WO1995033079A1 - Method of producing intermetallic master alloys - Google Patents
Method of producing intermetallic master alloys Download PDFInfo
- Publication number
- WO1995033079A1 WO1995033079A1 PCT/DE1995/000683 DE9500683W WO9533079A1 WO 1995033079 A1 WO1995033079 A1 WO 1995033079A1 DE 9500683 W DE9500683 W DE 9500683W WO 9533079 A1 WO9533079 A1 WO 9533079A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder mixture
- powder
- sintering
- elements
- phase
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
- B22F3/225—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/58085—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
- C04B35/58092—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
- C04B35/62615—High energy or reactive ball milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/047—Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1084—Alloys containing non-metals by mechanical alloying (blending, milling)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/608—Green bodies or pre-forms with well-defined density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
Definitions
- the invention relates to a method for producing a material from intermetallic phases that are difficult to melt and sinter in the process of comminuting element powders by grinding according to the preamble of the main claim.
- Intermetallic phases here include both the phases usually formed from two or more metals, such as TiAl, NiAl, f ⁇ AI, FeTi, NiTi, MoSi2, TiSi2, as well as the metallic hard materials, e.g. T considered B2, WC, NbC.
- Structural and functional materials that are difficult to melt and sinter with internal metallic phases and components made therefrom are used in particular for high-temperature processes in energy generation and energy conversion systems in oxidizing and aggressive media and in the chemical industry. These materials must in particular have a high resistance to temperature changes, corrosion, high
- the starting materials for such components are produced in a process of comminution, preferably in a grinding process.
- the individual elements suitable for the materials are comminuted simultaneously or at different times.
- Such a method is known, for example, from EP 0 203 311.
- the starting elements are then ground to an amorphous state and then components are produced from these starting powders by sintering below the recrystallization temperature.
- only components without intermetallic phases can be produced using this method.
- Components from starting powders that have been crushed in the grinding process and that have intermetallic phases can only be produced by high-temperature sintering and high-pressure sintering.
- Such a method is disclosed, for example, in EP 0 209 179. Thereafter, a starting powder containing a metal component and a non-metal component is comminuted in a drum mill with high energy input, the powder being mechanically alloyed in the grinding process; This powder can then be used to produce components with intermetallic phases using one of the customary processes, for example hot pressing, hot isostatic pressing, metal powder injection molding or sintering under pressure and temperature.
- EP 0 574 440 describes a further method for producing starting materials for components made of materials which are difficult to melt and sinter.
- the starting components or the individual elements are then ground in a ball mill under a nitrogen or nitrogen-producing atmosphere.
- This method is preferably suitable for metal nitride composites. Components made of these materials are processed into a solid body by injection molding and heat treatment.
- Another method for producing an intermetallic compound is known from DE 40 01 799.
- the individual elements are then mechanically alloyed in an inert atmosphere, the resulting powder material is then heated and compressed, and the components to be produced from it are produced by hot pressing at a temperature above the phase formation temperature.
- the object of the present invention is to provide a method in which a material for the production of components and layers from materials which are difficult to melt and sinter from intermetallic phases is produced and which can be carried out at low temperatures and low pressures.
- the process according to the invention provides that various element powders are mixed and ground in a grinding process by grinding, but that the grinding process is terminated before the intermetallic phase is formed.
- the starting element powders are ground in a high-energy ball mill for several hours in an oxygen-free atmosphere, which activates them mechanically.
- the process of mechanical alloying is not aimed at phase formation, the milling process is terminated shortly before the formation of the intermetallic phase.
- the grinding process introduces mechanical energy into the starting powder, as a result of which comminution and homogenization processes take place, which result in the element powders used being homogeneously distributed in the submicrometer range. Typical ranges of homogeneity of the insert components from 10 to 1000 nm occur.
- agglomerates are obtained which have a homogeneous distribution of the starting components. Compared to the distance between the inner phase boundaries, these have a particle size that is several orders of magnitude larger. Accordingly, the surface of the agglomerates is small compared to the expansion of "internal" phase boundaries.
- the powders can therefore be processed in air.
- the powder mixture has a high degree of dispersity.
- the grain boundaries represent approx. 20 - 50% of the powder mixture.
- the powders produced by the grinding according to the invention are further processed in an unpressurized sintering process.
- calorimetric measurements are carried out, the temperature range of the phase formation being verified by taking a sample and a calorimetic analysis thereof, and the grinding process being stopped in good time before the phase formation.
- they could also be processed further in any powder-metallurgical process, but the phase formation process which was terminated in the grinding process is made up for in the subsequent sintering process.
- the recrystallization processes in the metallic component associated with the thermal process and above all the process of phase formation below the melting temperature of the lower melting phase surprisingly lead to an extreme increase in sintering activity (FIG. 1).
- molded parts can be produced in the sintering process at lower temperatures than in conventional sintering processes and under lower pressures or without pressure.
- the fact that no phase formation takes place in the production of the powder mixtures means that the energy expenditure required is lower than in the conventional processes.
- the amount of energy required in the production of starting materials or components and layers from these powders is further reduced by the fact that the phase formation taking place in the sintering process takes place below the melting temperature.
- the production of components or layers with closed porosity is also possible. It is also possible to manufacture complex components without a high expenditure of energy.
- the fact that the phase formation takes place far below the melting temperature and is coupled with the sintering process means that significantly lower temperatures are required compared to conventional powder metallurgical processes. Furthermore, the use of the powder produced in the process according to the invention and the production of components in the pressureless sintering process give fine-grained materials which are obtained by suitable Reinforcement components have improved mechanical properties in the relevant temperature range from room temperature to the highest application temperatures.
- the powders produced in the process according to the invention can not only be used in the process of pressure-free sintering, they can also be processed by a capsule-free sintering hot isostatic process; the manufactured parts reach a high density in every process. The density is more than 96% of the theoretical density, preferably 98%.
- the crystallite size can be set about an order of magnitude smaller than is possible with conventional methods.
- the in-situ formation of disperse reinforcement components improves the high-temperature behavior of the materials, in particular the resistance to high-temperature creep and the corrosion behavior.
- the method according to the invention is suitable for producing the powder mixture from two or more of the following elements: Mo, Ti, W, Cr, Zr, V, Y, Fe, Ni, Nb, Re, Hf, Ta, Nd, Cn, Co, Sm, AI, Si, B and C insofar as they form intermetallic phases or hard materials.
- powder mixtures can be produced by the process according to the invention, a pre-formed reinforcement phase being additionally introduced.
- An advantageous embodiment of the method provides that a liquid is added to the regrind 0.1-30% by volume based on the volume of the solid feed materials during the fine comminution process. This improves the comminution behavior and / or provides the active elements necessary for the phase formation of the main, secondary or reinforcement phases.
- the starting materials can also be pre-formed according to an advantageous embodiment of the method
- the process according to the invention provides that the formation of dispersoids (carbides, borides, oxides, nitrides) is also possible in the grinding process, or that these are added to the powder mixture in a preformed form.
- dispersoids carbides, borides, oxides, nitrides
- the use of the powder mixtures according to the invention in a process of pressure-free sintering also leads to sintered bodies with increased density. Components with, for example, 10% of a powder obtained in the process according to the invention and 90% of a non-sinter-active powder can also be produced.
- the powders produced according to the invention show a high dispersity in the initial state or during processing, small distances between the phase-forming partners, gradients of the chemical potentials, concentration gradients and increased vacancy densities, caused by recrystallization and phase-forming processes which, in their entirety, lead to sinter-active states with increased geometric and structural Lead activity.
- the invention provides that in the case of pressure-free sintering and in the case of an existing residual porosity, capsule-free post-compression can be carried out by hot isostatic pressing.
- the powder mixtures produced in the process according to the invention can also be homogeneously added to the conventionally produced, difficult to sinter powders before shaping as a sinter-promoting additive in order to create the pore seal at these at low temperature and thus the prerequisite for capsule-free hot isostatic pressing.
- the powder mixtures according to the invention are also suitable as filler materials in the powder-metallurgical production of graded materials, in which materials with different sintering behavior are combined.
- the invention provides that the powders produced are used as starting materials for sprayed layers on components and functional materials with special functional properties.
- Example 1 Molybdenum, silicon and carbon (acetylene black) are placed in a planetary ball mill in such a ratio that after complete implementation of the elements, a MoSi2 matrix phase (85% by volume) and a reinforcing component made of SiC (15% by volume) can arise.
- the necessary powder quantities are ground in a planetary ball mill with a steel grinding container and steel grinding balls (volume ratio of balls to regrind of 10: 1) at 320 rpm for 8 hours in an oxygen-free atmosphere. After this grinding period, no suicides or carbides are detectable by X-ray.
- the powder mixture obtained is compacted uniaxially up to a compact density of 2.5 g / cm 3 and sintered in vacuo (10 "2 mbar) at 1440 ° C.
- the intensive shrinkage (Fig. 1: Dilatometer and DSC measurement) a pressed MoSi2 sample) preferably starts at a temperature at which the phase formation of the main phase from the elements and / or temporary intermediate phases takes place, a binary or ternary phase being formed in the process of sintering about 1000 ° C (beginning of the complete formation of the MoSi2 matrix phase), the shrinkage maximum is reached at about 1300 ° C. After sintering for one hour at 1440 ° C, a shrinkage of about 25% is achieved.
- the size of the crystallites is between 2 and 8 ⁇ m (FIG. 2: micrograph of a MoSi2 sample produced in the method according to the invention.)
- FIG. 2 micrograph of a MoSi2 sample produced in the method according to the invention.
- MoSi2 is radiographic tetragonal as main phase and MoSi2 hexagonal and SiC as very weak secondary phase.
- Other binary suicides or ternary Mo-Si-C phases are undetectable.
- the Sinte ⁇ robe shows a closed porosity.
- Example 2 Titanium and silicon powders (grain size 100 ⁇ m and 150 ⁇ m) are filled under a high-purity argon atmosphere (99.998% Ar by volume) in an atomic ratio of 1 to 2 into the grinding container of a planetary ball mill and for 12 h at 250 rpm in one Steel grinding set, ground. The ball-to-ground ratio is 10: 1. After this grinding, only Ti and Si are found by X-ray analysis. The element powder mixture produced in this way is compressed by uniaxial pressing to a density of 2.0 g / cm 3 and sintered at 1350 ° C. for one hour under a flowing argon atmosphere. The density after sintering is 3.95 g / cm 3 (approx. 98% of the theoretical density). The structure is single-phase except for small SiO 2 inclusions. Only TiSi2 was detected by X-ray analysis.
- Example 3 Titanium and silicon powders (grain size 100 ⁇ m and 150 ⁇ m) are filled into the grinding container of a planetary ball mill in an atomic ratio of 1 to 2 under a high-purity argon atmosphere (99.998 vol.% Ar) and 1 h, 5 h or 12 h at 320 RPM ground in a steel grinding set.
- the ball-regrind ratio is 10: 1.
- the element powder mixtures produced in this way are compressed by uniaxial pressing and sintered at 1350 ° C. for one hour under a flowing argon atmosphere.
- the comparison of the shrinkage behavior of the powder compacts sintered in the dilatometer is shown in FIG. 3 shown.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Powder Metallurgy (AREA)
Abstract
Described is method of manufacturing a high-disperse powder blend by reducing in size, by grinding, at least one element powder and an alloy powder in an oxygen-free atmosphere. The powder blend is intended, in particular, for use as the starting material in the production of articles and layers of difficult to fuse and difficult to sinter materials with closed-pore intermetallic phases. The method is characterized in that the size-reduction/grinding process is discontinued before the formation of the intermetallic phase.
Description
BILDUNG VON INTERMETALLISCHÄHNLICHEN VORLEGIERUNGENFORMATION OF INTERMETALLIC-LIKE ALLOYS
Verfahren zur Herstellung einer hochdispersen Pulvermischung und deren Verwendung zur Herstellung von Bauteilen und Schichten aus schwer sinterbaren Werkstoffen mit intermetallischen PhasenProcess for the production of a highly disperse powder mixture and its use for the production of components and layers made of difficult to sinter materials with intermetallic phases
Die Erfindung betrifft ein Verfahren zur Herstellung eines Werkstoffs aus schwer schmelz- und sinterbaren intermetallischen Phasen im Prozeß der Zerkleine¬ rung von Elementpulvern durch Mahlen gemäß dem Oberbegriff des Hauptan¬ spruches.The invention relates to a method for producing a material from intermetallic phases that are difficult to melt and sinter in the process of comminuting element powders by grinding according to the preamble of the main claim.
Als intermetallische Phasen weden hier sowohl die üblicherweise aus zwei oder mehreren Metallen gebildete Phasen, wie z.B. TiAl, NiAl, f^AI, FeTi, NiTi, MoSi2, TiSi2, als auch die metallischen Hartstoffe, wie z.B. T B2, WC, NbC betrachtet.Intermetallic phases here include both the phases usually formed from two or more metals, such as TiAl, NiAl, f ^ AI, FeTi, NiTi, MoSi2, TiSi2, as well as the metallic hard materials, e.g. T considered B2, WC, NbC.
Schwer schmelz- und sinterbare strukturelle und funktioneile Werkstoffe mit in¬ termetallischen Phasen und daraus hergestellte Bauteile werden insbesondere für Hochtemperaturprozesse in Energieerzeugungs- und Energieumwand¬ lungsanlagen in oxidierenden und aggressiven Medien sowie in der chemischen Industrie eingesetzt. Diese Werkstoffe müssen insbesondere eine hohe Temperaturwechselbeständigkeit, Korrosionsbeständigkeit, hoheStructural and functional materials that are difficult to melt and sinter with internal metallic phases and components made therefrom are used in particular for high-temperature processes in energy generation and energy conversion systems in oxidizing and aggressive media and in the chemical industry. These materials must in particular have a high resistance to temperature changes, corrosion, high
Bruchzähigkeit, gegebenenfalls geringe Dichte und eine hohe spezifische Festigkeit und Beständigkeit gegen Hochtemperaturkriechen aufweisen. Die Ausgangswerkstoffe für derartige Bauteile werden in einem Prozeß der Zerkleinerung, vorzugsweise in einem Mahlprozeß hergestellt. Dabei werden die für die Werkstoffe geeigneten, einzelnen Elemente gleichzeitig oder zeitlich versetzt gemeinsam zerkleinert. Ein derartiges Verfahren ist z.B. aus der EP 0 203 311 bekannt. Danach werden die Ausgangselemente bis zum amorphen Zustand gemahlen und anschließend werden aus diesen Ausgangspulvern durch Sintern unterhalb der Rekristallisationstemperatur Bauteile hergestellt. Jedoch können nach diesem Verfahren nur Bauteile ohne intermetallische Phasen hergestellt werden.
Bauteile aus Ausgangspulvern, welche im Mahlverfahren zerkleinert worden sind und die intermetallische Phasen aufweisen, können nur durch Hochtemperatursintern und Hochdrucksintem hergestellt werden. Ein derartiges Verfahren ist z.B. in der EP 0 209 179 offenbart. Danach wird ein Ausgangspulver, enthaltend eine Metallkomponente und eine Nichtmetallkomponente, in einer Trommelmühle mit hoher Energieeinbringung zerkleinert, wobei das Pulver im Mahlprozeß mechanisch legiert wird; aus diesem Pulver können anschließend nach einem der üblichen Verfahren, z.B. Heißpressen, heißisostatisches Pressen, Metallpulverspritzgießen oder Sintern unter Druck und Temperatureinfluß Bauteile mit intermetallischen Phasen hergestellt werden.Have fracture toughness, possibly low density and a high specific strength and resistance to high temperature creep. The starting materials for such components are produced in a process of comminution, preferably in a grinding process. The individual elements suitable for the materials are comminuted simultaneously or at different times. Such a method is known, for example, from EP 0 203 311. The starting elements are then ground to an amorphous state and then components are produced from these starting powders by sintering below the recrystallization temperature. However, only components without intermetallic phases can be produced using this method. Components from starting powders that have been crushed in the grinding process and that have intermetallic phases can only be produced by high-temperature sintering and high-pressure sintering. Such a method is disclosed, for example, in EP 0 209 179. Thereafter, a starting powder containing a metal component and a non-metal component is comminuted in a drum mill with high energy input, the powder being mechanically alloyed in the grinding process; This powder can then be used to produce components with intermetallic phases using one of the customary processes, for example hot pressing, hot isostatic pressing, metal powder injection molding or sintering under pressure and temperature.
Aus der EP 0 574 440 ist ein weiteres Verfahren zur Herstellung von Ausgangswerkstoffen für Bauteile aus schwer schmelz- und sinterbaren Werkstoffen beschrieben. Danach werden die Ausgangskomponenten bzw. die einzelnen Elemente in einer Kugelmühle unter Stickstoff bzw. Stickstoff erzeugenden Atmosphäre gemahlen. Vorzugsweise eignet sich dieses Verfahren für Metallnitridverbunde. Bauteile aus diesen Werkstoffen werden durch Spritzgießen und Wärmebehandlung zu einem festen Körper verarbeitet.EP 0 574 440 describes a further method for producing starting materials for components made of materials which are difficult to melt and sinter. The starting components or the individual elements are then ground in a ball mill under a nitrogen or nitrogen-producing atmosphere. This method is preferably suitable for metal nitride composites. Components made of these materials are processed into a solid body by injection molding and heat treatment.
Aus der DE 40 01 799 ist ein weiteres Verfahren zur Herstellung einer intermetallischen Verbindung bekannt. Danach werden die Einzelelemente in einer inerten Atmosphäre mechanisch legiert, das enstandene Pulverwerkstoff anschließend erhitzt und verdichtet und die daraus herzustellenden Bauteile durch Heißpressen bei Temperatur oberhalb der Phasenbildungstemperatur hergestellt.Another method for producing an intermetallic compound is known from DE 40 01 799. The individual elements are then mechanically alloyed in an inert atmosphere, the resulting powder material is then heated and compressed, and the components to be produced from it are produced by hot pressing at a temperature above the phase formation temperature.
Ein weiteres Verfahren zur pulvermetallurgischen Herstellung von Formteilen aus intermetallischen Verbindungen ist aus der DE 39 35 955 bekannt. Auch hier können aufgrund der Beschaffenheit der Ausgangspulver die Bauteile nur in einem Vefahren des isostatischen Reaktionspressens bzw. durch Vakuumsintem hergestellt werden.
Allen vorgenannten Verfahren ist gemeinsam, daß sie durch die Notwendigkeit der Verwendung von hohen Drücken und hohen Temperaturen energieaufwendig sind, da die Ausgangspulver zur Herstellung von Bauteilen bzw. Materialschichten mit intermetallischen Phasen nur bei hohen Temperaturen und unter hohen Drücken verarbeitet werden können.Another process for the powder metallurgical production of molded parts from intermetallic compounds is known from DE 39 35 955. Here too, due to the nature of the starting powder, the components can only be produced in one process of the isostatic reaction press or by means of a vacuum. All of the above methods have in common that they are energy-intensive due to the need to use high pressures and high temperatures, since the starting powders for the production of components or material layers with intermetallic phases can only be processed at high temperatures and under high pressures.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren anzugeben, in dem ein Werkstoff zur Herstellung von Bauteilen und Schichten aus schwer schmelz- und sinterbaren Werkstoffen aus intermetallischen Phasen hergestellt wird, das bei niedrigen Temperaturen und niedrigen Drücken durchführbar ist.The object of the present invention is to provide a method in which a material for the production of components and layers from materials which are difficult to melt and sinter from intermetallic phases is produced and which can be carried out at low temperatures and low pressures.
Diese Aufgabe ist durch das im Anspruch 1 angegebene Verfahren gelöst. Unteransprüche geben vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens an.This object is achieved by the method specified in claim 1. Subclaims indicate advantageous developments of the method according to the invention.
Das erfindungsgemäße Verfahren sieht vor, daß verschiedene Elementpulver in einem Prozeß der Zerkleinerung durch Mahlen gemischt und zerkleinert werden, daß jedoch der Mahlprozeß vor der Bildung der intermetallischen Phase abgebrochen wird. Die Ausgangselementpulver werden in einer Hochenergie- Kugelmühle mehrere Stunden lang in sauerstoffreier Atmosphäre gemahlen, wodurch sie mechanisch stark aktiviert werden. Im Gegensatz zum Stand der Technik, zum Prozeß des mechanischen Legierens wird dabei keine Phasenbildung angestrebt, der Mahlprozeß wird kurz vor der Bildung der intermetallischen Phase abgebrochen. Durch den Mahlprozeß wird in die Ausgangspulver mechanische Energie eingebracht, wodurch Zerkleinerungs¬ und Homogenisierungsprozesse ablaufen, die dazu führen, daß die eingesetzten Elementpulver im Submikrometerbereich homogen verteilt sind. Dabei treten typische Homogenitätsbereiche der Einsatzkomponenten von 10 - 1000 nm auf. Als Folge des rechtzeitig vor der Phasenbildung abgebrochenen Mahlprozesses werden Agglomerate erhalten, die eine homogene Verteilung der Ausgangskomponenten aufweisen. Diese besitzen, verglichen mit dem Abstand der inneren Phasengrenzen, eine um mehrere Zehnerpotenzen größere Teilchengröße. Entsprechend ist die Oberfläche der Agglomerate klein im Vergleich zur Ausdehnung "innerer" Phasengrenzen. Trotz hoher innerer Energie der hochdispersen Pulver (Gitterdefekte, Versetzungsdichten,
Oberflächenenergie an den Phasengrenzen, chemische Pontentiale) erfolgt deshalb keine verstärkte Reaktion mit Sauerstoff. Die Pulver können deshalb an Luft weiterverarbeitet werden. Die Pulvermischung weist einen hohen Grad an Dispersität auf die Komgrenzen stellen ca. 20 - 50 % der Pulvermischung dar.The process according to the invention provides that various element powders are mixed and ground in a grinding process by grinding, but that the grinding process is terminated before the intermetallic phase is formed. The starting element powders are ground in a high-energy ball mill for several hours in an oxygen-free atmosphere, which activates them mechanically. In contrast to the prior art, the process of mechanical alloying is not aimed at phase formation, the milling process is terminated shortly before the formation of the intermetallic phase. The grinding process introduces mechanical energy into the starting powder, as a result of which comminution and homogenization processes take place, which result in the element powders used being homogeneously distributed in the submicrometer range. Typical ranges of homogeneity of the insert components from 10 to 1000 nm occur. As a result of the grinding process being interrupted in good time before the phase formation, agglomerates are obtained which have a homogeneous distribution of the starting components. Compared to the distance between the inner phase boundaries, these have a particle size that is several orders of magnitude larger. Accordingly, the surface of the agglomerates is small compared to the expansion of "internal" phase boundaries. Despite the high internal energy of the highly disperse powder (lattice defects, dislocation densities, Surface energy at the phase boundaries, chemical pontentials), therefore, there is no increased reaction with oxygen. The powders can therefore be processed in air. The powder mixture has a high degree of dispersity. The grain boundaries represent approx. 20 - 50% of the powder mixture.
Die durch das erfindungsgemäße Mahlen hergestellten Pulver werden in einem drucklosen Sinterprozeß weiterverarbeitet. Um die erforderliche Zeitdauer des Mahlprozesses zu bestimmen, werden kalorimetrische Messungen durchgeführt, wobei durch Entnahme einer Probe und eine kalorimetische Untersuchung derselben der Temperaturbereich der Phasenbildung nachgewiesen und der Mahlprozess rechtzeitig vor der Phasenbildung abgebrochen wird. Sie könnten jedoch auch in jedem pulvermetallurgischen Verfahren weiterverarbeitet werden, jedoch der in dem Mahlprozeß abgebrochene Phasenbildungsprozeß wird in dem nachfolgenden Sinterprozeß nachgeholt. Die mit dem thermischen Prozeß verbundenen Rekristallisationsvorgänge in der metallischen Komponente und vor allem der Prozeß der Phasenbildung unterhalb der Schmelztemperatur der niedriger schmelzenden Phase führen überraschenderweise zu einer extremen Erhöhung der Sinteraktivität (Fig. 1). Dadurch können Formteile in dem Sinterprozeß unter niedrigeren Temperaturen als bei herkömmlichen Sinterprozessen und unter niedrigeren Drücken bzw. drucklos hergestellt werden. Dadurch, daß bei der Herstellung der Pulvermischungen keine Phasenbildung erfolgt, ist der erforderliche Energieaufwand geringer als bei den herkömmlichen Verfahren. Darüber hinaus ist der erforderliche Energieaufwand bei der Herstellung von Ausgangswerkstoffen bzw. Bauteilen und Schichten aus diesen Pulvern nocheinmal reduziert dadurch, daß die in den Sinterprozeß stattfindende Phasenbildung unterhalb der Schmelztemperatur erfolgt. Im erfindungsgemäßen Verfahren ist auch die Herstellung von Bauteilen oder Schichten mit geschlossener Porosität möglich. Femer ist ohne einen hohen Energieaufwand die Herstellung von formkomplizierten Bauteilen möglich. Dadurch, daß die Phasenbildung weit unterhalb der Schmelztemperatur erfolgt und mit dem Sinterprozeß gekoppelt ist, sind im Vergleich zu konventionellen pulvermetallurgischen Verfahren wesentlich geringere Temperaturen erforderlich. Femer werden durch die Verwendung des im erfindungsgemäßen Verfahren hergestellten Pulvers und die Herstellung von Bauteilen im drucklosen Sinterprozeß feinkörnige Werkstoffe erhalten die durch geeignete
Verstärkungskomponenten verbesserte mechanische Eigenschaften im relevanten Temperaturbereich von Raumtemperatur bis zu höchsten Anwendungstemperaturen besitzen. Die im erfindungsgemäßen Verfahren hergestellten Pulver können nicht nur im Verfahren des drucklosen Sinterns eingesetzt werden, sie können auch durch einen kapsellosen Sinter- Heißisostatischen-Prozeß verarbeitet werden; die hergestellten Teile erreichen bei jedem Prozeß eine hohe Dichte. Die Dichte beträgt mehr als 96 % der theoretischen Dichte, vorzugsweise 98 %. Die Kristallitgröße kann dabei um etwa eine Größenordnung kleiner eingestellt werden als dies bei herkömmlichen Verfahren möglich ist. Durch die in-situ-Bildung von dispersen Verstärkungskomponenten wird das Hochtemperaturverhalten der Materialien verbessert, insbesondere die Beständigkeit gegenüber Hochtemperaturkriechen und das Korrosionsverhalten.The powders produced by the grinding according to the invention are further processed in an unpressurized sintering process. In order to determine the required duration of the grinding process, calorimetric measurements are carried out, the temperature range of the phase formation being verified by taking a sample and a calorimetic analysis thereof, and the grinding process being stopped in good time before the phase formation. However, they could also be processed further in any powder-metallurgical process, but the phase formation process which was terminated in the grinding process is made up for in the subsequent sintering process. The recrystallization processes in the metallic component associated with the thermal process and above all the process of phase formation below the melting temperature of the lower melting phase surprisingly lead to an extreme increase in sintering activity (FIG. 1). As a result, molded parts can be produced in the sintering process at lower temperatures than in conventional sintering processes and under lower pressures or without pressure. The fact that no phase formation takes place in the production of the powder mixtures means that the energy expenditure required is lower than in the conventional processes. In addition, the amount of energy required in the production of starting materials or components and layers from these powders is further reduced by the fact that the phase formation taking place in the sintering process takes place below the melting temperature. In the method according to the invention, the production of components or layers with closed porosity is also possible. It is also possible to manufacture complex components without a high expenditure of energy. The fact that the phase formation takes place far below the melting temperature and is coupled with the sintering process means that significantly lower temperatures are required compared to conventional powder metallurgical processes. Furthermore, the use of the powder produced in the process according to the invention and the production of components in the pressureless sintering process give fine-grained materials which are obtained by suitable Reinforcement components have improved mechanical properties in the relevant temperature range from room temperature to the highest application temperatures. The powders produced in the process according to the invention can not only be used in the process of pressure-free sintering, they can also be processed by a capsule-free sintering hot isostatic process; the manufactured parts reach a high density in every process. The density is more than 96% of the theoretical density, preferably 98%. The crystallite size can be set about an order of magnitude smaller than is possible with conventional methods. The in-situ formation of disperse reinforcement components improves the high-temperature behavior of the materials, in particular the resistance to high-temperature creep and the corrosion behavior.
Insbesondere ist das erfindungsgemäße Verfahren geeignet zur Herstellung der Pulvermischung aus zwei oder mehreren der folgenden Elemente: Mo, Ti, W, Cr, Zr, V, Y, Fe, Ni, Nb, Re, Hf, Ta, Nd, Cn, Co, Sm, AI, Si, B und C, soweit sie intermetallische Phasen oder Hartstoffe bilden. Darüber hinaus können nach dem erfindungsgemäßen Verfahren Pulvermischungen hergestellt werden, wobei zusätzlich eine vorgebildete Verstärkungsphase eingebracht wird.In particular, the method according to the invention is suitable for producing the powder mixture from two or more of the following elements: Mo, Ti, W, Cr, Zr, V, Y, Fe, Ni, Nb, Re, Hf, Ta, Nd, Cn, Co, Sm, AI, Si, B and C insofar as they form intermetallic phases or hard materials. In addition, powder mixtures can be produced by the process according to the invention, a pre-formed reinforcement phase being additionally introduced.
Eine vorteilhafte Ausgestaltung des Verfahrens sieht vor, daß während des Feinzerkleinerungsvorganges dem Mahlgut 0,1 - 30 Vol-% bezogen auf das Volumen der festen Einsatzmaterialien eine Flüssigkeit zugegeben wird. Dadurch wird das Zerkleinerungsverhalten verbessert und/oder die zur Phasenbildung der Haupt-, Neben oder Verstärkungsphasen notwendigen Wirkelemente geliefert. Den Ausgangswerkstoffen können ebenfalls nach einer vorteilhaften Ausgestaltung des Verfahrens vorgebildeteAn advantageous embodiment of the method provides that a liquid is added to the regrind 0.1-30% by volume based on the volume of the solid feed materials during the fine comminution process. This improves the comminution behavior and / or provides the active elements necessary for the phase formation of the main, secondary or reinforcement phases. The starting materials can also be pre-formed according to an advantageous embodiment of the method
Verstärkungskomponenten oder spezielle nicht zu bildende Phasen zugegeben werden.Reinforcing components or special phases not to be formed are added.
In Ausgestaltung sieht das erfindungsgemäße Verfahren vor, daß zusätzlich die Bildung von Dispersoiden (Karbide, Boride, Oxide, Nitride) im Mahlprozeß möglich ist, bzw. diese in vorgebildeter Form der Pulvermischung zugesetzt werden.
Die Venwendung der erfindungsgemäßen Pulvermischungen in einem Verfahren des drucklosen Sinterns führt auch zu Sinterkörpern mit erhöhter Dichte. Es können auch Bauteile mit z.B. 10% eines im erfindungsgemäßen Verfahren erhaltenen Pulvers und 90% eines nicht sinteraktiven Pulver hergestellt werden.In one embodiment, the process according to the invention provides that the formation of dispersoids (carbides, borides, oxides, nitrides) is also possible in the grinding process, or that these are added to the powder mixture in a preformed form. The use of the powder mixtures according to the invention in a process of pressure-free sintering also leads to sintered bodies with increased density. Components with, for example, 10% of a powder obtained in the process according to the invention and 90% of a non-sinter-active powder can also be produced.
Die erfindungsgemäß erzeugten Pulver zeigen im Ausgangszustand bzw. bei der Verarbeitung eine hohe Dispersität, geringe Abstände der Phasenbildungspartner, Gradienten der chemischen Potentiale, Konzentrationsgradienten sowie erhöhte Leerstellendichten, verursacht durch Rekristallisations- und Phasenbildungsprozesse, welche in ihrer Gesamtheit zu sinteraktiven Zuständen mit erhöhter geometrischer und struktureller Aktivität führen.The powders produced according to the invention show a high dispersity in the initial state or during processing, small distances between the phase-forming partners, gradients of the chemical potentials, concentration gradients and increased vacancy densities, caused by recrystallization and phase-forming processes which, in their entirety, lead to sinter-active states with increased geometric and structural Lead activity.
Unter Verwendung der erfindungsgemäßen Pulvermischungen werden selbst bei hochschmelzenden Phasen bei Temperaturen von 0,5 - 0,8* TsChmelz weitgehend dichte, d.h. geschlossenporige Bauteile mit feinkristallinen Gefüge im Bereich von 0,5 - 10 μm hergestellt. Durch thermische Nachbehandlung können sie in den für den Anwendungsfall günstigen, gröberen Gefügezustand gebracht werden.Using the powder mixtures according to the invention, largely dense, ie closed-pore components with fine-crystalline structures in the range from 0.5 to 10 μm are produced, even in the case of high-melting phases, at temperatures of 0.5-0.8 * Ts C melt. Thermal post-treatment allows them to be brought into the coarser structure that is favorable for the application.
In Ausgestaltung sieht die Erfindung vor, daß im Falle des drucklosen Sinterns und für den Fall einer vorhandenen Restporosität eine kapsellose Nachverdichtung durch heißisostatisches Pressen erfolgen kann.In an embodiment, the invention provides that in the case of pressure-free sintering and in the case of an existing residual porosity, capsule-free post-compression can be carried out by hot isostatic pressing.
Die in dem erfindungsgemäßen Verfahren erzeugten Pulvermischungen können auch den konventionell hergestellten, schwer sinterbaren Pulvern vor dem Formgeben als sinterfördemdes Additiv homogen zugesetzt werden, um an diesen bei niedriger Temperatur den Porenabschluß und damit die Voraussetzung für das kapsellose heißisostatische Pressen zu schaffen. Die erfindungsgemäßen Pulvermischungen eignen sich ferner als Zusatzwerkstoffe bei der pulvermetallurgischen Herstellung von gradierten Werkstoffen, bei denen Materialien mit unterschiedlichem Sinterverhalten kombiniert werden.
In vorteilhafter Ausgestaltung sieht die Erfindung vor, daß die erzeugten Pulver als Ausgangswerkstoffe für gespritzte Schichten auf Bauteilen und Funktionswerkstoffen mit besonderen funktioneilen Eigenschaften eingesetzt werden.The powder mixtures produced in the process according to the invention can also be homogeneously added to the conventionally produced, difficult to sinter powders before shaping as a sinter-promoting additive in order to create the pore seal at these at low temperature and thus the prerequisite for capsule-free hot isostatic pressing. The powder mixtures according to the invention are also suitable as filler materials in the powder-metallurgical production of graded materials, in which materials with different sintering behavior are combined. In an advantageous embodiment, the invention provides that the powders produced are used as starting materials for sprayed layers on components and functional materials with special functional properties.
Beim drucklosen Sintern der erfindungsgemäßen Pulver ist es vorteilhaft, wenn vor der Phasenbildung bei Elementen mit erhöhtem Dampfdruck ein Partialdruck einzelner oder mehrerer Elemente eingestellt wird.When the powders according to the invention are sintered without pressure, it is advantageous if a partial pressure of one or more elements is set before the phase formation in the case of elements with increased vapor pressure.
Das erfindungsgemäße Verfahren wird anhand eines Ausführungsbeispieles näher erläutert.The method according to the invention is explained in more detail using an exemplary embodiment.
Beispiel 1 : Molybdän, Silizium und Kohlenstoff (Acetylenruß) werden in einem solchen Verhältnis in eine Planetenkugelmühle gegeben, daß nach vollständiger Umsetzung der Elemente eine MoSi2-Matrixphase (85 Vol.-%) und eine Verstärkungskomponente aus SiC (15 Vol.-%) entstehen kann. Dazu werden die nötigen Pulvermengen in einer Planetenkugelmühle mit Stahlmahlbehälter und Stahlmahlkugeln (Volumenverhältnis von Kugeln zu Mahlgut von 10:1) bei 320 U/min 8h in sauerstoffreier Atmosphäre gemahlen. Nach dieser Mahldauer sind röntgenographisch keine Suizide oder Karbide nachweisbar. Die erhaltene Pul- vermischung wird bis zu einer Preßlingsdichte von 2,5 g/cm3 einachsig verdichtet und im Vakuum (10"2 mbar) bei 1440°C gesintert. Die intensive Schrumpfung (Fig. 1 : Dilatometer - und DSC-Messung an einer gepreßten MoSi2-Probe). setzt bevorzugt bei einer Temperatur ein, bei der die Phasenbildung der Hauptphase aus den Elementen und/oder temporären Zwischenphasen erfolgt. Dabei wird bei dem Prozeß des Sinterns eine binäre oder ternäre Phase gebildet. Die intensive Schrumpfung setzt bereits ab etwa 1000°C (Beginn der vollständigen Bildung der MoSi2-Matrixphase) ein, das Schwindungsmaximum wird bei etwa 1300°C erreicht. Nach einstündiger Sinterung bei 1440°C wird eine Schrumpfung von etwa 25% erreicht. Die Größe der Kistallite liegt zwischen 2 und 8 μm (Fig. 2: Gefügeaufnahme einer in dem erfindungsgemäßen Verfahren hergestellten MoSi2-Probe). Im Schliff sind lichtmikroskopisch keine SiC-Verstärkungskomponenten sichtbar, röntgenographisch ist MoSi2 tetragonal als Hauptphase und MoSi2 hexagonal und SiC als sehr schwache Nebenphase erkennbar. Andere binäre Suizide oder
ternäre Mo-Si-C-Phasen sind nicht nachweisbar. Die Sinteφrobe zeigt eine geschlossene Porosität.Example 1: Molybdenum, silicon and carbon (acetylene black) are placed in a planetary ball mill in such a ratio that after complete implementation of the elements, a MoSi2 matrix phase (85% by volume) and a reinforcing component made of SiC (15% by volume) can arise. For this purpose, the necessary powder quantities are ground in a planetary ball mill with a steel grinding container and steel grinding balls (volume ratio of balls to regrind of 10: 1) at 320 rpm for 8 hours in an oxygen-free atmosphere. After this grinding period, no suicides or carbides are detectable by X-ray. The powder mixture obtained is compacted uniaxially up to a compact density of 2.5 g / cm 3 and sintered in vacuo (10 "2 mbar) at 1440 ° C. The intensive shrinkage (Fig. 1: Dilatometer and DSC measurement) a pressed MoSi2 sample) preferably starts at a temperature at which the phase formation of the main phase from the elements and / or temporary intermediate phases takes place, a binary or ternary phase being formed in the process of sintering about 1000 ° C (beginning of the complete formation of the MoSi2 matrix phase), the shrinkage maximum is reached at about 1300 ° C. After sintering for one hour at 1440 ° C, a shrinkage of about 25% is achieved. The size of the crystallites is between 2 and 8 μm (FIG. 2: micrograph of a MoSi2 sample produced in the method according to the invention.) In the cut, no SiC reinforcement components are visible under the light microscope, MoSi2 is radiographic tetragonal as main phase and MoSi2 hexagonal and SiC as very weak secondary phase. Other binary suicides or ternary Mo-Si-C phases are undetectable. The Sinteφrobe shows a closed porosity.
Beispiel 2: Titan- und Siliziumpulver (Korngröße 100μm bzw. 150μm) werden unter hochreiner Argonatmosphäre (99,998 Vol.-%Ar) in einem Atomverhältnis von 1 zu 2 in den Mahlbehälter einer Planetenkugelmühle gefüllt und für 12 h bei 250 U/min in einer Stahlmahlgarnitur gemahlen. Das Kugel-Mahlgut- Verhältnis beträgt 10:1. Nach dieser Mahlung werden röntgenographisch nur Ti und Si gefunden. Die so hergestellte Elementpulvermischung wird durch einachsiges Pressen bis zu einer Dichte von 2,0 g/cm3 verdichtet und unter strömender Argonatmosphäre bei 1350°C für eine Stunde gesintert. Die Dichte nach dem Sintern beträgt 3,95 g/cm3 (ca. 98 % der theoretischen Dichte). Das Gefüge ist bis auf geringe Siθ2-Einschlüsse einphasig. Durch röntgenographische Untersuchungen wurde nur TiSi2 nachgewiesen.Example 2: Titanium and silicon powders (grain size 100μm and 150μm) are filled under a high-purity argon atmosphere (99.998% Ar by volume) in an atomic ratio of 1 to 2 into the grinding container of a planetary ball mill and for 12 h at 250 rpm in one Steel grinding set, ground. The ball-to-ground ratio is 10: 1. After this grinding, only Ti and Si are found by X-ray analysis. The element powder mixture produced in this way is compressed by uniaxial pressing to a density of 2.0 g / cm 3 and sintered at 1350 ° C. for one hour under a flowing argon atmosphere. The density after sintering is 3.95 g / cm 3 (approx. 98% of the theoretical density). The structure is single-phase except for small SiO 2 inclusions. Only TiSi2 was detected by X-ray analysis.
Beispiel 3: Titan- und Siliziumpulver (Korngröße 100μm bzw. 150μm) werden unter hochreiner Argonatmosphäre (99,998 Vol.-%Ar) in einem Atomverhältnis von 1 zu 2 in den Mahlbehälter einer Planetenkugelmühle gefüllt und 1 h, 5h bzw. 12 h bei 320 U/min in einer Stahlmahlgarnitur gemahlen. Das Kugel- Mahlgut-Verhältnis beträgt 10:1. Die so hergestellten Elementpulvermischungen werden durch einachsiges Pressen verdichtet und unter strömender Argonatmosphäre bei 1350°C für eine Stunde gesintert. Der Vergleich des Schwindungsverhaltens der im Dilatometer gesinterten Pulverpreßlinge ist in FIG. 3 dargestellt. Nach geringer Mahldauer (1 h) tritt eine intensive Schwellung auf, eine Mahldauer von 5 Stunden führt zu einem optimalen Schwindungsverhalten. 12 Stunden gemahlene Elementpulvermischungen zeigen bereits TiSi2-Phasenanteile, was zu einer Verschlechterung des Sinterverhaltens führt.
Example 3: Titanium and silicon powders (grain size 100μm and 150μm) are filled into the grinding container of a planetary ball mill in an atomic ratio of 1 to 2 under a high-purity argon atmosphere (99.998 vol.% Ar) and 1 h, 5 h or 12 h at 320 RPM ground in a steel grinding set. The ball-regrind ratio is 10: 1. The element powder mixtures produced in this way are compressed by uniaxial pressing and sintered at 1350 ° C. for one hour under a flowing argon atmosphere. The comparison of the shrinkage behavior of the powder compacts sintered in the dilatometer is shown in FIG. 3 shown. After a short grinding time (1 h) an intensive swelling occurs, a grinding time of 5 hours leads to an optimal shrinkage behavior. Element powder mixtures ground for 12 hours already show TiSi2 phase fractions, which leads to a deterioration in the sintering behavior.
Claims
1. Verfahren zur Herstellung einer hochdispersen Pulvermischung im Prozeß der Zerkleinerung durch Mahlen von mindestens einem Elementpulver und einem Legierungspulver in sauerstoffreier Atmosphäre, insbesondere als Ausgangswerkstoff zur Herrstellung von Bauteilen aus schwer schmelz- und sinterbaren Werkstoffen mit intermetallischen Phasen, dadurch gekennzeichnet, daß der Zerkleinerungs-/Mahlprozeß kurz vor der Bildung der intermetallischen Phase abgebrochen wird.1. A process for the production of a highly disperse powder mixture in the process of comminution by grinding at least one element powder and one alloy powder in an oxygen-free atmosphere, in particular as a starting material for producing components from materials which are difficult to melt and sinter with intermetallic phases, characterized in that the comminution / The grinding process is stopped shortly before the formation of the intermetallic phase.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß der Zeitpunkt der Bildung der intermetallischen Phase durch kalorimetrische Messungen festgelegt wird.2. The method according to claim 1, characterized in that the time of formation of the intermetallic phase is determined by calorimetric measurements.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zwei oder mehrere der eingesetzten Elemente Mo, Ti, W, Cr, Zr, V, Y, Fe, Ni, Nb, Re, Hf, Nd, Sm, AI, Si, Ta, Cu und Co gemischt und gemeinsam oder zeitlich versetzt zerkleinert werden.3. The method according to claim 1 or 2, characterized in that two or more of the elements used Mo, Ti, W, Cr, Zr, V, Y, Fe, Ni, Nb, Re, Hf, Nd, Sm, Al, Si , Ta, Cu and Co are mixed and crushed together or at different times.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß den genannten Elementen eines der Elemente B oder C, zugegeben und mit denen gemischt wird und daß alle Elemente gemeinsam oder zeitlich versetzt zerkleinert werden.4. The method according to claim 3, characterized in that the said elements one of the elements B or C, added and mixed with them and that all elements are comminuted together or at different times.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Elemente so ausgewählt werden, daß auch Elemente mindestens zur Bildung einer Verstärkungsphase vorhanden sind.5. The method according to claim 3 or 4, characterized in that the elements are selected so that elements are at least present to form an amplification phase.
6. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß während des Zerkleinerungsvorganges dem Mahlgut 0,1 bis 30 Vol-%, einer Flüssigkeit, bezogen auf das Volumen der festen Einsatzelemente, zugegeben werden. 6. The method according to any one of the preceding claims, characterized in that 0.1 to 30% by volume, a liquid, based on the volume of the solid insert elements, are added to the regrind during the comminution process.
7. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß vorgebildete Verstärkungskomponenten oder spezielle nicht zu bildende Phasen in den Mahlwerkstoff eingebracht werden7. The method according to any one of the preceding claims, characterized in that pre-formed reinforcing components or special phases not to be formed are introduced into the grinding material
8. Verfahren nach einem der Ansprüche 1 - 7, dadurch gekennzeichnet, daß zusätzlich die Bildung von Dispersoiden (Karbiden, Bonden, Oxiden, Nitriden) erfolgt bzw. diese in vorgebildeter Form der Pulvermischung zugesetzt werden.8. The method according to any one of claims 1-7, characterized in that additionally the formation of dispersoids (carbides, bonds, oxides, nitrides) takes place or these are added to the powder mixture in a pre-formed form.
9. Pulvermischung hergestellt im Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Gitterzustand gestört und die Sinteraktivität hoch ist und daß die Korngrenzen einen hohen Grad an Dispersität aufweisen.9. Powder mixture produced in the process according to one of claims 1 to 8, characterized in that the lattice condition is disturbed and the sintering activity is high and that the grain boundaries have a high degree of dispersity.
10. Verwendung des im Verfahren nach einem der Ansprüche 1 bis 8 hergestellten Pulvermischung zur Herstellung von Bauteilen in einem Sinterprozeß, dadurch gekennzeichnet, daß der Sinterprozeß in inerter Atmosphäre bei Temperaturen unterhalb der Schmelztemperatur der niedriger schmelzenden Phase und drucklos vorgenommen wird.10. Use of the powder mixture produced in the process according to one of claims 1 to 8 for the production of components in a sintering process, characterized in that the sintering process is carried out in an inert atmosphere at temperatures below the melting temperature of the lower melting phase and without pressure.
11. Verwendung nach Anspruch 10, dadurch gekennzeichnet, daß neben der Hauptphase mindestens eine Verstärkungsphase während des11. Use according to claim 10, characterized in that in addition to the main phase at least one amplification phase during the
Sinterprozesses gebildet wird.Sintering process is formed.
\\
12. Verwendung nach Anspruch 10 oder 11 , dadurch gekennzeichnet, daß im Falle einer vorhandenen Restporosität im Anschluß an das drucklose Sintern eine kapsellose Nachverdichtung durch heißisostatisches Pressen erfolgt.12. Use according to claim 10 or 11, characterized in that, in the case of an existing residual porosity following the pressure-less sintering, a capsule-free densification takes place by hot isostatic pressing.
13. Verwendung der im Verfahren nach einem der Ansprüche 1 bis 8 hergestellten Pulvermischung in einem Spritzgießprozess zur Herstellung von hochbinderhaltigen Bauteilen komplizierter Form und einem anschließenden Sinterprozeß. 13. Use of the powder mixture produced in the process according to one of claims 1 to 8 in an injection molding process for the production of highly binder-containing components of complicated shape and a subsequent sintering process.
14. Verwendung des im Verfahren nach einem der Ansprüche 1 bis 8 hergestellten Pulvermischung als sinterförderndes Additiv im Sinterprozeß von schwer sinterbaren Pulver, wobei die Pulver vor dem Formgeben den anderen Materialien homogen zugesetzt werden.14. Use of the powder mixture produced in the process according to one of claims 1 to 8 as a sinter-promoting additive in the sintering process of powder which is difficult to sinter, the powders being homogeneously added to the other materials before shaping.
15. Verwendung der im Verfahren nach einem der Ansprüche 1 bis 8 hergestellten Pulvermischung als Zusatz Werkstoff bei der pulvermetallurgischen Herstellung von gradierten Werkstoffen, bei denen Materialien mit unterschiedlichen Sinterverhalten kombiniert werden.15. Use of the powder mixture produced in the process according to one of claims 1 to 8 as an additive material in the powder metallurgical production of graded materials, in which materials with different sintering behavior are combined.
16. Verwendung der im Verfahren nach einem der Ansprüche 1 bis 8 hergestellten Pulvermischung als Ausgangswerkstoff für gespritzte Schichten auf Bauteilen und Funktionswerkstoffen.16. Use of the powder mixture produced in the process according to one of claims 1 to 8 as the starting material for sprayed layers on components and functional materials.
17. Verwendung der im Vefahren nach einem der Ansprüche 1 bis 8 hergestellten Pulvermischung, dadurch gekennzeichnet, daß während der thermischen Behandlung, insbesondere beim drucklosen Sintern und insbesondere vor der Phasenbildung bei Elementen bei erhöhtem Dampfdruck ein Partialdruck einzelner oder mehrerer Elemente eingestellt wird.17. Use of the powder mixture produced in the process according to one of claims 1 to 8, characterized in that a partial pressure of individual or several elements is set during the thermal treatment, in particular during pressure-less sintering and in particular before the phase formation for elements with increased vapor pressure.
18. Bauteil erhalten durch die Verwendung der Pulvermischung nach einem der Ansprüche 10 bis 17, dadurch gekennzeichnet, daß die erhaltenen Gefüge feinkristallin sind mit einer Größe von 0,5 bis 30μm.18. Component obtained by using the powder mixture according to one of claims 10 to 17, characterized in that the structures obtained are fine crystalline with a size of 0.5 to 30 microns.
19. Bauteil erhalten durch die Verwendung der Pulvermischung nach einem der Ansprüche 10 bis 17, dadurch gekennzeichnet, daß seine Dichte mehr als 96 % der theoretischen Dichte, vorzugsweise 98 % der theoretischen Dichte beträgt.19. Component obtained by using the powder mixture according to one of claims 10 to 17, characterized in that its density is more than 96% of the theoretical density, preferably 98% of the theoretical density.
20. Bauteil erhalten durch die Verwendung der Pulvermischung nach einem der Ansprüche 10 bis 17, dadurch gekennzeichnet, daß es eine geschlossene Porosität aufweist. 20. Component obtained by using the powder mixture according to one of claims 10 to 17, characterized in that it has a closed porosity.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4418598.7 | 1994-05-27 | ||
DE4418598A DE4418598C2 (en) | 1994-05-27 | 1994-05-27 | Process for producing a highly disperse powder mixture, in particular for producing components from materials that are difficult to sinter with intermetallic phases |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995033079A1 true WO1995033079A1 (en) | 1995-12-07 |
Family
ID=6519160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1995/000683 WO1995033079A1 (en) | 1994-05-27 | 1995-05-23 | Method of producing intermetallic master alloys |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE4418598C2 (en) |
WO (1) | WO1995033079A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6926969B2 (en) | 2001-10-11 | 2005-08-09 | Inco Limited | Process for the production of sintered porous bodies |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6501784B1 (en) | 1998-04-20 | 2002-12-31 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Thermal insulation to be inserted between two insulating structures |
DE19825223C2 (en) * | 1998-06-05 | 2000-11-30 | Fraunhofer Ges Forschung | Mold and method for its manufacture |
DE10134525A1 (en) * | 2001-07-16 | 2003-01-30 | Gfe Met & Mat Gmbh | Process for capsule-free forming of gamma-TiAl materials |
DE10228924C1 (en) * | 2002-06-25 | 2003-11-20 | Fraunhofer Ges Forschung | Component made from a titanium aluminide material used in internal combustion engines has oxygen as oxide of a further element formed by thermal treatment and/or during sintering embedded in the titanium aluminide material |
DE10331785B4 (en) * | 2003-07-11 | 2007-08-23 | H. C. Starck Gmbh & Co. Kg | Process for producing fine metal, alloy and composite powders |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0230123A1 (en) * | 1985-12-16 | 1987-07-29 | Inco Alloys International, Inc. | Formation of intermetallic and intermetallic-type precursor alloys for subsequent mechanical alloying applications |
DE4001799A1 (en) * | 1989-01-24 | 1990-07-26 | Hagishita Shiro | METHOD FOR PRODUCING AN INTERMETALLIC CONNECTION |
US5269830A (en) * | 1990-10-26 | 1993-12-14 | The United States Of America As Represented By The United States Department Of Energy | Process for synthesizing compounds from elemental powders and product |
FR2692184A1 (en) * | 1992-06-12 | 1993-12-17 | Renault | Powdered metallic aluminium@ alloy prepn. - formed by grinding powder constituents together, heat treating to form intermetallic compound followed by second grinding stage |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3518706A1 (en) * | 1985-05-24 | 1986-11-27 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | METHOD FOR PRODUCING MOLDED BODIES WITH IMPROVED ISOTROPICAL PROPERTIES |
DE3525056A1 (en) * | 1985-07-13 | 1987-01-22 | Metallgesellschaft Ag | METHOD FOR PRODUCING A MECHANICALLY ALLOYED COMPOSITE POWDER |
US4799955A (en) * | 1987-10-06 | 1989-01-24 | Elkem Metals Company | Soft composite metal powder and method to produce same |
DE3935955C1 (en) * | 1989-10-27 | 1991-01-24 | Mtu Muenchen Gmbh | |
WO1992014568A1 (en) * | 1991-02-19 | 1992-09-03 | The Australian National University | Production of metal and metalloid nitrides |
-
1994
- 1994-05-27 DE DE4418598A patent/DE4418598C2/en not_active Expired - Fee Related
-
1995
- 1995-05-23 WO PCT/DE1995/000683 patent/WO1995033079A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0230123A1 (en) * | 1985-12-16 | 1987-07-29 | Inco Alloys International, Inc. | Formation of intermetallic and intermetallic-type precursor alloys for subsequent mechanical alloying applications |
DE4001799A1 (en) * | 1989-01-24 | 1990-07-26 | Hagishita Shiro | METHOD FOR PRODUCING AN INTERMETALLIC CONNECTION |
US5269830A (en) * | 1990-10-26 | 1993-12-14 | The United States Of America As Represented By The United States Department Of Energy | Process for synthesizing compounds from elemental powders and product |
FR2692184A1 (en) * | 1992-06-12 | 1993-12-17 | Renault | Powdered metallic aluminium@ alloy prepn. - formed by grinding powder constituents together, heat treating to form intermetallic compound followed by second grinding stage |
Non-Patent Citations (1)
Title |
---|
GUANGXIN WANG ET AL: "SYNTHESIZING GAMMA-TIAL ALLOYS BY REACTIVE POWDER PROCESSING", JOM, vol. 45, no. 5, 1 May 1993 (1993-05-01), pages 52 - 56, XP000368627 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6926969B2 (en) | 2001-10-11 | 2005-08-09 | Inco Limited | Process for the production of sintered porous bodies |
Also Published As
Publication number | Publication date |
---|---|
DE4418598A1 (en) | 1995-11-30 |
DE4418598C2 (en) | 1998-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69223476T2 (en) | Cermets, their manufacture and use | |
EP1242642B1 (en) | method for production of powder mixture or composite powder | |
DE60121242T2 (en) | Molybdenum-copper composite powder and its production and processing into a pseudo alloy | |
EP1664362B1 (en) | Ods-alloy of molybdenum, silicon and boron | |
DE10035719B4 (en) | Method for producing intermetallic sputtering targets | |
DE69227503T2 (en) | HARD ALLOY AND THEIR PRODUCTION | |
EP3802898B1 (en) | Density-optimized molybdenum alloy | |
DE3935698C2 (en) | Alloy target for the production of a magneto-optical recording medium | |
DE102007047523B3 (en) | Process for the production of semi-finished products from NiTi shape memory alloys | |
EP1718777B1 (en) | Method for the production of a molybdenum alloy | |
DE68921246T2 (en) | Sintered, surface-refined alloy with and without hard coating as well as a process for producing the alloy. | |
DE3238555C2 (en) | ||
DE69207257T2 (en) | Heat resistant sintered oxide dispersion hardened alloy | |
DE69203603T2 (en) | Sintered silicon nitride of high toughness and strength. | |
DE69702949T2 (en) | Composite carbide powder for use in cemented carbide and process for its manufacture | |
DE69318682T2 (en) | Magnetic powder of type SE-Fe-B, sintered magnets made of it and manufacturing process | |
WO2000003047A1 (en) | Hard metal or ceramet body and method for producing the same | |
WO1995033079A1 (en) | Method of producing intermetallic master alloys | |
DE1558805B2 (en) | PROCESS FOR MANUFACTURING DEFORMED WORKPIECES FROM DISPERSION REINFORCED METALS OR ALLOYS | |
AT1239U1 (en) | METHOD FOR PRODUCING A COMPOSITE | |
WO2004043875A2 (en) | Ceramic-metal or metal-ceramic composite | |
DE10117657B4 (en) | Complex boride cermet body and use of this body | |
DE3043321A1 (en) | SINTER PRODUCT FROM METAL ALLOY AND THE PRODUCTION THEREOF | |
DE19722416B4 (en) | Process for the production of high-density components based on intermetallic phases | |
DE4102531C2 (en) | Silicon nitride sintered body and process for its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |