturing
DE60310283T3 (en) High temperature element for a gas turbine
EP3323903B1 (en) Steel material prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material
EP4000762B1 (en) Use of a steel powder for an additive manufacturing process of a steel component
EP1471160B1 (en) Cold-worked Steel Object

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060704

17Q First examination report despatched

Effective date: 20060802

AKX Designation fees paid

Designated state(s): DE GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT SE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080418

REF Corresponds to:

Ref document number: 502005003720

Country of ref document: DE

Date of ref document: 20080529

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140922

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140918

Year of fee payment: 10

Ref country code: GB

Payment date: 20140919

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140929

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005003720

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150909

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150909

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160401