EP2185738B1 - Production of alloys based on titanium aluminides - Google Patents

Production of alloys based on titanium aluminides Download PDF

Info

Publication number
EP2185738B1
EP2185738B1 EP08749011A EP08749011A EP2185738B1 EP 2185738 B1 EP2185738 B1 EP 2185738B1 EP 08749011 A EP08749011 A EP 08749011A EP 08749011 A EP08749011 A EP 08749011A EP 2185738 B1 EP2185738 B1 EP 2185738B1
Authority
EP
European Patent Office
Prior art keywords
alloy
titanium
halogens
aluminide
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08749011A
Other languages
German (de)
French (fr)
Other versions
EP2185738A2 (en
Inventor
Jonathan Paul
Fritz Appel
Michael Oehring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH
Original Assignee
Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH filed Critical Helmholtz Zentrum Geesthacht Zentrum fuer Material und Kustenforschung GmbH
Publication of EP2185738A2 publication Critical patent/EP2185738A2/en
Application granted granted Critical
Publication of EP2185738B1 publication Critical patent/EP2185738B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention relates to a method for producing an alloy based on titanium aluminides.
  • Alloys based on titanium aluminides prepared using melt and powder metallurgy techniques with a predetermined alloy composition of titanium and aluminum and optionally other constituents, e.g. Niobium, boron, chromium, molybdenum, manganese and vanadium etc. as well as carbon in different compositions are known in the art.
  • Titanium aluminide alloys have properties that are particularly favorable for use as a lightweight material, especially for high temperature applications. These lightweight materials based on titanium aluminides open due to their strength and creep properties at high temperatures Possibilities for the production of mechanically stressed components in the high temperature technology, eg as turbine blades in the aircraft industry, final stage blades, engine valves, etc. In addition, they offer because of their low density (about 3.8 - 4.3 g / cm 3 ) as a substitute for nickel base Superalloys, which typically have a density of 8.5 g / cm 3 .
  • titanium aluminide alloys The approach of titanium aluminide alloys is limited by its limited oxidation resistance to temperatures below about 750 ° C.
  • halogen effect is significantly improved by small amounts of halogens in the surface of the titanium aluminide materials, whereby the range of application of the materials is extended to temperatures above 1000 ° C.
  • DE-A-103 51 946 discloses a method of treating the surface of a titanium aluminide alloy-based member to improve its oxidation resistance. Further disclosed DE-C-196 27 605 a method of increasing corrosion resistance for titanium aluminide based alloys wherein halogens are transferred to the material surface via the ion implantation process.
  • intermetallic compounds of the Ti-Al system comprising essentially titanium and aluminum, wherein the intermetallic compound of the Ti-Al system has at least one surface layer which 0.005 at% to 1.0 at% of at least one halogen element selected from the group consisting of fluorine, chlorine, bromine and iodine.
  • US-A-5 520 879 a method for producing sintered titanium alloys, wherein titanium powder is subjected to a rubbing process in one method step.
  • EP-A-0 770 702 discloses a method for increasing the corrosion resistance of Ti-Al based alloys, wherein halogens or halogen containing compounds are transferred to the surface of the material.
  • the present invention seeks to provide titanium aluminide alloys having a high oxidation resistance, wherein when using the alloys or when using the alloys any damage to the alloy in the surface should have no effect on the oxidation resistance. Furthermore, the object is to provide a component of a corresponding titanium aluminide alloy. This is done according to the method of claim 1, to which the invention is limited.
  • metal droplets are obtained from a titanium aluminide molten metal, particularly using the gas atomization method, the metal droplets are enriched with halogens by the action of a halogen-containing gas, so that halogen-enriched titanium-aluminide metal droplets or halogen-enriched TiAl metal powder
  • the alloy is formed.
  • halogen-containing gas is used to enrich metal droplets with halogens, it is achieved that the entire material from the titanium aluminide alloy halogens are alloyed, whereby a fine or homogeneous distribution of the halogens throughout the material and in each sub-volume of the material or the alloy and not only on the surface of the material or the alloy is achieved.
  • Halogens are also in deeper layers than the previous known oxidation layers of titanium aluminide alloys, which are larger or lower, for example, in depths of more than 100, 200, 300, 400, 500 microns and more below the surface of the alloy or present throughout the alloy, whereby the oxidation resistance even after damage to the surface of a titanium aluminide alloy produced component is or is maintained, as well as in depth by the introduced, in particular homogeneously distributed or evenly distributed random halogens in the alloy or in the material, the oxidation resistance of the entire alloy is maintained.
  • Chlorine and / or fluorine are preferably introduced as halogens into the bulk material prepared from titanium aluminide. Moreover, the use of other halogens, e.g. of iodine and / or bromine possible.
  • hot isostatic pressing achieves an alloy with high isotropy and uniform compaction of the material.
  • the process of hot isostatic pressing takes place at very high pressures, e.g. 100 Mpa and under high temperatures, e.g. between 1000 ° C to 2000 ° C, instead.
  • the molten metal and / or the metal droplets are treated by means of a carrier gas, preferably by means of an inert gas, wherein in particular the carrier gas is mixed with the halogen-containing gas or is.
  • inert gases such as argon or helium or other inert gases have proven to be effective, whereby when mixed with a halogen-containing gas, the molten metal is treated specifically to enrich the metal droplets with halogens.
  • a titanium-aluminide metal powder is formed from the halogen-enriched metal droplets, from which the alloy is formed. This is usually done by hot isostatic pressing.
  • the molded alloy is made into a member having high oxidation resistance even if the surface of the component is damaged.
  • the components may be components for example from the automotive, aerospace, aircraft and industrial machine tools sector.
  • the metal powder has an intensive contact with ball milling and introduction of gases in the ball mill, a, in particular homogeneous, enrichment of powdered titanium aluminide is also achieved, whereby the halogens are distributed throughout the alloy produced or formed.
  • the Distribution of the halogens in the alloy is such that the (relative) content in any predetermined volume or partial volume or even in small partial volume of the finished alloy Halogens (per volume) is almost constant or kept constant.
  • the halogen-enriched atmosphere is provided as a gaseous and / or liquid atmosphere, whereby an intense exchange or intensive accumulation of the powder in the gaseous or in the liquid, halogen-containing atmosphere, such as in liquid carbon tetrachloride ( CCl 4 ).
  • the halogen-enriched atmosphere in particular gaseous atmosphere, with at least one inert gas, such as argon or helium provided.
  • a component is produced from the alloy with a constant (relative) proportion of halogens in each volume or partial volume or volume of the alloy.
  • a process for producing a titanium aluminide based alloy wherein powdered titanium aluminide, in particular titanium aluminide metal powder, is heated in a, preferably closed, container for a predetermined period of time, wherein in the container is a halogenated atmosphere or so that halogen-enriched titanium aluminide metal powder is formed during the heating period, and then the halogen-enriched titanium aluminide metal powder is alloyed by, preferably, hot isostatic pressing.
  • an alloy which has the same advantages as the above-described manufactured alloys in the same way.
  • titanium-aluminide alloys are also prepared in which halogens are added to the entire material, wherein the (relative) proportion of halogens (by volume) in the alloy over the entire volume or in a (small) sub-volume of
  • the proportion of halogens may vary with a typical fluctuation range of ⁇ 15%, preferably ⁇ 10%, more preferably ⁇ 5%, since the proportion of halogens in the alloy between 0.005 at% to 1.5 at%, preferably between 0.005 at% or 0.01 at% to 0.9 at%.
  • halogens in addition to fluorine and / or chlorine, in a Alloy are distributed, other halogens such as bromine and / or iodine can be used.
  • halogen-like compounds for example silicon-halogen-containing compounds or silicon-halogen mixtures, are used in the processes mentioned, which likewise have a positive influence on the oxidation resistance of the alloy.
  • a halogen-containing gas is understood as meaning a gas which, in addition to other gases, preferably inert gases, has both a halogen element and a mixture of a plurality of halogen elements.
  • the pulverulent titanium aluminide in particular titanium aluminide metal powder
  • a further method step in the gassing of the metal powder is characterized in that the atmosphere enriched with halogens with at least one inert gas, in particular after evacuation of the container is provided.
  • the container and / or the powdered titanium aluminide are heated to a temperature between 300 ° C to 1300 ° C, preferably between 500 ° C to 1000 ° C, whereby a good enrichment of the metal powder with halogens or halogen-like compounds is achieved.
  • the process steps evacuation, gasification and heating can also be carried out several times in succession to achieve a higher concentration of halogens.
  • the powdered titanium aluminide in particular titanium-aluminide metal powder, subjected to negative pressure or a vacuum.
  • a component is provided which is made of an alloy which is produced by the method according to the invention or according to the method steps.
  • Titanium aluminide alloys are preferably prepared using casting metallurgy or powder metallurgy techniques, and titanium aluminide alloys are used to carry out the processes In powder form usually present to the metal powders with halogens. Titanium aluminide components are usually produced in accordance with the known forming processes and atomization processes.
  • the TiAl based intermetallic compounds may be alloys having a general composition of titanium and aluminum according to the desired and predetermined requirements in the alloy.
  • Titanium aluminide alloys produced by the processes presented can generally have, for example, between 30 atom% to 70 atom% aluminum, with additional substances or elements, which are mentioned below, corresponding to the desired requirements for the alloy or alloy the material is absorbed.
  • the alloys may have aluminum contents between 44 atom% to 49 atom% Al.
  • other ingredients such as e.g. Chromium (Cr), niobium (Nb), manganese (Mn), vanadium (V), tantalum (Ta), molybdenum (Mo), zirconium (Zr), tungsten (W), silicon (Si) and, if necessary, additions of carbon (C) and / or boron (B), these additives may have a proportion of 0.1 at% to 10 at%.
  • Alloys which are based on the intermetallic phase ⁇ (TiAl) of a tetragonal structure are also of interest for industrial practice.
  • These ⁇ -titanium aluminide alloys are characterized by properties such as a low density (3.85 to 4.3 g / cm 3 ), high elastic modulus and high strength and creep resistance up to 700 ° C.
  • a particularly high-strength titanium aluminide alloy is an alloy composition of titanium, aluminide and niobium, to which optional components of boron and / or carbon are added, the proportion of boron and / or carbon in the alloy being below a concentration of 0.5 atom%. is selected.
  • the titanium aluminide alloy has a composition of Ti-45 at% Al-x Nb with 5 at% ⁇ x ⁇ 10 at% and optionally up to 0.5 at% B (boron) and / or up to 0.5 atom % C (carbon).
  • the methods can also provide titanium aluminide alloys having a fine and homogeneous grain morphology, wherein the titanium aluminides have an alloy composition of Ti-z Al-y Nb of 44.5 at% ⁇ z ⁇ 47 at%, especially at 44.5 Atom% ⁇ z ⁇ 45.5 atomic%, and 5 atomic% ⁇ y ⁇ 10 atomic%, wherein this molybdenum (Mo) ranges between 0.1 atomic% to 3.0 atomic%.
  • the rest of the alloy is Ti (titanium).
  • the abovementioned alloy likewise contains boron, preferably with a boron content in the alloy in the range from 0.05 atom% to 0.8 atom%.
  • boron advantageously results in the formation of stable precipitates which contribute to the mechanical hardening of the alloy and stabilization of the microstructure of the alloy.
  • the alloy contains carbon, preferably with a carbon content in the range of 0.05 at% to 0.8 at%.
  • carbon preferably in combination with the above-described additive boron, leads to the formation of stable precipitates, which also contribute to the mechanical hardening of the alloy and to the stabilization of the structure.
  • an alloy based on titanium aluminides prepared by using melting and powder metallurgy techniques and having an alloy composition of Ti - Z Al - y Nb - x B having 44.5 at% ⁇ z ⁇ 47 at%, especially at 44.5 at % ⁇ z ⁇ 45.5 at%, 5 at% ⁇ y ⁇ 10 at% and 0.05 at% ⁇ x ⁇ 0.8 at%, wherein this molybdenum (Mo) ranges between 0.1 at% to 3 Atom atom%, a titanium aluminide alloy having a fine and homogeneous grain morphology is provided to form a stable ⁇ phase at high temperatures above 700 ° C.
  • Mo molybdenum
  • an alloy composition of Ti - z Al - y Nb - w C shows 44.5 at% ⁇ z ⁇ 47 at%, in particular at 44.5 at% ⁇ z ⁇ 45.5 at%, 5 at% ⁇ y ⁇ 10 atomic% and 0.05 atomic% ⁇ w ⁇ 0.8 atomic%, said molybdenum (Mo) im Range between 0.5 atom% to 3 atom%, a fine and homogeneous Gefömgemorphologie, with the formation of the ⁇ -phase, this ⁇ -phase to temperatures of 1320 ° C are stable.
  • a corresponding TiAl alloy as metal powder or in powder form for carrying out any of the above-mentioned processes in order to obtain a TiAl alloy by halogenation of the TiAl metal powder in a small partial volume at the surface and in the depth has a nearly constant relative proportion of halogens, whereby the oxidation resistance of the material or the entire alloy is improved.
  • silicons or combinations of halogens with halogens are further employed in the practice of the processes, thereby improving the oxidation resistance of the titanium aluminide alloys produced by enhancing the oxidation resistance enhancing elements at both the surface and the surface Material are consistently homogeneous or distributed statistically distributed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

In a process to form a titanium and aluminium alloy, the molten metals are combined in a gas atomisation process resulting in metal droplets. The droplets are exposed to a halogen-enriched gas, resulting in halogen-enriched titanium-aluminium alloy droplets, which are then subjected to hot isostatic pressure to form the alloy.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen einer Legierung auf Basis von Titanaluminiden.The invention relates to a method for producing an alloy based on titanium aluminides.

Legierungen auf der Basis von unter Verwendung von schmelz- und pulvermetallurgischen Techniken hergestellten Titanaluminiden mit einer vorbestimmten Legierungszusammensetzung aus Titan und Aluminium und ggf. weiterer Bestandteile wie z.B. Niob, Bor, Chrom, Molybdän, Mangan und Vanadium etc. sowie Kohlenstoff in unterschiedlichen Zusammensetzungen sind im Stand der Technik bekannt.Alloys based on titanium aluminides prepared using melt and powder metallurgy techniques with a predetermined alloy composition of titanium and aluminum and optionally other constituents, e.g. Niobium, boron, chromium, molybdenum, manganese and vanadium etc. as well as carbon in different compositions are known in the art.

Titan-Aluminid-Legierungen weisen Eigenschaften auf, die für einen Einsatz als Leichtbau-Werkstoff, insbesondere für Hochtemperaturanwendungen, besonders günstig sind. Diese Leichtbauwerkstoffe auf Basis von Titanaluminiden eröffnen aufgrund ihrer Festigkeits- und Kriecheigenschaften bei hohen Temperaturen Möglichkeiten zur Fertigung mechanisch beanspruchter Bauteile in der Hochtemperaturtechnik, z.B. als Turbinenschaufeln im Flugzeugbau, Endstufenschaufeln, Motorventile, etc. Darüber hinaus bieten sie sich wegen ihrer geringen Dichte (ca. 3,8 - 4,3 g/cm3) als Ersatz für Nickelbasis-Superlegierungen an, die typischerweise eine Dichte von 8,5 g/cm3 aufweisen.Titanium aluminide alloys have properties that are particularly favorable for use as a lightweight material, especially for high temperature applications. These lightweight materials based on titanium aluminides open due to their strength and creep properties at high temperatures Possibilities for the production of mechanically stressed components in the high temperature technology, eg as turbine blades in the aircraft industry, final stage blades, engine valves, etc. In addition, they offer because of their low density (about 3.8 - 4.3 g / cm 3 ) as a substitute for nickel base Superalloys, which typically have a density of 8.5 g / cm 3 .

Der Ansatz der Titan-Aluminid-Legierungen ist durch ihre begrenzte Oxidationsbeständigkeit auf Temperaturen unterhalb von ca. 750°C begrenzt. Darüber hinaus ist bekannt, dass durch geringe Mengen an Halogenen in der Oberfläche der Titanaluminid-Werkstoffe das Oxidationsverhalten aufgrund des so genannten Halogeneffekts deutlich verbessern, wodurch der Einsatzbereich der Werkstoffe auf Temperaturen bis über 1000°C erweitert wird.The approach of titanium aluminide alloys is limited by its limited oxidation resistance to temperatures below about 750 ° C. In addition, it is known that the oxidation behavior due to the so-called halogen effect is significantly improved by small amounts of halogens in the surface of the titanium aluminide materials, whereby the range of application of the materials is extended to temperatures above 1000 ° C.

Beispielsweise ist aus DE-A-103 51 946 ein Verfahren zur Behandlung der Oberfläche eines aus einer Titanaluminid-Legierung bestehenden Bauteils zur Verbesserung seiner Oxidationsbeständigkeit bekannt. Ferner offenbart DE-C-196 27 605 ein Verfahren zur Erhöhung der Korrosionsbeständigkeit für Legierungen auf der Basis von Titanaluminid, wobei Halogene über den Vorgang der Ionenimplantation in die Werkstoffoberfläche übertragen werden.For example, it is off DE-A-103 51 946 discloses a method of treating the surface of a titanium aluminide alloy-based member to improve its oxidation resistance. Further disclosed DE-C-196 27 605 a method of increasing corrosion resistance for titanium aluminide based alloys wherein halogens are transferred to the material surface via the ion implantation process.

Darüber hinaus sind in DE-T-693 09 167 Erzeugnisse aus einer intermetallischen Verbindung eines Ti-Al-Systems mit hoher Widerstandsfähigkeit gegen Oxidation und Verschleiß sowie ein Verfahren zur Herstellung dieses Erzeugnisses beschrieben.In addition, in DE-T-693 09 167 Products made of an intermetallic compound of a Ti-Al system with high resistance to oxidation and wear and a method for producing this product described.

Überdies sind in EP-A-0 580 081 intermetallische Verbindungen des Ti-Al-System, im Wesentlichen Titan und Aluminium umfassend, beschrieben, wobei die intermetallische Verbindung des Ti-Al-Systems mindestens eine Oberflächenschicht aufweist, welche 0,005 Atom% bis 1,0 Atom% an mindestens einem Halogenelement einschließt, ausgewählt aus der Gruppe, die aus Fluor, Chlor, Brom und Jod besteht.Moreover, in EP-A-0 580 081 intermetallic compounds of the Ti-Al system, comprising essentially titanium and aluminum, wherein the intermetallic compound of the Ti-Al system has at least one surface layer which 0.005 at% to 1.0 at% of at least one halogen element selected from the group consisting of fluorine, chlorine, bromine and iodine.

Außerdem offenbart US-A-5 520 879 ein Verfahren zum Herstellen von gesinterten Titanlegierungen, wobei in einem Verfahrensschritt Titanpulver einem Reibevorgang unterzogen wird.Also revealed US-A-5 520 879 a method for producing sintered titanium alloys, wherein titanium powder is subjected to a rubbing process in one method step.

Des Weiteren ist in EP-A-0 770 702 ein Verfahren zur Erhöhung der Korrosionsbeständigkeit von Legierungen auf der Basis von Ti-Al offenbart, wobei Halogene oder halogenhaltige Verbindungen auf die Werkstoffoberfläche übertragen werden.Furthermore, in EP-A-0 770 702 discloses a method for increasing the corrosion resistance of Ti-Al based alloys, wherein halogens or halogen containing compounds are transferred to the surface of the material.

Ausgehend von diesem Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, Titanaluminid-Legierungen mit einer hohen Oxidationsbeständigkeit bereitzustellen, wobei bei Anwendung der Legierungen bzw. beim Einsatz der Legierungen etwaige Beschädigungen der Legierung in der Oberfläche keine Auswirkungen auf die Oxidationsbeständigkeit haben soll. Des Weiteren besteht die Aufgabe darin, ein Bauteil aus einer entsprechenden Titanaluminid-Legierung bereitzustellen. Dies erfolgt gemäß Verfahren von Anspruch 1, auf das die Erfindung beschränkt ist.Based on this prior art, the present invention seeks to provide titanium aluminide alloys having a high oxidation resistance, wherein when using the alloys or when using the alloys any damage to the alloy in the surface should have no effect on the oxidation resistance. Furthermore, the object is to provide a component of a corresponding titanium aluminide alloy. This is done according to the method of claim 1, to which the invention is limited.

Bei einem Verfahren zum Herstellen einer Legierung auf Basis von Titanaluminiden ist vorgesehen, dass aus einer Titanaluminid-Metallschmelze, insbesondere unter Verwendung des Gas-Atomisations-Verfahrens, Metalltröpfchen erhalten werden, die Metalltröpfchen mittels Beaufschlagung mit einem halogenhaltigen Gas mit Halogenen angereichert werden, so dass halogenangereicherte Titan-Aluminid-Metalltröpfchen oder halogenangereichertes TiAl-MetallpulverIn a method for producing a titanium aluminide-based alloy, it is provided that metal droplets are obtained from a titanium aluminide molten metal, particularly using the gas atomization method, the metal droplets are enriched with halogens by the action of a halogen-containing gas, so that halogen-enriched titanium-aluminide metal droplets or halogen-enriched TiAl metal powder

entstehen und anschließend aus den halogenangereicherten Titan-Aluminid-Metalltröpfchen oder dem TiAl-Metallpulver durch, vorzugsweise heißes isostatisches, Pressen, die Legierung geformt wird.and then formed from the halogen-enriched titanium-aluminide metal droplets or the TiAl metal powder by, preferably, hot isostatic pressing, the alloy is formed.

Dadurch, dass halogenhaltiges Gas verwendet wird, um Metalltröpfchen mit Halogenen anzureichern, wird erreicht, dass dem gesamten Werkstoff aus der Titanaluminid-Legierung Halogene zulegiert werden, wodurch eine feine bzw. homogene Verteilung der Halogene im gesamten Werkstoff und in jedem Teilvolumen des Werkstoffs bzw. der Legierung und nicht nur an der Oberfläche des Werkstoffs bzw. der Legierung erreicht wird.The fact that halogen-containing gas is used to enrich metal droplets with halogens, it is achieved that the entire material from the titanium aluminide alloy halogens are alloyed, whereby a fine or homogeneous distribution of the halogens throughout the material and in each sub-volume of the material or the alloy and not only on the surface of the material or the alloy is achieved.

Dabei sind Halogene auch in tieferen Schichten als die bisherigen bekannten Oxidationsschichten von Titanaluminid-Legierungen, die größer sind bzw. tiefer liegen, beispielsweise in Tiefen von mehr als 100, 200, 300, 400, 500 µm und mehr unterhalb der Oberfläche der Legierung bzw. in der gesamten Legierung vorhanden, wodurch die Oxidationsbeständigkeit auch nach Beschädigung der Oberfläche eines aus der Titanaluminid-Legierung hergestellten Bauteils vorhanden ist bzw. beibehalten wird, da auch in der Tiefe durch die eingebrachten, insbesondere homogen verteilten bzw. gleichmäßig statistisch verteilten Halogene in der Legierung bzw. im Werkstoff die Oxidationsbeständigkeit der gesamten Legierung aufrecht erhalten wird.Halogens are also in deeper layers than the previous known oxidation layers of titanium aluminide alloys, which are larger or lower, for example, in depths of more than 100, 200, 300, 400, 500 microns and more below the surface of the alloy or present throughout the alloy, whereby the oxidation resistance even after damage to the surface of a titanium aluminide alloy produced component is or is maintained, as well as in depth by the introduced, in particular homogeneously distributed or evenly distributed random halogens in the alloy or in the material, the oxidation resistance of the entire alloy is maintained.

Durch den intensiven Kontakt der Halogene mit den Titan-Aluminid-Metalltröpfchen findet eine Passivierung des Metallpulvers bzw. der Metalltröpfchen statt.Due to the intensive contact of the halogens with the titanium-aluminide metal droplets, a passivation of the metal powder or metal droplets takes place.

Vorzugsweise werden als Halogene Chlor und/oder Fluor in das aus Titanaluminid hergestellte Bulk-Material eingebracht. Überdies ist auch die Verwendung weiterer Halogene wie z.B. von Jod und/oder Brom möglich.Chlorine and / or fluorine are preferably introduced as halogens into the bulk material prepared from titanium aluminide. Moreover, the use of other halogens, e.g. of iodine and / or bromine possible.

Darüber hinaus wird durch das heiße isostatische Pressen (HIP) eine Legierung mit einer hohen Isotropie und einer gleichmäßigen Verdichtung des Materials erreicht. Typischerweise findet der Vorgang des heißen isostatischen Pressens bei sehr hohen Drücken, z.B. 100 Mpa und unter hohen Temperaturen, z.B. zwischen 1000°C bis 2000°C, statt.In addition, hot isostatic pressing (HIP) achieves an alloy with high isotropy and uniform compaction of the material. Typically, the process of hot isostatic pressing takes place at very high pressures, e.g. 100 Mpa and under high temperatures, e.g. between 1000 ° C to 2000 ° C, instead.

Überdies ist vorgesehen, dass die Metallschmelze und/oder die Metalltröpfchen mittels eines Trägergases, vorzugsweise mittels eines inerten Gases, behandelt werden, wobei insbesondere das Trägergas mit dem halogenhaltigen Gas vermischt wird oder ist.Moreover, it is provided that the molten metal and / or the metal droplets are treated by means of a carrier gas, preferably by means of an inert gas, wherein in particular the carrier gas is mixed with the halogen-containing gas or is.

Als Trägergas haben sich Inertgase wie Argon oder Helium oder weitere Inertgase bewährt, wodurch bei Vermischung mit einem halogenhaltigen Gas die Metallschmelze gezielt behandelt wird, um die Metalltröpfchen mit Halogenen anzureichern.As the carrier gas, inert gases such as argon or helium or other inert gases have proven to be effective, whereby when mixed with a halogen-containing gas, the molten metal is treated specifically to enrich the metal droplets with halogens.

Weiter ist in einer Ausführungsform vorgesehen, dass aus den halogenangereicherten Metalltröpfchen ein Titan-Aluminid-Metallpulver gebildet wird, aus dem die Legierung geformt wird. Dies erfolgt in der Regel durch heißes isostatisches Pressen. Insbesondere wird aus der geformten Legierung ein Bauteil hergestellt, das eine hohe Oxidationsbeständigkeit auch bei Beschädigung der Oberfläche des Bauteils aufweist. Bei den Bauteilen kann es sich um Bauteile beispielsweise aus dem Automobil-, Raumfahrt-, Flugzeugbau sowie Industriemaschinenwerkzeugbereich handeln.It is further provided in one embodiment that a titanium-aluminide metal powder is formed from the halogen-enriched metal droplets, from which the alloy is formed. This is usually done by hot isostatic pressing. In particular, the molded alloy is made into a member having high oxidation resistance even if the surface of the component is damaged. The components may be components for example from the automotive, aerospace, aircraft and industrial machine tools sector.

Die Aufgabe wird gelöst durch das Verfahren von Anspruch 1.The object is achieved by the method of claim 1.

Dadurch, dass das Metallpulver unter Kugelmahlen und Einleitung von Gasen in der Kugelmühle einen intensiven Kontakt hat, wird ebenfalls eine, insbesondere homogene, Anreicherung von pulverförmigem Titanaluminid erreicht, wodurch in der gesamten hergestellten bzw. geformten Legierung die Halogene verteilt sind. Die Verteilung der Halogene in der Legierung ist derart, dass in jedem beliebigen, vorbestimmten Volumen oder Teilvolumen bzw. auch in kleinen Teilvolumen der fertigen Legierung der (relative) Gehalt an Halogenen (pro Volumen) nahezu konstant ist bzw. konstant gehalten wird.The fact that the metal powder has an intensive contact with ball milling and introduction of gases in the ball mill, a, in particular homogeneous, enrichment of powdered titanium aluminide is also achieved, whereby the halogens are distributed throughout the alloy produced or formed. The Distribution of the halogens in the alloy is such that the (relative) content in any predetermined volume or partial volume or even in small partial volume of the finished alloy Halogens (per volume) is almost constant or kept constant.

Bei diesem erfindungsgemäßen Verfahren ist es möglich, anstelle von vorlegierten Metallpulver, d.h. Titanaluminiden in Pulverform, oder zusätzlich zum vorlegierten Metallpulver auch elementares pulverförmiges Titan und elementares pulverförmiges Aluminium einzusetzen bzw. bereitzustellen, so dass durch den Mahlvorgang sowohl aus dem Titanpulver und dem Aluminiumpulver eine TiAl-Legierung in Pulverform entsteht, die infolge der Anwesenheit des halogenhaltigen Gases bei einem hohen Druck in der Kugelmühle in der Kugelmühle in ihren Halogengehalt angereichert ist oder wird.In this process according to the invention it is possible, instead of pre-alloyed metal powder, i. Titanaluminiden in powder form, or in addition to the pre-alloyed metal powder and elemental powdered titanium and elemental powdered aluminum to use or provide so that the milling process from both the titanium powder and the aluminum powder TiAl alloy is formed in powder form, due to the presence of the halogen-containing gas at a high pressure in the ball mill in the ball mill is or is enriched in its halogen content.

Durch die Ausführung der genannten Verfahrensschritte wird ebenso eine, vorzugsweise gleichmäßige, Verteilung der Halogene an der Oberfläche als auch in der Tiefe einer Legierung wie bei dem vorangehend beschriebenen Verfahren zur Behandlung der Metallschmelze mit Halogengasen erreicht. Insofern gelten die oben genannten Ausführungen des ersten Verfahrens in gleicher Weise wie bei den hier beschriebenen Verfahrensschritten zur Herstellung der Legierung.By carrying out the above-mentioned process steps, a distribution of the halogens at the surface as well as in the depth of an alloy, which is preferably even, is achieved, as in the above-described method for treating the metal melt with halogen gases. In this respect, the abovementioned embodiments of the first method apply in the same way as in the method steps described here for the production of the alloy.

Darüber hinaus wird in einem weiteren Verfahrensschritt die mit Halogenen angereicherte Atmosphäre als gasförmige und/oder flüssige Atmosphäre bereitgestellt, wodurch ein intensiver Austausch bzw. eine intensive Anreicherung des Pulvers in der gasförmigen bzw. in der flüssigen, halogenhaltigen Atmosphäre, wie z.B. in flüssigen Kohlenstofftetrachlorid (CCl4), ausgeführt wird.In addition, in a further process step, the halogen-enriched atmosphere is provided as a gaseous and / or liquid atmosphere, whereby an intense exchange or intensive accumulation of the powder in the gaseous or in the liquid, halogen-containing atmosphere, such as in liquid carbon tetrachloride ( CCl 4 ).

Bevorzugterweise wird die mit Halogenen angereicherte Atmosphäre, insbesondere gasförmige Atmosphäre, mit wenigstens einem inerten Gas, wie z.B. Argon oder Helium, bereitgestellt. Ferner wird aus der Legierung mit einem konstanten (relativen) Anteil an Halogenen in jedem Volumen oder Teilvolumen bzw. Raumvolumen der Legierung ein Bauteil hergestellt.Preferably, the halogen-enriched atmosphere, in particular gaseous atmosphere, with at least one inert gas, such as argon or helium provided. Furthermore, a component is produced from the alloy with a constant (relative) proportion of halogens in each volume or partial volume or volume of the alloy.

Außerdem wird ein Verfahren zum Herstellen einer Legierung auf Basis von Titanaluminiden bereitgestellt, wobei pulverförmiges Titanaluminid, insbesondere Titan-Aluminid-Metallpulver, in einem, vorzugsweise geschlossenen, Behälter für eine vorbestimmte Zeitdauer erwärmt wird oder ist, wobei in dem Behälter eine mit Halogenen angereicherte Atmosphäre bereitgestellt ist oder wird, so dass während der Erwärmungszeit halogenangereichertes Titan-Aluminid-Metallpulver entsteht, und anschließend das mit Halogenen angereicherte Titan-Aluminid-Metallpulver durch, vorzugsweise heißes isostatisches, Pressen zu einer Legierung geformt wird.In addition, there is provided a process for producing a titanium aluminide based alloy wherein powdered titanium aluminide, in particular titanium aluminide metal powder, is heated in a, preferably closed, container for a predetermined period of time, wherein in the container is a halogenated atmosphere or so that halogen-enriched titanium aluminide metal powder is formed during the heating period, and then the halogen-enriched titanium aluminide metal powder is alloyed by, preferably, hot isostatic pressing.

Auch bei diesem Verfahren wird eine Legierung bereitgestellt, die in gleicher Weise die Vorteile wie die vorangehend beschriebenen hergestellten Legierungen aufweisen. Bei der Ausführung der Verfahrensschritte werden ebenfalls Titan-Aluminid-Legierungen hergestellt, bei denen Halogene dem gesamten Werkstoff zulegiert werden, wobei der (relative) Anteil der Halogene (pro Volumen) in der Legierung über das gesamte Volumen oder in einem (kleinen) Teilvolumen des Bauteils bzw. der Legierung konstant bleibt, wobei es durchaus sein kann, dass der Anteil der Halogene mit einer typischen Schwankungsbreite von ± 15 %, vorzugsweise ± 10 %, weiter vorzugsweise ± 5 %, variieren kann, da der Anteil von Halogenen in der Legierung zwischen 0,005 Atom % bis 1,5 Atom %, vorzugsweise zwischen 0,005 Atom % oder 0,01 Atom % bis 0,9 Atom %, schwankt. Als weitere Halogene neben Fluor und/oder Chlor, die in einer Legierung verteilt sind, können auch weitere Halogene wie Brom und/oder Jod eingesetzt werden.Also in this method, an alloy is provided which has the same advantages as the above-described manufactured alloys in the same way. In carrying out the process steps titanium-aluminide alloys are also prepared in which halogens are added to the entire material, wherein the (relative) proportion of halogens (by volume) in the alloy over the entire volume or in a (small) sub-volume of The proportion of halogens may vary with a typical fluctuation range of ± 15%, preferably ± 10%, more preferably ± 5%, since the proportion of halogens in the alloy between 0.005 at% to 1.5 at%, preferably between 0.005 at% or 0.01 at% to 0.9 at%. As further halogens in addition to fluorine and / or chlorine, in a Alloy are distributed, other halogens such as bromine and / or iodine can be used.

Um die hergestellte Legierung gemäß der vorgestellten Verfahren an der Oberfläche oxidationsbeständig zu machen, wird eine gewünschte Oberfläche eines aus der Legierung hergestellten Gegenstands bzw. Bauteils oxidiert, für die eine Oxidationsbeständigkeit gewünscht wird.In order to make the produced alloy oxidation resistant at the surface according to the presented methods, a desired surface of an article or component made of the alloy is oxidized, for which an oxidation resistance is desired.

Darüber hinaus ist es denkbar, dass bei den genannten Verfahren halogenartige Verbindungen, beispielsweise Silizium-Halogenhaltige Verbindungen oder Silizium-Halogen-Mischungen eingesetzt werden, die ebenfalls einen positiven Einfluss auf die Oxidationsbeständigkeit der Legierung haben.Moreover, it is conceivable that halogen-like compounds, for example silicon-halogen-containing compounds or silicon-halogen mixtures, are used in the processes mentioned, which likewise have a positive influence on the oxidation resistance of the alloy.

Weiterhin wird unter einem halogenhaltigen Gas ein Gas verstanden, das neben anderen Gasen, vorzugsweise Inertgasen, sowohl ein Halogenelement als auch eine Mischung mehrerer Halogenelemente aufweist.Furthermore, a halogen-containing gas is understood as meaning a gas which, in addition to other gases, preferably inert gases, has both a halogen element and a mixture of a plurality of halogen elements.

In einem weiteren Verfahrensschritt wird vor Erwärmung des Behälters das pulverförmige Titanaluminid, insbesondere Titan-Aluminid-Metallpulver, im Behälter mit einem Vakuum beaufschlagt. Darüber hinaus zeichnet sich ein weiterer Verfahrensschritt bei der Begasung des Metallpulvers dadurch aus, dass die mit Halogenen angereicherte Atmosphäre mit wenigstens einem inerten Gas, insbesondere nach einer Evakuierung des Behälters, bereitgestellt wird.In a further method step, the pulverulent titanium aluminide, in particular titanium aluminide metal powder, is subjected to a vacuum in the container before the container is heated. In addition, a further method step in the gassing of the metal powder is characterized in that the atmosphere enriched with halogens with at least one inert gas, in particular after evacuation of the container is provided.

Um eine gute und homogene Anreicherung des Titan-Aluminid-Metallpulvers im Behälter zu erreichen, werden der Behälter und/oder das pulverförmige Titanaluminid für eine Zeitdauer von 15 min bis 25 Stunden, vorzugsweise von 30 min bis 10 Stunden, erwärmt. Hierdurch wird eine ausreichend hohe, gleichmäßige Anreicherung von Titanaluminiden gemäß dem gewünschten Anreicherungsgrad an Halogenen in der geformten Titanlegierung erreicht.In order to achieve a good and homogeneous enrichment of titanium aluminide metal powder in the container, the container and / or the powdered titanium aluminide for a period of 15 minutes to 25 hours, preferably from 30 minutes to 10 hours, heated. This achieves a sufficiently high, uniform enrichment of titanium aluminides according to the desired degree of halogenation in the shaped titanium alloy.

Weiterhin werden der Behälter und/oder das pulverförmige Titanaluminid auf eine Temperatur zwischen 300°C bis 1300°C, vorzugsweise zwischen 500°C bis 1000°C, erwärmt, wodurch eine gute Anreicherung des Metallpulvers mit Halogenen oder halogenartigen Verbindungen erreicht wird.Furthermore, the container and / or the powdered titanium aluminide are heated to a temperature between 300 ° C to 1300 ° C, preferably between 500 ° C to 1000 ° C, whereby a good enrichment of the metal powder with halogens or halogen-like compounds is achieved.

Die Verfahrensschritte Evakuieren, Begasen und Erwärmen können auch mehrfach hintereinander ausgeführt werden, um eine höhere Anreicherung an Halogenen zu erreichen.The process steps evacuation, gasification and heating can also be carried out several times in succession to achieve a higher concentration of halogens.

Außerdem wird in einem weiteren Verfahrensschritt nach einer Erwärmung des Behälters das pulverförmige Titanaluminid, insbesondere Titan-Aluminid-Metallpulver, mit Unterdruck oder einem Vakuum beaufschlagt.In addition, in a further process step after heating the container, the powdered titanium aluminide, in particular titanium-aluminide metal powder, subjected to negative pressure or a vacuum.

Schließlich wird aus der durch heißes isostatisches Pressen geformten Legierung ein Bauteil hergestellt.Finally, a component is made from the alloy formed by hot isostatic pressing.

Darüber hinaus wird ein Bauteil bereitgestellt, das aus einer Legierung hergestellt ist, die nach dem erfindungsgemäßen Verfahren bzw. nach den Verfahrensschritten hergestellt ist.In addition, a component is provided which is made of an alloy which is produced by the method according to the invention or according to the method steps.

Titan-Aluminid-Legierungen werden vorzugsweise unter Verwendung von gießmetallurgischer oder pulvermetallurgischer Techniken hergestellt, wobei zur Ausführung der Verfahren die Titan-Aluminid-Legierungen in Pulverform in der Regel vorliegen, um die Metallpulver mit Halogenen anzureichen. Bauteile aus Titanaluminiden werden üblicherweise mit den bekannten Umformverfahren und Verdüsungsverfahren entsprechend hergestellt.Titanium aluminide alloys are preferably prepared using casting metallurgy or powder metallurgy techniques, and titanium aluminide alloys are used to carry out the processes In powder form usually present to the metal powders with halogens. Titanium aluminide components are usually produced in accordance with the known forming processes and atomization processes.

Beispielsweise können bei den genannten Verfahren die TiAlbasierenden intermetallischen Verbindungen Legierungen mit einer allgemeinen Zusammensetzung von Titan und Aluminium entsprechend den gewünschten und vorbestimmten Anforderungen in der Legierung sein.For example, in said processes, the TiAl based intermetallic compounds may be alloys having a general composition of titanium and aluminum according to the desired and predetermined requirements in the alloy.

Titan-Aluminid-Legierungen, die nach den vorgestellten Verfahren hergestellt werden, können allgemein beispielsweise zwischen 30 Atom % bis 70 Atom % Aluminium aufweisen, wobei zusätzlich noch weitere Stoffe oder Elemente, die weiter unten genannt sind, entsprechend den gewünschten Anforderungen an die Legierung bzw. den Werkstoff aufgenommen werden.Titanium aluminide alloys produced by the processes presented can generally have, for example, between 30 atom% to 70 atom% aluminum, with additional substances or elements, which are mentioned below, corresponding to the desired requirements for the alloy or alloy the material is absorbed.

In technisch wichtigen Bereichen von Legierungen, in denen die TiAl-Legierungen beispielsweise als Leichtbau-Werkstoff eingesetzt werden, können die Legierungen Gehalte an Aluminium zwischen 44 Atom % bis 49 Atom % Al haben. Zusätzlich können weitere Bestandteile wie z.B. Chrom (Cr), Niob (Nb), Mangan (Mn), Vanadium (V), Tantal (Ta), Molybdän (Mo), Zirkonium (Zr), Wolfram (W), Silizium (Si) sowie ggf. Zusätze von Kohlenstoff (C) und/oder Bor (B) enthalten sein, wobei diese Zusatzstoffe einen Anteil von 0,1 Atom % bis 10 Atom % haben können.In technically important areas of alloys in which the TiAl alloys are used, for example, as a lightweight material, the alloys may have aluminum contents between 44 atom% to 49 atom% Al. In addition, other ingredients such as e.g. Chromium (Cr), niobium (Nb), manganese (Mn), vanadium (V), tantalum (Ta), molybdenum (Mo), zirconium (Zr), tungsten (W), silicon (Si) and, if necessary, additions of carbon (C) and / or boron (B), these additives may have a proportion of 0.1 at% to 10 at%.

Für die industrielle Praxis sind insbesondere Legierungen ebenfalls interessant, die auf der intermetallischen Phase γ(TiAl) einer tetragonalen Struktur beruhen. Diese γ-Titanaluminid-Legierungen zeichnen sich durch Eigenschaften wie eine geringe Dichte (3,85 bis 4,3 g/cm3), hohe elastische Module und hohe Festigkeit sowie Kriechfestigkeit bis zu 700°C aus.Alloys which are based on the intermetallic phase γ (TiAl) of a tetragonal structure are also of interest for industrial practice. These γ-titanium aluminide alloys are characterized by properties such as a low density (3.85 to 4.3 g / cm 3 ), high elastic modulus and high strength and creep resistance up to 700 ° C.

Insbesondere weist eine bevorzugte Legierung eine Zusammensetzung von Ti - (45 bis 49 Atom %) Al - (5 Atom % bis 10 Atom %) X bestehen, wobei X = Cr, Nb, Mn, V, Ta, Mo, Zr, W, Si ist und gegebenenfalls mit Zusätzen von C und/oder B ausgebildet ist.In particular, a preferred alloy has a composition of Ti - (45 to 49 at%) Al - (5 at% to 10 at%) X where X = Cr, Nb, Mn, V, Ta, Mo, Zr, W, Si is and optionally with additions of C and / or B is formed.

Eine besonders hochfeste Titanaluminid-Legierung ist eine Legierungszusammensetzung aus Titan, Aluminid und Niob, der wahlweise noch Komponenten aus Bor und/oder Kohlenstoff zugefügt werden, wobei der Anteil an Bor und/oder Kohlenstoff in der Legierung unterhalb einer Konzentration von 0,5 Atom % gewählt wird. Typischerweise hat die Titanaluminid-Legierung eine Zusammensetzung von Ti - 45 Atom % Al-x Nb mit 5 Atom % ≤ x ≤ 10 Atom % und wahlweise bis zu 0,5 Atom % B (Bor) und/oder bis zu 0,5 Atom % C (Kohlenstoff).A particularly high-strength titanium aluminide alloy is an alloy composition of titanium, aluminide and niobium, to which optional components of boron and / or carbon are added, the proportion of boron and / or carbon in the alloy being below a concentration of 0.5 atom%. is selected. Typically, the titanium aluminide alloy has a composition of Ti-45 at% Al-x Nb with 5 at% ≤ x ≤ 10 at% and optionally up to 0.5 at% B (boron) and / or up to 0.5 atom % C (carbon).

Darüber hinaus können durch die Verfahren auch Titanaluminid-Legierungen mit einer feinen und homogenen Gefügemorphologie bereitgestellt werden, wobei die Titanaluminide eine Legierungszusammensetzung aus Ti-z Al-y Nb mit 44,5 Atom % ≤ z ≤ 47 Atom %, insbesondere mit 44,5 Atom % ≤ z ≤ 45,5 Atom %, und 5 Atom % ≤ y ≤ 10 Atom % aufweisen, wobei diese Molybdän (Mo) im Bereich zwischen 0,1 Atom % bis 3,0 Atom %, enthält. Der Rest der Legierung besteht aus Ti (Titan).Moreover, the methods can also provide titanium aluminide alloys having a fine and homogeneous grain morphology, wherein the titanium aluminides have an alloy composition of Ti-z Al-y Nb of 44.5 at% ≦ z ≦ 47 at%, especially at 44.5 Atom% ≦ z ≦ 45.5 atomic%, and 5 atomic% ≦ y ≦ 10 atomic%, wherein this molybdenum (Mo) ranges between 0.1 atomic% to 3.0 atomic%. The rest of the alloy is Ti (titanium).

Vor allem bei Ti - (44,5 Atom % bis 45,5 Atom %) Al - (5 Atom % bis 10 Atom %) Nb hat die Zugabe von Molybdän mit einem Gehalt ab 1,0 Atom % bis 3,0 Atom % zu guten Mikrostrukturen mit einer hohen Gefügehomogenität geführt.Especially with Ti - (44.5 at% to 45.5 at%) Al - (5 at% to 10 at%) Nb, the addition of molybdenum at a content of 1.0 at% to 3.0 at% led to good microstructures with a high structural homogeneity.

Gemäß einer weiteren vorteilhaften Ausgestaltung enthält die vorgenannte Legierung ebenfalls Bor, vorzugsweise mit einem BorGehalt in der Legierung im Bereich von 0,05 Atom % bis 0,8 Atom %. Der Zusatz von Bor führt vorteilhafterweise zur Bildung von stabilen Ausscheidungen, die zur mechanischen Härtung der Legierung und Stabilisierung des Gefüges der Legierung beitragen.According to a further advantageous embodiment, the abovementioned alloy likewise contains boron, preferably with a boron content in the alloy in the range from 0.05 atom% to 0.8 atom%. The addition of boron advantageously results in the formation of stable precipitates which contribute to the mechanical hardening of the alloy and stabilization of the microstructure of the alloy.

Darüber hinaus ist es vorteilhaft, wenn die Legierung Kohlenstoff enthält, und zwar vorzugsweise mit einem Kohlenstoffgehalt im Bereich von 0,05 Atom % bis 0,8 Atom %. Auch der Zusatz von Kohlenstoff, vorzugsweise in Kombination mit dem vorbeschriebenen Zusatzstoff Bor, führt zur Bildung von stabilen Ausscheidungen, die ebenfalls zur mechanischen Härtung der Legierung und zur Stabilisierung des Gefüges beitragen.Moreover, it is advantageous if the alloy contains carbon, preferably with a carbon content in the range of 0.05 at% to 0.8 at%. The addition of carbon, preferably in combination with the above-described additive boron, leads to the formation of stable precipitates, which also contribute to the mechanical hardening of the alloy and to the stabilization of the structure.

Auch durch eine Legierung auf Basis von unter Verwendung von schmelz- und pulvermetallurgischen Techniken hergestellten Titanaluminiden mit einer Legierungszusammensetzung aus Ti - z Al - y Nb- x B mit 44,5 Atom % ≤ z ≤ 47 Atom %, insbesondere mit 44,5 Atom % ≤ z ≤ 45,5 Atom %, 5 Atom % ≤ y ≤ 10 Atom % und 0,05 Atom % ≤ x ≤ 0,8 Atom %, wobei diese Molybdän (Mo) im Bereich zwischen 0,1 Atom % bis 3 Atom % enthält, wird eine Titanaluminid-Legierung mit einer feinen und homogenen Gefügemorphologie unter Ausbildung einer stabilen β-Phase bei hohen Temperaturen oberhalb von 700°C bereitgestellt.Also, by an alloy based on titanium aluminides prepared by using melting and powder metallurgy techniques and having an alloy composition of Ti - Z Al - y Nb - x B having 44.5 at% ≦ z ≦ 47 at%, especially at 44.5 at % ≦ z ≦ 45.5 at%, 5 at% ≦ y ≦ 10 at% and 0.05 at% ≦ x ≦ 0.8 at%, wherein this molybdenum (Mo) ranges between 0.1 at% to 3 Atom atom%, a titanium aluminide alloy having a fine and homogeneous grain morphology is provided to form a stable β phase at high temperatures above 700 ° C.

Darüber hinaus zeigt eine Legierungszusammensetzung aus Ti - z Al - y Nb- w C mit 44,5 Atom % ≤ z ≤ 47 Atom %, insbesondere mit 44,5 Atom % ≤ z ≤ 45,5 Atom %, 5 Atom % ≤ y ≤ 10 Atom % und 0,05 Atom % ≤ w ≤ 0,8 Atom %, wobei diese Molybdän (Mo) im Bereich zwischen 0,5 Atom % bis 3 Atom % enthält, eine feine und homogene Gefügemorphologie, wobei unter Ausbildung der β-Phase diese β-Phase bis Temperaturen von 1320°C stabil sind.Moreover, an alloy composition of Ti - z Al - y Nb - w C shows 44.5 at% ≦ z ≦ 47 at%, in particular at 44.5 at% ≦ z ≦ 45.5 at%, 5 at% ≦ y ≤ 10 atomic% and 0.05 atomic% ≤ w ≤ 0.8 atomic%, said molybdenum (Mo) im Range between 0.5 atom% to 3 atom%, a fine and homogeneous Gefömgemorphologie, with the formation of the β-phase, this β-phase to temperatures of 1320 ° C are stable.

Auch bei einer Legierungszusammensetzung aus Ti - z Al - y Nbx B - w C mit 44, 5 Atom % ≤ z ≤ 47 Atom %, insbesondere mit 44,5 Atom % ≤ z ≤ 45,5 Atom %, 5 Atom % ≤ y ≤ 10 Atom %, 0,05 Atom % ≤ x ≤ 0,8 Atom % und 0,05 Atom % ≤ w ≤ 0,8 Atom %, wobei diese Molybdän (Mo) im Bereich zwischen 0,1 Atom % bis 3 Atom % enthält, wird die stabile β-Phase bis Temperaturen von 1320°C ausbildet.Also with an alloy composition of Ti - z Al - y Nbx B - w C with 44, 5 atom% ≤ z ≤ 47 atom%, in particular with 44.5 atom% ≤ z ≤ 45.5 atom%, 5 atom% ≤ y ≤ 10 at%, 0.05 at% ≤ x ≤ 0.8 at% and 0.05 at% ≤ w ≤ 0.8 at%, wherein this molybdenum (Mo) ranges between 0.1 at% to 3 at% %, the stable β-phase is formed up to temperatures of 1320 ° C.

Entsprechend den gewünschten Anforderungen ist es vorgesehen, eine entsprechende, voranstehend angegebene TiAl-Legierung als Metallpulver bzw. in Pulverform für die Durchführung eines der genannten Verfahren bereitzustellen, um durch die Halogenisierung bzw. Halogenanreichung des TiAl-Metallpulvers eine TiAl-Legierung zu erhalten, die in einem kleinen Teilvolumen an der Oberfläche und in der Tiefe einen nahezu konstanten relativen Anteil an Halogenen aufweist, wodurch die Oxidationsbeständigkeit des Werkstoffs bzw. der gesamten Legierung verbessert wird.According to the desired requirements, it is envisaged to provide a corresponding TiAl alloy as metal powder or in powder form for carrying out any of the above-mentioned processes in order to obtain a TiAl alloy by halogenation of the TiAl metal powder in a small partial volume at the surface and in the depth has a nearly constant relative proportion of halogens, whereby the oxidation resistance of the material or the entire alloy is improved.

Bevorzugterweise werden in einer Ausführungsform weiterhin siliziumhaltige Halogene oder Kombinationen von Silizium mit Halogenen bei der Durchführung der Verfahren eingesetzt, wodurch die Oxidationsbeständigkeit der hergestellten Titanaluminid-Legierungen verbessert wird, dadurch, dass die die Oxidationsbeständigkeit erhöhenden Elemente bzw. Verbindungen sowohl an der Oberfläche als auch im Material durchgehend homogen bzw. statistisch verteilt enthalten sind.Preferably, in one embodiment, silicons or combinations of halogens with halogens are further employed in the practice of the processes, thereby improving the oxidation resistance of the titanium aluminide alloys produced by enhancing the oxidation resistance enhancing elements at both the surface and the surface Material are consistently homogeneous or distributed statistically distributed.

Insofern ist es im Rahmen der Erfindung weiter möglich, neben Halogenen auch weitere die Oxidationsbeständigkeit von Titanaluminid-Legierungen erhöhenden Stoffe oder Mischungen einzusetzen. In this respect, it is further possible in the context of the invention, in addition to halogens, to use further substances or mixtures which increase the oxidation stability of titanium aluminide alloys.

Claims (4)

  1. A method of producing an alloy based on titanium aluminides, wherein titanium-containing powder and aluminium-containing powder or pulverulent titanium aluminide, particularly titanium-aluminide-metal powder, are ground by means of a mill, preferably ground by means of a ball mill, wherein an atmosphere enriched with halogens is provided during the milling process in the mill, preferably ball mill, so that halogen-enriched titanium-aluminide-metal powder is produced during the milling process and the pulverulent titanium-aluminide enriched with halogens is then formed into an alloy by, preferably hot isostatic, pressing, wherein the proportion of halogens in the alloy is between 0.005 atom % and 1.5 atom %.
  2. A method as claimed in Claim 1, characterised in that the atmosphere enriched with halogens is provided in the form of a gaseous and/or liquid atmosphere.
  3. A method as claimed in Claim 1 or 2, characterised in that the atmosphere enriched with halogens is provided with at least one inert gas.
  4. A method as claimed in one of Claims 1 to 3, characterised in that a component is manufactured from the alloy.
EP08749011A 2007-07-10 2008-04-21 Production of alloys based on titanium aluminides Not-in-force EP2185738B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007032406A DE102007032406B3 (en) 2007-07-10 2007-07-10 Process to form an alloy for e.g. gas turbine engine by combination of molten titanium and aluminum in presence of halogen-enriched gas
PCT/EP2008/003173 WO2009006954A2 (en) 2007-07-10 2008-04-21 Production of alloys based on titanium aluminides

Publications (2)

Publication Number Publication Date
EP2185738A2 EP2185738A2 (en) 2010-05-19
EP2185738B1 true EP2185738B1 (en) 2012-02-22

Family

ID=39768203

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08749011A Not-in-force EP2185738B1 (en) 2007-07-10 2008-04-21 Production of alloys based on titanium aluminides

Country Status (8)

Country Link
US (1) US20100119402A1 (en)
EP (1) EP2185738B1 (en)
JP (1) JP2010532822A (en)
CN (1) CN101796205B (en)
AT (1) ATE546556T1 (en)
DE (1) DE102007032406B3 (en)
ES (1) ES2378254T3 (en)
WO (1) WO2009006954A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513537B (en) * 2011-12-06 2013-07-17 中国航空工业集团公司北京航空材料研究院 Method for preparing TiAl alloy plate by argon atomization in powder metallurgy
US9650309B2 (en) 2012-04-12 2017-05-16 Iowa State University Research Foundation, Inc. Stability of gas atomized reactive powders through multiple step in-situ passivation
US9833837B2 (en) * 2013-06-20 2017-12-05 Iowa State University Research Foundation, Inc. Passivation and alloying element retention in gas atomized powders
CN105274392B (en) * 2015-10-26 2017-07-28 鲁东大学 A kind of preparation method of automobile turbocharger turbo blade
CN106835227B (en) * 2016-12-05 2018-11-13 浙江工业大学 A method of titanium-base alloy high temperature oxidation resistance is improved based on halide effect and ceramic coating
CN106906504B (en) * 2016-12-31 2019-01-18 浙江工业大学 One kind being based on halide effect and SiO2The method of waterglass composite ceramic coat raising titanium-base alloy high temperature oxidation resistance
CN106906505B (en) * 2016-12-31 2019-01-08 浙江工业大学 A method of ceramic coating is obtained based on halide effect and pretreatment and improves titanium-base alloy high temperature oxidation resistance
WO2019140048A1 (en) * 2018-01-12 2019-07-18 Arconic Inc. Methods for making titanium aluminide materials
WO2020189214A1 (en) * 2019-03-18 2020-09-24 株式会社Ihi Titanium aluminide alloy material for hot forging, and method for forging titanium aluminide alloy material
CN110605401B (en) * 2019-10-09 2021-03-16 中南大学 Preparation method of titanium-aluminum alloy powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995002252A1 (en) * 1993-07-08 1995-01-19 Ugimag S.A. Process for the preparation of cobalt/rare earth type magnetic powders containing fluorine and corresponding densified permanent magnets
US5411603A (en) * 1993-01-22 1995-05-02 Ugimag Sa Method of protecting magnetic powders and densified permanent magnets of the Fe Nd B type from oxidation and atmospheric corrosion

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915908A (en) * 1984-10-19 1990-04-10 Martin Marietta Corporation Metal-second phase composites by direct addition
EP0484931B1 (en) * 1990-11-09 1998-01-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Sintered powdered titanium alloy and method for producing the same
US5451366A (en) * 1992-07-17 1995-09-19 Sumitomo Light Metal Industries, Ltd. Product of a halogen containing Ti-Al system intermetallic compound having a superior oxidation and wear resistance
DE19627605C1 (en) * 1996-07-09 1997-07-10 Dechema Increasing corrosion resistance of titanium-aluminium alloy
EP0770702A1 (en) * 1995-10-23 1997-05-02 DECHEMA Deutsche Gesellschaft für Chemisches Apparatewesen, Chemische Technik und Biotechnologie e.V. Process for increasing the corrosion-resistance of TiAl based alloys
DE10351946A1 (en) * 2003-03-21 2004-10-07 Dechema Gesellschaft Für Chemische Technik Und Biotechnologie E.V. Process for treating the surface of a component consisting of an AL alloy, in particular a TiAL alloy, and the use of organic halocarbon compounds or halides incorporated in an organic matrix

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411603A (en) * 1993-01-22 1995-05-02 Ugimag Sa Method of protecting magnetic powders and densified permanent magnets of the Fe Nd B type from oxidation and atmospheric corrosion
WO1995002252A1 (en) * 1993-07-08 1995-01-19 Ugimag S.A. Process for the preparation of cobalt/rare earth type magnetic powders containing fluorine and corresponding densified permanent magnets

Also Published As

Publication number Publication date
JP2010532822A (en) 2010-10-14
US20100119402A1 (en) 2010-05-13
WO2009006954A3 (en) 2010-04-15
CN101796205B (en) 2012-07-25
EP2185738A2 (en) 2010-05-19
ATE546556T1 (en) 2012-03-15
WO2009006954A2 (en) 2009-01-15
CN101796205A (en) 2010-08-04
ES2378254T3 (en) 2012-04-10
DE102007032406B3 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
EP2185738B1 (en) Production of alloys based on titanium aluminides
DE112018001690B4 (en) HEAT TREATMENT METHOD FOR ADDITIVE MANUFACTURED Ni-BASED ALLOY OBJECT, METHOD FOR PRODUCTION OF ADDITIVE MANUFACTURED Ni-BASED ALLOY OBJECT, Ni-BASED ALLOY POWDER FOR ADDITIVE MANUFACTURED OBJECT, AND ADDITIVE MANUFACTURED Ni-BASED ALLOY OBJECT
DE602005001754T2 (en) Article with distributed ultrafine titanium boride particles in a titanium-based matrix.
EP3181711B1 (en) Aluminium alloy containing scandium for powder metallurgy technologies
EP1819838B1 (en) Titanium aluminide based alloy
EP2145967B1 (en) Titanium aluminide alloys
EP3069802B1 (en) Method for producing a component made of a compound material with a metal matrix and incorporated intermetallic phases
AT500508B1 (en) HIGH-STRENGTH ABRASIVELY SINTERED ALUMINUM ALLOYING AND PRODUCTION METHOD THEREFOR
EP1718777B1 (en) Method for the production of a molybdenum alloy
DE2125562C3 (en) Process for the powder-metallurgical production of dense bodies from nickel superalloys
EP0044351B1 (en) Hard alloy consisting of one or several hard substances and a binding metal alloy, and process for producing this alloy
EP2990141B1 (en) Method for producing TiAl components
EP3249064A1 (en) Additive manufacture of high temperature components from tial
DE102013002483A1 (en) Nickel-cobalt alloy
DE102020108781A1 (en) High-strength aluminum alloys for structural applications that can be processed using additive manufacturing
DE102018133579A1 (en) Aluminum alloy powder for additive manufacturing and method of making a part by making from this powder
EP3994289A1 (en) Nickel based alloy for powder and method for producing a powder
EP1647606B1 (en) High hardness and wear resistant nickel based alloy for use as high temperature tooling
DE2200670B2 (en)
EP3015199A2 (en) Method for producing a target alloy that is resistant to high temperatures, a device, an alloy and a corresponding component
DE3780584T2 (en) POWDER METALLICALLY PRODUCED NICKEL-BASED ITEMS.
DE69737265T2 (en) MANUFACTURE NICKEL-KEEPING, SINTERED, FIXED, FERITIC STAINLESS STEEL
WO2007085249A1 (en) Titanium material and method for production thereof
DE69308402T2 (en) High-strength aluminum-based alloy and compressed and solidified material made from it
EP1611980A1 (en) Process for producing a grain refiner for metals, grain refiner and metal or metal alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091201

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20101116

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELMHOLTZ-ZENTRUM GEESTHACHT ZENTRUM FUER MATERIAL

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 546556

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2378254

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120410

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008006478

Country of ref document: DE

Effective date: 20120419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120307

Year of fee payment: 5

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120222

Year of fee payment: 5

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120522

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120309

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120525

Year of fee payment: 5

Ref country code: SE

Payment date: 20120425

Year of fee payment: 5

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120426

Year of fee payment: 5

BERE Be: lapsed

Owner name: HELMHOLTZ-ZENTRUM GEESTHACHT ZENTRUM FUR MATERIAL

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008006478

Country of ref document: DE

Effective date: 20121123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120223

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120522

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130422

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130421

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008006478

Country of ref document: DE

Effective date: 20131101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120421

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140606

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 546556

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130422

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130421