EP1718777B1 - Method for the production of a molybdenum alloy - Google Patents
Method for the production of a molybdenum alloy Download PDFInfo
- Publication number
- EP1718777B1 EP1718777B1 EP05706193A EP05706193A EP1718777B1 EP 1718777 B1 EP1718777 B1 EP 1718777B1 EP 05706193 A EP05706193 A EP 05706193A EP 05706193 A EP05706193 A EP 05706193A EP 1718777 B1 EP1718777 B1 EP 1718777B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- process according
- carried out
- alloy
- temperature
- molybdenum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F3/15—Hot isostatic pressing
- B22F3/156—Hot isostatic pressing by a pressure medium in liquid or powder form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/16—Both compacting and sintering in successive or repeated steps
- B22F3/162—Machining, working after consolidation
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/04—Alloys based on tungsten or molybdenum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F2003/248—Thermal after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/041—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Definitions
- the invention relates to a process for the production of semi-finished or finished parts from a molybdenum alloy with intermetallic phase fractions.
- Molybdenum and molybdenum alloys are widely used in engineering because of their good mechanical strength properties at high temperatures. A problem of these alloys is their low oxidation resistance at temperatures above 600 ° C. Accordingly diverse are the known measures for improving the oxidation properties. They range from applying superficial protective coatings to alloying measures. Thus, the oxidation resistance can be improved by alloying silicon and boron, as shown in FIG Akinc, M. et al .: Materials Science and Engineering, A261 (1999) 16-23 ; Meyer, MK et al .: Advanced Materials 8 (1996) 8 and Meyer, MK et al .: J. Am. Ceram. Soc. 79 (1996) 63-66 is described.
- the EP 0 804 627 describes an oxidation resistant molybdenum alloy consisting of a molybdenum matrix and intermetallic phase domains dispersed therein of 10 to 70 vol.% Mo-B silicide, optionally up to 20 vol.% Mo boride and optionally up to 20 vol.% Mo Silicide exists.
- the alloy comprises, in addition to molybdenum, the elements C, Ti, Hf, Zr, W, Re, Al, Cr, V, Nb, Ta, B and Si in the form that, in addition to the aforementioned phases, one or more elements of the group Ti, Zr , Hf and Al must be present in a proportion of 0.3 to 10 wt.% In the Mo mixed crystal phase.
- Alloys according to the EP 0 804 627 Form at temperatures above 540 ° C from a boron-silicate layer, which prevents further penetration of oxygen into the body. Due to the Mo matrix alloys according to the EP 0 804 627 a significantly improved ductility.
- the US 5,595,616 describes a method for producing a Mo-Si-B alloy with Mo matrix, embedded in the intermetallic phase components are.
- the method involves the rapid solidification of a melt, which can be done by atomizing a melt. Subsequently, the rapidly solidified powder is compacted by hot compacting, wherein this process step must be such that no coarsening of the intermetallic phase components occurs. Semifinished products produced in this way can be further processed by hot forming.
- the disadvantage here is that for the purpose of rapid solidification, the molybdenum alloy must be melted. Due to the high melting point and the chemical aggressiveness of the melt, however, no crucible material is available. It must therefore be melted without a crucible, which makes this process step very expensive.
- alloys having an optimum silicon and boron content (about 4% by weight of Si, about 1.5% by weight of B) with regard to their oxidation resistance can be obtained. no longer process forming, whereby a compromise between oxidation resistance and process capability are made.
- the object of the present invention is then to provide a method which makes it possible to produce oxidation-resistant molybdenum-silicon-boron alloys at low cost using a forming process.
- the method according to the invention comprises a high-energy milling process in which the powder particles used are mixed into one another in such a way that one can speak of a mechanical alloying.
- the powder mixture used consists of at least 60% by weight of Mo, 0.5% by weight of Si and 0.2% by weight of B.
- the powder may be present in elemental, partially prealloyed or completely pre-alloyed form. Elemental powder mixtures are said to be present when the individual particles are in a pure form and the alloy is prepared by mixing just such powders.
- a powder particle is completely pre-alloyed if it consists of a homogeneous alloy.
- Partially prealloyed powder consists of particles having different concentration ranges.
- systems for mechanical alloying high energy mills such as attritors, ball drop mills or vibrating mills are suitable.
- the Meals depend on the used aggregate. The typical process times when using an Attritor are 0.5 to 48 hours.
- the mechanically alloyed powder can then be further formed by cold compacting, such as die pressing, cold isostatic pressing, metal powder injection molding or slip casting.
- cold compacting such as die pressing, cold isostatic pressing, metal powder injection molding or slip casting.
- hot compacting it is also possible to immediately subject the mechanically alloyed powder to a hot compacting process, as is the case, for example, in hot isostatic pressing and powder extrusion.
- the former has proven itself especially.
- the milled powder is then filled into a molybdenum or titanium alloy can, vacuum-sealed, and at temperatures typically in the range of 1,000 ° C to 1,600 ° C, preferably 1300 ° C to 1500 ° C, and a pressure of typically 10 to 300 MPa, preferably 150 to 250 MPa, compressed.
- sintered material with a predominantly closed porosity can be densely hot-isostatically recompressed.
- Conventional sintering HIP processes, the Ceracon process or the ROC (rapid omnidirectional compacting) process can also be used.
- non-pressurized processes such as conventional sintering, plasma-assisted sintering or microwave sintering, suitable, in the case of solid phase sintering temperatures of> 1500 ° C are required. If alloying components are added which lower the solidus temperature, it is also possible to achieve a sufficient density at lower temperatures.
- a molybdenum alloy prepared in this way can be superplasticized at temperatures of 1000 ° C. to 1600 ° C. at deformation speeds ⁇ of 10 -6 s -1 ⁇ ⁇ 10 ° s -1 .
- Both forming processes such as rolling or pressing, are suitable as forming processes forming processes, such as pressing into a die or deep drawing.
- the inventive method it is possible to lower the forming temperatures below 1600 ° C, whereby conventional equipment, in particular heating devices, such as those used for the production of refractory metals, can be used.
- the process according to the invention has proved to be particularly advantageous when the molybdenum alloy contains 2 to 4% by weight of silicon and 0.5 to 3% by weight of boron.
- molybdenum-silicon-boron alloys in this concentration range can be processed only at very high forming temperatures, or can no longer be processed in the high silicon and boron range by forming technology.
- Molybdenum alloys containing from 2 to 4% by weight of silicon and from 0.5 to 3% by weight of boron contain intermetallic molybdenum-silicide, molybdenum-boron-silicide, optionally also molybdenum-boride phases, and molybdenum or molybdenum mixed crystal , Mo 3 Si and Mo 5 SiB 2 are to be mentioned as preferred molybdenum silicide or molybdenum boron silicide phases.
- the superplastic forming behavior is not adversely affected even when admixing oxides or mixed oxides which have a vapor pressure at 1500 ° C. of ⁇ 5 ⁇ 10 -2 bar.
- the alloying of oxides or mixed oxides improves the hot or creep resistance without surprisingly the ductility of the material is negatively affected.
- Particularly suitable oxides are Y 2 O 3 , ZrO 2 , HfO 2 , TiO 2 , Al 2 O 3 , CaO, MgO and SrO or their mixed oxides.
- molybdenum alloy added to 0.001 to 5 wt.% Of one or more metals from the group rhenium, titanium, zirconium, hafnium, vanadium, chromium and aluminum, this promotes the formation of a dense boron-silicate layer.
- the niobium content was varied with the silicon and boron contents being respectively 3 and 1% by weight.
- the alloy compositions are shown in Table 1. ⁇ b> Table 1 ⁇ / b>: Composition of molybdenum-silicon-boron alloys method Mo (% by weight) Nb (% by weight) Si (% by weight) B (% by weight) Alloy 1 inventively 93 3 3 1 Alloy 2 inventively 86 10 3 1 Alloy 3 inventively 76 20 3 1 Alloy 4 State of the art 76 20 3 1 Alloy 5 State of the art 96 0 3 1
- Alloys 1, 2 and 3 were made according to the method of the invention, and the fabrication of alloys 4 and 5 followed the state of the art. Powder blends according to alloy compositions 1, 2 and 3 were mechanically alloyed in a stainless steel attritor. 100 kg of steel balls with a diameter of 9 mm were used. The respective powder batch quantity was 5 kg. The grinding took place under hydrogen. The milled powder was filled into a molybdenum alloy pot, vacuum-sealed and hot-isostatically compressed for 4 hours at a temperature of 1,400 ° C. and a pressure of 200 MPa. The thus hot-compacted material showed a pore-free microstructure and a density of> 99% of the theoretical density.
- prior art alloys 4 and 5 were prepared by atomizing sintered bars.
- the powder was cold isostatically compacted at 200 MPa and sintered at 1,700 ° C for 5 hours under hydrogen.
- the sintered rods were atomized without crucibles.
- the powder thus prepared was filled in a titanium can and hot isostatically compacted (1500 ° C, 200 MPa, 4 hours). After hot isostatic pressing, a density of 9.55 g / cm 2 was measured, corresponding to 99% of the theoretical density.
- molybdenum-silicon-boron-niobium alloys having the compositions shown in Table 1 were used.
- the materials according to the invention were filled into a titanium can after the mechanical alloying, which took place in a 250 l attritor under hydrogen, sealed in a vacuum-tight manner and at 1400 ° C. and 200 MPa hot isostatically compacted. The density was> 99% of the theoretical density.
- Alloys 4 and 5 were prepared according to Example 1. Semifinished product thus produced was subjected to a heat treatment under vacuum. The temperature was 1.700 ° C with a holding time of 5 hours. Tensile samples were made by eroding and turning.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Herstellung von Halbzeug oder Fertigteilen aus einer Molybdän-Legierung mit intermetallischen Phasenanteilen.The invention relates to a process for the production of semi-finished or finished parts from a molybdenum alloy with intermetallic phase fractions.
Molybdän und Molybdän-Legierungen finden wegen ihrer guten mechanischen Festigkeitseigenschaften bei hohen Temperaturen verbreitet technische Verwendung. Ein Problem dieser Legierungen ist deren geringe Oxidationsbeständigkeit bei Temperaturen oberhalb 600°C. Entsprechend vielfältig sind die bekannten Maßnahmen zur Verbesserung der Oxidationseigenschaften. Sie reichen vom Aufbringen oberflächlicher Schutzschichten bis zu legierungstechnischen Maßnahmen. So kann die Oxidationsbeständigkeit durch das Zulegieren von Silizium und Bor verbessert werden, wie dies in
Auch die
Legierungen gemäß der
Alloys according to the
Die
umformtechnisch nicht mehr verarbeiten, wodurch ein Kompromiss zwischen Oxidationsbeständigkeit und Prozessfähigkeit gemacht werden.
Aufgabe der vorliegenden Erfindung ist danach die Bereitstellung eines Verfahrens, das es ermöglicht, oxidationsbeständige Molybdän-Silizium-Bor Legierungen unter Anwendung eines Umformverfahrens kostengünstig herzustellen.The
no longer process forming, whereby a compromise between oxidation resistance and process capability are made.
The object of the present invention is then to provide a method which makes it possible to produce oxidation-resistant molybdenum-silicon-boron alloys at low cost using a forming process.
Gelöst wird diese Aufgabe durch ein Verfahren gemäß Anspruch 1.
Das erfindungsgemäße Verfahren umfasst einen Hochenergie-Mahlprozess, bei dem die eingesetzten Pulverpartikel derartig ineinander vermengt werden, dass man von einem mechanischen Legieren sprechen kann. Die eingesetzte Pulvermischung besteht dabei zumindest aus 60 Gew.% Mo, 0,5 Gew.% Si und 0,2 Gew.% B. Das Pulver kann dabei in elementarer, in teilweise vorlegierter oder vollständig vorlegierter Form vorliegen. Von elementaren Pulvermischungen spricht man dann, wenn die Einzelpartikel in reiner Form vorliegen und die Legierung durch Mischen von ebensolchen Pulvern hergestellt wird. Ein Pulverpartikel ist dann vollständig vorlegiert, wenn dieses aus einer homogenen Legierung besteht. Teilweise vorlegiertes Pulver besteht aus Partikeln, die unterschiedliche Konzentrationsbereiche aufweisen. Als Anlagen für das mechanische Legieren sind Hochenergiemühlen, wie beispielsweise Attritoren, Kugelfallmühlen oder Schwingmühlen geeignet. Die Mahlzeiten hängen dabei vom verwendeten Aggregat ab. So liegen die typischen Prozesszeiten bei Verwendung eines Attritors bei 0,5 bis 48 Stunden.This object is achieved by a method according to claim 1.
The method according to the invention comprises a high-energy milling process in which the powder particles used are mixed into one another in such a way that one can speak of a mechanical alloying. The powder mixture used consists of at least 60% by weight of Mo, 0.5% by weight of Si and 0.2% by weight of B. The powder may be present in elemental, partially prealloyed or completely pre-alloyed form. Elemental powder mixtures are said to be present when the individual particles are in a pure form and the alloy is prepared by mixing just such powders. A powder particle is completely pre-alloyed if it consists of a homogeneous alloy. Partially prealloyed powder consists of particles having different concentration ranges. As systems for mechanical alloying high energy mills, such as attritors, ball drop mills or vibrating mills are suitable. The Meals depend on the used aggregate. The typical process times when using an Attritor are 0.5 to 48 hours.
Um eine Oxidation der Legierungskomponenten zu vermeiden, ist es erforderlich, den Mahlprozess unter Schutzgasatmosphäre durchzuführen. Besonders bewährt hat sich dabei die Verwendung von Wasserstoff. Das mechanisch legierte Pulver kann dann in weiterer Folge durch Kaltkompaktieren, wie beispielsweise Matrizenpressen, kaltisostatisches Pressen, Metallpulverspritzguss oder Schlickerguss geformt werden. Es ist jedoch auch möglich, das mechanisch legierte Pulver sofort einem Warmkompaktierprozess zu unterziehen, wie dies beispielsweise beim heißisostatischen Pressen und dem Pulverstrangpressen der Fall ist. Ersteres hat sich dabei besonders bewährt. Dabei wird das gemahlene Pulver in eine Kanne aus einer Molybdän- oder Titanlegierung gefüllt, vakuumdicht verschweißt und bei Temperaturen typischerweise im Bereich von 1.000°C bis 1.600°C, vorzugsweise 1300°C bis 1500°C, und einem Druck von typischerweise 10 bis 300 MPa, vorzugsweise 150 bis 250 MPa, verdichtet. Alternativ kann auch gesintertes Material mit überwiegend geschlossener Porosität kannenlos heißisostatisch nachverdichtet werden. Auch konventionelle SinterHIP-Verfahren, das Ceracon Verfahren oder das ROC (Rapid Omnidirectional Compacting) Verfahren können zur Anwendung kommen.
Daneben sind auch drucklose Verfahren, wie beispielsweise konventionelles Sintern, plasma-unterstütztes Sintern oder Mikrowellensintern, geeignet, wobei im Falle des Festphasensinterns Temperaturen von > 1500 °C erforderlich sind. Werden Legierungskomponenten zugesetzt, die die Solidustemperatur absenken, ist es auch möglich, bei tieferen Temperaturen eine ausreichende Dichte zu erzielen.In order to avoid oxidation of the alloy components, it is necessary to carry out the milling process under a protective gas atmosphere. The use of hydrogen has proven particularly useful. The mechanically alloyed powder can then be further formed by cold compacting, such as die pressing, cold isostatic pressing, metal powder injection molding or slip casting. However, it is also possible to immediately subject the mechanically alloyed powder to a hot compacting process, as is the case, for example, in hot isostatic pressing and powder extrusion. The former has proven itself especially. The milled powder is then filled into a molybdenum or titanium alloy can, vacuum-sealed, and at temperatures typically in the range of 1,000 ° C to 1,600 ° C, preferably 1300 ° C to 1500 ° C, and a pressure of typically 10 to 300 MPa, preferably 150 to 250 MPa, compressed. Alternatively, sintered material with a predominantly closed porosity can be densely hot-isostatically recompressed. Conventional sintering HIP processes, the Ceracon process or the ROC (rapid omnidirectional compacting) process can also be used.
In addition, non-pressurized processes, such as conventional sintering, plasma-assisted sintering or microwave sintering, suitable, in the case of solid phase sintering temperatures of> 1500 ° C are required. If alloying components are added which lower the solidus temperature, it is also possible to achieve a sufficient density at lower temperatures.
Es hat sich nun überraschenderweise gezeigt, dass sich eine so hergestellte Molybdänlegierung bei Temperaturen von 1.000°C bis 1.600°C bei Verformungsgeschwindigkeiten ε̇ von 10-6s-1< ε̇ < 10° s-1 superplastisch umformen lässt. Als Umformverfahren eigenen sich dabei sowohl Halbzeugherstellverfahren, wie beispielsweise Walzen oder Pressen, als auch formgebende Verfahren, wie beispielsweise Pressen in ein Gesenk oder Tiefziehen. Durch das erfindungsgemäße Verfahren ist es möglich, die Umformtemperaturen auf unter 1600°C zu senken, wodurch konventionelle Anlagen, im speziellen Anwärmeinrichtungen, wie sie zur Herstellung von Refraktärmetallen eingesetzt werden, Verwendung finden können.It has now surprisingly been found that a molybdenum alloy prepared in this way can be superplasticized at temperatures of 1000 ° C. to 1600 ° C. at deformation speeds ε̇ of 10 -6 s -1 <ε̇ <10 ° s -1 . Both forming processes, such as rolling or pressing, are suitable as forming processes forming processes, such as pressing into a die or deep drawing. The inventive method, it is possible to lower the forming temperatures below 1600 ° C, whereby conventional equipment, in particular heating devices, such as those used for the production of refractory metals, can be used.
Um jedoch eine ausreichende Kriechfestigkeit zu erzielen, ist es erforderlich, die superplastisch umgeformte Molybdän-Legierung in einem weiteren Prozessschritt einer Wärmebehandlung bei einer Temperatur > 1.400°C, bevorzugt 1600°C bis 1900°C, bevorzugt in reduzierender Atmosphäre oder Vakuum zu unterziehen. Dies wird in den Beispielen dokumentiert.However, in order to achieve sufficient creep resistance, it is necessary to subject the superplastic formed molybdenum alloy in a further process step to a heat treatment at a temperature> 1,400 ° C, preferably 1600 ° C to 1900 ° C, preferably in a reducing atmosphere or vacuum. This is documented in the examples.
Grundsätzlich ist es auch möglich, die Molybdänlegierung vor dem superplastischen Umformschritt konventionell gemäß dem Stand der Technik zu verformen. Dies kann dann vorteilhaft sein, wenn eine zusätzliche Gefügefeinung und Homogenisierung wünschenswert ist, wie dies beispielsweise dann der Fall ist, wenn die Warmkompaktierung durch druckloses Sintern erfolgt.In principle, it is also possible to deform the molybdenum alloy prior to the superplastic forming step conventionally according to the prior art. This can be advantageous if additional structural refinement and homogenization is desirable, as is the case, for example, when hot compaction takes place by pressureless sintering.
Besonders vorteilhaft hat sich das erfindungsgemäße Verfahren dann erwiesen, wenn die Molybdän-Legierung 2 bis 4 Gew.% Silizium und 0,5 bis 3 Gew.% Bor enthält.
Wie bereits eingangs ausgeführt, können Molybdän-Silizium-Bor Legierungen in diesem Konzentrationsbereich nur bei sehr hohen Umformtemperaturen prozessiert, bzw. im hohen Silizium- und Bor-Bereich umformtechnisch nicht mehr verarbeitet werden. Molybdän-Legierungen mit 2 bis 4 Gew.% Silizium und 0,5 bis 3 Gew.% Bor enthalten intermetallische Molybdän-Silizid-, Molybdän-Bor-Silizid-, wahlweise auch Molybdän-Borid-Phasen, und Molybdän bzw. Molybdän-Mischkristall. Als bevorzugte Molybdän-Silizid- bzw. Molybdän-Bor-Silizid-Phasen sind dabei Mo3Si und Mo5SiB2 zu nennen. Durch das erfindungsgemäße Verfahren ist es möglich, auch gemäß dem Stand der Technik umformtechnisch nicht verarbeitbare Legierungen zu verformen.The process according to the invention has proved to be particularly advantageous when the molybdenum alloy contains 2 to 4% by weight of silicon and 0.5 to 3% by weight of boron.
As already mentioned, molybdenum-silicon-boron alloys in this concentration range can be processed only at very high forming temperatures, or can no longer be processed in the high silicon and boron range by forming technology. Molybdenum alloys containing from 2 to 4% by weight of silicon and from 0.5 to 3% by weight of boron contain intermetallic molybdenum-silicide, molybdenum-boron-silicide, optionally also molybdenum-boride phases, and molybdenum or molybdenum mixed crystal , Mo 3 Si and Mo 5 SiB 2 are to be mentioned as preferred molybdenum silicide or molybdenum boron silicide phases. By means of the method according to the invention, it is also possible to deform alloys that can not be processed by forming technology according to the prior art.
Weiters hat es sich gezeigt, dass bei Anwendung des erfindungsgemäßen Verfahrens Molybdän-Silizium-Bor Legierungen, die 0,5 bis 30 Gew.% Niob und/oder Tantal enthalten, sowohl höhere Duktilitäts- als auch Warmfestigkeitswerte aufweisen, als Legierungen, die diese Legierungsbestandteile nicht oder in geringerem Maße enthalten. Auch dies wird in den Beispielen näher erläutert.Furthermore, it has been found that when using the method according to the invention molybdenum-silicon-boron alloys containing 0.5 to 30 wt.% Niobium and / or tantalum, both higher ductility and heat resistance values, as alloys containing these alloying components not or to a lesser extent included. This too is explained in more detail in the examples.
Überraschenderweise hat es sich ebenfalls gezeigt, dass auch unter Beimischen von Oxiden bzw. Mischoxiden, die einen Dampfdruck bei 1.500°C von < 5 x 10-2 bar aufweisen, das superplastische Umformverhalten nicht negativ beeinflusst wird. Das Zulegieren von Oxiden bzw. Mischoxiden verbessert die Warm- bzw. Kriechfestigkeit, ohne dass dadurch überraschenderweise die Duktilität des Werkstoffes negativ beeinflusst wird. Als besonders geeignete Oxide sind dabei Y2O3, ZrO2, HfO2, TiO2, Al2O3, CaO, MgO und SrO bzw. deren Mischoxide zu nennen.Surprisingly, it has also been found that the superplastic forming behavior is not adversely affected even when admixing oxides or mixed oxides which have a vapor pressure at 1500 ° C. of <5 × 10 -2 bar. The alloying of oxides or mixed oxides improves the hot or creep resistance without surprisingly the ductility of the material is negatively affected. Particularly suitable oxides are Y 2 O 3 , ZrO 2 , HfO 2 , TiO 2 , Al 2 O 3 , CaO, MgO and SrO or their mixed oxides.
Wird der Molybdän-Legierung 0,001 bis 5 Gew.% eines oder mehrerer Metalle aus der Gruppe Rhenium, Titan, Zirkon, Hafnium, Vanadin, Chrom und Aluminium zulegiert, fördert dies die Ausbildung einer dichten Bor-SilikatSchicht.If the molybdenum alloy added to 0.001 to 5 wt.% Of one or more metals from the group rhenium, titanium, zirconium, hafnium, vanadium, chromium and aluminum, this promotes the formation of a dense boron-silicate layer.
Im Folgenden wird die Erfindung durch Beispiele näher beschrieben.In the following the invention will be described by examples.
Für die Herstellung einer Molybdänlegierung kamen folgende Pulver zum Einsatz:
- Molybdän mit einer Korngröße nach Fisher von 4,1 µm,
- Niob, abgesiebt auf < 32 µm,
- Silizium mit einer Korngröße nach Fisher von 4,3 µm,
- Bor mit einer Korngröße nach Fisher von 1,01 µm.
- Molybdenum with a Fisher grain size of 4.1 μm,
- Niobium screened to <32 μm,
- Silicon with a grain size of Fisher of 4.3 microns,
- Boron with a grain size of Fisher of 1.01 microns.
Der Niob-Gehalt wurde variiert, wobei der Silizium- und Bor-Gehalt jeweils 3 bzw. 1 Gew.% betrug. Die Legierungszusammensetzungen sind aus Tabelle 1 zu entnehmen.
Legierung 1, 2 und 3 wurden gemäß dem erfindungsgemäßen Verfahren gefertigt, die Fertigung der Legierungen 4 und 5 folgte dem Stand der Technik. Pulvermischungen gemäß Legierungszusammensetzung 1, 2 und 3 wurden in einem Attritor aus rostfreiem Stahl mechanisch legiert. Dabei kamen 100 kg Stahlkugeln mit einem Durchmesser von 9 mm zum Einsatz. Die jeweilige Pulverchargenmenge betrug 5 kg. Das Mahlen fand unter Wasserstoff statt. Das gemahlene Pulver wurde in eine Kanne aus einer Molybdän-Legierung gefüllt, vakuumdicht verschweißt und bei einer Temperatur von 1.400°C und einem Druck von 200 MPa 4 Stunden heißisostatisch verdichtet. Das so warmkompaktierte Material zeigte eine porenfreie Mikrostruktur und eine Dichte von > 99 % der theoretischen Dichte. Zu Vergleichszwecken wurden die Legierungen 4 und 5 gemäß dem Stand der Technik über das Verdüsen von Sinterstäben hergestellt. Das Pulver wurde bei 200 MPa kaltisostatisch verdichtet und bei 1.700°C 5 Stunden unter Wasserstoff gesintert. Die gesinterten Stäbe wurden tiegelfrei verdüst. Das so hergestellte Pulver wurde in eine Titan-Kanne gefüllt und heißisostatisch verdichtet (1.500°C, 200 MPa, 4 Stunden). Nach dem heißisostatischen Pressen wurde eine Dichte von 9,55 g/cm2 gemessen, entsprechend 99 % der theoretischen Dichte.Alloys 1, 2 and 3 were made according to the method of the invention, and the fabrication of alloys 4 and 5 followed the state of the art. Powder blends according to alloy compositions 1, 2 and 3 were mechanically alloyed in a stainless steel attritor. 100 kg of steel balls with a diameter of 9 mm were used. The respective powder batch quantity was 5 kg. The grinding took place under hydrogen. The milled powder was filled into a molybdenum alloy pot, vacuum-sealed and hot-isostatically compressed for 4 hours at a temperature of 1,400 ° C. and a pressure of 200 MPa. The thus hot-compacted material showed a pore-free microstructure and a density of> 99% of the theoretical density. For comparative purposes, prior art alloys 4 and 5 were prepared by atomizing sintered bars. The powder was cold isostatically compacted at 200 MPa and sintered at 1,700 ° C for 5 hours under hydrogen. The sintered rods were atomized without crucibles. The powder thus prepared was filled in a titanium can and hot isostatically compacted (1500 ° C, 200 MPa, 4 hours). After hot isostatic pressing, a density of 9.55 g / cm 2 was measured, corresponding to 99% of the theoretical density.
Aus so hergestellten Halbzeugen wurden Proben mittels Drahterosion und Drehen gefertigt. Diese Proben wurden bei einer Temperatur von 1.300°C und Dehnraten von 10-4 s-1 bzw. 10-3 s-1 verformt. Bei erfindungsgemäßem Halbzeug konnte dabei superplastisches Verhalten festgestellt werden. In Abhängigkeit von Verformungsgeschwindigkeit und Legierungszusammensetzung lagen die gemessenen Dehnungen bei 60,2 bis 261,5 % (siehe Tabelle 2). Diese Eigenschaften ermöglichen das superplastische Umformen bei Temperaturen unterhalb 1.500°C, d.h. auf konventionellen Anlagen für die Refraktärmetallherstellung. Ein Niob-Zusatz von über 5 Gew.% (Legierung 2 und Legierung 3) bewirkt eine deutliche Steigerung der Festigkeit bei gleichzeitiger Erhöhung der Bruchdehnung.
Es kamen wiederum Molybdän-Silizium-Bor-Niob Legierungen mit den in Tabelle 1 wiedergegebenen Zusammensetzungen zum Einsatz. Die erfindungsgemäßen Werkstoffe wurden dabei nach dem mechanischen Legieren, das in einen 250 l Attritor unter Wasserstoff stattfand, in eine Titan-Kanne gefüllt, vakuumdicht verschlossen und bei 1.400°C und 200 MPa heißisostatisch verdichtet. Die Dichte betrug > 99 % der theoretischen Dichte.
Die Legierungen 4 und 5 wurden gemäß Beispiel 1 hergestellt. So gefertigtes Halbzeug wurde einer Wärmebehandlung unter Vakuum unterzogen. Die Temperatur betrug dabei 1.700°C bei einer Haltezeit von 5 Stunden. Zugproben wurden mittels Erodieren und Drehen hergestellt. Die Zugversuche wurden bei einer konstanten Dehnrate von 10-4 s-1 bei drei verschiedenen Temperaturen durchgeführt. Die Ergebnisse sind in Tabelle 3 wiedergegeben. Speziell Legierung 3 zeigt dabei eine deutlich verbesserte Warmfestigkeit.
Alloys 4 and 5 were prepared according to Example 1. Semifinished product thus produced was subjected to a heat treatment under vacuum. The temperature was 1.700 ° C with a holding time of 5 hours. Tensile samples were made by eroding and turning. The tensile tests were carried out at a constant strain rate of 10 -4 s -1 at three different temperatures. The results are shown in Table 3. Specifically Alloy 3 shows a significantly improved heat resistance.
Claims (15)
- Process for the production of semi-finished or finished parts from a Mo alloy having intermetallic phase components, which process comprises at least the following steps:- mechanical alloying of a powder mixture containing at least 60 wt.% Mo, at least 0.5 wt.% Si and at least 0.2 wt.% B, wherein the powder mixture can be present in elementary, partially pre-alloyed or completely pre-alloyed form;- pressureless and/or pressure-assisted hot compaction at a temperature T, where 1100°C < T < 1900°C;- superplastic forming at a forming temperature T, where 1000°C < T < 1600°C, at a forming rateε̇ of 1 x 10-6 s-1 < ε̇ < 100 s-1;- heat treatment at a temperature T, where 1400°C < T < 1900°C.
- Process according to claim 1, characterised in that the Mo alloy contains from 2 to 4 wt.% Si and from 0.5 to 3 wt.% B.
- Process according to any one of the preceding claims, characterised in that the Mo alloy contains from 0.5 to 30 wt.% Nb and/or Ta.
- Process according to any one of the preceding claims, characterised in that the Mo alloy contains one or more oxides or mixed oxides having a vapour pressure at 1500°C of < 5 x 10-2 bar.
- Process according to any one of the preceding claims, characterised in that the Mo alloy contains at least one oxide or mixed oxide from the group of the metals Y, lanthanides, Zr, Hf, Ti, Al, Ca, Mg and Sr.
- Process according to any one of the preceding claims, characterised in that the Mo alloy contains from 0.001 to 5 wt.% of one or more metals from the group Re, Ti, Zr, Hf, V, Ni, Co and Al.
- Process according to any one of the preceding claims, characterised in that the mechanical alloying is carried out in an attritor, a fallirig-ball mill or a vibratory mill with process times of from 0.5 to 48 hours.
- Process according to claim 7, characterised in that the mechanical alloying is carried out under hydrogen.
- Process according to any one of the preceding claims, characterised in that the mechanically alloyed powder is subjected to cold compaction before the hot compaction.
- Process according to any one of the preceding claims, characterised in that the hot compaction is pressure-assisted and is carried out at a temperature T, where 1200°C < T < 1600°C.
- Process according to claim 10, characterised in that the hot compaction is carried out by hot isostatic pressing, sintering HIP or by powder extrusion.
- Process according to any one of claims 1 to 9, characterised in that the hot compaction is pressureless and is carried out at a temperature T, where 1600°C < T < 1900°C.
- Process according to any one of the preceding claims, characterised in that the superplastic forming is carried out at a forming rate ε̇ of 1 x 10-4 s-1 < ε̇ < 1 x 10-2 s-1.
- Process according to any one of the preceding claims, characterised in that the superplastic forming is carried out by rolling or pressing.
- Process according to any one of the preceding claims, characterised in that the heat treatment is carried out at a temperature T, where T 1600°C < T < 1900°C, in a reducing atmosphere or in vacuo.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0013404U AT7187U1 (en) | 2004-02-25 | 2004-02-25 | METHOD FOR PRODUCING A MOLYBDENUM ALLOY |
PCT/AT2005/000053 WO2005080618A1 (en) | 2004-02-25 | 2005-02-21 | Method for the production of a molybdenum alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1718777A1 EP1718777A1 (en) | 2006-11-08 |
EP1718777B1 true EP1718777B1 (en) | 2007-10-17 |
Family
ID=32931927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05706193A Not-in-force EP1718777B1 (en) | 2004-02-25 | 2005-02-21 | Method for the production of a molybdenum alloy |
Country Status (6)
Country | Link |
---|---|
US (1) | US7767138B2 (en) |
EP (1) | EP1718777B1 (en) |
AT (2) | AT7187U1 (en) |
DE (1) | DE502005001733D1 (en) |
ES (1) | ES2294677T3 (en) |
WO (1) | WO2005080618A1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070231595A1 (en) * | 2006-03-28 | 2007-10-04 | Siemens Power Generation, Inc. | Coatings for molybdenum-based substrates |
DE102007061964A1 (en) * | 2007-12-21 | 2009-07-09 | PLANSEE Metall GmbH, Reutte | Molybdenum-silicon alloy with stable metal oxide |
US8449817B2 (en) * | 2010-06-30 | 2013-05-28 | H.C. Stark, Inc. | Molybdenum-containing targets comprising three metal elements |
US9970082B2 (en) | 2011-12-16 | 2018-05-15 | A.L.M.T.Corp. | Heat-resistant alloy and method of manufacturing the same |
US9884367B2 (en) | 2011-12-28 | 2018-02-06 | A.L.M.T. Corp. | Mo—Si—B-based alloy powder, metal-material raw material powder, and method of manufacturing a Mo—Si—B-based alloy powder |
JP5394582B1 (en) | 2012-06-07 | 2014-01-22 | 株式会社アライドマテリアル | Molybdenum heat-resistant alloy |
US9992917B2 (en) | 2014-03-10 | 2018-06-05 | Vulcan GMS | 3-D printing method for producing tungsten-based shielding parts |
RU2570273C1 (en) * | 2014-09-04 | 2015-12-10 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Method of production of composite molybdenum-based material |
DE102017217082A1 (en) * | 2017-09-26 | 2019-03-28 | Siemens Aktiengesellschaft | Powder of a molybdenum, silicon and boron-containing alloy, use of this powder and additive manufacturing process for a workpiece from this powder |
CN107737924A (en) * | 2017-11-30 | 2018-02-27 | 株洲三鑫硬质合金生产有限公司 | Enhancement type hard alloy based on tungsten-cobalt and preparation method thereof |
CN108193115B (en) * | 2017-12-14 | 2019-09-24 | 昆山胜典机电科技进出口有限公司 | A kind of preparation method of molybdenum alloy, molybdenum alloy and its application |
DE102018206359A1 (en) * | 2018-04-25 | 2019-10-31 | MTU Aero Engines AG | METHOD FOR PRODUCING A COMPONENT FROM A MOLYBDEN ALLOYING USING ADDITIVE PROCESS |
DE102018113340B4 (en) * | 2018-06-05 | 2020-10-01 | Otto-Von-Guericke-Universität Magdeburg | Density-optimized molybdenum alloy |
CN109136706B (en) * | 2018-10-15 | 2020-12-18 | 河北四通新型金属材料股份有限公司 | Molybdenum niobium aluminum silicon titanium intermediate alloy and preparation method thereof |
US20230235924A1 (en) * | 2019-10-17 | 2023-07-27 | University Of Florida Research Foundation, Inc. | Solar Collection Energy Storage and Energy Conversion or Chemical Conversion System |
CN111041319B (en) * | 2019-12-31 | 2020-12-08 | 中国人民解放军空军工程大学 | Tough high-temperature-resistant molybdenum oxide alloy and preparation method thereof |
US11761064B2 (en) * | 2020-12-18 | 2023-09-19 | Rtx Corporation | Refractory metal alloy |
CN112828298B (en) * | 2020-12-31 | 2022-10-04 | 中国人民解放军空军工程大学 | Preparation method of high-temperature molybdenum alloy spherical powder |
CN114310500A (en) * | 2021-12-30 | 2022-04-12 | 江苏时代华宜电子科技有限公司 | Novel processing method of high-precision molybdenum alloy wafer |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5693156A (en) | 1993-12-21 | 1997-12-02 | United Technologies Corporation | Oxidation resistant molybdenum alloy |
US5865909A (en) | 1995-07-28 | 1999-02-02 | Iowa State University Research Foundation, Inc. | Boron modified molybdenum silicide and products |
US5963156A (en) * | 1997-10-22 | 1999-10-05 | National Semiconductor Corporation | Sample and hold circuit and method with common mode differential signal feedback for converting single-ended signals to differential signals |
US6652674B1 (en) * | 2002-07-19 | 2003-11-25 | United Technologies Corporation | Oxidation resistant molybdenum |
-
2004
- 2004-02-25 AT AT0013404U patent/AT7187U1/en not_active IP Right Cessation
-
2005
- 2005-02-21 WO PCT/AT2005/000053 patent/WO2005080618A1/en active IP Right Grant
- 2005-02-21 ES ES05706193T patent/ES2294677T3/en active Active
- 2005-02-21 EP EP05706193A patent/EP1718777B1/en not_active Not-in-force
- 2005-02-21 DE DE502005001733T patent/DE502005001733D1/en active Active
- 2005-02-21 AT AT05706193T patent/ATE376072T1/en not_active IP Right Cessation
-
2006
- 2006-08-25 US US11/510,238 patent/US7767138B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
AT7187U1 (en) | 2004-11-25 |
WO2005080618A1 (en) | 2005-09-01 |
ATE376072T1 (en) | 2007-11-15 |
US7767138B2 (en) | 2010-08-03 |
US20060285990A1 (en) | 2006-12-21 |
EP1718777A1 (en) | 2006-11-08 |
DE502005001733D1 (en) | 2007-11-29 |
ES2294677T3 (en) | 2008-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1718777B1 (en) | Method for the production of a molybdenum alloy | |
EP1664362B1 (en) | Ods-alloy of molybdenum, silicon and boron | |
EP3069802B1 (en) | Method for producing a component made of a compound material with a metal matrix and incorporated intermetallic phases | |
DE60033018T2 (en) | METHOD FOR PRODUCING METAL PRODUCTS, SUCH AS PANELS BY COLD FORMING AND FLASH MOUNTING | |
DE68910190T2 (en) | Process for the production of sputtering targets from tungsten titanium. | |
DE3017782C2 (en) | Process for the production of sinterable alloy powders based on titanium | |
EP2200768B1 (en) | Method for producing semi-finished products from niti shape memory alloys | |
DE1909781A1 (en) | Metal powder made from kneaded composite particles and method for their production | |
DE1901766A1 (en) | Method for producing a compacted object from powder, in particular from metal powder | |
EP2990141B1 (en) | Method for producing TiAl components | |
EP2185738B1 (en) | Production of alloys based on titanium aluminides | |
EP3444370B1 (en) | Copper based alloy for the production of metallic solid glasses | |
DE2853575A1 (en) | PROCESS FOR POWDER METALLURGICAL PRODUCTION OF COMPRESSED PRODUCTS FROM A HYDRID-FORMING ALLOY | |
DE102014114830A1 (en) | A method of making a thermoelectric article for a thermoelectric conversion device | |
DE69318682T2 (en) | Magnetic powder of type SE-Fe-B, sintered magnets made of it and manufacturing process | |
EP0396185A1 (en) | Process for preparing semi-finished creep resistant products from high melting metal | |
DE2049546B2 (en) | Process for the powder-metallurgical production of a dispersion-strengthened alloy body | |
DE960930C (en) | Process for the production of castings from molybdenum and / or tungsten alloys | |
EP0172852B1 (en) | High temperature resistant molybdenum alloy | |
DE102018101391A1 (en) | Process for the preparation of a dispersion strengthened copper material and dispersion strengthened copper material | |
DE2539002B2 (en) | USE OF ALLOYS TO MAKE MAGNETIC HEADS | |
DE10110448A1 (en) | Coating powder based on titanium sub-oxides with defined defect structure used in coating technology is modified by alloy elements stabilizing defect structure during processing of coating powder | |
WO1995033079A1 (en) | Method of producing intermetallic master alloys | |
DE3043321A1 (en) | SINTER PRODUCT FROM METAL ALLOY AND THE PRODUCTION THEREOF | |
DE202008001976U9 (en) | Fluid-tight sintered metal parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060825 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20061123 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20071017 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502005001733 Country of ref document: DE Date of ref document: 20071129 Kind code of ref document: P |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2294677 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071017 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071017 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071017 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080317 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080117 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080217 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071017 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071017 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071017 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071017 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071017 |
|
BERE | Be: lapsed |
Owner name: PLANSEE SE Effective date: 20080228 |
|
26N | No opposition filed |
Effective date: 20080718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080228 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080118 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071017 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071017 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080418 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080229 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20130301 Year of fee payment: 9 Ref country code: DE Payment date: 20130219 Year of fee payment: 9 Ref country code: ES Payment date: 20130227 Year of fee payment: 9 Ref country code: GB Payment date: 20130218 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005001733 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140221 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20141031 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005001733 Country of ref document: DE Effective date: 20140902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140221 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140902 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20150505 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140222 |