EP1647606B1 - Alliage de nickel résistant à l'usure et a dureté élevée, et son utilisation comme un outil à haute température - Google Patents

Alliage de nickel résistant à l'usure et a dureté élevée, et son utilisation comme un outil à haute température Download PDF

Info

Publication number
EP1647606B1
EP1647606B1 EP20050450151 EP05450151A EP1647606B1 EP 1647606 B1 EP1647606 B1 EP 1647606B1 EP 20050450151 EP20050450151 EP 20050450151 EP 05450151 A EP05450151 A EP 05450151A EP 1647606 B1 EP1647606 B1 EP 1647606B1
Authority
EP
European Patent Office
Prior art keywords
based alloy
mass
nickel based
alloy according
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20050450151
Other languages
German (de)
English (en)
Other versions
EP1647606A1 (fr
Inventor
Devrim Caliskanoglu
Reinholf Ebner
Matthias Jönzen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Edelstahl GmbH
Original Assignee
Boehler Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehler Edelstahl GmbH filed Critical Boehler Edelstahl GmbH
Publication of EP1647606A1 publication Critical patent/EP1647606A1/fr
Application granted granted Critical
Publication of EP1647606B1 publication Critical patent/EP1647606B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention relates to a nickel-based alloy.
  • the invention relates to a method for producing a nickel-based alloy article.
  • the invention comprises a tool consisting of a nickel-based alloy and a starting material for the production of tools.
  • Tools for cutting or non-cutting metal materials are subjected to a variety of stresses in use. These stresses are often mechanical, for example, by contact of the tool with a metallic material, which leads to wear of the tool. In addition, in the case of high operating temperatures, which are often given, also thermally induced loads, so that when using the tool in total, mechanical, thermal and thermomechanical stresses are given.
  • High-speed steels have a high hardness due to a high proportion of carbides distributed in the steel matrix and are correspondingly wear-resistant.
  • High-speed steels however, have a natural operational limit approximately at their tempering temperatures (about 530 to 560 ° C). At higher Operating temperatures, especially at temperatures of more than 600 ° C, soften tools made of high-speed steels and deform plastically. In addition, any surface coatings may detach. For tools with operating temperatures of more than 700 ° C, high-speed steels are therefore less suitable.
  • U.S. 4,727,740 discloses an alloy of 0.55-2.0 C, 10-28 Cr, 1-30 Fe, 0.01-4.5 Ti, 0.01-4.5 Al, 0.1-10 W, 0.1-10 Mo and balance Ni, if appropriate 0.1-3 Si, 0.1- 3 Mn, 1-8 Co at least one from the group 0.005-0.2 N, 0.01-1.5 Nb and Ta and at least one from the group 0.001-0.2 B and Zr.
  • nickel-based alloys suitable materials for components or components with operating temperatures of 700 ° C. or more are generally provided.
  • nickel base alloys per se have significantly lower hardnesses.
  • the hardness achieved thereby lies in a range which is sufficient for some high-temperature applications, for example for gas turbines, but not for applications in which high wear resistance is required.
  • Another object of the invention is to provide a high-strength nickel-based alloy with high hardness. Another object is to provide a method by which a high-strength, high-temperature resistant article of a nickel-based alloy with a homogeneous microstructure can be produced.
  • Another object of the invention is to provide a tool made of a nickel-based alloy, in particular a cutting tool or a thermally highly stressed tool, which has a high hardness and wear resistance.
  • a nickel-based alloy has been created, which is suitable for tools with operating temperatures of more than 700 ° C and at room temperature has a hardness in the range of those conventional high-speed steels. Since the matrix of the nickel-based alloy consists of ⁇ -phase, ie a phase with cubic face-centered lattice, a good temperature resistance is given.
  • the achieved high hardness is due to a dual hardening concept: By a proportion of at least 10% by volume of primary metal carbides, which are metal carbides precipitated from the melt, a basic hardness of the matrix of about 200 HV (Vickers hardness) is increased by about 250 HV. Precipitation hardening or the formation of ⁇ 'phases, for example Ni 3 Al, can then result in an additional hardness increase of about 200 HV in the sequence.
  • the proportion of metal carbides is at least 15% by volume, preferably at least 20% by volume.
  • metal carbides of the formula M 6 C, MC, M 2 C and / or M 23 C 6 are preferred because they are characterized by high hardness. It is particularly advantageous if at least 50% by volume of the metal carbides in the form of M 6 C are present, which form a favorable uniform, globular morphology.
  • the metal carbides are preferably formed as fine as possible in view of a homogeneous structure and then have an average size of 0.5 to 5 .mu.m, in particular 1 to 3 .mu.m.
  • a proportion of ⁇ '-phase is at least 10% by volume, in particular from 20 to 65% by volume. This causes on the one hand a high total hardness. On the other hand, an embrittlement of the alloy, which could be due to high carbide contents, effectively counteracted.
  • Carbon is provided in a content range of 0.5 to 1.8 mass%. A minimum content of 0.5% by mass is required to form metal carbides in the proportion of at least 10% by volume and thus to achieve a desired high hardness. Carbon contents of 1.8 mass% or more are not useful because with such high carbon contents, the solidus temperature of the nickel-based alloy is greatly lowered. An optimum range in terms of high hardness and high solidus temperature is given at carbon contents of 0.6 to 1.2 mass%.
  • Manganese is used for sulfur setting and solid solution strengthening and may be present in amounts up to 3.0% by weight in an alloy of the invention without adversely affecting the properties of the alloy.
  • chromium is provided with contents of 6.0 to 25.0 mass%. 6.0 mass% chromium is necessary to ensure sufficient carbide formation. Contents of more than 25.0 mass% are disadvantageous, because then forms a high amount of metal carbides of the formula M 23 C 6 network-like at the dendrite grain boundaries, sub-grain boundaries and grain boundaries of the ⁇ -phase or nickel-based. In the content range of 10 to 18% by weight of chromium, a formation of network-type carbides can be reduced to a favorable level with a high proportion of chromium carbides and / or chromium-containing carbides.
  • Molybdenum is a strong carbide former and is present in an amount of at least 8.0, preferably at least 10.0, mass% to achieve a high volume fraction of carbides in an alloy of the invention and to contribute to solid solution hardness. Contents of more than 18 mass% molybdenum are not appropriate: Although the carbide content can be further increased, a further increase in hardness is no longer achieved.
  • Tungsten acts similarly to molybdenum and is a strong carbide former and solid solution promoter, but less effective than molybdenum per unit mass. Therefore, tungsten is used only in combination with molybdenum and can then be present in amounts of up to 10% by mass. It is preferred to use tungsten in contents of 1.0 to 6.0% by mass, because tungsten has a positive effect in these concentrations for the stabilization of carbides of the formula M 6 C.
  • a sum (in mass%) of (molybdenum + 0.5 ⁇ tungsten) is more than 12.0%.
  • a content of carbides in the nickel-based alloy can be set to 20% by volume or more, which provides high hardness values of the alloy.
  • This element is also a strong carbide former and can be alloyed in levels up to 3.0 mass% to aid in carbide formation. At niobium contents higher than 1.5% by mass, MC type carbides can be particularly stabilized; However, niobium is then partially bound and then only partially available for the formation of ⁇ '-phase (or substitution of Al in the ⁇ '-phase).
  • niobium when added, a concentration of this element of 0.2 to 1.5 mass% is preferred.
  • Aluminum is important because this element is essential for the formation of ⁇ '-phase. In this context, it has been found that aluminum contents of at least 2.5 mass% are necessary in order to obtain a material with the desired high hardness. Higher contents than 6.0% by mass of aluminum can lead to an alloy in which the matrix consists of ⁇ '-phase, which is undesirable in the context of the invention. In practice, aluminum contents of 3.0 to 5.0% by mass have proven particularly useful.
  • FeNb alloys are mainly used. Iron thereby becomes part of the alloy and may be present in levels up to 20.0 mass%. Since higher concentrations of iron on the one hand suppress the formation of ⁇ '-phase and on the other hand promote the formation of carbides of the type M 23 C 6 , iron contents of 1.5 to 5.0 mass% are favorable.
  • Cobalt can reduce the solubility of aluminum in concentrations of up to 4.0% by weight of an alloy according to the invention and therefore lead to improved precipitation behavior of the ⁇ 'phase.
  • Titanium can be provided at levels of up to 3.0% by mass and, in addition to carbide formation, serves to form a .gamma. 'Phase in these concentration ranges. Greater concentrations than 3.0% by mass preferably cause formation of undesirable ⁇ -phase.
  • Hafnium can be used to substitute aluminum in the ⁇ '-phase and in this case be present in amounts up to 1.5 mass%.
  • Tantalum acts as a carbide-forming element and may be present at levels up to 2.0% by weight.
  • Zirconium is found to be effective at levels up to 0.5% by weight in order to avoid formation of carbide films at grain boundaries.
  • Vanadium is a high carbide-forming element and may be provided for purposes of carbide formation at levels up to 3.0% by weight.
  • boron may be present in amounts of up to 0.1% by weight, especially from 0.001 to 0.02% by weight. Boron can positively contribute to the hardness of an alloy by forming borides. Incidentally, a presence of boron causes a fine-tuning of the ⁇ -grain of the matrix.
  • Nickel forms the base of the alloy or is present in the highest concentration and forms the matrix of ⁇ -phase.
  • An alloy according to the invention further contains manufacturing-related impurities, such as sulfur, phosphorus, nitrogen and / or oxygen in a conventional extent known in the art.
  • the further object of the invention is achieved by a process for producing a nickel-based alloy article, wherein in a first step a melt containing (in% by mass) 0.5 to 1.8% carbon to 3.0% manganese 6.0 to 25.0% chrome 8.0 to 18.0% molybdenum to 10.0% tungsten to 3.0% niobium 2.5 to 6.0% aluminum to 20.0% iron to 4.0% cobalt to 3.0% titanium to 01.05% hafnium to 2.0% tantalum to 0.5% zircon to 3.0% vanadium,
  • Residue nickel and impurities is atomized to a powder, after which in a second step from the powder, a compact article is formed, after which the compact article is subjected to annealing in the temperature range between solution temperature of ⁇ '-phase and solidus temperature of the nickel-based alloy in a third step , whereupon the article is precipitation hardened in a fourth step.
  • an article made of a nickel-base alloy can be provided, which is resistant to high temperatures and high strength and at the same time has a substantially homogeneous structure over a cross section of the solid material. It is important that the melt composed according to the invention is atomized to a powder in a first step, because segregations or demixings are prevented by the associated rapid solidification and preferably eutectic carbides are homogeneously and finely precipitated from the melt. Subsequently, the powder thus produced is formed into a compact article, so that an isotropic solid material is available for further heat treatments.
  • the carbides are formed by annealing in the temperature range between solution temperature of ⁇ '-phase and solidus temperature. This decomposes the possibly existing Carbidnetzwerk and there are predominantly formed globular carbides, which contribute proportionately to the achieved hardness. In addition, any existing ⁇ 'phase is at least largely dissolved and the material is homogenized.
  • the fact that the solid material used is substantially homogeneous is a prerequisite for obtaining an article with isotropic properties after annealing.
  • the article may be subjected to hot working, such as rolling, before and / or after annealing become.
  • the article may be quenched after annealing, such as with water, oil, or by flowing air.
  • the article is subjected to precipitation hardening, in which ⁇ 'phase is precipitated. It is also homogeneously distributed and contributes to hardness similar to that of the globular carbides.
  • the second and the third step are carried out simultaneously by hot isostatic pressing at a temperature of more than 1120 ° C for more than four hours. It is exploited that the powder or the compacted article in the hot isostatic pressing is already at high temperature and does not need to be heated separately. In other words, the second and third steps can be combined without having to cool and heat the object between these steps.
  • the precipitation hardening is preferably carried out by aging the article for at least one hour at a temperature of from 700 to 950 ° C. and then cooling it. It is clear to the person skilled in the art that this step can also be carried out several times, with the temperatures being able to be selected variably from the second aging.
  • the further object of the invention to provide a tool made of a nickel-based alloy, in particular a cutting tool or thermally highly stressed tool, which has a high hardness is achieved by claim 22.
  • An inventive tool is advantageously used at temperatures of more than 700 ° C and at the same time has a high hardness and high wear resistance. Thus, it can be used in particular in applications in which a tool is subjected to a high abrasive load, such as cutting or forming.
  • the object of the invention to provide a homogeneous starting material for the production of tools, made of a nickel-based alloy, in particular cutting tool or thermally highly stressed tool, is characterized by a starting material for the production of tools, in particular cutting tools and thermally highly stressed forming tools containing 0.5 to 01.08% carbon to 3.0% manganese 6.0 to 25.0% chrome 8.0 to 18.0% molybdenum to 10.0% tungsten to 3.0% niobium 2.5 to 6.0% aluminum to 20.0% iron to 4.0% cobalt to 3.0% titanium to 1.5% hafnium to 2.0% tantalum to 0.5% zircon to 3.0% vanadium,
  • Residual nickel and production-related impurities wherein globular metal carbides are present in a proportion of at least 10% by volume.
  • Powders of alloys A, B, C and D whose compositions are shown in Table 1, were each prepared by Gasverdüsung a corresponding molten metal and compacting the powder at 1150 ° C and a pressure of 1000 bar hot isostatically to solid material.
  • the articles thus produced were then subjected to annealing at 1250 ° C. for two hours followed by quenching. Subsequently, the alloys were cured at 800 and 900 ° C, respectively. After cooling to room or ambient temperature, the articles were examined from alloys A to D.
  • Table 1 ⁇ / u> Chemical Compositions of Inventive Alloys A to D (% by Weight).
  • Microstructural investigations showed that in each case a homogeneous microstructure consisting of a nickel matrix ( ⁇ -matrix) and globally distributed globular metal carbides of the types M 6 C, M 2 C and / or M 23 C 6 were present.
  • a microstructure of Alloy A shows primarily globular carbides M 2 C and M 6 C having an average diameter of about 1 to 2 ⁇ m ( FIG. 1a ).
  • Alloy B also shows globular carbides, but of type M 6 C and M 23 C 6 ( FIG. 2a ).
  • alloys of the present invention can achieve Vickers hardnesses greater than 750 HV 5, as shown in Table 2.
  • a hardening increase of about 150 HV can be achieved by hardening or precipitating ⁇ '-phase.
  • the highest overall hardness is achieved in alloy D, in which exclusively M 6 C carbides are present.
  • Cutting and forming tools made from the alloy according to the invention have proven themselves in practice at operating temperatures of more than 700 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)

Claims (23)

  1. Alliage de nickel trempé par précipitation, dans lequel des carbures primaires de métal sont présents à une fraction d'au moins 10 % volumétriques, et qui comprend (en % de masse) 0,5 à 1,8 % de carbone jusqu'à 3,0 % de manganèse 6,0 à 25,0 % de chrome 8,0 à 18,0 % de molybdène jusqu'à 10,0 % de tungstène jusqu'à 3,0 % de niobium 2,5 à 6,0 % d' aluminium jusqu'à 20,0 % de fer jusqu'à 4,0 % de cobalt jusqu'à 3,0 % de titane jusqu'à 1,5 % d' hafnium jusqu'à 2,0 % de tantale jusqu'à 0,5 % de zircon jusqu'à 3,0 % de vanadium,
    le reste étant de nickel et des impuretés consécutives à la fabrication.
  2. Alliage de nickel selon la revendication 1, qui comprend (en % de masse) 0,6 à 1,2 % de carbone.
  3. Alliage de nickel selon la revendication 1 ou 2, qui comprend (en % de masse) 10 à 18 % de chrome.
  4. Alliage de nickel selon une quelconque des revendications 1 à 3, qui comprend (en % de masse) plus de 10,0 de molybdène.
  5. Alliage de nickel selon une quelconque des revendications 1 à 4, qui comprend (en % de masse) 1,0 à 6,0 % de tungstène.
  6. Alliage de nickel selon une quelconque des revendications 1 à 5, dans lequel une somme (en % de masse) de (molybdène + 0,5 x de tungstène) se monte à plus de 12,0 %.
  7. Alliage de nickel selon une quelconque des revendications 1 à 6, qui comprend (en % de masse) 0,2 à 1,5 de niobium.
  8. Alliage de nickel selon une quelconque des revendications 1 à 7, qui comprend (en % de masse) 3,0 à 5,0 % d'aluminium.
  9. Alliage de nickel selon une quelconque des revendications 1 à 8, qui comprend (en % de masse) 1,5 à 5,0 de fer.
  10. Alliage de nickel selon une quelconque des revendications 1 à 9, qui comprend (en % de masse) jusqu'à 0,1%, de préférence 0,001 à 0,02%, de bore.
  11. Alliage de nickel selon une quelconque des revendications 1 à 10, dans lequel la fraction des carbures de métal se monte à au moins 15 % volumétriques, de préférence à au moins 20 % volumétriques.
  12. Alliage de nickel selon une quelconque des revendications 1 à 11, dans lequel des carbures de métal selon la formule M6C, MC, M2C et/ou M23C6 sont présents.
  13. Alliage de nickel selon la revendication 12, dans lequel au moins 50 % volumétriques des carbures de métal sont présents en forme de M6C.
  14. Alliage de nickel selon une quelconque des revendications 1 à 13, dans lequel les carbures de métal ont une grandeur moyenne de 0,5 à 5 µm, particulièrement d' 1 à 3 µm.
  15. Alliage de nickel selon une quelconque des revendications 1 à 14, dans lequel une fraction d'une phase y' se monte à au moins 10 % volumétriques, particulièrement 20 à 65 % volumétriques.
  16. Procédé de fabrication d'un objet d'un alliage de nickel, dans lequel on atomise, dans une première étape, une fonte, qui comprend 0,5 à 1,8 % de carbone jusqu'à 3,0 % de manganèse 6,0 à 25,0 % de chrome 8,0 à 18,0 % de molybdène jusqu'à 10,0 % de tungstène jusqu'à 3,0 % de niobium 2,5 à 6,0 % d' aluminium jusqu'à 20,0 % de fer jusqu'à 4,0 % de cobalt jusqu'à 3,0 % de titane jusqu'à 1,5 % d' hafnium jusqu'à 2,0 % de tantale jusqu'à 0,5 % de zircon jusqu'à 3,0 % de vanadium,
    le reste étant de nickel et des impuretés, à un poudre, après quoi, dans une deuxième étape, on forme un objet compact dudit poudre, après quoi, dans une troisième étape, on l'objet compact est soumis à un recuit dans une domaine de température entre la température de solution de la phase γ' et la température solidus de l'alliage de nickel, après quoi l'objet, dans une quatrième étape, est trempé par précipitation.
  17. Procédé selon la revendication 16, dans lequel
    0,6 à 1,2 % de carbone et/ou
    10 à 18 % de chrome et/ou
    plus de 10 % de molybdène et/ou
    1,0 à 6,0 de tungstène et/ou
    0,2 à 1,5 de niobium et/ou
    3,0 à 5,0 % d'aluminium et/ou
    1,5 à 5,0 % de fer et/ou
    jusqu'à 0,1 %, de préférence 0,001 à 0,02 %, de bore sont présents
    et/ou qu'une fraction (en % de masse) de (molybdène + 0,5 x de tungstène) se monte à plus de 12,0 %.
  18. Procédé selon la revendication 16 ou 17, dans lequel le poudre est compacté par pressage isostatique à chaud à une température d'au moins 1000°C et à une pression d'au moins 900 bar.
  19. Procédé selon une quelconque des revendications 17 à 19, dans lequel le recuit est réalisé dans une domaine de température de 1120°C à 1280°C.
  20. Procédé selon une quelconque des revendications 16 à 19, dans lequel la deuxième et la troisième étape sont effectuées simultanément par pressage isostatique à chaud à une température de plus de 1120°C pendant plus de quatre heures.
  21. Procédé selon une quelconque des revendications 16 à 19, dans lequel la trempe par précipitation est réalisée par une précipitation d'au moins une heure de l'objet à une température de 700 à 950°C et un refroidissement subséquent de l'objet.
  22. Outil, particulièrement outil de coupe ou outil de formage thermiquement fortement sollicité, consistant d'un alliage de nickel selon une quelconque des revendications 1 à 15.
  23. Prématière pour la fabrication des outils, particulièrement des outils de coupe ou des outils de formage thermiquement fortement sollicités, qui contient 0,5 à 1,8 % de carbone jusqu'à 3,0 % de manganèse 6,0 à 25,0 % de chrome 8,0 à 18,0 % de molybdène jusqu'à 10,0 % de tungstène jusqu'à 3,0 % de niobium 2,5 à 6,0 % d' aluminium jusqu'à 20,0 % de fer jusqu'à 4,0 % de cobalt jusqu'à 3,0 % de titane jusqu'à 1,5 % d' hafnium jusqu'à 2,0 % de tantale jusqu'à 0,5 % de zircon jusqu'à 3,0 % de vanadium,
    le reste étant de nickel et des impuretés consécutives à la fabrication, où des carbures globulaires de métal sont présents à une proportion d'au moins 10 % volumétriques.
EP20050450151 2004-10-13 2005-09-09 Alliage de nickel résistant à l'usure et a dureté élevée, et son utilisation comme un outil à haute température Not-in-force EP1647606B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT17132004A AT413544B (de) 2004-10-13 2004-10-13 Hochharte nickelbasislegierung für verschleissfeste hochtemperaturwerkzeuge

Publications (2)

Publication Number Publication Date
EP1647606A1 EP1647606A1 (fr) 2006-04-19
EP1647606B1 true EP1647606B1 (fr) 2008-04-16

Family

ID=34842310

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050450151 Not-in-force EP1647606B1 (fr) 2004-10-13 2005-09-09 Alliage de nickel résistant à l'usure et a dureté élevée, et son utilisation comme un outil à haute température

Country Status (3)

Country Link
EP (1) EP1647606B1 (fr)
AT (1) AT413544B (fr)
DE (1) DE502005003720D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020093783A1 (fr) * 2018-11-08 2020-05-14 青岛新力通工业有限责任公司 Alliage résistant à la chaleur antioxydation et procédé de préparation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799271B2 (en) * 2006-06-16 2010-09-21 Compaction & Research Acquisition Llc Ni-base wear and corrosion resistant alloy
FR3105041B1 (fr) * 2019-12-18 2023-04-21 Commissariat Energie Atomique Procédé de fabrication par compression isostatique à chaud d’une pièce outil
US11883880B2 (en) * 2020-03-31 2024-01-30 Proterial, Ltd. Alloy, alloy powder, alloy member, and composite member
CN114574788B (zh) * 2022-01-19 2022-08-30 长沙市萨普新材料有限公司 一种高速钢及其制备方法和应用
CN114700495B (zh) * 2022-04-07 2023-09-22 西安交通大学 一种不开裂高耐磨损耐腐蚀的镍基复合材料及制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842743A (ja) * 1981-09-04 1983-03-12 Mitsubishi Metal Corp 継目無鋼管製造用熱間傾斜圧延機のガイドシユ−用Ni基鋳造合金
US4727740A (en) * 1981-09-04 1988-03-01 Mitsubishi Kinzoku Kabushiki Kaisha Thermal and wear resistant tough nickel based alloy guide rolls
US6200688B1 (en) * 1998-04-20 2001-03-13 Winsert, Inc. Nickel-iron base wear resistant alloy
US6238620B1 (en) * 1999-09-15 2001-05-29 U.T.Battelle, Llc Ni3Al-based alloys for die and tool application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020093783A1 (fr) * 2018-11-08 2020-05-14 青岛新力通工业有限责任公司 Alliage résistant à la chaleur antioxydation et procédé de préparation

Also Published As

Publication number Publication date
EP1647606A1 (fr) 2006-04-19
ATA17132004A (de) 2005-08-15
AT413544B (de) 2006-03-15
DE502005003720D1 (de) 2008-05-29

Similar Documents

Publication Publication Date Title
EP3228724B1 (fr) Acier à outil, en particulier pour travail à chaud et objet en acier
EP2253398B1 (fr) Matière première résistant à l'usure
DE2937724C2 (de) Pulvermetallurgisch hergestelltes Stahlerzeugnis mit hohem Vanadiumcarbid- Anteil
EP3994287A1 (fr) Alliage à base de nickel pour poudre et procédé de fabrication d'une poudre
EP1249512B1 (fr) Acier d'ecrouissage pour la fabrication des composants selon la technique de la metallurgie des poudres
EP3409801B1 (fr) Matière composite contenant des particules dures, fabriquée par métallurgie des poudres, utilisation d'une matière composite et procédé de fabrication d'un composant en matière composite
DE3043503A1 (de) Kristalline metallegierung
DE69213322T2 (de) Vorlegierte vanadiumreiche Kaltarbeitswerkzeugstahlteilchen und Verfahren zu deren Herstellung
EP2185738B1 (fr) Fabrication d'alliages a base d'aluminures de titane
EP3851551A1 (fr) Poudre métallique pour un procédé de fabrication additive, utilisations de poudre métallique, procédé de fabrication d'un composant et composant
DE69814896T2 (de) Stahl und wärmebehandeltes werkzeug, hergestellt in einem integrierten pulvermetallurgischem prozess und die nutzung eines solchen stahles für werkzeuge
EP1647606B1 (fr) Alliage de nickel résistant à l'usure et a dureté élevée, et son utilisation comme un outil à haute température
DE102021106606A1 (de) Pulver aus einer Kobalt-Chromlegierung
EP1249511B1 (fr) Acier rapide à haute résistance thermique produit selon des techniques de la metallurgie des poudres
EP3323902A1 (fr) Matériau en acier contenant des particules dures, produit de la métallurgie des poudres, procédé de production d'un composant à partir d'un tel matériau d'acier et composant ainsi fabriqué
DE102020116865A1 (de) Nickel-Basislegierung für Pulver und Verfahren zur Herstellung eines Pulvers
DE102019135830A1 (de) Verfahren zum Herstellen eines Warmarbeitsstahlgegenstandes
DE69906782T2 (de) Stahl, verwendung des stahls, daraus hergestelltes produkt und verfahren zu dessen herstellung
WO2021032893A1 (fr) Acier à outils pour applications de travail à froid et à grande vitesse
EP3850114A1 (fr) Acier résistant à la corrosion et à durcissement par précipitation, procédé de production d'un composant d'acier, et composant d'acier
EP3719158B1 (fr) Utilisation d'une poudre d'acier, procédé de fabrication d'un composant d'acier selon un procédé de fabrication additive
DE60310283T3 (de) Hochtemperatur-Element für eine Gasturbine
EP3323903B1 (fr) Matériau en acier fabriqué par métallurgie des poudres, procédé de production d'un composant à partir d'un tel matériau en acier et composant fabriqué en matériau en acier
EP1471160B1 (fr) Objet en acier travaillé à froid
EP3988229A1 (fr) Poudre destinée à être utilisée dans un procédé métallurgique ou additif en poudre, matière à base d'acier et procédé de fabrication d'un composant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060704

17Q First examination report despatched

Effective date: 20060802

AKX Designation fees paid

Designated state(s): DE GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT SE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080418

REF Corresponds to:

Ref document number: 502005003720

Country of ref document: DE

Date of ref document: 20080529

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140922

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140918

Year of fee payment: 10

Ref country code: GB

Payment date: 20140919

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140929

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005003720

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150909

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150909

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160401