EP3323902A1 - Steel material containing hard particles prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material - Google Patents

Steel material containing hard particles prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material Download PDF

Info

Publication number
EP3323902A1
EP3323902A1 EP16200060.8A EP16200060A EP3323902A1 EP 3323902 A1 EP3323902 A1 EP 3323902A1 EP 16200060 A EP16200060 A EP 16200060A EP 3323902 A1 EP3323902 A1 EP 3323902A1
Authority
EP
European Patent Office
Prior art keywords
steel
content
steel material
material according
contents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16200060.8A
Other languages
German (de)
French (fr)
Other versions
EP3323902B1 (en
Inventor
Dr. Horst Hill
Dr. André van Bennekom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Edelstahlwerke Specialty Steel GmbH and Co KG
Original Assignee
Deutsche Edelstahlwerke GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Edelstahlwerke GmbH filed Critical Deutsche Edelstahlwerke GmbH
Priority to EP16200060.8A priority Critical patent/EP3323902B1/en
Priority to PCT/EP2017/079968 priority patent/WO2018095928A1/en
Priority to JP2019547782A priority patent/JP2020501027A/en
Priority to US16/349,463 priority patent/US20200190638A1/en
Publication of EP3323902A1 publication Critical patent/EP3323902A1/en
Application granted granted Critical
Publication of EP3323902B1 publication Critical patent/EP3323902B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/36Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon

Definitions

  • the invention relates to a steel material which is produced by powder metallurgy and contains hard material particles.
  • steel materials are also referred to in technical language as metal matrix composite materials.
  • the invention relates to a method for producing such a steel material.
  • the invention also relates to components which are made of a steel material of the type according to the invention.
  • the invention is directed to a steel material which is suitable for the production of components which are subjected to the highest surface loads in practical use and at the same time are moved quickly.
  • An example of such components are roller guide rollers which are used in machines (rolling stands) for wire rolling.
  • the wire to be rolled and moved at a high conveying speed is conducted while hot at temperatures of more than 1000 ° C. Due to its high temperature, a scale layer forms on the wire.
  • the roller guide rollers are therefore exposed to their coming into contact with the wire surfaces also high abrasive loads.
  • the wear resistance in particular the resistance to abrasive wear, the corrosion resistance, the resistance to thermal shock stress and the weight of steels from which roll guide rollers and other components subjected to comparable stress in practical use posed.
  • the steel has an Mn content of 0.2-2.0%, a P content of max. 0.1%, an S content of max. 0.1%, a Si content of max. 2.0%, a Cr content of 11.5-14.5%, a Mo content of max. 3.0%, a V content of 8.0-15.0%, an N content of 0.03-0.46%, and a C content of 1.47-3.77% should.
  • these steels have a steel matrix consisting of 0.1-1% by weight of Mn, up to 2% by weight of Si, 4.5-5.5% by weight of Cr, 0.8-1 , 7 wt .-% Mo, up to 0.14 wt .-% S, 8 - 10.5 wt .-% V, 2.2 - 2.6 wt .-% C, balance iron and unavoidable impurities exists , and contain 13.3 - 17.3 vol .-% vanadium carbides.
  • the steel achieves a hardness of up to 63 HRC.
  • the object was to provide a steel material which offers a further optimized combination of properties for the production of components which are exposed in practice to high mechanical, corrosive, thermal and abrasive loads.
  • the invention has achieved this object by the procured according to claim 1 steel.
  • the solution according to the invention of the object set out above with regard to the method consists in that during the production of components from a steel according to the invention at least the working steps mentioned in claim 12 are run through.
  • steel according to the invention is particularly suitable for the production of components which, in practical use, perform movements with high acceleration or speed and in particular are exposed to high surface and temperature stresses.
  • Examples of such components are rolling guides for rolling mills for wire production, but also other tools and other components, of which not only high stability under mechanical stress and wear resistance, but also an optimized behavior under the action of high dynamic forces is required. But also piston pin and push rods for internal combustion engines are named.
  • hard material particles in question may in particular be titanium carbide particles TiC.
  • the steel according to the invention is thus composed such that it has a minimized density in addition to a good wear resistance and a concomitantly high life has a maximized resistance to extreme temperature changes and also optimized corrosion resistance.
  • the alloy spans are chosen so that a wider and for the use of hard material particles in the jargon also called metal matrix composites ("MMCs"), meaningful area for vanadium alloyed, high-strength and wear-resistant materials is available.
  • MMCs metal matrix composites
  • the two most important alloying elements in this alloy system are carbon and vanadium.
  • Carbon is responsible for martensitic hardening as well as for the formation of hard vanadium carbide, which in combination with high hardness and high strength results in optimized wear resistance.
  • C is therefore present in the steel according to the invention in contents of 1.5-5.0% by weight.
  • the carbon has two main tasks: On the one hand C is needed for the martensitic hardening of the metal matrix. On the other hand, the presence of sufficient amounts of C leads to the formation of hard carbides with the existing alloying elements, in particular with V, Cr and, if present, Nb. If there is too little C in the alloy of the steel matrix, the formation of martensite does not take place; if C is too high, retained austenite is stabilized. Both effects can reduce hardness and wear resistance.
  • the ratio of carbon to the carbide-forming elements is therefore always important.
  • silicon is used for the deoxidation during the melting of the starting materials, which are part of the steel alloy powder alloyed according to the invention for the production of components according to the invention.
  • the presence of silicon increases the carbon activity and thus leads to a lowering of the melting temperature. Without the targeted addition of at least 0.3 wt .-% Si, in particular At least 0.7 wt .-% Si, higher C contents would be necessary.
  • the lowered melting point in turn facilitates the atomization process. Silicon also reduces the viscosity of the molten metal, which also contributes to the simplification of the powder atomization process.
  • silicon increases the through-hardenability of the steel material, since the conversion lugs in the ZTU diagram are shifted to longer times.
  • the strength of the austenite to hardening temperature is increased by the dissolved amount of Si, which explains the higher stability of the austenite and longer cooling periods can be made possible.
  • Si contents of up to 2.0% by weight, in particular up to 1.5% by weight. Too high a content of Si would lead to a stabilization of the ferrite, which would reduce the amount of martensite present in the structure of the steel after hardening and thus also reduce the hardness and wear resistance of the steel material according to the invention.
  • Manganese is present in the steel material according to the invention to optimize the Verdüsberry of the steel in the production of steel powder and its hardness.
  • Mn similar to the presence of Si
  • the melting point of the steel is lowered and the viscosity of the molten metal lowered, so that the targeted addition of Mn also contributes to the simplification of the atomization process.
  • manganese also increases the through-hardenability of the steel material.
  • the dissolved portion of Mn contributes to the stabilization of austenite.
  • Mn binds sulfur by forming MnS, reducing the risk of hot cracking and improving machinability.
  • Excessive levels of manganese could on the one hand stabilize the austenitic phase to the extent that the soft annealing time would be significantly increased.
  • the austenitic phase could also be stabilized to such an extent by excessively high Mn contents that residual austenite remains in the microstructure after hardening. This microstructure would be significantly softer than martensite, reducing hardness and wear resistance.
  • Mn contents of a steel material according to the invention of about 1.2% by weight prove to be particularly practical.
  • Chromium is used in the inventive steel in combination with Mo and V to adjust the tempering resistance, corrosion resistance and hardenability. Consequently, by varying the Cr content, these three properties can be adapted according to the respective requirements. At low Cr contents of 3.0-8.0% by weight, Cr has a positive influence on the tempering resistance and the through-hardenability in particular. With increasing Cr contents, the corrosion resistance and the contribution of Cr to carbide formation increase.
  • Average Cr contents of more than 8.0% by weight to less than 11.0% by weight constitute a transitional area to this extent.
  • the Cr content is not yet sufficient here.
  • a higher hardness of the steel matrix arises as a result of increasing Cr carbide formation.
  • At levels of at least 11.0 wt .-% Cr, in particular at least 12.0 wt .-%, in the steel material according to the invention tempering and corrosion resistance are achieved with maximum hardness and strength, which withstand the highest demands.
  • the advantageous effects of Cr can be particularly reliable use that the Cr content is set to at least 12.5 wt .-%. Too high Cr contents would cause more Cr carbides to form.
  • the formation of Cr carbides would harden C, which would reduce the formation of martensite, so that the desired high hardness of martensite could no longer be achieved.
  • the Cr contents were significantly increased beyond the upper limit prescribed by the invention, the ferritic phase would be stabilized, which would also not achieve the required hardness and wear resistance. Therefore, according to the invention, the maximum content of Cr is limited to 15.0% by weight, in particular at most 14.0% by weight, with Cr contents of up to 13.5% by weight being particularly suitable in practice have exposed.
  • the C content% C should be about 30% higher than the target content% CZiel determined according to the formula given above.
  • a tolerance range of the V content of, for example, +/- 0.5% by weight is permitted, so that its actual V content may vary between 14.5-15.5 wt%.
  • a tolerance of +/- 0.2% by weight is allowed for the actual C content by the target value% CZiel.
  • the actual C content of the steel material V15 can thus be 3.2-3.6% by weight.
  • Molybdenum like chromium, increases the corrosion resistance, hardenability and tempering resistance of components made from steel according to the invention when Mo contents of at least 0.5% by weight, in particular at least 0.9% by weight, are present. Excessive contents of Mo, however, worsen the formability of the steel, since the high-temperature strength is significantly increased. In addition, high levels of Mo would also stabilize the ferritic phase. Therefore, the maximum content of Mo in inventive steel to 2.0 wt .-%, in particular max. 1.5% by weight, limited.
  • the Mo content of a steel according to the invention, which is particularly suitable for the purposes of the invention, is accordingly in the range of 1.2 wt .-%.
  • Vanadium is present in the steel of the present invention at levels of from 6.0% to 18.0% by weight to achieve optimized wear resistance through the formation of vanadium-rich carbides or carbonitrides.
  • vanadium increasingly participates in the formation of carbides during tempering in the secondary hardness maximum.
  • High V contents of at least 16 wt .-% lead to particularly high wear resistance, so that steel materials according to the invention with such high V contents are particularly suitable for use as a material for roller guide rollers, which are exposed to maximum loads in use.
  • V content 17.4% by weight or 17.0% by weight to 16.0% by weight or more preferably at most 15.5% by weight, it can be reliably avoided that too much carbon is set by carbide formation.
  • the steel material according to the invention can be processed more easily by cutting than at the higher V and C contents.
  • a simplified machinability results accordingly when the V content to max. 12 wt .-%, in particular max. 10 wt .-%, and thus also limited depending on the V content C content is limited in the manner described above.
  • Niobium is optionally present at levels of up to 2.0% by weight in the steel of the present invention.
  • Nb has a very similar mode of action as vanadium. It mainly participates in the formation of hard and wear-resistant monocarbides. Therefore, depending on their contents in atomic%, Nb and V in the ratio 1: 1 can be exchanged alternately, if this is useful, for example, in view of the availability of these alloying elements.
  • Nickel may optionally be present at levels of up to 1.0% by weight in the steel material of the present invention to stabilize the austenite portion similar to Mn and thus improve hardenability.
  • the presence of Ni ensures that austenite is actually formed at the respective hardening temperature and that no unwanted ferrite is formed in the structure of the steel.
  • an excessively high Ni content increases the cooling time required for martensite formation.
  • there should not be too high Ni contents since there is a risk that residual austenite will be present in the microstructure after hardening.
  • the Ni content is preferably at least 0.2 wt .-%, with adjusted Ni contents of up to 0.4 wt .-% optimized effects of the presence of Ni.
  • Cobalt may also optionally be present at levels of up to 1.0% by weight in the steel material of the present invention. Similar to nickel, Co has a stabilizing effect on austenite formation and hardening temperature. However, unlike nickel or manganese, Co does not lower the final temperature of the martensite, so its presence is less critical with respect to the formation of retained austenite. In addition, cobalt increases the heat resistance. If these positive effects are to be utilized by the addition of Co, contents of at least 0.3% by weight of Co prove to be particularly expedient, with optimized effects occurring at Co contents of up to 0.5% by weight.
  • Tungsten like Co and Ni, can optionally be added to the steel in amounts of up to 1.0% by weight. Above all, tungsten increases the tempering resistance and, above all, participates in carbide formation during tempering in the secondary hardness maximum. The presence of W shifts the tempering temperatures to higher temperatures. In addition, the heat resistance is increased by W, similar to the cobalt. However, excessive W levels would also stabilize the ferritic phase. If the positive effects of W are to be used, contents of at least 0.3% by weight of W are therefore found to be particularly expedient, with optimized effects occurring at W contents of up to 0.5% by weight.
  • the remainder of the remaining steel consists of iron and unavoidable impurities which enter the steel due to the manufacturing process or the raw materials from which the constituents of the steel alloy powder are recovered, but have no effect on the properties there.
  • Sulfur may be present in grades up to 0.35% by weight in the steel material to improve machinability. At higher S contents, however, the properties of the composite steel material according to the invention are deteriorated. In order to be able to safely use the favorable effect of the presence of S, at least 0.035% by weight may be present in the steel material according to the invention. If, on the other hand, the machinability is not improved by the targeted addition of S, the S content can accordingly be restricted to less than 0.035% by weight.
  • the unavoidable impurities also include levels of P of up to 0.035 wt .-% and, for example, in total up to 0.2 wt .-% of oxygen.
  • Nitrogen is also not added to the steel material according to the invention in a targeted manner, but due to the nitrogen affinity of the alloy constituents passes into the steel material during the atomization process.
  • the content of N should be less than 0.12 wt .-%, in particular be limited to a maximum of 0.1% by weight.
  • the density of steel material according to the invention is typically in the range of 6.4 to 7.6 g / cm 3 , the density of the pure steel matrix material typically being 7.0 to 7.6 g / cm 3 .
  • the hard materials are like the steel matrix forming steel alloy powder in the initial state as a powder before.
  • Hard materials also known as "hard phases” in technical language, can be carbides, nitrides, oxides or borides.
  • the group of suitable hard materials accordingly includes Al 2 O 3 , B 4 C, SiC, ZrC, VC, NbC, TiC, WC, W 2 C, Mo 2 C, V 2 C, BN, Si 3 N 4 , NbN or TiN ,
  • Titanium carbide TiC has been found to be particularly suitable for the purposes of this invention. Titanium carbide has a hardness of 3200 HV and thus increases the hardness and wear resistance of the steel particularly effectively. At the same time, TiC is chemically resistant and has no negative impact on corrosion resistance. Likewise, the low density of TiC has an advantageous effect.
  • the steel material alloyed hard material contents of less than 2.5 wt .-% there is no improvement in the wear resistance.
  • the content of alloyed hard material particles can be limited to not more than 25% by weight in the material according to the invention.
  • the contents of hard material particles mentioned here in a steel material according to the invention prove to be particularly useful when the alloyed hard material is titanium carbide TiC.
  • Steel of the invention after hardening and tempering, achieves hardness values typically in the range of 58-70 HRC.
  • the typical soft annealing hardness of steel material according to the invention is typically up to 65 HRC due to the presence of the hard material particles provided according to the invention.
  • Powder production may be accomplished in a conventional manner, for example by gas atomization or any other suitable method.
  • the alloy powder can be produced, for example, by gas or water atomization or a combination of these two atomization methods.
  • An atomization of a melt alloyed according to the invention to the alloy powder is conceivable.
  • those are selected from the powder particles for the further processing according to the invention by sieving, which have a mean diameter of less than 500 microns, with powder having mean grain sizes of less than 250 .mu.m, in particular less than 180 microns, have been found to be particularly suitable.
  • the alloy powder provided according to the invention optimally has a bulk density of 2-6 g / cm 3 (determined in accordance with DIN EN ISO 3923-1) and a tap density of 3-8 g / cm 3 (determined in accordance with DIN EN ISO 3953).
  • the steel alloy powder provided in step a) is mixed with the respectively selected hard material powder.
  • the amount of added hard material particles is determined taking into account the information given above with regard to the optimized selection of the content of hard materials in such a way that the content of the hard material particles in the finished mixture in the range of 2.5 to 30 wt .-%.
  • the alloy powder prepared in step a) or step b) may be dried in a conventional manner to remove residues of liquids and other volatiles which could hinder the subsequent forming process.
  • a blank (semifinished product) is then formed.
  • the alloy powder in a conventional manner by a suitable sintering process, in particular by hot isostatic pressing ("HIPen"), are brought into the respective shape.
  • HIPing will be performed. Typical pressures during HIPing are in the range of 900-1500, in particular 1000 bar, at a temperature of 1050-1250 ° C., in particular 1080-1200 ° C.
  • austenite, VC and Cr carbide form in the microstructure of the steel material.
  • the respective component can also be produced from the inventively prepared and provided alloy powder in an additive process.
  • additive summarizes all manufacturing processes in which a material is added to produce a component, wherein this addition generally takes place in layers.
  • “Additive manufacturing processes” which are often referred to as “generative processes” in technical jargon, are in contrast to the classical subtractive production processes, such as the machining processes (eg milling, drilling and turning), in which material is removed, in order to achieve this each to be manufactured component to give shape.
  • the additive design principle makes it possible to produce geometrically complex structures that can not be realized or can only be realized with great difficulty using conventional manufacturing processes such as the aforementioned metal-cutting processes or primary molding processes (casting, forging) (see VDI Status Report “Additive Manufacturing Processes", September 2014) from the Association of German Engineers eV, Department of Production Engineering and Manufacturing, www.vdi.de/statusadditiv). details
  • the semi-finished product obtained after step d) still requires a finish in order to give it on the one hand the desired performance and on the other hand the required final shape. Finishing includes, for example, a mechanical, in particular machining of the semifinished product, and a heat treatment, which may consist of hardening and tempering.
  • the production of the semifinished product was followed by the heat treatment.
  • the respective semi-finished product is heated at a heating rate of typically 5 K / min to a hardening temperature (austenitizing temperature) of 1050 - 1200 ° C, on which it is held until it is completely warmed through. Typically, this will take 30 to 60 minutes.
  • the thus heated semi-finished products are quenched. They are cooled with a suitable quenching medium, for example with water, oil, a polymer bath, moving or static air or, if the cooling is carried out in a vacuum oven, with gaseous nitrogen, within 5-30 min to room temperature.
  • a suitable quenching medium for example with water, oil, a polymer bath, moving or static air or, if the cooling is carried out in a vacuum oven, with gaseous nitrogen, within 5-30 min to room temperature.
  • the heating may be expedient to carry out the heating to the hardening temperature in several preheating stages, for example 400 ° C., 600 ° C. and 800 ° C. or a preheating temperature in the range from 600 to 800 ° C., in order to ensure uniform heating.
  • tempering may be carried out in which the semifinished product is held for a period of, for example, 90 minutes at the respective tempering temperature, which is typically 450-550 ° C.
  • the tempering conditions are determined in a manner known per se depending on the respective hardening temperature and the desired level of hardness, i. the desired strength selected.
  • the heating and cooling rates are usually on the order of 10 K / min when starting. In contrast to curing, the heating and cooling rates during tempering are not critical.
  • cylindrical semifinished products have been produced from four steel materials V10a-V10d according to the invention.
  • the steel matrix of the steel materials V10a, V10b, V10c and V10d each contained (in wt .-%) 2.5% C, 0.9% Si, 0.9% Mn, 4.5% Cr, 1.2% Mo and 10.0% V, balance iron and unavoidable impurities.
  • 5% by weight of TiC were added to the steel material V10a, 10% by weight of TiC to the steel material V10b, 15% by weight of TiC to the steel material V10c and 20% by weight of TiC to the steel material V10d.
  • the austenitizing temperature AT, the hardness HRC ("HRC_v”) existing before the subsequent heat treatment step, either when tempering has been performed, the tempering temperature ST and tempering time St, or, if soft annealing has been performed, the soaking temperature WT and the soaking annealing time Wt , the hardness HRC ("HRC_n”) after the previous heat treatment step and the density ⁇ of the samples V1-V8 are given in Table 1.
  • the heating to the respective austenitizing AT was carried out in a vacuum oven. There, the samples V1 - V8 were kept at the austenitizing temperature ⁇ T for an austenitizing time ⁇ t. Subsequently, the mixture was cooled to room temperature in the vacuum oven by exposure to gaseous nitrogen applied at a pressure of 3.5 bar.
  • Samples 1-8 were subjected to either annealing or annealing treatment.
  • the samples 1, 3, 5, 7 have been kept at the tempering temperature ST over the tempering period St. This tempering treatment was carried out twice to obtain an optimum starting result.
  • the samples 2, 4, 6, 8 have been kept at the annealing temperature WT for a duration Wt. After the end of the annealing period, the oven was switched off and the samples 2, 4, 6, 8 were cooled slowly in the oven switched off to room temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die Erfindung stellt einen Stahlwerkstoff bereit, der eine minimierte Dichte, eine gute Verschleißbeständigkeit und eine damit einhergehend hohe Lebensdauer bei maximierter Beständigkeit gegen extreme Temperaturwechsel und einer ebenso optimierten Korrosionsbeständigkeit besitzt. Ein solcher erfindungsgemäßer Werkstoff eignet sich insbesondere für die Herstellung von Bauteilen, die im praktischen Einsatz hohen mechanischen, korrosiven, thermischen und abrasiven Belastungen ausgesetzt sind. Hierzu ist der erfindungsgemäße Stahlwerkstoff pulvermetallurgisch hergestellt und wie folgt zusammengesetzt (in Gew.-%):C: 1,5 - 5,0 %, Si: 0,3 - 2,0 %, Mn: 0,3 - 2,0 %, P: 0 - <0,035 %, S: 0 - <0,35 %, N: 0 - <0,1 %, Cr: 3,0 - 15,0 %, Mo: 0,5 - 2,0 %, V: 6,0 -18,0 %, jeweils optional ein Element oder mehrere Elemente aus der Gruppe "Nb, Ni, Co, W", wobei der Gehalt an Ni, Co und W jeweils höchstens 1,0 % und der Gehalt an Nb höchstens 2,0 % beträgt, Rest Eisen und unvermeidbare Verunreinigungen, wobei in der Stahlmatrix Hartstoffpartikel in Gehalten von 2,5 - 30 Gew.-% eingebettet sind. Aus einem derart legierten Stahllegierungspulver wird durch ein Sinterverfahren oder ein additives Verfahren ein festes Halbzeug gebildet, das eine Wärmbehandlung durchläuft und dann zum jeweiligen Bauteil fertig bearbeitet wird.The invention provides a steel material which has a minimized density, a good wear resistance and a concomitantly high service life with a maximized resistance to extreme temperature changes and likewise optimized corrosion resistance. Such a material according to the invention is particularly suitable for the production of components which are exposed to high mechanical, corrosive, thermal and abrasive loads in practical use. For this purpose, the steel material according to the invention is powder metallurgically produced and composed as follows (in% by weight): C: 1.5-5.0%, Si: 0.3-2.0%, Mn: 0.3-2.0 %, P: 0 - <0.035%, S: 0 - <0.35%, N: 0 - <0.1%, Cr: 3.0 - 15.0%, Mo: 0.5 - 2.0 %, V: 6.0-18.0%, in each case optionally one or more elements from the group "Nb, Ni, Co, W", wherein the content of Ni, Co and W in each case at most 1.0% and the Content of Nb is at most 2.0%, balance iron and unavoidable impurities, embedded in the steel matrix hard material particles in amounts of 2.5 to 30 wt .-%. From such an alloyed steel alloy powder, a solid semi-finished product is formed by a sintering process or an additive process, which undergoes a heat treatment and is then finished to the respective component.

Description

Die Erfindung betrifft einen Stahlwerkstoff, der pulvermetallurgisch hergestellt ist und Hartstoffpartikel enthält. Solche Stahlwerkstoffe werden in der Fachsprache auch als Metallmatrix-Verbundwerkstoffe bezeichnet.The invention relates to a steel material which is produced by powder metallurgy and contains hard material particles. Such steel materials are also referred to in technical language as metal matrix composite materials.

Ebenso betrifft die Erfindung ein Verfahren zum Herstellen eines solchen Stahlwerkstoffs.Likewise, the invention relates to a method for producing such a steel material.

Schließlich betrifft die Erfindung auch Bauteile, die aus einem Stahlwerkstoff der erfindungsgemäßen Art hergestellt sind.Finally, the invention also relates to components which are made of a steel material of the type according to the invention.

Speziell zielt die Erfindung auf einen Stahlwerkstoff ab, der für die Herstellung von Bauteilen geeignet ist, die im praktischen Einsatz höchsten Flächenbelastungen ausgesetzt sind und gleichzeitig schnell bewegt werden. Ein Beispiel für solche Bauteile sind Walzführungsrollen, die in Maschinen (Walzgerüste) zum Drahtwalzen eingesetzt werden. An diesen Rollen wird der zu walzende und mit einer hohen Fördergeschwindigkeit bewegte Draht im heißen Zustand bei Temperaturen von mehr als 1000 °C geführt. Aufgrund seiner hohen Temperatur bildet sich auf dem Draht eine Zunderschicht. Neben der hohen Temperatur und den hohen dynamischen Belastungen, denen sie aufgrund ihrer mit der hohen Fördergeschwindigkeit des Drahts einhergehenden hohen Drehgeschwindigkeiten ausgesetzt sind, sind die Walzführungsrollen daher an ihren mit dem Draht in Berührung kommenden Flächen auch hohen abrasiven Belastungen ausgesetzt.Specifically, the invention is directed to a steel material which is suitable for the production of components which are subjected to the highest surface loads in practical use and at the same time are moved quickly. An example of such components are roller guide rollers which are used in machines (rolling stands) for wire rolling. On these rollers, the wire to be rolled and moved at a high conveying speed is conducted while hot at temperatures of more than 1000 ° C. Due to its high temperature, a scale layer forms on the wire. In addition to the high temperature and the high dynamic loads, which they are exposed because of their associated with the high conveying speed of the wire high rotational speeds, the roller guide rollers are therefore exposed to their coming into contact with the wire surfaces also high abrasive loads.

Damit sie diesem Belastungskollektiv standhalten können, werden an den Verschleißwiderstand, insbesondere den Widerstand gegen abrasiven Verschleiß, die Korrosionsbeständigkeit, den Widerstand gegen Thermoschock-Beanspruchung und das Gewicht von Stählen, aus denen Walzführungsrollen und andere im praktischen Einsatz vergleichbar belastete Bauteile hergestellt werden, hohe Anforderungen gestellt.In order to be able to withstand this load collective, high demands are placed on the wear resistance, in particular the resistance to abrasive wear, the corrosion resistance, the resistance to thermal shock stress and the weight of steels from which roll guide rollers and other components subjected to comparable stress in practical use posed.

Es sind verschiedene Versuche bekannt, diesem Anforderungsprofil gerecht zu werden. So ist in der EP 0 773 305 B1 ein verschleiß- und korrosionsbeständiger, pulvermetallurgischer Werkzeugstahl beschrieben, der für die Herstellung von Bauteilen bestimmt ist, die zur Verarbeitung von verstärkten Kunststoffen und anderen abschleifenden und korrosiven Materialien verwendet werden. Der Stahl weist neben Eisen (in Gew.-%) einen Mn-Gehalt von 0,2 - 2,0 %, einen P-Gehalt von max. 0,1 %, einen S-Gehalt von max. 0,1 %, einen Si-Gehalt von max. 2,0 %, einen Cr-Gehalt von 11,5 - 14,5 %, einen Mo-Gehalt von max. 3,0 %, einen V-Gehalt von 8,0 -15,0 %, einen N-Gehalt von 0,03 - 0,46 % und einen C-Gehalt auf, der bei 1,47 - 3,77 % liegen soll. Die Gehalte an C, Cr, Mo, V und N sind dabei über zwei Formeln so miteinander verknüpft, dass einerseits die Bildung von Ferrit im Gefüge des aus dem Stahl gefertigten Bauteils vermieden wird und andererseits um die Bildung übermäßiger Mengen an Rest-Austenit während der Wärmebehandlung zu verhindern, die das Bauteil im Zuge seiner Herstellung durchläuft. Ebenso soll über die durch die Formeln bestimmte Zusammensetzung eine optimierte Kombination aus Metall-Verschleiß-, Abrieb- und Korrosionsbeständigkeit erhalten werden.Various attempts are known to meet this requirement profile. So is in the EP 0 773 305 B1 describes a wear and corrosion resistant, powder metallurgical tool steel intended for the manufacture of components used to process reinforced plastics and other abrasive and corrosive materials. In addition to iron (in% by weight), the steel has an Mn content of 0.2-2.0%, a P content of max. 0.1%, an S content of max. 0.1%, a Si content of max. 2.0%, a Cr content of 11.5-14.5%, a Mo content of max. 3.0%, a V content of 8.0-15.0%, an N content of 0.03-0.46%, and a C content of 1.47-3.77% should. The contents of C, Cr, Mo, V and N are linked together via two formulas in such a way that on the one hand the formation of ferrite in the structure of the component made of steel is avoided and on the other hand the formation of excessive amounts of residual austenite during the Prevent heat treatment, which passes through the component during its production. Likewise, an optimized combination of metal wear, abrasion and corrosion resistance is to be obtained through the composition determined by the formulas.

Eine andere Gruppe von pulvermetallurgisch erzeugten Stahlwerkstoffen für die Herstellung von Bauteilen der hier in Rede stehenden Art ist beispielsweise in der US 4,249,945 A beschrieben. Diese Stähle weisen in einer bevorzugten Ausgestaltung eine Stahlmatrix, die aus 0,1 - 1 Gew.-% Mn, bis zu 2 Gew.-% Si, 4,5 - 5,5 Gew.-% Cr, 0,8 - 1,7 Gew.-% Mo, bis zu 0,14 Gew.-% S, 8 - 10,5 Gew.-% V, 2,2 - 2,6 Gew.-% C, Rest Eisen und unvermeidbaren Verunreinigungen, besteht, auf und enthalten dabei 13,3 - 17,3 Vol.-% Vanadium-Karbide. Der Stahl erreicht eine Härte von bis zu 63 HRC.Another group of powder-metallurgically produced steel materials for the production of components of the type in question is, for example, in US 4,249,945 A described. In a preferred embodiment, these steels have a steel matrix consisting of 0.1-1% by weight of Mn, up to 2% by weight of Si, 4.5-5.5% by weight of Cr, 0.8-1 , 7 wt .-% Mo, up to 0.14 wt .-% S, 8 - 10.5 wt .-% V, 2.2 - 2.6 wt .-% C, balance iron and unavoidable impurities exists , and contain 13.3 - 17.3 vol .-% vanadium carbides. The steel achieves a hardness of up to 63 HRC.

Vor dem Hintergrund des voranstehend erläuterten Standes der Technik ergab sich die Aufgabe, einen Stahlwerkstoff zu schaffen, der eine für die Herstellung von Bauteilen, die im praktischen Einsatz hohen mechanischen, korrosiven, thermischen und abrasiven Belastungen ausgesetzt sind, weiter optimierte Eigenschaftskombination bietet.Against the background of the prior art explained above, the object was to provide a steel material which offers a further optimized combination of properties for the production of components which are exposed in practice to high mechanical, corrosive, thermal and abrasive loads.

Ebenso sollte ein Verfahren zur Herstellung von Bauteilen aus einem solchen Stahl genannt werden.Likewise, a method for the production of components made of such a steel should be mentioned.

Schließlich sollten Bauteile angegeben werden, für deren Herstellung der erfindungsgemäße Stahl besonders geeignet ist.Finally, components should be specified for whose production the steel according to the invention is particularly suitable.

In Bezug auf den Stahl hat die Erfindung diese Aufgabe durch den gemäß Anspruch 1 beschaffenen Stahl gelöst.With respect to the steel, the invention has achieved this object by the procured according to claim 1 steel.

Die erfindungsgemäße Lösung der voranstehend in Bezug auf das Verfahren gestellten Aufgabe besteht darin, dass bei der Herstellung von Bauteilen aus einem erfindungsgemäßen Stahl mindestens die in Anspruch 12 genannten Arbeitsschritte durchlaufen werden.The solution according to the invention of the object set out above with regard to the method consists in that during the production of components from a steel according to the invention at least the working steps mentioned in claim 12 are run through.

Schließlich eignet sich erfindungsgemäßer Stahl in besonderer Weise zur Herstellung von Bauteilen, die im praktischen Einsatz Bewegungen mit hoher Beschleunigung oder Geschwindigkeit ausführen und dabei insbesondere hohen Flächen- und Temperaturbelastungen ausgesetzt sind.Finally, steel according to the invention is particularly suitable for the production of components which, in practical use, perform movements with high acceleration or speed and in particular are exposed to high surface and temperature stresses.

Beispiele für solche Bauteile sind Walzführungen für Walzgerüste für die Drahterzeugung, aber auch andere Werkzeuge und sonstige Bauteile, von denen nicht nur eine hohe Standfestigkeit bei mechanischer Belastung und Verschleißbeständigkeit, sondern auch ein optimiertes Verhalten unter der Wirkung von hohen dynamischen Kräften gefordert wird. Aber auch Kolbenbolzen und Stößelstangen für Verbrennungsmotoren sind hierzu nennen.Examples of such components are rolling guides for rolling mills for wire production, but also other tools and other components, of which not only high stability under mechanical stress and wear resistance, but also an optimized behavior under the action of high dynamic forces is required. But also piston pin and push rods for internal combustion engines are named.

Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.Advantageous embodiments of the invention are specified in the dependent claims and are explained below as the general inventive concept in detail.

Der erfindungsgemäße Stahlwerkstoff ist pulvermetallurgisch hergestellt und weist folgende Zusammensetzung auf (in Gew.-%): C: 1,5 - 5,0 %, Si: 0,3 - 2,0 %, Mn: 0,3 - 2,0 %, P: 0 - <0,035 %, S: 0 - <0,35 %, N: 0 - <0,1 %, Cr: 3,0 - 15,0 %, Mo: 0,5 - 2,0 %, V: 6,0 - 18,0 %,

  • jeweils optional ein Element oder mehrere Elemente aus der Gruppe "Nb, Ni, Co, W", wobei der Gehalt an Ni, Co und W jeweils höchstens 1,0 % und der Gehalt an Nb höchstens 2,0 % beträgt,
  • Rest Eisen und unvermeidbare Verunreinigungen,
  • wobei in der Stahlmatrix Hartstoffpartikel in Gehalten von 2,5 - 30 Gew.-% eingebettet sind.
The steel material according to the invention is produced by powder metallurgy and has the following composition (in% by weight): C: 1.5 - 5.0%, Si: 0.3 - 2.0%, Mn: 0.3 - 2.0%, P: 0 - <0.035%, S: 0 - <0.35%, N: 0 - <0.1%, Cr: 3.0 - 15.0%, Not a word: 0.5 - 2.0%, V: 6.0 - 18.0%,
  • each optionally one or more elements from the group "Nb, Ni, Co, W", wherein the content of Ni, Co and W is at most 1.0% and the content of Nb is 2.0% or less,
  • Residual iron and unavoidable impurities,
  • wherein embedded in the steel matrix hard material particles in amounts of 2.5 to 30 wt .-%.

Zur Maximierung der mechanischen Eigenschaften sind einem erfindungsgemäßen Stahlwerkstoff in der in erfindungsgemäßer Weise zusammengesetzten Stahlmatrix 2,5 - 30 Gew.-% gesondert zugegebene Hartstoffpartikel vorhanden. Bei den betreffenden Hartstoffpartikeln kann es sich insbesondere um Titan-Karbid-Partikel TiC handeln.To maximize the mechanical properties of a steel material according to the invention in the composite according to the invention steel matrix 2.5 to 30 wt .-% separately added hard material particles are present. The hard material particles in question may in particular be titanium carbide particles TiC.

Der erfindungsgemäße Stahl ist damit derart zusammengesetzt, dass er bei einer minimierten Dichte neben einer guten Verschleißbeständigkeit und einer damit einhergehend hohen Lebensdauer eine maximierte Beständigkeit gegen extreme Temperaturwechsel und eine ebenso optimierte Korrosionsbeständigkeit besitzt.The steel according to the invention is thus composed such that it has a minimized density in addition to a good wear resistance and a concomitantly high life has a maximized resistance to extreme temperature changes and also optimized corrosion resistance.

Wenn im vorliegenden Text Angaben zu Legierungsgehalten von Stählen und Stahlwerkstoffen gemacht werden, beziehen sich diese jeweils auf das Gewicht, sofern nicht anders ausdrücklich angegeben.If statements are made in this text regarding the alloy contents of steels and steel materials, these are in each case based on the weight, unless expressly stated otherwise.

Bei einem erfindungsgemäßen Stahlwerkstoff, sind die Legierungsspannen so gewählt, dass ein breiter und für den Einsatz von Hartstoffpartikeln in der Fachsprache auch Metall-Matrix-Composites ("MMCs") bezeichnet, sinnvoller Bereich für vanadiumlegierte, hochfeste und verschleißbeständige Werkstoffe zur Verfügung steht. Dabei sind die beiden wichtigsten Legierungselemente in diesem Legierungssystem Kohlenstoff und Vanadium.In a steel material according to the invention, the alloy spans are chosen so that a wider and for the use of hard material particles in the jargon also called metal matrix composites ("MMCs"), meaningful area for vanadium alloyed, high-strength and wear-resistant materials is available. The two most important alloying elements in this alloy system are carbon and vanadium.

Kohlenstoff ist sowohl für die martensitische Härtung zuständig, als auch für die Bildung des harten Vanadiumkarbides, woraus in Kombination mit einer hohen Härte und damit einhergehend hoher Festigkeit eine optimierte Verschleißbeständigkeit resultiert. C ist daher im erfindungsgemäßen Stahl in Gehalten von 1,5 - 5,0 Gew.-% vorhanden. Der Kohlenstoff hat hierbei vor allem zwei Aufgaben: Zum einen wird C zur martensitischen Härtung der Metallmatrix benötigt. Zum anderen kommt es durch die Anwesenheit ausreichender Mengen an C zur Bildung von harten Karbiden mit den vorhandenen Legierungselementen, insbesondere mit V, Cr und, soweit vorhanden, Nb. Ist zu wenig C in der Legierung der Stahlmatrix enthalten, bleibt die Martensitbildung aus, bei zu viel C wird Restaustenit stabilisiert. Beide Effekte können die Härte und die Verschleißbeständigkeit herabsetzen. Wichtig ist also immer das Verhältnis aus Kohlenstoff zu den karbidbildenden Elementen.Carbon is responsible for martensitic hardening as well as for the formation of hard vanadium carbide, which in combination with high hardness and high strength results in optimized wear resistance. C is therefore present in the steel according to the invention in contents of 1.5-5.0% by weight. The carbon has two main tasks: On the one hand C is needed for the martensitic hardening of the metal matrix. On the other hand, the presence of sufficient amounts of C leads to the formation of hard carbides with the existing alloying elements, in particular with V, Cr and, if present, Nb. If there is too little C in the alloy of the steel matrix, the formation of martensite does not take place; if C is too high, retained austenite is stabilized. Both effects can reduce hardness and wear resistance. The ratio of carbon to the carbide-forming elements is therefore always important.

Silizium wird einerseits bei der Erschmelzung der Vormaterialien, die als Bestandteil des für die erfindungsgemäße Herstellung von Bauteilen vorgesehenen, erfindungsgemäß legierten Stahllegierungspulvers sind, zur Desoxidation verwendet. Zudem wird durch die Anwesenheit von Silizium die Kohlenstoffaktivität erhöht und führt so zu einer Senkung der Schmelztemperatur. Ohne die gezielte Zugabe von mindestens 0,3 Gew.-% Si, insbesondere mindestens 0,7 Gew.-% Si, wären höhere C-Gehalte nötig. Durch den gesenkten Schmelzpunkt wird wiederum der Verdüsungsprozess erleichtert. Silizium reduziert zudem die Viskosität der Metallschmelze, was ebenfalls zur Vereinfachung des Pulververdüsungsprozesses beiträgt. Gleichzeitig steigert Silizium die Durchhärtbarkeit des Stahlwerkstoffes, da die Umwandlungsnasen im ZTU-Diagramm zu längeren Zeiten verschoben werden. Die Festigkeit des Austenits auf Härtetemperatur wird durch den gelösten Anteil an Si erhöht, womit die höhere Stabilität des Austenits erklärt und längere Abkühldauern ermöglicht werden können. Diese Effekte werden bei Si-Gehalten von bis zu 2,0 Gew.-%, insbesondere bis zu 1,5 Gew.-%, erreicht. Zu hohe Gehalte an Si würden zu einer Stabilisierung des Ferrits führen, wodurch der nach dem Härten vorhandene Anteil an Martensit im Gefüge des Stahls vermindert und damit auch die Härte und Verschleißbeständigkeit des erfindungsgemäßen Stahlwerkstoffs abnehmen würde.On the one hand, silicon is used for the deoxidation during the melting of the starting materials, which are part of the steel alloy powder alloyed according to the invention for the production of components according to the invention. In addition, the presence of silicon increases the carbon activity and thus leads to a lowering of the melting temperature. Without the targeted addition of at least 0.3 wt .-% Si, in particular At least 0.7 wt .-% Si, higher C contents would be necessary. The lowered melting point in turn facilitates the atomization process. Silicon also reduces the viscosity of the molten metal, which also contributes to the simplification of the powder atomization process. At the same time, silicon increases the through-hardenability of the steel material, since the conversion lugs in the ZTU diagram are shifted to longer times. The strength of the austenite to hardening temperature is increased by the dissolved amount of Si, which explains the higher stability of the austenite and longer cooling periods can be made possible. These effects are achieved at Si contents of up to 2.0% by weight, in particular up to 1.5% by weight. Too high a content of Si would lead to a stabilization of the ferrite, which would reduce the amount of martensite present in the structure of the steel after hardening and thus also reduce the hardness and wear resistance of the steel material according to the invention.

Mangan ist im erfindungsgemäßen Stahlwerkstoff vorhanden, um die Verdüsbarkeit des Stahls bei der Herstellung des Stahlpulvers und seine Härte zu optimieren. So wird durch die Anwesenheit ausreichender Gehalte an Mn ähnlich wie durch die Anwesenheit von Si der Schmelzpunkt des Stahls gesenkt und die Viskosität der Metallschmelze gesenkt, so dass auch die gezielte Zugabe von Mn zur Vereinfachung des Verdüsungsprozesses beiträgt. Gleichzeitig steigert Mangan ebenfalls die Durchhärtbarkeit des Stahlwerkstoffes. Ebenso trägt der gelöste Anteil an Mn zur Stabilisierung des Austenits bei. Zudem bindet Mn Schwefel durch Bildung von MnS ab, wodurch die Gefährdung von Heißrissen reduziert und die Zerspanbarkeit verbessert wird. Diese Effekte werden bei Mn-Gehalten von mindestens 0,3 Gew.-%, insbesondere mindestens 0,7 Gew.-%, und Mn-Gehalten von bis zu 2,0 Gew.-%, insbesondere bis zu 1,5 Gew.-%, betriebssicher erreicht. Zu hohe Gehalte an Mangan könnten zum einen die austenitische Phase soweit stabilisieren, dass die Weichglühdauer deutlich erhöht würde. Zum anderen könnte durch zu hohe Mn-Gehalte die austenitische Phase auch soweit stabilisiert werden, dass nach dem Härten Restaustenit im Gefüge verbleibt. Diese Gefügestruktur wäre deutlich weicher als Martensit, wodurch die Härte und Verschleißbeständigkeit abnehmen würden. Als besonders praxisgerecht erweisen sich Mn-Gehalte eines erfindungsgemäßen Stahlwerkstoffs von etwa 1,2 Gew.%.Manganese is present in the steel material according to the invention to optimize the Verdüsbarkeit of the steel in the production of steel powder and its hardness. Thus, by the presence of sufficient contents of Mn, similar to the presence of Si, the melting point of the steel is lowered and the viscosity of the molten metal lowered, so that the targeted addition of Mn also contributes to the simplification of the atomization process. At the same time, manganese also increases the through-hardenability of the steel material. Likewise, the dissolved portion of Mn contributes to the stabilization of austenite. In addition, Mn binds sulfur by forming MnS, reducing the risk of hot cracking and improving machinability. These effects are at Mn contents of at least 0.3 wt .-%, in particular at least 0.7 wt .-%, and Mn contents of up to 2.0 wt .-%, in particular up to 1.5 wt. -%, reliably achieved. Excessive levels of manganese could on the one hand stabilize the austenitic phase to the extent that the soft annealing time would be significantly increased. On the other hand, the austenitic phase could also be stabilized to such an extent by excessively high Mn contents that residual austenite remains in the microstructure after hardening. This microstructure would be significantly softer than martensite, reducing hardness and wear resistance. Mn contents of a steel material according to the invention of about 1.2% by weight prove to be particularly practical.

Chrom dient im erfindungsgemäßen Stahl in Kombination mit Mo und V zur Einstellung der Anlassbeständigkeit, Korrosionsbeständigkeit und Härtbarkeit. Durch Variation des Cr-Gehalts können folglich diese drei Eigenschaften entsprechend den jeweiligen Anforderungen angepasst werden. Bei niedrigen Cr-Gehalten von 3,0 - 8,0 Gew.-% hat Cr vor allem einen positiven Einfluss auf die Anlassbeständigkeit und die Durchhärtbarkeit. Mit zunehmenden Cr-Gehalten nehmen die Korrosionsbeständigkeit und der Beitrag von Cr zur Karbidbildung zu.Chromium is used in the inventive steel in combination with Mo and V to adjust the tempering resistance, corrosion resistance and hardenability. Consequently, by varying the Cr content, these three properties can be adapted according to the respective requirements. At low Cr contents of 3.0-8.0% by weight, Cr has a positive influence on the tempering resistance and the through-hardenability in particular. With increasing Cr contents, the corrosion resistance and the contribution of Cr to carbide formation increase.

Mittlere Cr-Gehalte von mehr als 8,0 Gew.-% bis weniger als 11,0 Gew.-% stellen insoweit einen Übergangsbereich dar. Für gesteigerte Anforderungen an die Korrosionsbeständigkeit ist der Cr-Gehalt hier noch nicht ausreichend. Jedoch stellt sich bereits eine höhere Härte der Stahlmatrix in Folge von zunehmender Cr-Karbidbildung ein. Bei Gehalten von mindestens 11,0 Gew.-% Cr, insbesondere mindestens 12,0 Gew.-%, im erfindungsgemäßen Stahlwerkstoff werden bei maximierten Härte und Festigkeit eine Anlass- und Korrosionsbeständigkeit erzielt, die auch höchsten Anforderungen standhalten. Dabei lassen sich die vorteilhaften Wirkungen von Cr dadurch besonders betriebssicher nutzen, dass der Cr-Gehalt auf mindestens 12,5 Gew.-% eingestellt wird. Zu hohe Cr-Gehalte würden bewirken, dass sich mehr Cr-Karbide bilden. Durch die Bildung von Cr-Karbiden würde jedoch C abgebunden, wodurch die Martensitbildung reduziert würde, so dass die angestrebte hohe Härte des Martensits nicht mehr erreicht werden könnte. Bei über die erfindungsgemäß vorgegebene Obergrenze deutlich hinaus erhöhten Cr-Gehalten würde zudem die ferritische Phase stabilisiert, wodurch ebenfalls die geforderte Härte und Verschleißbeständigkeit nicht erreicht würde. Daher ist erfindungsgemäß der maximale Gehalt an Cr auf 15,0 Gew.-%, insbesondere höchstens 14,0 Gew.-%, beschränkt, wobei sich Cr-Gehalte von bis zu 13,5 Gew.-% in der Praxis als besonders geeignet herausgestellt haben.Average Cr contents of more than 8.0% by weight to less than 11.0% by weight constitute a transitional area to this extent. For increased requirements on the corrosion resistance, the Cr content is not yet sufficient here. However, a higher hardness of the steel matrix arises as a result of increasing Cr carbide formation. At levels of at least 11.0 wt .-% Cr, in particular at least 12.0 wt .-%, in the steel material according to the invention tempering and corrosion resistance are achieved with maximum hardness and strength, which withstand the highest demands. In this case, the advantageous effects of Cr can be particularly reliable use that the Cr content is set to at least 12.5 wt .-%. Too high Cr contents would cause more Cr carbides to form. However, the formation of Cr carbides would harden C, which would reduce the formation of martensite, so that the desired high hardness of martensite could no longer be achieved. Moreover, if the Cr contents were significantly increased beyond the upper limit prescribed by the invention, the ferritic phase would be stabilized, which would also not achieve the required hardness and wear resistance. Therefore, according to the invention, the maximum content of Cr is limited to 15.0% by weight, in particular at most 14.0% by weight, with Cr contents of up to 13.5% by weight being particularly suitable in practice have exposed.

Eine optimierte Wirkung des C-Gehalts der Stahlmatrix eines erfindungsgemäßen Stahlwerkstoffs in Bezug auf die Bildung von Vanadium-Karbiden VC kann bei niedrigen Cr-Gehalten von bis zu 8 Gew.-% dadurch gewährleistet werden, dass der C-Gehalt %C der Stahlmatrix einem Zielgehalt %CZiel entspricht, der wie folgt berechnet wird: % CZiel = 0 , 2 × % V + 0 , 4

Figure imgb0001
wobei mit %V der jeweilige V-Gehalt der Legierung der Stahlmatrix bezeichnet ist.An optimized effect of the carbon content of the steel matrix of a steel material according to the invention with respect to the formation of vanadium carbides VC can be ensured at low Cr contents of up to 8% by weight, that the C content% C of the steel matrix Target content% CZiel, calculated as follows: % CZiel = 0 . 2 × % V + 0 . 4
Figure imgb0001
where% V is the respective V content of the alloy of the steel matrix.

Wird dagegen Cr im Bereich von 11,0 - 15,0 Gew.-% verwendet, so sollte der C-Gehalt %C um etwa 30 % höher liegen als der nach der voranstehend angegebenen Formel ermittelte Zielgehalt %CZiel. In diesem Fall wird der C-Gehalt der Stahlmatrix somit optimaler Weise derart eingestellt, dass er einem Zielgehalt %CZiel entspricht, der wie folgt berechnet wird: % CZiel = 0 , 2 × % V + 0 , 4 × 1 , 3

Figure imgb0002
wobei auch hier mit %V der jeweilige V-Gehalt der Legierung der Stahlmatrix bezeichnet ist.On the other hand, if Cr is used in the range of 11.0-15.0% by weight, the C content% C should be about 30% higher than the target content% CZiel determined according to the formula given above. In this case, the C content of the steel matrix is thus optimally adjusted to correspond to a target content% CZiel, which is calculated as follows: % CZiel = 0 . 2 × % V + 0 . 4 × 1 . 3
Figure imgb0002
again with% V, the respective V content of the alloy of the steel matrix is designated.

Bei den mittleren Cr-Gehalten von > 8,0 Gew.-% bis < 11,0 Gew.-% wird dementsprechend vorteilhafter Weise ein C-Gehalt gewählt, der zwischen den C-Mindestgehalten liegt, welcher gemäß den beiden voranstehenden Formeln für die niedrigen Cr- und hohen Cr-Gehalte ermittelt werden.Accordingly, in the case of the average Cr contents of> 8.0% by weight to <11.0% by weight, it is advantageous to choose a C content which lies between the C minimum contents which, according to the two preceding formulas, are for the low Cr and high Cr contents can be determined.

Bei dem Gehalt %CZiel handelt es sich dabei jeweils um eine Zielgröße, die bei der Herstellung des Legierungspulvers optimaler Weise für den C-Gehalt angestrebt werden sollte. Es versteht sich dabei, dass dieser Zielgehalt als erreicht angesehen wird, wenn der tatsächliche C-Gehalt %C innerhalb der legierungstechnisch vorgegebenen bzw. üblichen Toleranzen mit dem Zielgehalt %CZiel des jeweiligen erfindungsgemäßen Stahlwerkstoffs übereinstimmt. Ein praxisgerechter Wert der in dieser Hinsicht noch zugelassenen betragsmäßigen Abweichung des tatsächlichen C-Gehalts %C vom Zielgehalt %CZiel beträgt dabei 0,2 Gew.-%. Für den tatsächlichen C-Gehalt %C der Stahlmatrix sollte dann also gelten %C = %CZiel ± 0,2 Gew.%.The content% CZiel is in each case a target quantity which should be optimally sought for the C content in the production of the alloy powder. It goes without saying that this target content is considered to have been reached if the actual C content% C within the tolerances specified by the alloying technology or standard corresponds to the target content% CZiel of the respective steel material according to the invention. A practical value of the deviation of the actual C content% C from the target content% CZiel, which is still permitted in this respect, amounts to 0.2% by weight. The actual C content% C of the steel matrix should then be% C =% CZiel ± 0.2% by weight.

Durch den entsprechend der voranstehend erläuterten Maßgabe eingestellten C-Gehalt wird kompensiert, dass durch die Cr-Karbidbildung Kohlenstoff durch Cr abgebunden wird. Auf diese Weise kann sichergestellt werden, dass immer ausreichend C zur Bildung von Martensit zur Verfügung steht und eine optimierte Härte und Verschleißbeständigkeit erzielt wird, die für die meisten Anwendungen ausreichen.It is compensated by the C content adjusted in accordance with the above-described proviso that carbon is bound by Cr due to the Cr carbide formation. In this way it can be ensured that sufficient C is always available for the formation of martensite and an optimized hardness and wear resistance is achieved, which are sufficient for most applications.

Dementsprechend ergeben sich in Abhängigkeit vom jeweiligen V-Gehalt %V bei Cr-Gehalten von bis zu 8 Gew.-% für den Zielgehalt %CZiel beispielsweise folgende Werte (Angaben in Gew.-%): Bezeichnung %V %CZiel V8 8 2,0 V10 10 2,4 V12 12 2,8 V15 15 3,4 V17 17 3,8 Accordingly, depending on the respective V content% V at Cr contents of up to 8% by weight for the target content% CZiel, for example, the following values result (data in% by weight): description % V % CZiel V8 8th 2.0 V10 10 2.4 V12 12 2.8 V15 15 3.4 V17 17 3.8

Bei dem Stahlwerkstoff V15 mit bis zu 8 Gew.-% Cr und einem nominellen V-Gehalt von 15 Gew.-% wird ein Toleranzbereich des V-Gehalts von beispielsweise +/- 0,5 Gew.-% zugelassen, so dass sein tatsächlicher V-Gehalt zwischen 14,5 -15,5 Gew.-% variieren kann. Für den tatsächlichen C-Gehalt wird gleichzeitig eine Toleranz von +/- 0,2 Gew.-% um den Zielwert %CZiel zugelassen. Der tatsächliche C-Gehalt des Stahlwerkstoffs V15 kann somit 3,2 - 3,6 Gew.-% betragen.In the case of the steel material V15 with up to 8% by weight Cr and a nominal V content of 15% by weight, a tolerance range of the V content of, for example, +/- 0.5% by weight is permitted, so that its actual V content may vary between 14.5-15.5 wt%. At the same time, a tolerance of +/- 0.2% by weight is allowed for the actual C content by the target value% CZiel. The actual C content of the steel material V15 can thus be 3.2-3.6% by weight.

Molybdän erhöht wie Chrom die Korrosionsbeständigkeit, Härtbarkeit und Anlassbeständigkeit von aus erfindungsgemäßem Stahl hergestellten Bauteilen, wenn Mo-Gehalte von mindestens 0,5 Gew.-%, insbesondere mindestens 0,9 Gew.-%, vorhanden sind. Zu hohe Gehalte an Mo verschlechtern jedoch die Umformfähigkeit des Stahles, da die Hochtemperaturfestigkeit deutlich erhöht wird. Zudem würden hohe Gehalte an Mo ebenfalls die ferritische Phase stabilisieren. Daher ist der Höchstgehalt an Mo bei erfindungsgemäßem Stahl auf 2,0 Gew.-%, insbesondere max. 1,5 Gew.-%, beschränkt. Der Mo-Gehalt eines erfindungsgemäßen Stahls, der für die erfindungsgemäßen Zwecke besonders geeignet ist, liegt dementsprechend im Bereich von 1,2 Gew.-%.Molybdenum, like chromium, increases the corrosion resistance, hardenability and tempering resistance of components made from steel according to the invention when Mo contents of at least 0.5% by weight, in particular at least 0.9% by weight, are present. Excessive contents of Mo, however, worsen the formability of the steel, since the high-temperature strength is significantly increased. In addition, high levels of Mo would also stabilize the ferritic phase. Therefore, the maximum content of Mo in inventive steel to 2.0 wt .-%, in particular max. 1.5% by weight, limited. The Mo content of a steel according to the invention, which is particularly suitable for the purposes of the invention, is accordingly in the range of 1.2 wt .-%.

Vanadium ist im erfindungsgemäßen Stahl in Gehalten von 6,0 Gew.-% bis 18,0 Gew.-% vorhanden, um eine optimierte Verschleißbeständigkeit durch Bildung von vanadiumreichen Karbiden oder Karbonitriden zu erreichen. Zudem beteiligt sich Vanadium verstärkt an der Bildung von Karbiden bei dem Anlassen im Sekundärhärtemaximum. Diese Effekte nehmen mit zunehmenden V-Gehalten zu, so dass auch durch Variation der V-Gehalte das Eigenschaftsprofil des erfindungsgemäßen Stahlwerkstoffs an die jeweiligen Anforderungen angepasst werden kann. Maximiert positive Wirkungen der Anwesenheit von V lassen sich erzielen, wenn mindestens 14,5 Gew.-% V im erfindungsgemäßen Stahl vorhanden sind. Hohe V-Gehalte von mindestens 16 Gew.-% führen zu besonders hoher Verschleißbeständigkeit, so dass erfindungsgemäße Stahlwerkstoffe mit derart hohen V-Gehalten besonders für den Einsatz als Werkstoff für Walzenführungsrollen geeignet sind, die im Einsatz maximalen Belastungen ausgesetzt sind. Anderseits kann dadurch, dass der V-Gehalt auf 17,4 Gew.-% oder 17,0 Gew.-%, auf 16,0 Gew.-% oder insbesondere höchstens 15,5 Gew.-% beschränkt wird, betriebssicher vermieden werden, dass zu viel Kohlenstoff durch Karbidbildung abgebunden wird. Bei gegen den unteren Rand der erfindungsgemäß für V angegebenen Gehaltsspanne tendierende niedrige V-Gehalte und dementsprechend verminderten C-Gehalten lässt sich der erfindungsgemäße Stahlwerkstoff leichter spanabhebend verarbeiten, als bei den höheren V- und C-Gehalten. Eine vereinfachte Zerspanbarkeit ergibt sich dementsprechend dann, wenn der V-Gehalt auf max. 12 Gew.-%, insbesondere max. 10 Gew.-%, und damit auch der in Abhängigkeit vom V-Gehalt bestimmte C-Gehalt in der voranstehend beschriebenen Weise beschränkt ist.Vanadium is present in the steel of the present invention at levels of from 6.0% to 18.0% by weight to achieve optimized wear resistance through the formation of vanadium-rich carbides or carbonitrides. In addition, vanadium increasingly participates in the formation of carbides during tempering in the secondary hardness maximum. These effects increase with increasing V contents, so that the property profile of the steel material according to the invention can also be adapted to the respective requirements by varying the V contents. Maximized positive effects of the presence of V can be achieved when at least 14.5 wt% V is present in the steel of the invention. High V contents of at least 16 wt .-% lead to particularly high wear resistance, so that steel materials according to the invention with such high V contents are particularly suitable for use as a material for roller guide rollers, which are exposed to maximum loads in use. On the other hand, by restricting the V content to 17.4% by weight or 17.0% by weight to 16.0% by weight or more preferably at most 15.5% by weight, it can be reliably avoided that too much carbon is set by carbide formation. With low V contents tending towards the lower edge of the content range indicated for V according to the invention and correspondingly reduced C contents, the steel material according to the invention can be processed more easily by cutting than at the higher V and C contents. A simplified machinability results accordingly when the V content to max. 12 wt .-%, in particular max. 10 wt .-%, and thus also limited depending on the V content C content is limited in the manner described above.

Niob ist optional in Gehalten von bis zu 2,0 Gew.-% im erfindungsgemäßen Stahl vorhanden. Nb hat eine sehr ähnliche Wirkweise wie Vanadium. Es beteiligt sich vor allem an der Bildung von harten und verschleißbeständigen Monokarbiden. Daher können, jeweils bezogen auf ihre Gehalte in Atom-%, Nb und V im Verhältnis 1:1 wechselweise ausgetauscht werden, wenn sich dies beispielsweise im Hinblick auf die Verfügbarkeit dieser Legierungselemente als zweckmäßig herausstellt.Niobium is optionally present at levels of up to 2.0% by weight in the steel of the present invention. Nb has a very similar mode of action as vanadium. It mainly participates in the formation of hard and wear-resistant monocarbides. Therefore, depending on their contents in atomic%, Nb and V in the ratio 1: 1 can be exchanged alternately, if this is useful, for example, in view of the availability of these alloying elements.

Nickel kann in Gehalten von bis zu 1,0 Gew.-% im erfindungsgemäßen Stahlwerkstoff optional vorhanden sein, um ähnlich wie Mn den Austenitanteil zu stabilisieren und damit die Härtbarkeit zu verbessern. So sichert die Anwesenheit von Ni, dass bei der jeweiligen Härtetemperatur tatsächlich Austenit gebildet wird und kein unerwünschter Ferrit im Gefüge des Stahls entsteht. Allerdings erhöht ein zu hoher Ni-Gehalt die für die Martensitbildung nötige Abkühldauer. Gleichzeitig sollten keine zu hohen Ni-Gehalte vorhanden sein, da hier die Gefahr besteht, dass nach dem Härten Restaustenit im Gefüge vorliegt. Sofern Ni zugegeben werden soll, beträgt daher der Ni-Gehalt bevorzugt mindestens 0,2 Gew.-%, wobei sich bei Ni-Gehalten von bis zu 0,4 Gew.-% optimierte Wirkungen der Anwesenheit von Ni einstellen.Nickel may optionally be present at levels of up to 1.0% by weight in the steel material of the present invention to stabilize the austenite portion similar to Mn and thus improve hardenability. Thus, the presence of Ni ensures that austenite is actually formed at the respective hardening temperature and that no unwanted ferrite is formed in the structure of the steel. However, an excessively high Ni content increases the cooling time required for martensite formation. At the same time, there should not be too high Ni contents, since there is a risk that residual austenite will be present in the microstructure after hardening. If Ni is to be added, therefore, the Ni content is preferably at least 0.2 wt .-%, with adjusted Ni contents of up to 0.4 wt .-% optimized effects of the presence of Ni.

Kobalt kann ebenfalls optional in Gehalten von bis zu 1,0 Gew.-% im erfindungsgemäßen Stahlwerkstoff vorhanden sein. Ähnlich wie Nickel hat Co eine stabilisierende Wirkung auf die Austenitbildung und die Härtetemperatur. Im Gegensatz zu Nickel oder Mangan senkt Co aber nicht die Endtemperatur des Martensits, weswegen seine Anwesenheit weniger kritisch in Hinblick auf die Bildung von Restaustenit ist. Zudem erhöht Kobalt die Warmfestigkeit. Sofern diese positiven Einflüsse durch die Zugabe von Co genutzt werden sollen, erweisen sich Gehalte von mindestens 0,3 Gew.-% Co als besonders zweckmäßig, wobei optimierte Wirkungen bei Co-Gehalten von bis zu 0,5 Gew.-% eintreten.Cobalt may also optionally be present at levels of up to 1.0% by weight in the steel material of the present invention. Similar to nickel, Co has a stabilizing effect on austenite formation and hardening temperature. However, unlike nickel or manganese, Co does not lower the final temperature of the martensite, so its presence is less critical with respect to the formation of retained austenite. In addition, cobalt increases the heat resistance. If these positive effects are to be utilized by the addition of Co, contents of at least 0.3% by weight of Co prove to be particularly expedient, with optimized effects occurring at Co contents of up to 0.5% by weight.

Wolfram kann wie Co und Ni dem Stahl in Gehalten von bis zu 1,0 Gew.-% optional zugegeben werden. Wolfram erhöht vor allem die Anlassbeständigkeit und beteiligt sich vor allem bei dem Anlassen im Sekundärhärtemaximum an der Karbidbildung. Durch die Anwesenheit von W werden die Anlasstemperaturen zu höheren Temperaturen verschoben. Ähnlich dem Kobalt wird zudem die Warmfestigkeit durch W erhöht. Allerdings würden zu hohe W-Gehalte die ferritische Phase ebenfalls stabilisieren. Sofern die positiven Einflüsse von W genutzt werden sollen, erweisen sich daher Gehalte von mindestens 0,3 Gew.-% W als besonders zweckmäßig, wobei optimierte Wirkungen bei W-Gehalten von bis zu 0,5 Gew.-% eintreten.Tungsten, like Co and Ni, can optionally be added to the steel in amounts of up to 1.0% by weight. Above all, tungsten increases the tempering resistance and, above all, participates in carbide formation during tempering in the secondary hardness maximum. The presence of W shifts the tempering temperatures to higher temperatures. In addition, the heat resistance is increased by W, similar to the cobalt. However, excessive W levels would also stabilize the ferritic phase. If the positive effects of W are to be used, contents of at least 0.3% by weight of W are therefore found to be particularly expedient, with optimized effects occurring at W contents of up to 0.5% by weight.

Der jeweils verbleibende Rest des Stahls besteht aus Eisen und unvermeidbaren Verunreinigungen, die aufgrund des Herstellungsverfahrens oder der Ausgangsmaterialien, aus denen die Bestandteile des Stahllegierungspulvers gewonnen werden, in den Stahl gelangen, dort jedoch keine Wirkung in Bezug auf die Eigenschaften haben.The remainder of the remaining steel consists of iron and unavoidable impurities which enter the steel due to the manufacturing process or the raw materials from which the constituents of the steel alloy powder are recovered, but have no effect on the properties there.

Schwefel kann in Gehalten von bis zu 0,35 Gew.-% im Stahlwerkstoff vorhanden sein, um die Zerspanbarkeit zu verbessern. Bei höheren S-Gehalten werden die Eigenschaften des erfindungsgemäß zusammengesetzten Stahlwerkstoffs dagegen verschlechtert. Um die günstige Wirkung der Anwesenheit von S sicher nutzen zu können, können im erfindungsgemäßen Stahlwerkstoff mindestens 0,035 Gew.-% vorhanden sein. Soll dagegen die Zerspanbarkeit durch die gezielte Zugabe von S nicht verbessert werden, kann der S-Gehalt dementsprechend auf weniger als 0,035 Gew.-% beschränkt werden.Sulfur may be present in grades up to 0.35% by weight in the steel material to improve machinability. At higher S contents, however, the properties of the composite steel material according to the invention are deteriorated. In order to be able to safely use the favorable effect of the presence of S, at least 0.035% by weight may be present in the steel material according to the invention. If, on the other hand, the machinability is not improved by the targeted addition of S, the S content can accordingly be restricted to less than 0.035% by weight.

Zu den unvermeidbar vorhandenen Verunreinigungen zählen auch Gehalte an P von bis zu 0,035 Gew.-% sowie beispielsweise in Summe bis zu 0,2 Gew.-% an Sauerstoff.The unavoidable impurities also include levels of P of up to 0.035 wt .-% and, for example, in total up to 0.2 wt .-% of oxygen.

Stickstoff wird dem erfindungsgemäßen Stahlwerkstoff ebenfalls nicht gezielt zulegiert, sondern gelangt aufgrund der Stickstoffaffinität der Legierungsbestandteile beim Verdüsungsprozess in den Stahlwerkstoff. Um negative Einflüsse von N auf die Eigenschaften des Stahlwerkstoffs zu vermeiden, sollte der Gehalt an N weniger als 0,12 Gew.-% betragen, insbesondere auf maximal 0,1 Gew-% beschränkt sein.Nitrogen is also not added to the steel material according to the invention in a targeted manner, but due to the nitrogen affinity of the alloy constituents passes into the steel material during the atomization process. In order to avoid negative effects of N on the properties of the steel material, the content of N should be less than 0.12 wt .-%, in particular be limited to a maximum of 0.1% by weight.

Die Dichte von erfindungsgemäßem Stahlwerkstoff liegt typischerweise im Bereich von 6,4 - 7,6 g/cm3, wobei die Dichte des reinen Stahlmatrixwerkstoffs typischerweise 7,0 - 7,6 g/cm3 beträgt.The density of steel material according to the invention is typically in the range of 6.4 to 7.6 g / cm 3 , the density of the pure steel matrix material typically being 7.0 to 7.6 g / cm 3 .

Seine minimierte Dichte und sein dadurch bedingt geringes Gewicht macht erfindungsgemäßen Stahlwerkstoff insbesondere für die Herstellung solcher Bauteile geeignet, die im praktischen Einsatz wiederholend einer schnellen Beschleunigung ausgesetzt sind und bei denen sich infolgedessen eine geringere Massenträgheit besonders günstig auswirkt.Its minimized density and its resulting low weight makes steel material according to the invention particularly suitable for the production of such components which are repeatedly exposed to rapid acceleration in practical use and in which consequently a lower mass inertia has a particularly favorable effect.

Die pulvermetallurgische Herstellung erlaubt es, die Dichte und Verschleißbeständigkeit von erfindungsgemäßem Stahl durch gezielte Zugabe von Hartphasen mit niedriger Dichte wahlweise im Sinne der jeweiligen Anwendung weiter zu optimieren, sofern dies im Hinblick auf die jeweils angestrebte Eigenschaft gewünscht wird. Hier hat es sich gezeigt, dass die Gebrauchseigenschaften von erfindungsgemäßem Stahlwerkstoff dadurch gesteigert sind, dass er 2,5 bis 30 Gew.-% Hartstoffpartikel enthält, die beim fertig erzeugten Stahl in seine in der voranstehend erläuterten Weise zusammengesetzte Stahlmatrix eingebettet sind.The production of powder metallurgy makes it possible to further optimize the density and wear resistance of steel according to the invention by selective addition of hard phases with low density in the sense of the respective application, if this is desired with regard to the particular desired property. Here it has been shown that the performance characteristics of steel material according to the invention are increased by containing 2.5 to 30 wt .-% hard particles, which are embedded in the finished steel produced in its composite in the manner described above steel matrix.

Die Hartstoffe liegen dabei wie das die Stahlmatrix bildende Stahllegierungspulver im Ausgangszustand als Pulver vor.The hard materials are like the steel matrix forming steel alloy powder in the initial state as a powder before.

Bei den Hartstoffen, in der Fachsprache auch "Hartphasen" genannt, kann es sich um Karbide, Nitride, Oxide oder Boride handeln. Zur Gruppe der geeigneten Hartstoffe gehören demnach Al2O3, B4C, SiC, ZrC, VC, NbC, TiC, WC, W2C, Mo2C, V2C, BN, Si3N4, NbN oder TiN.Hard materials, also known as "hard phases" in technical language, can be carbides, nitrides, oxides or borides. The group of suitable hard materials accordingly includes Al 2 O 3 , B 4 C, SiC, ZrC, VC, NbC, TiC, WC, W 2 C, Mo 2 C, V 2 C, BN, Si 3 N 4 , NbN or TiN ,

Dabei hat sich für die erfindungsgemäßen Zwecke Titankarbid TiC als besonders geeignet herausgestellt. Titankarbid weist eine Härte von 3200 HV auf und erhöht so die Härte und Verschleißbeständigkeit des Stahls besonders effektiv. Gleichzeitig ist TiC chemisch beständig und hat keinen negativen Einfluss auf die Korrosionsbeständigkeit. Ebenso wirkt sich die geringe Dichte von TiC vorteilhaft aus.Titanium carbide TiC has been found to be particularly suitable for the purposes of this invention. Titanium carbide has a hardness of 3200 HV and thus increases the hardness and wear resistance of the steel particularly effectively. At the same time, TiC is chemically resistant and has no negative impact on corrosion resistance. Likewise, the low density of TiC has an advantageous effect.

Bei dem Stahlwerkstoff zulegierten Hartstoff-Gehalten von weniger als 2,5 Gew.-% stellt sich keine Verbesserung der Verschleißbeständigkeit ein. Um die Wirkung der Hartstoffe besonders sicher nutzen zu können, erweist es sich daher vorteilhaft, im erfindungsgemäßen Stahlwerkstoff mindestens 5 Gew.-% an zulegierten Hartstoffpartikeln vorzusehen, wobei sich Gehalte von mindestens 7,5 Gew.-% als besonders wirksam herausgestellt haben. Um eine zu starke Versprödung des Werkstoffs in Folge der Anwesenheit der Hartstoffpartikel sicher zu vermeiden, kann beim erfindungsgemäßen Werkstoff der Gehalt an zulegierten HartstoffPartikeln auf höchstens 25 Gew.-% beschränkt werden. Die hier genannten Gehalte an Hartstoffpartikeln in einem erfindungsgemäßen Stahlwerkstoff erweisen sich insbesondere dann als zweckmäßig, wenn es sich bei dem zulegierten Hartstoff um Titankarbid TiC handelt.With the steel material alloyed hard material contents of less than 2.5 wt .-%, there is no improvement in the wear resistance. In order to be able to use the effect of the hard materials particularly reliably, it is therefore advantageous to provide at least 5% by weight of alloyed hard material particles in the steel material according to the invention, with contents of at least 7.5% by weight being found to be particularly effective. In order to reliably avoid excessive embrittlement of the material as a consequence of the presence of the hard material particles, the content of alloyed hard material particles can be limited to not more than 25% by weight in the material according to the invention. The contents of hard material particles mentioned here in a steel material according to the invention prove to be particularly useful when the alloyed hard material is titanium carbide TiC.

Erfindungsgemäßer Stahl erreicht nach einem Härten und Anlassen Härtewerte, die typischerweise im Bereich von 58 - 70 HRC liegen.Steel of the invention, after hardening and tempering, achieves hardness values typically in the range of 58-70 HRC.

Nach einem in der Regel für die mechanische Bearbeitung durchgeführten Weichglühen beträgt die typische Weichglühhärte von erfindungsgemäßem Stahlwerkstoff, in Folge der Anwesenheit der erfindungsgemäß vorgesehenen Hartstoffpartikel typischerweise bis zu 65 HRC.After a soft annealing, which is generally carried out for mechanical processing, the typical soft annealing hardness of steel material according to the invention is typically up to 65 HRC due to the presence of the hard material particles provided according to the invention.

Bei der Erzeugung von erfindungsgemäßen Bauteilen aus einem erfindungsgemäßen Stahl werden mindestens folgende Arbeitsschritte durchlaufen:

  1. a) Es wird ein Stahllegierungspulver bereitgestellt, das aus (in Gew.-%) 1,5 - 5,0 % C, 0,3 - 2,0 % Si, 0,3 - 2,0 % Mn, < 0,035 % P, <0,35 % S, < 0,1 % N, 3,0 - 15,0 % Cr, 0,5 - 2,0 % Mo, 6,0 - 18,0 % V, jeweils optional einem Element oder mehreren Elementen aus der Gruppe "Nb, Ni, Co, W", wobei der Gehalt an Ni, Co und W jeweils höchstens 1,0 % und der Gehalt an Nb höchstens 2,0 % beträgt, und als Rest aus Eisen und unvermeidbaren Verunreinigungen besteht.
  2. b) Das Stahllegierungspulver wird mit Hartstoffpartikeln mit der Maßgabe vermischt, dass der Gehalt an Hartstoffpartikeln an der erhaltenen Stahllegierungspulver-Hartstoffpartikel-Mischung 2,5 - 30 Gew.-% beträgt.
  3. c) Optional wird das Stahllegierungspulver oder die Stahllegierungspulver-Hartstoff-Mischung getrocknet.
  4. d) Aus dem Stahllegierungspulver oder der Stahllegierungspulver-Hartstoff-Mischung wird durch ein Sinterverfahren, insbesondere durch Heiß-Isostatisches-Pressen, oder durch ein additives Verfahren ein festes Halbzeug gebildet.
  5. e) Das erhaltene Halbzeug wird zu dem Bauteil fertig bearbeitet.
When producing components according to the invention from a steel according to the invention, at least the following working steps are carried out:
  1. a) A steel alloy powder is provided which consists of (in wt%) 1.5-5.0% C, 0.3-2.0% Si, 0.3-2.0% Mn, <0.035% P, <0.35% S, <0.1% N, 3.0-15.0% Cr, 0.5-2.0% Mo, 6.0-18.0% V, each optionally one element or more elements of the group "Nb, Ni, Co, W", wherein the contents of Ni, Co and W are at most 1.0% and the content of Nb is 2.0% or less, and the balance of iron and unavoidable Impurities.
  2. b) The steel alloy powder is mixed with hard material particles with the proviso that the content of hard material particles in the obtained steel alloy powder-hard material particle mixture is 2.5-30% by weight.
  3. c) Optionally, the steel alloy powder or the steel alloy powder-hard material mixture is dried.
  4. d) From the steel alloy powder or the steel alloy powder-hard material mixture, a solid semi-finished product is formed by a sintering process, in particular by hot isostatic pressing, or by an additive process.
  5. e) The resulting semi-finished product is finished to the component.

In Bezug auf die praktische Durchführung und die Ausgestaltungen der Arbeitsschritte a) bis e) des erfindungsgemäßen Verfahrens gelten dabei folgende Hinweise:With regard to the practical implementation and the embodiments of steps a) to e) of the method according to the invention, the following information applies:

Arbeitsschritt a)Step a)

Die Pulverherstellung kann in konventioneller Weise beispielsweise durch Gasverdüsen oder jedes andere geeignete Verfahren erfolgen. Hierzu kann das Legierungspulver beispielsweise durch Gas- oder Wasserverdüsen oder eine Kombination aus diesen beiden Verdüsungsverfahren erzeugt werden. Denkbar ist eine Verdüsung einer in erfindungsgemäßer Weise legierten Schmelze zu dem Legierungspulver.Powder production may be accomplished in a conventional manner, for example by gas atomization or any other suitable method. For this purpose, the alloy powder can be produced, for example, by gas or water atomization or a combination of these two atomization methods. An atomization of a melt alloyed according to the invention to the alloy powder is conceivable.

Alternativ ist es aber auch möglich, die Legierungselemente des Stahllegierungspulvers zunächst einzeln in Pulverform in Mengen bereitzustellen, die den für das jeweilige Legierungselement vorgesehenen Gehaltsanteilen entsprechen und diese Pulvermengen dann zu dem erfindungsgemäß zusammengesetzten Stahllegierungspulver zu vermischen.Alternatively, however, it is also possible initially to provide the alloying elements of the steel alloy powder individually in powder form in quantities corresponding to the content proportions intended for the respective alloying element and then to mix these quantities of powder into the steel alloying powder composed according to the invention.

Erforderlichenfalls werden aus den Pulverpartikeln für die erfindungsgemäße Weiterverarbeitung durch Sieben diejenigen selektiert, die einen mittleren Durchmesser von weniger als 500 µm besitzen, wobei sich Pulver mit mittleren Korngrößen von weniger als 250 µm, insbesondere von weniger als 180 µm, als besonders geeignet erwiesen haben.If necessary, those are selected from the powder particles for the further processing according to the invention by sieving, which have a mean diameter of less than 500 microns, with powder having mean grain sizes of less than 250 .mu.m, in particular less than 180 microns, have been found to be particularly suitable.

Unabhängig von der Art und Weise seiner Erzeugung weist das erfindungsgemäß bereitgestellte Legierungspulver optimaler Weise eine Schüttdichte von 2 - 6 g/cm3 (bestimmt nach DIN EN ISO 3923-1) und eine Klopfdichte von 3 - 8 g/cm3 (bestimmt nach DIN EN ISO 3953) auf.Regardless of the manner in which it is produced, the alloy powder provided according to the invention optimally has a bulk density of 2-6 g / cm 3 (determined in accordance with DIN EN ISO 3923-1) and a tap density of 3-8 g / cm 3 (determined in accordance with DIN EN ISO 3953).

Arbeitsschritt b)Step b)

Das im Arbeitsschritt a) bereitgestellte Stahllegierungspulver wird mit dem jeweils ausgewählten Hartstoffpulver vermischt. Die Menge an zugemischten Hartstoffpartikeln wird dabei unter Berücksichtigung der voranstehend in Bezug auf die optimierte Auswahl des Gehalts an Hartstoffen gegebenen Hinweise so bestimmt, dass der Gehalt der Hartstoffpartikel an der fertigen Mischung im Bereich von 2,5 - 30 Gew.-% liegt.The steel alloy powder provided in step a) is mixed with the respectively selected hard material powder. The amount of added hard material particles is determined taking into account the information given above with regard to the optimized selection of the content of hard materials in such a way that the content of the hard material particles in the finished mixture in the range of 2.5 to 30 wt .-%.

Arbeitsschritt c)Step c)

Sofern erforderlich, kann das in Arbeitsschritt a) oder Arbeitsschritt b) hergestellte Legierungspulver in konventioneller Weise getrocknet werden, um Rückstände von Flüssigkeiten und sonstigen flüchtigen Bestandteilen zu entfernen, die den anschließenden Formgebungsprozess behindern könnten.If necessary, the alloy powder prepared in step a) or step b) may be dried in a conventional manner to remove residues of liquids and other volatiles which could hinder the subsequent forming process.

Arbeitsschritt d)Step d)

Aus dem Hartstoffpartikel enthaltenden Legierungspulver wird nun ein Rohteil (Halbzeug) geformt. Hierzu kann das Legierungspulver in an sich bekannter Weise durch ein geeignetes Sinterverfahren, insbesondere durch Heiß-Isostatisches-Pressen ("HIPen"), in die jeweilige Form gebracht werden. In der Regel wird das HIPen durchgeführt werden. Typische Drücke beim HIPen liegen im Bereich von 900 - 1500, insbesondere 1000 bar, bei einer Temperatur von 1050 - 1250°C, insbesondere 1080 -1200 °C. Im Zuge des Härtens bildet sich im Gefüge des Stahlwerkstoffs Austenit, VC und Cr-Karbid.From the hard powder particles containing alloy powder, a blank (semifinished product) is then formed. For this purpose, the alloy powder in a conventional manner by a suitable sintering process, in particular by hot isostatic pressing ("HIPen"), are brought into the respective shape. In general, HIPing will be performed. Typical pressures during HIPing are in the range of 900-1500, in particular 1000 bar, at a temperature of 1050-1250 ° C., in particular 1080-1200 ° C. In the course of hardening, austenite, VC and Cr carbide form in the microstructure of the steel material.

Alternativ kann aus dem erfindungsgemäß beschaffenen und bereitgestellten Legierungspulver auch in einem additiven Verfahren das jeweilige Bauteil erzeugt werden. Unter dem Begriff "additiv" werden alle Herstellverfahren zusammengefasst, bei denen ein Werkstoff zur Erzeugung eines Bauteils hinzugefügt wird, wobei dieses Hinzufügen in der Regel schichtweise erfolgt. "Additive Herstellverfahren", die in der Fachsprache oft auch als "generative Verfahren" bezeichnet werden, stehen damit im Gegensatz zu den klassischen subtraktiven Fertigungsverfahren, wie den spanenden Verfahren (z.B. Fräsen, Bohren und Drehen), bei denen Material abgetragen wird, um dem jeweils herzustellenden Bauteil seine Form zu verleihen. Das additive Bauprinzip ermöglicht es, geometrisch komplexe Strukturen herzustellen, die mit konventionellen Fertigungsverfahren, wie den schon genannten spanabhebenden Verfahren oder Urformverfahren (Gießen, Schmieden) nicht oder nur aufwendig realisiert werden können (s. VDI Statusreport "Additive Fertigungsverfahren", September 2014, herausgegeben vom Verein Deutscher Ingenieure e.V., Fachbereich Produktionstechnik und Fertigungsverfahren, www.vdi.de/statusadditiv). NähereAlternatively, the respective component can also be produced from the inventively prepared and provided alloy powder in an additive process. The term "additive" summarizes all manufacturing processes in which a material is added to produce a component, wherein this addition generally takes place in layers. "Additive manufacturing processes", which are often referred to as "generative processes" in technical jargon, are in contrast to the classical subtractive production processes, such as the machining processes (eg milling, drilling and turning), in which material is removed, in order to achieve this each to be manufactured component to give shape. The additive design principle makes it possible to produce geometrically complex structures that can not be realized or can only be realized with great difficulty using conventional manufacturing processes such as the aforementioned metal-cutting processes or primary molding processes (casting, forging) (see VDI Status Report "Additive Manufacturing Processes", September 2014) from the Association of German Engineers eV, Department of Production Engineering and Manufacturing, www.vdi.de/statusadditiv). details

Definitionen der Verfahren, die unter dem Oberbegriff "Additive Verfahren" zusammengefasst sind, finden sich beispielsweise in den VDI-Richtlinien 3404 und 3405.Definitions of the methods, which are summarized under the generic term "additive methods", can be found, for example, in VDI Guidelines 3404 and 3405.

Arbeitsschritt e)Step e)

Das nach dem Arbeitsschritt d) erhaltene Halbzeug bedarf noch einer Fertigbearbeitung, um ihm einerseits die gewünschten Gebrauchseigenschaften und andererseits die geforderte Endform zu verleihen. Die Fertigbearbeitung umfasst beispielsweise eine mechanische, insbesondere spanabhebende Bearbeitung des Halbzeugs, und eine Wärmebehandlung, die aus einem Härten und Anlassen bestehen kann.The semi-finished product obtained after step d) still requires a finish in order to give it on the one hand the desired performance and on the other hand the required final shape. Finishing includes, for example, a mechanical, in particular machining of the semifinished product, and a heat treatment, which may consist of hardening and tempering.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert:

  • In der voranstehend erläuterten Weise erfindungsgemäß zusammengesetzte Legierungspulver werden beispielsweise durch Heiß-Isostatisches-Pressen oder ein anderes geeignetes Sinterverfahren zu einem Rohteil (Halbzeug) geformt. Hierzu kann das jeweilige Legierungspulver in eine geeignete Form, beispielsweise eine zylindrische Kapsel, gefüllt und dann bei typischen Drücken von 900 - 1500 bar (90 - 150 MPa), insbesondere 1000 bar (100 MPa), bei einer Temperatur von 1050 - 1250°C, insbesondere 1150 °C, über eine ausreichende Dauer gehalten werden, bis ein fester Körper entstanden ist. Typischerweise liegt der Druck beim Heiß-Isostatischen-Pressen im Bereich von 102 - 106,7 MPa und die Erwärmung auf die typischerweise 1150 - 1153 °C betragende Zieltemperatur, die über eine Dauer von typischerweise 200 - 300 min, insbesondere 245 min, gehalten wird, erfolgt ebenso typischerweise mit einer Aufheizrate von 3 K/min - 10 K/min.
The invention will be explained in more detail below on the basis of exemplary embodiments:
  • In the manner explained above, alloy powders composed according to the invention are shaped into a blank (semifinished product), for example by hot isostatic pressing or another suitable sintering method. For this purpose, the respective alloy powder in a suitable form, such as a cylindrical capsule, filled and then at typical pressures of 900 - 1500 bar (90 - 150 MPa), in particular 1000 bar (100 MPa), at a temperature of 1050 - 1250 ° C. , In particular 1150 ° C, are held for a sufficient time until a solid body is formed. Typically, in hot isostatic pressing, the pressure is in the range of 102-106.7 MPa and the heating is typically at the target temperature of 1150-1153 ° C., which is maintained for a duration of typically 200-300 minutes, particularly 245 minutes , is also typically at a heating rate of 3 K / min - 10 K / min.

Auf die Erzeugung des Halbzeugs folgte die Wärmebehandlung. Dabei wird das jeweilige Halbzeug mit einer Aufheizgeschwindigkeit von typischerweise 5 K/min auf eine Härtetemperatur (Austenitisierungstemperatur) von 1050 - 1200 °C erwärmt, auf der es so lange gehalten wird, bis es vollständig durchgewärmt ist. Typischerweise werden hierzu 30 - 60 min benötigt. Anschließend werden die so erwärmten Halbzeuge abgeschreckt. Dabei werden sie mit einem geeigneten Abschreckmedium, beispielsweise mit Wasser, Öl, einem Polymerbad, bewegter oder ruhender Luft oder, sofern die Abkühlung im Vakuumofen vorgenommen wird, mit gasförmigem Stickstoff, innerhalb von 5- 30 Min auf Raumtemperatur abgekühlt. Insbesondere bei großen Halbzeugen kann es zweckmäßig sein, die Erwärmung auf die Härtetemperatur in mehreren Vorwärmstufen, z.B. 400 °C, 600 °C und 800 °C oder eine Vorwärmtemperatur im Bereich von 600 - 800°C, durchzuführen, um eine gleichmäßige Durchwärmung sicherzustellen.The production of the semifinished product was followed by the heat treatment. In this case, the respective semi-finished product is heated at a heating rate of typically 5 K / min to a hardening temperature (austenitizing temperature) of 1050 - 1200 ° C, on which it is held until it is completely warmed through. Typically, this will take 30 to 60 minutes. Subsequently, the thus heated semi-finished products are quenched. They are cooled with a suitable quenching medium, for example with water, oil, a polymer bath, moving or static air or, if the cooling is carried out in a vacuum oven, with gaseous nitrogen, within 5-30 min to room temperature. Particularly in the case of large semi-finished products, it may be expedient to carry out the heating to the hardening temperature in several preheating stages, for example 400 ° C., 600 ° C. and 800 ° C. or a preheating temperature in the range from 600 to 800 ° C., in order to ensure uniform heating.

Um Reaktionen mit der Umgebungsatmosphäre zu vermeiden, kann in ebenso an sich bekannter Weise das Härten in einem Vakuumofen durchgeführt werden. Jedoch ist dies keine Voraussetzung für den Erfolg der erfindungsgemäßen Vorgehensweise.In order to avoid reactions with the ambient atmosphere, curing in a vacuum oven can also be carried out in a manner known per se. However, this is not a prerequisite for the success of the procedure according to the invention.

Nach dem Härten kann ein Anlassen durchgeführt werden, bei dem das Halbzeug über eine Dauer von beispielsweise 90 min auf der jeweiligen, typischerweise 450 - 550 °C betragenden Anlasstemperatur gehalten wird. Die Anlassbedingungen werden dabei in an sich bekannter Weise in Abhängigkeit von der jeweiligen Härtetemperatur und dem gewünschten Härteniveau, d.h. der gewünschten Festigkeit, gewählt. Die Aufheiz- und Abkühlgeschwindigkeiten liegen beim Anlassen in der Regel in der Größenordnung von 10 K/min. Im Gegensatz zum Härten sind die Aufheiz- und Abkühlgeschwindigkeiten beim Anlassen unkritisch. Durch das Anlassen entspannt sich der spröde Martensit durch Diffusion von Kohlenstoff. Dieser bildet zusammen mit z.B. V, Cr und Mo die sogenannten "Anlasskarbide". Dadurch steigt die Zähigkeit. Gleichzeitig nimmt die Festigkeit und Härte des Stahlwerkstoffs nur geringfügig ab, da diese Eigenschaften durch die Karbidbildung wieder erhöht werden.After hardening, tempering may be carried out in which the semifinished product is held for a period of, for example, 90 minutes at the respective tempering temperature, which is typically 450-550 ° C. The tempering conditions are determined in a manner known per se depending on the respective hardening temperature and the desired level of hardness, i. the desired strength selected. The heating and cooling rates are usually on the order of 10 K / min when starting. In contrast to curing, the heating and cooling rates during tempering are not critical. By tempering the brittle martensite relaxes by diffusion of carbon. This forms together with e.g. V, Cr and Mo the so-called "carbide". This increases the toughness. At the same time, the strength and hardness of the steel material decreases only slightly, since these properties are increased again by the carbide formation.

Da es in der Regel bei solchen Legierungssystemen einen schmalen Temperaturbereich (ca. 50°C grob zwischen 450 und 650°C) gibt, spricht man von Sekundärhärtemaximum, da Temperaturen unter- oder oberhalb davon eine geringere Härte bedeuten.Since there is usually a narrow temperature range (about 50 ° C coarse between 450 and 650 ° C) in such alloy systems, one speaks of secondary hardness maximum, since temperatures below or above it mean a lower hardness.

Unter Anwendung der voranstehend erläuterten allgemeinen Vorgehensweise bei der praktischen Erzeugung von erfindungsgemäßen Stahlwerkstoffen und daraus hergestellten Bauteilen sind aus vier erfindungsgemäßen Stahlwerkstoffen V10a - V10d zylinderförmige Halbzeuge erzeugt worden.Using the general procedure described above in the practical production of steel materials according to the invention and components produced therefrom, cylindrical semifinished products have been produced from four steel materials V10a-V10d according to the invention.

Die Stahlmatrix der Stahlwerkstoffe V10a, V10b, V10c und V10d enthielt jeweils (in Gew.-%) 2,5 % C, 0,9 % Si, 0,9 % Mn, 4,5 % Cr, 1,2 % Mo und 10,0 % V, Rest Eisen und unvermeidbare Verunreinigungen. Zusätzlich waren dem Stahlwerkstoff V10a 5 Gew.-% TiC, dem Stahlwerkstoff V10b 10,0 Gew.-% TiC, dem Stahlwerkstoff V10c 15 Gew.-% TiC und dem Stahlwerkstoff V10d 20 Gew.-% TiC zulegiert.The steel matrix of the steel materials V10a, V10b, V10c and V10d each contained (in wt .-%) 2.5% C, 0.9% Si, 0.9% Mn, 4.5% Cr, 1.2% Mo and 10.0% V, balance iron and unavoidable impurities. In addition, 5% by weight of TiC were added to the steel material V10a, 10% by weight of TiC to the steel material V10b, 15% by weight of TiC to the steel material V10c and 20% by weight of TiC to the steel material V10d.

Die Austenitisierungstemperatur AT, die vor dem nachfolgenden Wärmebehandlungsschritt vorhandene Härte HRC ("HRC_v"), entweder, soweit ein Anlassen durchgeführt worden ist, die Anlasstemperatur ST und die Anlassdauer St oder, soweit ein Weichglühen durchgeführt worden ist, die Weichglühtemperatur WT und die Weichglühdauer Wt, die Härte HRC ("HRC_n") nach dem vorangegangenen Wärmebehandlungsschritt und die Dichte ρ der Proben V1 - V8 sind in Tabelle 1 angegeben.The austenitizing temperature AT, the hardness HRC ("HRC_v") existing before the subsequent heat treatment step, either when tempering has been performed, the tempering temperature ST and tempering time St, or, if soft annealing has been performed, the soaking temperature WT and the soaking annealing time Wt , the hardness HRC ("HRC_n") after the previous heat treatment step and the density ρ of the samples V1-V8 are given in Table 1.

Die Erwärmung auf die jeweilige Austenitisierungstemperatur AT erfolgte im Vakuumofen. Dort wurden die Proben V1 - V8 für eine Austenitisierungsdauer At bei der Austenitisierungstemperatur AT gehalten. Anschließend erfolgte noch im Vakuumofen durch Beaufschlagung mit gasförmigem, mit einem Druck von 3,5 bar aufgebrachtem Stickstoff eine Abkühlung auf Raumtemperatur.The heating to the respective austenitizing AT was carried out in a vacuum oven. There, the samples V1 - V8 were kept at the austenitizing temperature ΔT for an austenitizing time Δt. Subsequently, the mixture was cooled to room temperature in the vacuum oven by exposure to gaseous nitrogen applied at a pressure of 3.5 bar.

Nach dem Härten wurden die Proben 1 - 8 entweder einer Anlass- oder einer Weichglühbehandlung unterzogen. Bei der Anlassbehandlung sind die Proben 1, 3, 5, 7 über die Anlassdauer St bei der Anlasstemperatur ST gehalten worden. Diese Anlassbehandlung wurde zweimal durchgeführt, um ein optimales Anlassergebnis zu erhalten.After curing, Samples 1-8 were subjected to either annealing or annealing treatment. In the tempering treatment, the samples 1, 3, 5, 7 have been kept at the tempering temperature ST over the tempering period St. This tempering treatment was carried out twice to obtain an optimum starting result.

Bei der Weichglühung sind die Proben 2, 4, 6, 8 über eine Dauer Wt bei der Weichglühtemperatur WT gehalten worden. Nach Ablauf der Glühdauer wurde der Ofen abgeschaltet und die Proben 2, 4, 6, 8 im abgeschalteten Ofen langsam auf Raumtemperatur abgekühlt. Tabelle 1 Probe Werkstoff zulegierter TiC-Gehalt AT At HRC_v ST St WT Wt HRC_n ρ [Gew.-%] [°C] [min] mittel [°C] [min] [°C] [h] mittel [g/cm3] 1 V10a 5 64,0 500 90 - - 62,5 7,19 2 V10a 5 - - 900 8 39,0 3 V10b 10 69,0 500 90 - - 65,0 7,05 4 V10b 10 1800 60 - - 900 8 44,0 5 V10b 15 69,0 500 90 - - 65,0 6,88 6 V10b 15 - - 900 8 46,0 7 V10b 20 69,0 500 90 - - 66,0 6,72 8 V10b 20 - - 900 8 50,0 During the soft annealing, the samples 2, 4, 6, 8 have been kept at the annealing temperature WT for a duration Wt. After the end of the annealing period, the oven was switched off and the samples 2, 4, 6, 8 were cooled slowly in the oven switched off to room temperature. Table 1 sample material alloyed TiC content AT At HRC_v ST st WT wt HRC_n ρ [Wt .-%] [° C] [Min] medium [° C] [Min] [° C] [H] medium [g / cm 3 ] 1 V10a 5 64.0 500 90 - - 62.5 7.19 2 V10a 5 - - 900 8th 39.0 3 V10b 10 69.0 500 90 - - 65.0 7.05 4 V10b 10 1800 60 - - 900 8th 44.0 5 V10b 15 69.0 500 90 - - 65.0 6.88 6 V10b 15 - - 900 8th 46.0 7 V10b 20 69.0 500 90 - - 66.0 6.72 8th V10b 20 - - 900 8th 50.0

Claims (15)

Stahlwerkstoff, der pulvermetallurgisch hergestellt ist und eine wie folgt zusammengesetzt Stahlmatrix aufweist (in Gew.-%): C: 1,5 - 5,0 %, Si: 0,3 - 2,0 %, Mn: 0,3 - 2,0 %, P: 0 - <0,035 %, S: 0 - <0,35 %, N: 0 - <0,1 %, Cr: 3,0 - 15,0 %, Mo: 0,5 - 2,0 %, V: 6,0 - 18,0 %,
jeweils optional ein Element oder mehrere Elemente aus der Gruppe "Nb, Ni, Co, W", wobei der Gehalt an Ni, Co und W jeweils höchstens 1,0 % und der Gehalt an Nb höchstens 2,0 % beträgt,
Rest Eisen und unvermeidbare Verunreinigungen,
wobei in der Stahlmatrix Hartstoffpartikel in Gehalten von 2,5 - 30 Gew.-% eingebettet sind.
A steel material produced by powder metallurgy and having a steel matrix composed as follows (in% by weight): C: 1.5 - 5.0%, Si: 0.3 - 2.0%, Mn: 0.3 - 2.0%, P: 0 - <0.035%, S: 0 - <0.35%, N: 0 - <0.1%, Cr: 3.0 - 15.0%, Not a word: 0.5 - 2.0%, V: 6.0 - 18.0%,
each optionally one or more elements from the group "Nb, Ni, Co, W", wherein the content of Ni, Co and W is at most 1.0% and the content of Nb is 2.0% or less,
Residual iron and unavoidable impurities,
wherein embedded in the steel matrix hard material particles in amounts of 2.5 to 30 wt .-%.
Stahlwerkstoff nach Anspruch 1,dadurch gekennzeichnet, dass bei Cr-Gehalten von bis zu 8,0 Gew.-% der C-Gehalt der Stahlmatrix mit einer betragsmäßigen Abweichung von höchstens 0,2 Gew.-% einer Zielgröße %CZiel entspricht, für die gilt %CZiel = 0,2 x %V + 0,4 Gew.-%, wobei mit %V der jeweilige V-Gehalt der Stahlmatrix bezeichnet ist.Steel material according to claim 1, characterized in that at Cr contents of up to 8.0 wt .-%, the C content of the steel matrix with an absolute deviation of at most 0.2 wt .-% of a target size corresponds to CZiel, for the % CZiel = 0.2 x% V + 0.4% by weight, where% V denotes the respective V content of the steel matrix. Stahlwerkstoff nach Anspruch 1, dadurch gekennzeichnet, dass bei Cr-Gehalten von mindestens 11,0 Gew.-% der C-Gehalt der Stahlmatrix mit einer betragsmäßigen Abweichung von höchstens 0,2 Gew.-% einer Zielgröße %CZiel entspricht, für die gilt: %C = (0,2 x %V + 0,4 Gew.-%) x 1,3, wobei mit %V der jeweilige V-Gehalt der Stahlmatrix bezeichnet ist.Steel material according to claim 1, characterized in that at Cr contents of at least 11.0 wt .-%, the C content of the steel matrix with a magnitude deviation of at most 0.2 wt .-% of a target size% CZiel for which the following applies:% C = (0.2 x% V + 0.4% by weight) x 1.3, where% V denotes the respective V content of the steel matrix. Stahlwerkstoff nach Anspruch 1,dadurch gekennzeichnet, dass bei Cr-Gehalten von mehr als 8 Gew.-% und weniger als 11 Gew.-% der C-Gehalt der Stahlmatrix zwischen den gemäß Anspruch 2 und 3 bestimmten %CZiel-Gehalten liegt.Steel material according to claim 1, characterized in that at Cr contents of more than 8 wt .-% and less than 11 wt .-%, the C content of the steel matrix is between the determined according to claim 2 and 3% CZiel contents. Stahlwerkstoff nach einem der voranstehenden Ansprüche, dadurch h gekennzeichnet, dass sein Si-Gehalt mindestens 0,7 Gew.-% oder höchstens 1,5 Gew.-% beträgt.Steel material according to one of the preceding claims, characterized h characterized in that its Si content is at least 0.7 wt .-% or at most 1.5 wt .-%. Stahlwerkstoff nach einem der voranstehenden Ansprüche, dadurch h gekennzeichnet, dass sein Mn-Gehalt mindestens 0,7 Gew.-% oder höchstens 1,5 Gew.-% beträgt.Steel material according to one of the preceding claims, characterized h characterized in that its Mn content is at least 0.7 wt .-% or at most 1.5 wt .-%. Stahlwerkstoff nach einem der voranstehenden Ansprüche, dadurch h gekennzeichnet, dass sein S-Gehalt mindestens 0,035 Gew.-% beträgt.Steel material according to one of the preceding claims, characterized h characterized in that its S content is at least 0.035 wt .-%. Stahlwerkstoff nach einem der voranstehenden Ansprüche, dadurch h gekennzeichnet, dass sein Mo-Gehalt mindestens 0,9 Gew.-% oder höchstens 1,5 Gew.-% beträgt.Steel material according to one of the preceding claims, characterized h characterized in that its Mo content is at least 0.9 wt .-% or at most 1.5 wt .-%. Stahlwerkstoff nach einem der voranstehenden Ansprüche, dadurch h gekennzeichnet, dass s bei Anwesenheit eines Elements oder mehrerer Elemente aus der Gruppe "Ni, Co, W" für die Gehalte des jeweiligen Elements Ni, Co oder W gilt (in Gew.-%): Ni: 0,2 - 0,4 %, Co: 0,3 - 0,5 %, W: 0,3 - 0,5 %.
Steel material according to one of the preceding claims, characterized h that s is valid in the presence of an element or several elements from the group "Ni, Co, W" for the contents of the element Ni, Co or W (in wt .-%): Ni: 0.2 - 0.4%, Co: 0.3 - 0.5%, W: 0.3 - 0.5%.
Stahlwerkstoff nach einem der voranstehenden Ansprüche, dadurch h gekennzeichnet, dass die Hartstoffpartikel TiC-Partikel sind.Steel material according to one of the preceding claims, characterized h characterized in that the hard material particles are TiC particles. Stahlwerkstoff nach einem der voranstehenden Ansprüche, dadurch h gekennzeichnet, dass die Hartstoffpartikel in einer d50 Korngröße von höchstens 50 µm vorliegen.Steel material according to one of the preceding claims, characterized h characterized in that the hard material particles are present in a d50 grain size of at most 50 microns. Verfahren zur Herstellung eines Bauteils, das aus einem gemäß einem der voranstehenden Ansprüche beschaffenen Stahl besteht, umfassend folgende Arbeitsschritte: a) Es wird ein Stahllegierungspulver bereitgestellt, das aus (in Gew.-%) 1,5 - 5,0 % C, 0,3 - 2,0 % Si, 0,3 - 2,0 % Mn, < 0,035 % P, <0,35 % S, < 0,1 % N, 3,0 - 15,0 % Cr, 0,5 - 2,0 % Mo, 6,0 - 18,0 % V, jeweils optional ein Element oder mehrere Elemente aus der Gruppe "Nb, Ni, Co, W", wobei der Gehalt an Ni, Co und W jeweils höchstens 1,0 % und der Gehalt an Nb höchstens 2,0 % beträgt, und als Rest aus Eisen und unvermeidbaren Verunreinigungen besteht. b) Das Stahllegierungspulver wird mit Hartstoffpartikeln mit der Maßgabe vermischt, dass der Gehalt an Hartstoffpartikeln an der erhaltenen Stahllegierungspulver-Hartstoffpartikel-Mischung 2,5 bis 30 Gew.-% beträgt. c) Optional wird das Stahllegierungspulver oder die Stahllegierungspulver-Hartstoff-Mischung getrocknet. d) Aus dem Stahllegierungspulver oder der Stahllegierungspulver-Hartstoff-Mischung wird durch ein Sinterverfahren, insbesondere durch Heiß-Isostatisches-Pressen, oder durch ein additives Verfahren ein festes Halbzeug gebildet. e) Das erhaltene Halbzeug wird zu dem Bauteil fertig bearbeitet. Method for producing a component which consists of a steel obtained according to one of the preceding claims, comprising the following working steps: a) A steel alloy powder is provided which consists of (in wt%) 1.5-5.0% C, 0.3-2.0% Si, 0.3-2.0% Mn, <0.035% P, <0.35% S, <0.1% N, 3.0-15.0% Cr, 0.5-2.0% Mo, 6.0-18.0% V, each optionally one element or plural elements of the group "Nb, Ni, Co, W", wherein the content of Ni, Co and W is 1.0% or less, and the content of Nb is 2.0% or less, and the remainder is iron and unavoidable Impurities. b) The steel alloy powder is mixed with hard material particles with the proviso that the content of hard material particles in the obtained steel alloy powder-hard material particle mixture is 2.5 to 30 wt .-%. c) Optionally, the steel alloy powder or the steel alloy powder-hard material mixture is dried. d) From the steel alloy powder or the steel alloy powder-hard material mixture, a solid semi-finished product is formed by a sintering process, in particular by hot isostatic pressing, or by an additive process. e) The resulting semi-finished product is finished to the component. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass für den Arbeitsschritt a) die Legierungsbestandteile des Stahllegierungspulvers jeweils pulverförmig bereitgestellt und zu den Stahllegierungspulvern vermischt werden.A method according to claim 12, characterized in that for the working step a) the alloy components of the steel alloy powder are respectively provided in powder form and mixed into the steel alloy powders. Verfahren nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, dass das Fertigbearbeiten (Arbeitsschritt e)) eine spanabhebende Bearbeitung des Halbzeugs umfasst.Method according to one of claims 12 or 13, characterized in that the finishing (step e)) comprises a machining of the semifinished product. Bauteil, das im praktischen Einsatz Bewegungen mit hoher Beschleunigung oder Geschwindigkeit ausführt, hergestellt aus einem gemäß einem der Ansprüche 1 bis 11 beschaffenen Stahlwerkstoff.Component which, in practical use, performs high acceleration or velocity movements made of a steel material obtained according to any one of claims 1 to 11.
EP16200060.8A 2016-11-22 2016-11-22 Steel material containing hard particles prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material Active EP3323902B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16200060.8A EP3323902B1 (en) 2016-11-22 2016-11-22 Steel material containing hard particles prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material
PCT/EP2017/079968 WO2018095928A1 (en) 2016-11-22 2017-11-21 Powder metallurgy produced steel material containing hard material particles, method for producing a component from said type of steel material and component produced from the steel material
JP2019547782A JP2020501027A (en) 2016-11-22 2017-11-21 Powder metallurgically produced steel material comprising hard material particles, a method for producing parts from such steel material, and parts produced from steel material
US16/349,463 US20200190638A1 (en) 2016-11-22 2017-11-21 Powder-Metallurgically Produced Steel Material Containing Hard Material Particles, Method for Producing a Component from Such a Steel Material, and Component Produced from the Steel Material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16200060.8A EP3323902B1 (en) 2016-11-22 2016-11-22 Steel material containing hard particles prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material

Publications (2)

Publication Number Publication Date
EP3323902A1 true EP3323902A1 (en) 2018-05-23
EP3323902B1 EP3323902B1 (en) 2021-09-15

Family

ID=57421637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16200060.8A Active EP3323902B1 (en) 2016-11-22 2016-11-22 Steel material containing hard particles prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material

Country Status (4)

Country Link
US (1) US20200190638A1 (en)
EP (1) EP3323902B1 (en)
JP (1) JP2020501027A (en)
WO (1) WO2018095928A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402488A (en) * 2018-10-29 2019-03-01 宁波科森净化器制造有限公司 A kind of tail gas converter shell
CN111438356A (en) * 2020-04-13 2020-07-24 河北晟华新材料科技有限公司 Titanium-aluminum target material for physical vapor deposition and preparation method thereof
EP3733326A1 (en) * 2019-04-30 2020-11-04 Deutsche Edelstahlwerke Specialty Steel GmbH & Co. KG Method for producing a steel component with an additive production method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220196070A1 (en) * 2020-12-17 2022-06-23 Aktiebolaget Skf Bearing component and method of manufacturing thereof
CN114318164B (en) * 2021-03-22 2023-01-20 武汉钜能科技有限责任公司 Wear-resistant corrosion-resistant tool steel
KR20240047123A (en) * 2022-10-04 2024-04-12 현대자동차주식회사 Sintered material for aluminum die casting and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249945A (en) 1978-09-20 1981-02-10 Crucible Inc. Powder-metallurgy steel article with high vanadium-carbide content
US4880461A (en) * 1985-08-18 1989-11-14 Hitachi Metals, Ltd. Super hard high-speed tool steel
JPH03126844A (en) * 1989-10-12 1991-05-30 Sumitomo Metal Ind Ltd Steel for hot roll having excellent wear resistance
EP0515018A1 (en) * 1991-05-22 1992-11-25 Crucible Materials Corporation Prealloyed high-vanadium, cold work tool steel particles and method for producing the same
EP0773305B1 (en) 1995-11-08 2000-05-31 Crucible Materials Corporation Corrosion resistant, high vanadium, powder metallurgy tool steel articles with improved metal to metal wear resistance and a method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249945A (en) 1978-09-20 1981-02-10 Crucible Inc. Powder-metallurgy steel article with high vanadium-carbide content
US4880461A (en) * 1985-08-18 1989-11-14 Hitachi Metals, Ltd. Super hard high-speed tool steel
JPH03126844A (en) * 1989-10-12 1991-05-30 Sumitomo Metal Ind Ltd Steel for hot roll having excellent wear resistance
EP0515018A1 (en) * 1991-05-22 1992-11-25 Crucible Materials Corporation Prealloyed high-vanadium, cold work tool steel particles and method for producing the same
EP0773305B1 (en) 1995-11-08 2000-05-31 Crucible Materials Corporation Corrosion resistant, high vanadium, powder metallurgy tool steel articles with improved metal to metal wear resistance and a method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"VDI Statusreport", September 2014, article "Additive Fertigungsverfahren"

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402488A (en) * 2018-10-29 2019-03-01 宁波科森净化器制造有限公司 A kind of tail gas converter shell
EP3733326A1 (en) * 2019-04-30 2020-11-04 Deutsche Edelstahlwerke Specialty Steel GmbH & Co. KG Method for producing a steel component with an additive production method
WO2020221689A1 (en) 2019-04-30 2020-11-05 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co. Kg Method for producing a steel component, and steel component
CN111438356A (en) * 2020-04-13 2020-07-24 河北晟华新材料科技有限公司 Titanium-aluminum target material for physical vapor deposition and preparation method thereof
CN111438356B (en) * 2020-04-13 2022-02-22 河北晟华新材料科技有限公司 Titanium-aluminum target material for physical vapor deposition and preparation method thereof

Also Published As

Publication number Publication date
WO2018095928A1 (en) 2018-05-31
US20200190638A1 (en) 2020-06-18
EP3323902B1 (en) 2021-09-15
JP2020501027A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
EP3323902B1 (en) Steel material containing hard particles prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material
EP2253398B1 (en) Wear-resistant material
EP3228724B1 (en) Tool steel, in particular hot-work steel, and steel object
DE2937724C2 (en) Steel product made by powder metallurgy with a high proportion of vanadium carbide
EP1882050B1 (en) Powder-metallurgically produced, wear-resistant material
DE69818138T2 (en) Cold work tool steel particles with high impact strength from metal powder and process for its production
EP3591078B1 (en) Use of a steel for an additive production method, method for producing a steel component and steel component
EP3409801B1 (en) Solid particles prepared by means of powder metallurgy, hard particle containing composite material, use of a composite material and method for manufacturing a component from a composite material
EP3733326A1 (en) Method for producing a steel component with an additive production method
DE69814896T2 (en) STEEL AND HEAT-TREATED TOOL MADE IN AN INTEGRATED POWDER METALLURGICAL PROCESS AND THE USE OF SUCH STEEL FOR TOOLS
DE1533275B1 (en) Process for the powder metallurgical production of hard alloys
DE1298293B (en) Highly wear-resistant, machinable and hardenable sintered steel alloy and process for their production
EP1300482B1 (en) Hot-work tool-steel article
DE69906782T2 (en) STEEL, USE OF THE STEEL, PRODUCT MADE THEREOF AND METHOD FOR THE PRODUCTION THEREOF
EP3850114A1 (en) Corrosion-resistant and precipitation-hardening steel, method for producing a steel component, and steel component
WO2021032893A1 (en) Tool steel for cold-working and high-speed applications
EP1274872B1 (en) Method for the production of nitrogen alloyed steel, spray compacted steel
EP3323903B1 (en) Steel material prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material
EP3847284B1 (en) Hot-rolled flat steel product and method for the production thereof
EP4000762B1 (en) Use of a steel powder for an additive manufacturing process of a steel component
WO2022090054A1 (en) Powder for use in a powder metallurgy or additive method, steel material and method for producing a component
EP0719349B1 (en) Process of producing sintered articles
CH642109A5 (en) FAST WORK STEEL.
EP2233596B1 (en) Cold worked steel object
WO2022157227A1 (en) Process for producing a tool steel as a carrier for pvd coatings and a tool steel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE EDELSTAHLWERKE SPECIALTY STEEL GMBH & CO.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181123

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200423

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 33/02 20060101AFI20201224BHEP

Ipc: C22C 38/02 20060101ALI20201224BHEP

Ipc: C22C 38/36 20060101ALI20201224BHEP

Ipc: C22C 38/22 20060101ALI20201224BHEP

Ipc: C22C 38/24 20060101ALI20201224BHEP

Ipc: B21B 27/02 20060101ALI20201224BHEP

Ipc: C22C 38/00 20060101ALI20201224BHEP

Ipc: C22C 38/04 20060101ALI20201224BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210202

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: VAN BENNEKOM, DR., ANDRE

Inventor name: HILL, DR., HORST

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20210804

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016013825

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1430584

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220117

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016013825

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

26N No opposition filed

Effective date: 20220616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20221122

Year of fee payment: 7

Ref country code: IT

Payment date: 20221123

Year of fee payment: 7

Ref country code: GB

Payment date: 20221122

Year of fee payment: 7

Ref country code: FR

Payment date: 20221123

Year of fee payment: 7

Ref country code: DE

Payment date: 20221122

Year of fee payment: 7

Ref country code: AT

Payment date: 20221124

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221122

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016013825

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1430584

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231122

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231122

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231123