EP1718777B1 - Method for the production of a molybdenum alloy - Google Patents

Method for the production of a molybdenum alloy Download PDF

Info

Publication number
EP1718777B1
EP1718777B1 EP05706193A EP05706193A EP1718777B1 EP 1718777 B1 EP1718777 B1 EP 1718777B1 EP 05706193 A EP05706193 A EP 05706193A EP 05706193 A EP05706193 A EP 05706193A EP 1718777 B1 EP1718777 B1 EP 1718777B1
Authority
EP
European Patent Office
Prior art keywords
process according
carried out
alloy
temperature
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05706193A
Other languages
German (de)
French (fr)
Other versions
EP1718777A1 (en
Inventor
Pascal Jehanno
Martin Dr. Heilmaier
Heinrich Dr. Kestler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plansee SE
Original Assignee
Plansee SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee SE filed Critical Plansee SE
Publication of EP1718777A1 publication Critical patent/EP1718777A1/en
Application granted granted Critical
Publication of EP1718777B1 publication Critical patent/EP1718777B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • B22F3/156Hot isostatic pressing by a pressure medium in liquid or powder form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/162Machining, working after consolidation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a process for the production of semi-finished or finished parts from a molybdenum alloy with intermetallic phase fractions.
  • Molybdenum and molybdenum alloys are widely used in engineering because of their good mechanical strength properties at high temperatures. A problem of these alloys is their low oxidation resistance at temperatures above 600 ° C. Accordingly diverse are the known measures for improving the oxidation properties. They range from applying superficial protective coatings to alloying measures. Thus, the oxidation resistance can be improved by alloying silicon and boron, as shown in FIG Akinc, M. et al .: Materials Science and Engineering, A261 (1999) 16-23 ; Meyer, MK et al .: Advanced Materials 8 (1996) 8 and Meyer, MK et al .: J. Am. Ceram. Soc. 79 (1996) 63-66 is described.
  • the EP 0 804 627 describes an oxidation resistant molybdenum alloy consisting of a molybdenum matrix and intermetallic phase domains dispersed therein of 10 to 70 vol.% Mo-B silicide, optionally up to 20 vol.% Mo boride and optionally up to 20 vol.% Mo Silicide exists.
  • the alloy comprises, in addition to molybdenum, the elements C, Ti, Hf, Zr, W, Re, Al, Cr, V, Nb, Ta, B and Si in the form that, in addition to the aforementioned phases, one or more elements of the group Ti, Zr , Hf and Al must be present in a proportion of 0.3 to 10 wt.% In the Mo mixed crystal phase.
  • Alloys according to the EP 0 804 627 Form at temperatures above 540 ° C from a boron-silicate layer, which prevents further penetration of oxygen into the body. Due to the Mo matrix alloys according to the EP 0 804 627 a significantly improved ductility.
  • the US 5,595,616 describes a method for producing a Mo-Si-B alloy with Mo matrix, embedded in the intermetallic phase components are.
  • the method involves the rapid solidification of a melt, which can be done by atomizing a melt. Subsequently, the rapidly solidified powder is compacted by hot compacting, wherein this process step must be such that no coarsening of the intermetallic phase components occurs. Semifinished products produced in this way can be further processed by hot forming.
  • the disadvantage here is that for the purpose of rapid solidification, the molybdenum alloy must be melted. Due to the high melting point and the chemical aggressiveness of the melt, however, no crucible material is available. It must therefore be melted without a crucible, which makes this process step very expensive.
  • alloys having an optimum silicon and boron content (about 4% by weight of Si, about 1.5% by weight of B) with regard to their oxidation resistance can be obtained. no longer process forming, whereby a compromise between oxidation resistance and process capability are made.
  • the object of the present invention is then to provide a method which makes it possible to produce oxidation-resistant molybdenum-silicon-boron alloys at low cost using a forming process.
  • the method according to the invention comprises a high-energy milling process in which the powder particles used are mixed into one another in such a way that one can speak of a mechanical alloying.
  • the powder mixture used consists of at least 60% by weight of Mo, 0.5% by weight of Si and 0.2% by weight of B.
  • the powder may be present in elemental, partially prealloyed or completely pre-alloyed form. Elemental powder mixtures are said to be present when the individual particles are in a pure form and the alloy is prepared by mixing just such powders.
  • a powder particle is completely pre-alloyed if it consists of a homogeneous alloy.
  • Partially prealloyed powder consists of particles having different concentration ranges.
  • systems for mechanical alloying high energy mills such as attritors, ball drop mills or vibrating mills are suitable.
  • the Meals depend on the used aggregate. The typical process times when using an Attritor are 0.5 to 48 hours.
  • the mechanically alloyed powder can then be further formed by cold compacting, such as die pressing, cold isostatic pressing, metal powder injection molding or slip casting.
  • cold compacting such as die pressing, cold isostatic pressing, metal powder injection molding or slip casting.
  • hot compacting it is also possible to immediately subject the mechanically alloyed powder to a hot compacting process, as is the case, for example, in hot isostatic pressing and powder extrusion.
  • the former has proven itself especially.
  • the milled powder is then filled into a molybdenum or titanium alloy can, vacuum-sealed, and at temperatures typically in the range of 1,000 ° C to 1,600 ° C, preferably 1300 ° C to 1500 ° C, and a pressure of typically 10 to 300 MPa, preferably 150 to 250 MPa, compressed.
  • sintered material with a predominantly closed porosity can be densely hot-isostatically recompressed.
  • Conventional sintering HIP processes, the Ceracon process or the ROC (rapid omnidirectional compacting) process can also be used.
  • non-pressurized processes such as conventional sintering, plasma-assisted sintering or microwave sintering, suitable, in the case of solid phase sintering temperatures of> 1500 ° C are required. If alloying components are added which lower the solidus temperature, it is also possible to achieve a sufficient density at lower temperatures.
  • a molybdenum alloy prepared in this way can be superplasticized at temperatures of 1000 ° C. to 1600 ° C. at deformation speeds ⁇ of 10 -6 s -1 ⁇ ⁇ 10 ° s -1 .
  • Both forming processes such as rolling or pressing, are suitable as forming processes forming processes, such as pressing into a die or deep drawing.
  • the inventive method it is possible to lower the forming temperatures below 1600 ° C, whereby conventional equipment, in particular heating devices, such as those used for the production of refractory metals, can be used.
  • the process according to the invention has proved to be particularly advantageous when the molybdenum alloy contains 2 to 4% by weight of silicon and 0.5 to 3% by weight of boron.
  • molybdenum-silicon-boron alloys in this concentration range can be processed only at very high forming temperatures, or can no longer be processed in the high silicon and boron range by forming technology.
  • Molybdenum alloys containing from 2 to 4% by weight of silicon and from 0.5 to 3% by weight of boron contain intermetallic molybdenum-silicide, molybdenum-boron-silicide, optionally also molybdenum-boride phases, and molybdenum or molybdenum mixed crystal , Mo 3 Si and Mo 5 SiB 2 are to be mentioned as preferred molybdenum silicide or molybdenum boron silicide phases.
  • the superplastic forming behavior is not adversely affected even when admixing oxides or mixed oxides which have a vapor pressure at 1500 ° C. of ⁇ 5 ⁇ 10 -2 bar.
  • the alloying of oxides or mixed oxides improves the hot or creep resistance without surprisingly the ductility of the material is negatively affected.
  • Particularly suitable oxides are Y 2 O 3 , ZrO 2 , HfO 2 , TiO 2 , Al 2 O 3 , CaO, MgO and SrO or their mixed oxides.
  • molybdenum alloy added to 0.001 to 5 wt.% Of one or more metals from the group rhenium, titanium, zirconium, hafnium, vanadium, chromium and aluminum, this promotes the formation of a dense boron-silicate layer.
  • the niobium content was varied with the silicon and boron contents being respectively 3 and 1% by weight.
  • the alloy compositions are shown in Table 1. ⁇ b> Table 1 ⁇ / b>: Composition of molybdenum-silicon-boron alloys method Mo (% by weight) Nb (% by weight) Si (% by weight) B (% by weight) Alloy 1 inventively 93 3 3 1 Alloy 2 inventively 86 10 3 1 Alloy 3 inventively 76 20 3 1 Alloy 4 State of the art 76 20 3 1 Alloy 5 State of the art 96 0 3 1
  • Alloys 1, 2 and 3 were made according to the method of the invention, and the fabrication of alloys 4 and 5 followed the state of the art. Powder blends according to alloy compositions 1, 2 and 3 were mechanically alloyed in a stainless steel attritor. 100 kg of steel balls with a diameter of 9 mm were used. The respective powder batch quantity was 5 kg. The grinding took place under hydrogen. The milled powder was filled into a molybdenum alloy pot, vacuum-sealed and hot-isostatically compressed for 4 hours at a temperature of 1,400 ° C. and a pressure of 200 MPa. The thus hot-compacted material showed a pore-free microstructure and a density of> 99% of the theoretical density.
  • prior art alloys 4 and 5 were prepared by atomizing sintered bars.
  • the powder was cold isostatically compacted at 200 MPa and sintered at 1,700 ° C for 5 hours under hydrogen.
  • the sintered rods were atomized without crucibles.
  • the powder thus prepared was filled in a titanium can and hot isostatically compacted (1500 ° C, 200 MPa, 4 hours). After hot isostatic pressing, a density of 9.55 g / cm 2 was measured, corresponding to 99% of the theoretical density.
  • molybdenum-silicon-boron-niobium alloys having the compositions shown in Table 1 were used.
  • the materials according to the invention were filled into a titanium can after the mechanical alloying, which took place in a 250 l attritor under hydrogen, sealed in a vacuum-tight manner and at 1400 ° C. and 200 MPa hot isostatically compacted. The density was> 99% of the theoretical density.
  • Alloys 4 and 5 were prepared according to Example 1. Semifinished product thus produced was subjected to a heat treatment under vacuum. The temperature was 1.700 ° C with a holding time of 5 hours. Tensile samples were made by eroding and turning.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to a method for the production of semi-finished or finished parts made of a molybdenum alloy with intermetallic phase parts, preferably molybdenum silicide, molybdenum boron silicide, selectively also molybdenum boride, phases. The heat compacted material, starting from a mechanically alloyed powder, exhibits superplastic forming behavior. It is thus possible to reduce the forming temperature by at least 300 °C, wherein processing is possible on conventional systems.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Halbzeug oder Fertigteilen aus einer Molybdän-Legierung mit intermetallischen Phasenanteilen.The invention relates to a process for the production of semi-finished or finished parts from a molybdenum alloy with intermetallic phase fractions.

Molybdän und Molybdän-Legierungen finden wegen ihrer guten mechanischen Festigkeitseigenschaften bei hohen Temperaturen verbreitet technische Verwendung. Ein Problem dieser Legierungen ist deren geringe Oxidationsbeständigkeit bei Temperaturen oberhalb 600°C. Entsprechend vielfältig sind die bekannten Maßnahmen zur Verbesserung der Oxidationseigenschaften. Sie reichen vom Aufbringen oberflächlicher Schutzschichten bis zu legierungstechnischen Maßnahmen. So kann die Oxidationsbeständigkeit durch das Zulegieren von Silizium und Bor verbessert werden, wie dies in Akinc, M. et al.: Materials Science and Engineering, A261 (1999) 16-23 ; Meyer, M.K. et al.: Advanced Materials 8 (1996) 8 und Meyer, M.K. et al.: J. Am. Ceram. Soc. 79 (1996) 63-66 beschrieben ist.Molybdenum and molybdenum alloys are widely used in engineering because of their good mechanical strength properties at high temperatures. A problem of these alloys is their low oxidation resistance at temperatures above 600 ° C. Accordingly diverse are the known measures for improving the oxidation properties. They range from applying superficial protective coatings to alloying measures. Thus, the oxidation resistance can be improved by alloying silicon and boron, as shown in FIG Akinc, M. et al .: Materials Science and Engineering, A261 (1999) 16-23 ; Meyer, MK et al .: Advanced Materials 8 (1996) 8 and Meyer, MK et al .: J. Am. Ceram. Soc. 79 (1996) 63-66 is described.

Auch die EP 0 804 627 beschreibt eine oxidationsbeständige Molybdän-Legierung, die aus einer Molybdän-Matrix und darin dispergierten intermetallischen Phasenbereichen aus 10 bis 70 Vol.% Mo-B-Silizid, wahlweise bis zu 20 Vol.% Mo-Borid und wahlweise bis zu 20 Vol.% Mo-Silizid besteht. Die Legierung umfasst neben Molybdän die Elemente C, Ti, Hf, Zr, W, Re, Al, Cr, V, Nb, Ta, B und Si in der Form, dass neben den vorgenannten Phasen eines oder mehrere Elemente der Gruppe Ti, Zr, Hf und Al in einem Anteil von 0,3 bis 10 Gew.% in der Mo-Mischkristallphase vorhanden sein muss.
Legierungen gemäß der EP 0 804 627 bilden bei Temperaturen über 540°C eine Bor-Silikatschicht aus, die ein weiteres Eindringen von Sauerstoff ins Körperinnere verhindert. Aufgrund der Mo-Matrix zeigen Legierungen gemäß der EP 0 804 627 eine deutlich verbesserte Duktilität.
Also the EP 0 804 627 describes an oxidation resistant molybdenum alloy consisting of a molybdenum matrix and intermetallic phase domains dispersed therein of 10 to 70 vol.% Mo-B silicide, optionally up to 20 vol.% Mo boride and optionally up to 20 vol.% Mo Silicide exists. The alloy comprises, in addition to molybdenum, the elements C, Ti, Hf, Zr, W, Re, Al, Cr, V, Nb, Ta, B and Si in the form that, in addition to the aforementioned phases, one or more elements of the group Ti, Zr , Hf and Al must be present in a proportion of 0.3 to 10 wt.% In the Mo mixed crystal phase.
Alloys according to the EP 0 804 627 Form at temperatures above 540 ° C from a boron-silicate layer, which prevents further penetration of oxygen into the body. Due to the Mo matrix alloys according to the EP 0 804 627 a significantly improved ductility.

Die US 5,595,616 beschreibt ein Verfahren zur Herstellung einer Mo-Si-B Legierung mit Mo Matrix, in die intermetallische Phasenbestandteile eingelagert sind. Das Verfahren umfasst das rasche Erstarren einer Schmelze, wobei dies durch das Zerstäuben einer Schmelze erfolgen kann. In weiterer Folge wird das rasch erstarrte Pulver durch Warmkompaktieren verdichtet, wobei dieser Prozessschritt so zu erfolgen hat, dass keine Vergröberung der intermetallischen Phasenbestandteile auftritt. So hergestelltes Halbzeug lässt sich durch Warmumformen weiter verarbeiten. Nachteilig dabei ist, dass zum Zwecke des raschen Erstarrens die Molybdänlegierung erschmolzen werden muss. Auf Grund des hohen Schmelzpunktes und der chemischen Aggressivität der Schmelze steht dazu jedoch kein Tiegelmaterial zur Verfügung. Es muss daher tiegellos erschmolzen werden, was diesen Prozessschritt sehr aufwendig macht. Zudem lassen sich durch dieses Verfahren Legierungen mit einem in Hinblick auf deren Oxidationsbeständigkeit optimalen Silizium- und Bor-Gehalt (ca. 4 Gew.% Si, ca. 1,5 Gew.% B)
umformtechnisch nicht mehr verarbeiten, wodurch ein Kompromiss zwischen Oxidationsbeständigkeit und Prozessfähigkeit gemacht werden.
Aufgabe der vorliegenden Erfindung ist danach die Bereitstellung eines Verfahrens, das es ermöglicht, oxidationsbeständige Molybdän-Silizium-Bor Legierungen unter Anwendung eines Umformverfahrens kostengünstig herzustellen.
The US 5,595,616 describes a method for producing a Mo-Si-B alloy with Mo matrix, embedded in the intermetallic phase components are. The method involves the rapid solidification of a melt, which can be done by atomizing a melt. Subsequently, the rapidly solidified powder is compacted by hot compacting, wherein this process step must be such that no coarsening of the intermetallic phase components occurs. Semifinished products produced in this way can be further processed by hot forming. The disadvantage here is that for the purpose of rapid solidification, the molybdenum alloy must be melted. Due to the high melting point and the chemical aggressiveness of the melt, however, no crucible material is available. It must therefore be melted without a crucible, which makes this process step very expensive. In addition, by this process, alloys having an optimum silicon and boron content (about 4% by weight of Si, about 1.5% by weight of B) with regard to their oxidation resistance can be obtained.
no longer process forming, whereby a compromise between oxidation resistance and process capability are made.
The object of the present invention is then to provide a method which makes it possible to produce oxidation-resistant molybdenum-silicon-boron alloys at low cost using a forming process.

Gelöst wird diese Aufgabe durch ein Verfahren gemäß Anspruch 1.
Das erfindungsgemäße Verfahren umfasst einen Hochenergie-Mahlprozess, bei dem die eingesetzten Pulverpartikel derartig ineinander vermengt werden, dass man von einem mechanischen Legieren sprechen kann. Die eingesetzte Pulvermischung besteht dabei zumindest aus 60 Gew.% Mo, 0,5 Gew.% Si und 0,2 Gew.% B. Das Pulver kann dabei in elementarer, in teilweise vorlegierter oder vollständig vorlegierter Form vorliegen. Von elementaren Pulvermischungen spricht man dann, wenn die Einzelpartikel in reiner Form vorliegen und die Legierung durch Mischen von ebensolchen Pulvern hergestellt wird. Ein Pulverpartikel ist dann vollständig vorlegiert, wenn dieses aus einer homogenen Legierung besteht. Teilweise vorlegiertes Pulver besteht aus Partikeln, die unterschiedliche Konzentrationsbereiche aufweisen. Als Anlagen für das mechanische Legieren sind Hochenergiemühlen, wie beispielsweise Attritoren, Kugelfallmühlen oder Schwingmühlen geeignet. Die Mahlzeiten hängen dabei vom verwendeten Aggregat ab. So liegen die typischen Prozesszeiten bei Verwendung eines Attritors bei 0,5 bis 48 Stunden.
This object is achieved by a method according to claim 1.
The method according to the invention comprises a high-energy milling process in which the powder particles used are mixed into one another in such a way that one can speak of a mechanical alloying. The powder mixture used consists of at least 60% by weight of Mo, 0.5% by weight of Si and 0.2% by weight of B. The powder may be present in elemental, partially prealloyed or completely pre-alloyed form. Elemental powder mixtures are said to be present when the individual particles are in a pure form and the alloy is prepared by mixing just such powders. A powder particle is completely pre-alloyed if it consists of a homogeneous alloy. Partially prealloyed powder consists of particles having different concentration ranges. As systems for mechanical alloying high energy mills, such as attritors, ball drop mills or vibrating mills are suitable. The Meals depend on the used aggregate. The typical process times when using an Attritor are 0.5 to 48 hours.

Um eine Oxidation der Legierungskomponenten zu vermeiden, ist es erforderlich, den Mahlprozess unter Schutzgasatmosphäre durchzuführen. Besonders bewährt hat sich dabei die Verwendung von Wasserstoff. Das mechanisch legierte Pulver kann dann in weiterer Folge durch Kaltkompaktieren, wie beispielsweise Matrizenpressen, kaltisostatisches Pressen, Metallpulverspritzguss oder Schlickerguss geformt werden. Es ist jedoch auch möglich, das mechanisch legierte Pulver sofort einem Warmkompaktierprozess zu unterziehen, wie dies beispielsweise beim heißisostatischen Pressen und dem Pulverstrangpressen der Fall ist. Ersteres hat sich dabei besonders bewährt. Dabei wird das gemahlene Pulver in eine Kanne aus einer Molybdän- oder Titanlegierung gefüllt, vakuumdicht verschweißt und bei Temperaturen typischerweise im Bereich von 1.000°C bis 1.600°C, vorzugsweise 1300°C bis 1500°C, und einem Druck von typischerweise 10 bis 300 MPa, vorzugsweise 150 bis 250 MPa, verdichtet. Alternativ kann auch gesintertes Material mit überwiegend geschlossener Porosität kannenlos heißisostatisch nachverdichtet werden. Auch konventionelle SinterHIP-Verfahren, das Ceracon Verfahren oder das ROC (Rapid Omnidirectional Compacting) Verfahren können zur Anwendung kommen.
Daneben sind auch drucklose Verfahren, wie beispielsweise konventionelles Sintern, plasma-unterstütztes Sintern oder Mikrowellensintern, geeignet, wobei im Falle des Festphasensinterns Temperaturen von > 1500 °C erforderlich sind. Werden Legierungskomponenten zugesetzt, die die Solidustemperatur absenken, ist es auch möglich, bei tieferen Temperaturen eine ausreichende Dichte zu erzielen.
In order to avoid oxidation of the alloy components, it is necessary to carry out the milling process under a protective gas atmosphere. The use of hydrogen has proven particularly useful. The mechanically alloyed powder can then be further formed by cold compacting, such as die pressing, cold isostatic pressing, metal powder injection molding or slip casting. However, it is also possible to immediately subject the mechanically alloyed powder to a hot compacting process, as is the case, for example, in hot isostatic pressing and powder extrusion. The former has proven itself especially. The milled powder is then filled into a molybdenum or titanium alloy can, vacuum-sealed, and at temperatures typically in the range of 1,000 ° C to 1,600 ° C, preferably 1300 ° C to 1500 ° C, and a pressure of typically 10 to 300 MPa, preferably 150 to 250 MPa, compressed. Alternatively, sintered material with a predominantly closed porosity can be densely hot-isostatically recompressed. Conventional sintering HIP processes, the Ceracon process or the ROC (rapid omnidirectional compacting) process can also be used.
In addition, non-pressurized processes, such as conventional sintering, plasma-assisted sintering or microwave sintering, suitable, in the case of solid phase sintering temperatures of> 1500 ° C are required. If alloying components are added which lower the solidus temperature, it is also possible to achieve a sufficient density at lower temperatures.

Es hat sich nun überraschenderweise gezeigt, dass sich eine so hergestellte Molybdänlegierung bei Temperaturen von 1.000°C bis 1.600°C bei Verformungsgeschwindigkeiten ε̇ von 10-6s-1< ε̇ < 10° s-1 superplastisch umformen lässt. Als Umformverfahren eigenen sich dabei sowohl Halbzeugherstellverfahren, wie beispielsweise Walzen oder Pressen, als auch formgebende Verfahren, wie beispielsweise Pressen in ein Gesenk oder Tiefziehen. Durch das erfindungsgemäße Verfahren ist es möglich, die Umformtemperaturen auf unter 1600°C zu senken, wodurch konventionelle Anlagen, im speziellen Anwärmeinrichtungen, wie sie zur Herstellung von Refraktärmetallen eingesetzt werden, Verwendung finden können.It has now surprisingly been found that a molybdenum alloy prepared in this way can be superplasticized at temperatures of 1000 ° C. to 1600 ° C. at deformation speeds ε̇ of 10 -6 s -1 <ε̇ <10 ° s -1 . Both forming processes, such as rolling or pressing, are suitable as forming processes forming processes, such as pressing into a die or deep drawing. The inventive method, it is possible to lower the forming temperatures below 1600 ° C, whereby conventional equipment, in particular heating devices, such as those used for the production of refractory metals, can be used.

Um jedoch eine ausreichende Kriechfestigkeit zu erzielen, ist es erforderlich, die superplastisch umgeformte Molybdän-Legierung in einem weiteren Prozessschritt einer Wärmebehandlung bei einer Temperatur > 1.400°C, bevorzugt 1600°C bis 1900°C, bevorzugt in reduzierender Atmosphäre oder Vakuum zu unterziehen. Dies wird in den Beispielen dokumentiert.However, in order to achieve sufficient creep resistance, it is necessary to subject the superplastic formed molybdenum alloy in a further process step to a heat treatment at a temperature> 1,400 ° C, preferably 1600 ° C to 1900 ° C, preferably in a reducing atmosphere or vacuum. This is documented in the examples.

Grundsätzlich ist es auch möglich, die Molybdänlegierung vor dem superplastischen Umformschritt konventionell gemäß dem Stand der Technik zu verformen. Dies kann dann vorteilhaft sein, wenn eine zusätzliche Gefügefeinung und Homogenisierung wünschenswert ist, wie dies beispielsweise dann der Fall ist, wenn die Warmkompaktierung durch druckloses Sintern erfolgt.In principle, it is also possible to deform the molybdenum alloy prior to the superplastic forming step conventionally according to the prior art. This can be advantageous if additional structural refinement and homogenization is desirable, as is the case, for example, when hot compaction takes place by pressureless sintering.

Besonders vorteilhaft hat sich das erfindungsgemäße Verfahren dann erwiesen, wenn die Molybdän-Legierung 2 bis 4 Gew.% Silizium und 0,5 bis 3 Gew.% Bor enthält.
Wie bereits eingangs ausgeführt, können Molybdän-Silizium-Bor Legierungen in diesem Konzentrationsbereich nur bei sehr hohen Umformtemperaturen prozessiert, bzw. im hohen Silizium- und Bor-Bereich umformtechnisch nicht mehr verarbeitet werden. Molybdän-Legierungen mit 2 bis 4 Gew.% Silizium und 0,5 bis 3 Gew.% Bor enthalten intermetallische Molybdän-Silizid-, Molybdän-Bor-Silizid-, wahlweise auch Molybdän-Borid-Phasen, und Molybdän bzw. Molybdän-Mischkristall. Als bevorzugte Molybdän-Silizid- bzw. Molybdän-Bor-Silizid-Phasen sind dabei Mo3Si und Mo5SiB2 zu nennen. Durch das erfindungsgemäße Verfahren ist es möglich, auch gemäß dem Stand der Technik umformtechnisch nicht verarbeitbare Legierungen zu verformen.
The process according to the invention has proved to be particularly advantageous when the molybdenum alloy contains 2 to 4% by weight of silicon and 0.5 to 3% by weight of boron.
As already mentioned, molybdenum-silicon-boron alloys in this concentration range can be processed only at very high forming temperatures, or can no longer be processed in the high silicon and boron range by forming technology. Molybdenum alloys containing from 2 to 4% by weight of silicon and from 0.5 to 3% by weight of boron contain intermetallic molybdenum-silicide, molybdenum-boron-silicide, optionally also molybdenum-boride phases, and molybdenum or molybdenum mixed crystal , Mo 3 Si and Mo 5 SiB 2 are to be mentioned as preferred molybdenum silicide or molybdenum boron silicide phases. By means of the method according to the invention, it is also possible to deform alloys that can not be processed by forming technology according to the prior art.

Weiters hat es sich gezeigt, dass bei Anwendung des erfindungsgemäßen Verfahrens Molybdän-Silizium-Bor Legierungen, die 0,5 bis 30 Gew.% Niob und/oder Tantal enthalten, sowohl höhere Duktilitäts- als auch Warmfestigkeitswerte aufweisen, als Legierungen, die diese Legierungsbestandteile nicht oder in geringerem Maße enthalten. Auch dies wird in den Beispielen näher erläutert.Furthermore, it has been found that when using the method according to the invention molybdenum-silicon-boron alloys containing 0.5 to 30 wt.% Niobium and / or tantalum, both higher ductility and heat resistance values, as alloys containing these alloying components not or to a lesser extent included. This too is explained in more detail in the examples.

Überraschenderweise hat es sich ebenfalls gezeigt, dass auch unter Beimischen von Oxiden bzw. Mischoxiden, die einen Dampfdruck bei 1.500°C von < 5 x 10-2 bar aufweisen, das superplastische Umformverhalten nicht negativ beeinflusst wird. Das Zulegieren von Oxiden bzw. Mischoxiden verbessert die Warm- bzw. Kriechfestigkeit, ohne dass dadurch überraschenderweise die Duktilität des Werkstoffes negativ beeinflusst wird. Als besonders geeignete Oxide sind dabei Y2O3, ZrO2, HfO2, TiO2, Al2O3, CaO, MgO und SrO bzw. deren Mischoxide zu nennen.Surprisingly, it has also been found that the superplastic forming behavior is not adversely affected even when admixing oxides or mixed oxides which have a vapor pressure at 1500 ° C. of <5 × 10 -2 bar. The alloying of oxides or mixed oxides improves the hot or creep resistance without surprisingly the ductility of the material is negatively affected. Particularly suitable oxides are Y 2 O 3 , ZrO 2 , HfO 2 , TiO 2 , Al 2 O 3 , CaO, MgO and SrO or their mixed oxides.

Wird der Molybdän-Legierung 0,001 bis 5 Gew.% eines oder mehrerer Metalle aus der Gruppe Rhenium, Titan, Zirkon, Hafnium, Vanadin, Chrom und Aluminium zulegiert, fördert dies die Ausbildung einer dichten Bor-SilikatSchicht.If the molybdenum alloy added to 0.001 to 5 wt.% Of one or more metals from the group rhenium, titanium, zirconium, hafnium, vanadium, chromium and aluminum, this promotes the formation of a dense boron-silicate layer.

Im Folgenden wird die Erfindung durch Beispiele näher beschrieben.In the following the invention will be described by examples.

Beispiel 1example 1

Für die Herstellung einer Molybdänlegierung kamen folgende Pulver zum Einsatz:

  • Molybdän mit einer Korngröße nach Fisher von 4,1 µm,
  • Niob, abgesiebt auf < 32 µm,
  • Silizium mit einer Korngröße nach Fisher von 4,3 µm,
  • Bor mit einer Korngröße nach Fisher von 1,01 µm.
The following powders were used for the production of a molybdenum alloy:
  • Molybdenum with a Fisher grain size of 4.1 μm,
  • Niobium screened to <32 μm,
  • Silicon with a grain size of Fisher of 4.3 microns,
  • Boron with a grain size of Fisher of 1.01 microns.

Der Niob-Gehalt wurde variiert, wobei der Silizium- und Bor-Gehalt jeweils 3 bzw. 1 Gew.% betrug. Die Legierungszusammensetzungen sind aus Tabelle 1 zu entnehmen. Tabelle 1: Zusammensetzung der Molybdän-Silizium-Bor Legierungen Verfahren Mo (Gew.%) Nb (Gew.%) Si (Gew.%) B (Gew.%) Legierung 1 erfindungsgemäß 93 3 3 1 Legierung 2 erfindungsgemäß 86 10 3 1 Legierung 3 erfindungsgemäß 76 20 3 1 Legierung 4 Stand der Technik 76 20 3 1 Legierung 5 Stand der Technik 96 0 3 1 The niobium content was varied with the silicon and boron contents being respectively 3 and 1% by weight. The alloy compositions are shown in Table 1. <b> Table 1 </ b>: Composition of molybdenum-silicon-boron alloys method Mo (% by weight) Nb (% by weight) Si (% by weight) B (% by weight) Alloy 1 inventively 93 3 3 1 Alloy 2 inventively 86 10 3 1 Alloy 3 inventively 76 20 3 1 Alloy 4 State of the art 76 20 3 1 Alloy 5 State of the art 96 0 3 1

Legierung 1, 2 und 3 wurden gemäß dem erfindungsgemäßen Verfahren gefertigt, die Fertigung der Legierungen 4 und 5 folgte dem Stand der Technik. Pulvermischungen gemäß Legierungszusammensetzung 1, 2 und 3 wurden in einem Attritor aus rostfreiem Stahl mechanisch legiert. Dabei kamen 100 kg Stahlkugeln mit einem Durchmesser von 9 mm zum Einsatz. Die jeweilige Pulverchargenmenge betrug 5 kg. Das Mahlen fand unter Wasserstoff statt. Das gemahlene Pulver wurde in eine Kanne aus einer Molybdän-Legierung gefüllt, vakuumdicht verschweißt und bei einer Temperatur von 1.400°C und einem Druck von 200 MPa 4 Stunden heißisostatisch verdichtet. Das so warmkompaktierte Material zeigte eine porenfreie Mikrostruktur und eine Dichte von > 99 % der theoretischen Dichte. Zu Vergleichszwecken wurden die Legierungen 4 und 5 gemäß dem Stand der Technik über das Verdüsen von Sinterstäben hergestellt. Das Pulver wurde bei 200 MPa kaltisostatisch verdichtet und bei 1.700°C 5 Stunden unter Wasserstoff gesintert. Die gesinterten Stäbe wurden tiegelfrei verdüst. Das so hergestellte Pulver wurde in eine Titan-Kanne gefüllt und heißisostatisch verdichtet (1.500°C, 200 MPa, 4 Stunden). Nach dem heißisostatischen Pressen wurde eine Dichte von 9,55 g/cm2 gemessen, entsprechend 99 % der theoretischen Dichte.Alloys 1, 2 and 3 were made according to the method of the invention, and the fabrication of alloys 4 and 5 followed the state of the art. Powder blends according to alloy compositions 1, 2 and 3 were mechanically alloyed in a stainless steel attritor. 100 kg of steel balls with a diameter of 9 mm were used. The respective powder batch quantity was 5 kg. The grinding took place under hydrogen. The milled powder was filled into a molybdenum alloy pot, vacuum-sealed and hot-isostatically compressed for 4 hours at a temperature of 1,400 ° C. and a pressure of 200 MPa. The thus hot-compacted material showed a pore-free microstructure and a density of> 99% of the theoretical density. For comparative purposes, prior art alloys 4 and 5 were prepared by atomizing sintered bars. The powder was cold isostatically compacted at 200 MPa and sintered at 1,700 ° C for 5 hours under hydrogen. The sintered rods were atomized without crucibles. The powder thus prepared was filled in a titanium can and hot isostatically compacted (1500 ° C, 200 MPa, 4 hours). After hot isostatic pressing, a density of 9.55 g / cm 2 was measured, corresponding to 99% of the theoretical density.

Aus so hergestellten Halbzeugen wurden Proben mittels Drahterosion und Drehen gefertigt. Diese Proben wurden bei einer Temperatur von 1.300°C und Dehnraten von 10-4 s-1 bzw. 10-3 s-1 verformt. Bei erfindungsgemäßem Halbzeug konnte dabei superplastisches Verhalten festgestellt werden. In Abhängigkeit von Verformungsgeschwindigkeit und Legierungszusammensetzung lagen die gemessenen Dehnungen bei 60,2 bis 261,5 % (siehe Tabelle 2). Diese Eigenschaften ermöglichen das superplastische Umformen bei Temperaturen unterhalb 1.500°C, d.h. auf konventionellen Anlagen für die Refraktärmetallherstellung. Ein Niob-Zusatz von über 5 Gew.% (Legierung 2 und Legierung 3) bewirkt eine deutliche Steigerung der Festigkeit bei gleichzeitiger Erhöhung der Bruchdehnung. Tabelle 2: Eigenschaften erfindungsgemäß hergestellter Molybdän-Silizium-Bor Legierungen (Legierungen 1 bis 3) im Vergleich zum Stand der Technik (Legierung 4 und 5) Bezeichnung Temperatur (°C) Dehnrate (s-1) Maximale Spannung (MPa) Dehnung (%) Legierung 1 1.300 10-4 33 161,7 1.300 10-3 125 60,2 Legierung 2 1.300 10-4 43 210,8 1.300 10-3 140 76,5 Legierung 3 1.300 10-4 45 281,5 1.300 10-3 162 95,3 Legierung 4 1.300 10-4 299 11,9 1.300 10-3 267 0,1 Legierung 5 1.300 10-4 278 15,2 1.300 10-3 250 0,1 From semifinished products thus produced samples were prepared by wire erosion and turning. These samples were deformed at a temperature of 1300 ° C and strain rates of 10 -4 s -1 and 10 -3 s -1, respectively. With semifinished product according to the invention, superplastic behavior could be determined. In Depending on the deformation rate and alloy composition, the measured strains were 60.2 to 261.5% (see Table 2). These properties enable superplastic forming at temperatures below 1,500 ° C, ie on conventional equipment for refractory metal production. A niobium addition of more than 5 wt.% (Alloy 2 and Alloy 3) causes a significant increase in strength while increasing the elongation at break. <b> Table 2: </ b> Properties of Inventive Molybdenum-Silicon-Boron Alloys (Alloys 1 to 3) Compared to the Prior Art (Alloys 4 and 5) description Temperature (° C) Strain rate (s -1 ) Maximum voltage (MPa) Strain (%) Alloy 1 1300 10 -4 33 161.7 1300 10 -3 125 60.2 Alloy 2 1300 10 -4 43 210.8 1300 10 -3 140 76.5 Alloy 3 1300 10 -4 45 281.5 1300 10 -3 162 95.3 Alloy 4 1300 10 -4 299 11.9 1300 10 -3 267 0.1 Alloy 5 1300 10 -4 278 15.2 1300 10 -3 250 0.1

Beispiel 2Example 2

Es kamen wiederum Molybdän-Silizium-Bor-Niob Legierungen mit den in Tabelle 1 wiedergegebenen Zusammensetzungen zum Einsatz. Die erfindungsgemäßen Werkstoffe wurden dabei nach dem mechanischen Legieren, das in einen 250 l Attritor unter Wasserstoff stattfand, in eine Titan-Kanne gefüllt, vakuumdicht verschlossen und bei 1.400°C und 200 MPa heißisostatisch verdichtet. Die Dichte betrug > 99 % der theoretischen Dichte.
Die Legierungen 4 und 5 wurden gemäß Beispiel 1 hergestellt. So gefertigtes Halbzeug wurde einer Wärmebehandlung unter Vakuum unterzogen. Die Temperatur betrug dabei 1.700°C bei einer Haltezeit von 5 Stunden. Zugproben wurden mittels Erodieren und Drehen hergestellt. Die Zugversuche wurden bei einer konstanten Dehnrate von 10-4 s-1 bei drei verschiedenen Temperaturen durchgeführt. Die Ergebnisse sind in Tabelle 3 wiedergegeben. Speziell Legierung 3 zeigt dabei eine deutlich verbesserte Warmfestigkeit. Tabelle 3: Ergebnisse der Zugversuche an wärmebehandelten Molybdän-Silizium-Bor Legierungen (Legierungen 1 bis 3 erfindungsgemäß hergestellt, im Vergleich zum Stand der Technik, Legierung 4) Temperatur (°C) Maximale Spannung (MPa) Dehnung (%) 1.200 418 16,6 Legierung 1 1.300 333 23,2 1.400 120 65,1 1.200 445 2,1 Legierung 2 1.300 358 17,6 1.400 153 27,1 1.200 528 2,1 Legierung 3 1.300 372 17,2 1.400 161 35,1 1.200 472 3,1 Legierung 4 1.300 288 15,4 1.400 127 23,9 1.200 424 5,1 Legierung 5 1.300 267 17,1 1.400 108 30,3
Again, molybdenum-silicon-boron-niobium alloys having the compositions shown in Table 1 were used. The materials according to the invention were filled into a titanium can after the mechanical alloying, which took place in a 250 l attritor under hydrogen, sealed in a vacuum-tight manner and at 1400 ° C. and 200 MPa hot isostatically compacted. The density was> 99% of the theoretical density.
Alloys 4 and 5 were prepared according to Example 1. Semifinished product thus produced was subjected to a heat treatment under vacuum. The temperature was 1.700 ° C with a holding time of 5 hours. Tensile samples were made by eroding and turning. The tensile tests were carried out at a constant strain rate of 10 -4 s -1 at three different temperatures. The results are shown in Table 3. Specifically Alloy 3 shows a significantly improved heat resistance. <b> Table 3: </ b> Results of tensile tests on heat-treated molybdenum-silicon-boron alloys (alloys 1 to 3 produced according to the invention, in comparison with the prior art, alloy 4) Temperature (° C) Maximum voltage (MPa) Strain (%) 1200 418 16.6 Alloy 1 1300 333 23.2 1400 120 65.1 1200 445 2.1 Alloy 2 1300 358 17.6 1400 153 27.1 1200 528 2.1 Alloy 3 1300 372 17.2 1400 161 35.1 1200 472 3.1 Alloy 4 1300 288 15.4 1400 127 23.9 1200 424 5.1 Alloy 5 1300 267 17.1 1400 108 30.3

Claims (15)

  1. Process for the production of semi-finished or finished parts from a Mo alloy having intermetallic phase components, which process comprises at least the following steps:
    - mechanical alloying of a powder mixture containing at least 60 wt.% Mo, at least 0.5 wt.% Si and at least 0.2 wt.% B, wherein the powder mixture can be present in elementary, partially pre-alloyed or completely pre-alloyed form;
    - pressureless and/or pressure-assisted hot compaction at a temperature T, where 1100°C < T < 1900°C;
    - superplastic forming at a forming temperature T, where 1000°C < T < 1600°C, at a forming rateε̇ of 1 x 10-6 s-1 < ε̇ < 100 s-1;
    - heat treatment at a temperature T, where 1400°C < T < 1900°C.
  2. Process according to claim 1, characterised in that the Mo alloy contains from 2 to 4 wt.% Si and from 0.5 to 3 wt.% B.
  3. Process according to any one of the preceding claims, characterised in that the Mo alloy contains from 0.5 to 30 wt.% Nb and/or Ta.
  4. Process according to any one of the preceding claims, characterised in that the Mo alloy contains one or more oxides or mixed oxides having a vapour pressure at 1500°C of < 5 x 10-2 bar.
  5. Process according to any one of the preceding claims, characterised in that the Mo alloy contains at least one oxide or mixed oxide from the group of the metals Y, lanthanides, Zr, Hf, Ti, Al, Ca, Mg and Sr.
  6. Process according to any one of the preceding claims, characterised in that the Mo alloy contains from 0.001 to 5 wt.% of one or more metals from the group Re, Ti, Zr, Hf, V, Ni, Co and Al.
  7. Process according to any one of the preceding claims, characterised in that the mechanical alloying is carried out in an attritor, a fallirig-ball mill or a vibratory mill with process times of from 0.5 to 48 hours.
  8. Process according to claim 7, characterised in that the mechanical alloying is carried out under hydrogen.
  9. Process according to any one of the preceding claims, characterised in that the mechanically alloyed powder is subjected to cold compaction before the hot compaction.
  10. Process according to any one of the preceding claims, characterised in that the hot compaction is pressure-assisted and is carried out at a temperature T, where 1200°C < T < 1600°C.
  11. Process according to claim 10, characterised in that the hot compaction is carried out by hot isostatic pressing, sintering HIP or by powder extrusion.
  12. Process according to any one of claims 1 to 9, characterised in that the hot compaction is pressureless and is carried out at a temperature T, where 1600°C < T < 1900°C.
  13. Process according to any one of the preceding claims, characterised in that the superplastic forming is carried out at a forming rate ε̇ of 1 x 10-4 s-1 < ε̇ < 1 x 10-2 s-1.
  14. Process according to any one of the preceding claims, characterised in that the superplastic forming is carried out by rolling or pressing.
  15. Process according to any one of the preceding claims, characterised in that the heat treatment is carried out at a temperature T, where T 1600°C < T < 1900°C, in a reducing atmosphere or in vacuo.
EP05706193A 2004-02-25 2005-02-21 Method for the production of a molybdenum alloy Not-in-force EP1718777B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0013404U AT7187U1 (en) 2004-02-25 2004-02-25 METHOD FOR PRODUCING A MOLYBDENUM ALLOY
PCT/AT2005/000053 WO2005080618A1 (en) 2004-02-25 2005-02-21 Method for the production of a molybdenum alloy

Publications (2)

Publication Number Publication Date
EP1718777A1 EP1718777A1 (en) 2006-11-08
EP1718777B1 true EP1718777B1 (en) 2007-10-17

Family

ID=32931927

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05706193A Not-in-force EP1718777B1 (en) 2004-02-25 2005-02-21 Method for the production of a molybdenum alloy

Country Status (6)

Country Link
US (1) US7767138B2 (en)
EP (1) EP1718777B1 (en)
AT (2) AT7187U1 (en)
DE (1) DE502005001733D1 (en)
ES (1) ES2294677T3 (en)
WO (1) WO2005080618A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070231595A1 (en) * 2006-03-28 2007-10-04 Siemens Power Generation, Inc. Coatings for molybdenum-based substrates
DE102007061964A1 (en) * 2007-12-21 2009-07-09 PLANSEE Metall GmbH, Reutte Molybdenum-silicon alloy with stable metal oxide
US8449817B2 (en) * 2010-06-30 2013-05-28 H.C. Stark, Inc. Molybdenum-containing targets comprising three metal elements
US9970082B2 (en) 2011-12-16 2018-05-15 A.L.M.T.Corp. Heat-resistant alloy and method of manufacturing the same
US9884367B2 (en) 2011-12-28 2018-02-06 A.L.M.T. Corp. Mo—Si—B-based alloy powder, metal-material raw material powder, and method of manufacturing a Mo—Si—B-based alloy powder
JP5394582B1 (en) 2012-06-07 2014-01-22 株式会社アライドマテリアル Molybdenum heat-resistant alloy
US9992917B2 (en) 2014-03-10 2018-06-05 Vulcan GMS 3-D printing method for producing tungsten-based shielding parts
RU2570273C1 (en) * 2014-09-04 2015-12-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Method of production of composite molybdenum-based material
DE102017217082A1 (en) * 2017-09-26 2019-03-28 Siemens Aktiengesellschaft Powder of a molybdenum, silicon and boron-containing alloy, use of this powder and additive manufacturing process for a workpiece from this powder
CN107737924A (en) * 2017-11-30 2018-02-27 株洲三鑫硬质合金生产有限公司 Enhancement type hard alloy based on tungsten-cobalt and preparation method thereof
CN108193115B (en) * 2017-12-14 2019-09-24 昆山胜典机电科技进出口有限公司 A kind of preparation method of molybdenum alloy, molybdenum alloy and its application
DE102018206359A1 (en) * 2018-04-25 2019-10-31 MTU Aero Engines AG METHOD FOR PRODUCING A COMPONENT FROM A MOLYBDEN ALLOYING USING ADDITIVE PROCESS
DE102018113340B4 (en) * 2018-06-05 2020-10-01 Otto-Von-Guericke-Universität Magdeburg Density-optimized molybdenum alloy
CN109136706B (en) * 2018-10-15 2020-12-18 河北四通新型金属材料股份有限公司 Molybdenum niobium aluminum silicon titanium intermediate alloy and preparation method thereof
US20230235924A1 (en) * 2019-10-17 2023-07-27 University Of Florida Research Foundation, Inc. Solar Collection Energy Storage and Energy Conversion or Chemical Conversion System
CN111041319B (en) * 2019-12-31 2020-12-08 中国人民解放军空军工程大学 Tough high-temperature-resistant molybdenum oxide alloy and preparation method thereof
US11761064B2 (en) * 2020-12-18 2023-09-19 Rtx Corporation Refractory metal alloy
CN112828298B (en) * 2020-12-31 2022-10-04 中国人民解放军空军工程大学 Preparation method of high-temperature molybdenum alloy spherical powder
CN114310500A (en) * 2021-12-30 2022-04-12 江苏时代华宜电子科技有限公司 Novel processing method of high-precision molybdenum alloy wafer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693156A (en) 1993-12-21 1997-12-02 United Technologies Corporation Oxidation resistant molybdenum alloy
US5865909A (en) 1995-07-28 1999-02-02 Iowa State University Research Foundation, Inc. Boron modified molybdenum silicide and products
US5963156A (en) * 1997-10-22 1999-10-05 National Semiconductor Corporation Sample and hold circuit and method with common mode differential signal feedback for converting single-ended signals to differential signals
US6652674B1 (en) * 2002-07-19 2003-11-25 United Technologies Corporation Oxidation resistant molybdenum

Also Published As

Publication number Publication date
AT7187U1 (en) 2004-11-25
WO2005080618A1 (en) 2005-09-01
ATE376072T1 (en) 2007-11-15
US7767138B2 (en) 2010-08-03
US20060285990A1 (en) 2006-12-21
EP1718777A1 (en) 2006-11-08
DE502005001733D1 (en) 2007-11-29
ES2294677T3 (en) 2008-04-01

Similar Documents

Publication Publication Date Title
EP1718777B1 (en) Method for the production of a molybdenum alloy
EP1664362B1 (en) Ods-alloy of molybdenum, silicon and boron
EP3069802B1 (en) Method for producing a component made of a compound material with a metal matrix and incorporated intermetallic phases
DE60033018T2 (en) METHOD FOR PRODUCING METAL PRODUCTS, SUCH AS PANELS BY COLD FORMING AND FLASH MOUNTING
DE68910190T2 (en) Process for the production of sputtering targets from tungsten titanium.
DE3017782C2 (en) Process for the production of sinterable alloy powders based on titanium
EP2200768B1 (en) Method for producing semi-finished products from niti shape memory alloys
DE1909781A1 (en) Metal powder made from kneaded composite particles and method for their production
DE1901766A1 (en) Method for producing a compacted object from powder, in particular from metal powder
EP2990141B1 (en) Method for producing TiAl components
EP2185738B1 (en) Production of alloys based on titanium aluminides
EP3444370B1 (en) Copper based alloy for the production of metallic solid glasses
DE2853575A1 (en) PROCESS FOR POWDER METALLURGICAL PRODUCTION OF COMPRESSED PRODUCTS FROM A HYDRID-FORMING ALLOY
DE102014114830A1 (en) A method of making a thermoelectric article for a thermoelectric conversion device
DE69318682T2 (en) Magnetic powder of type SE-Fe-B, sintered magnets made of it and manufacturing process
EP0396185A1 (en) Process for preparing semi-finished creep resistant products from high melting metal
DE2049546B2 (en) Process for the powder-metallurgical production of a dispersion-strengthened alloy body
DE960930C (en) Process for the production of castings from molybdenum and / or tungsten alloys
EP0172852B1 (en) High temperature resistant molybdenum alloy
DE102018101391A1 (en) Process for the preparation of a dispersion strengthened copper material and dispersion strengthened copper material
DE2539002B2 (en) USE OF ALLOYS TO MAKE MAGNETIC HEADS
DE10110448A1 (en) Coating powder based on titanium sub-oxides with defined defect structure used in coating technology is modified by alloy elements stabilizing defect structure during processing of coating powder
WO1995033079A1 (en) Method of producing intermetallic master alloys
DE3043321A1 (en) SINTER PRODUCT FROM METAL ALLOY AND THE PRODUCTION THEREOF
DE202008001976U9 (en) Fluid-tight sintered metal parts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20061123

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071017

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005001733

Country of ref document: DE

Date of ref document: 20071129

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2294677

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080317

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080117

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080217

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

BERE Be: lapsed

Owner name: PLANSEE SE

Effective date: 20080228

26N No opposition filed

Effective date: 20080718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080418

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130301

Year of fee payment: 9

Ref country code: DE

Payment date: 20130219

Year of fee payment: 9

Ref country code: ES

Payment date: 20130227

Year of fee payment: 9

Ref country code: GB

Payment date: 20130218

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005001733

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140221

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005001733

Country of ref document: DE

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140221

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140222