JP2002241880A - Aluminum alloy extrusion profile material having excellent bending workability and production method therefor - Google Patents

Aluminum alloy extrusion profile material having excellent bending workability and production method therefor

Info

Publication number
JP2002241880A
JP2002241880A JP2001040249A JP2001040249A JP2002241880A JP 2002241880 A JP2002241880 A JP 2002241880A JP 2001040249 A JP2001040249 A JP 2001040249A JP 2001040249 A JP2001040249 A JP 2001040249A JP 2002241880 A JP2002241880 A JP 2002241880A
Authority
JP
Japan
Prior art keywords
less
bending workability
extruded
alloy
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001040249A
Other languages
Japanese (ja)
Other versions
JP4169941B2 (en
Inventor
Takeshi Sakagami
武 坂上
Koichi Ohori
紘一 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2001040249A priority Critical patent/JP4169941B2/en
Publication of JP2002241880A publication Critical patent/JP2002241880A/en
Application granted granted Critical
Publication of JP4169941B2 publication Critical patent/JP4169941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Al-Mg-Si based alloy extrusion shape material which has excellent bending workability in a T5 material or a T6 material. SOLUTION: The aluminum alloy extrusion profile material has a composition containing, by weight, 0.40 to 0.75% Si and 0.65 to 1.0% Mg so as to satisfy -0.05%<=(Si-Mg/1.73)<=0.20, and further containing 0.02 to <0.05% Mn and 0.02 to <0.05% Zr, and also containing 0.05 to 0.4% Cu, and further containing 0.1 to 0.4% Fe, 0.005 to 0.1% Ti and 0.0001 to 0.004% B, and the balance Al with inevitable impurities. The profile material has a crystal grain structure in which the average grain size in the cross section in the extruding direction of the crystal grains is <=100 μm, and also, the ratio between the length in the extruding direction of the crystal grains and the length in the thickness direction is <=2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、押出加工性、機械
的性質、曲げ加工性および耐食性に優れ、自動車のフレ
ーム材やバンパー補強材などに用いて好適なAl合金押
出形材およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extruded aluminum alloy material having excellent extrudability, mechanical properties, bending workability and corrosion resistance and suitable for use as a frame material or a bumper reinforcing material of an automobile, and a method for producing the same. It is about.

【0002】[0002]

【従来の技術】Al−Mg−Si系合金は、押出加工性
に優れていることから薄肉中空形材の製造が容易であ
り、また構造材として適度な機械的性質と良好な耐食性
を有していることから、自動車のフレーム材やバンパー
補強材などに広く利用されている。そして、代表的な合
金としてはJIS6N01合金が挙げられる。
2. Description of the Related Art An Al-Mg-Si alloy is excellent in extrudability, so that it is easy to produce a thin-walled hollow material. In addition, it has moderate mechanical properties and good corrosion resistance as a structural material. Therefore, it is widely used as a frame material for automobiles and a reinforcing material for bumpers. And a typical alloy is JIS6N01 alloy.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記6N0
1合金などにおいては、強度の高いT5材あるいはT6
材は曲げ加工性に劣るものであるため、T4材を用いる
必要があった。しかしながら、T4材を用いて曲げ加工
を行った場合には、部品に必要な強度を得るために、加
工後に時効処理を施さねばならず、熱処理炉を持たない
ユーザーは製造することができず、また、一回あたりの
処理量の減少による生産性の低下や熱変形による寸法精
度の低下が避けがたいという問題があった。本発明は、
係る問題点に鑑みて成されたものであって、T5材ある
いはT6材での曲げ加工性に優れるAl合金押出形材
と、この押出形材を効率よく生産することができるAl
合金押出形材の製造方法を提供することを目的とする。
The above 6N0
In the case of alloy 1 or the like, high strength T5 material or T6
Since the material is inferior in bending workability, it was necessary to use T4 material. However, when bending is performed using T4 material, aging treatment must be performed after processing in order to obtain the necessary strength for the part, and a user without a heat treatment furnace cannot be manufactured, In addition, there is a problem that a reduction in productivity due to a reduction in the amount of processing per operation and a reduction in dimensional accuracy due to thermal deformation are unavoidable. The present invention
In view of the above problems, an Al alloy extruded material excellent in bending workability with T5 or T6 material, and an Al material capable of efficiently producing the extruded material.
An object of the present invention is to provide a method for manufacturing an extruded alloy material.

【0004】[0004]

【課題を解決するための手段】本発明者等は前述の目的
を達成すべく鋭意検討を重ねた結果、Al−Mg−Si
系合金において、Mg2Siのバランス組成よりも過剰
のSiを制御するとともに、微量のMnとZrを複合添
加することにより結晶粒のサイズと形状を制御し、さら
に押出加工後の冷却速度をある値以上にして冷却過程で
の結晶粒界へのSi粒子の析出を抑制することによっ
て、T5材あるいはT6材での曲げ加工性が向上するこ
とを見出し、本発明を成すに至ったのである。すなわ
ち、本発明のアルミ合金押出材は重量%でSi:0.4
0〜0.75%、Mg:0.65〜1.0%、そして−
0.05≦(Si−Mg/1.73)≦0.20となる
ように含有し、かつMnを0.02%以上0.05%未
満、Zrを0.02%以上0.05%未満含有し、かつ
Cu:0.05〜0.4%を含有し、さらにFe:0.
1〜0.4%、Ti:0.005%〜0.1%、B:
0.0001〜0.004%を含有し、残りがAlと不
可避不純物からなる組成並びに結晶粒の押出方向断面に
おける平均粒径が100μm以下であり、かつ結晶粒の
押出方向の長さと厚さ方向の長さとの比が2以下である
結晶粒組織を有することを特徴とする。
The present inventors have made intensive studies to achieve the above object, and as a result, have found that Al-Mg-Si
In the system alloy, the excess Si is controlled from the balance composition of Mg 2 Si, and the size and shape of the crystal grains are controlled by adding a small amount of Mn and Zr in combination. It has been found that the bending workability of the T5 material or the T6 material is improved by suppressing the precipitation of Si particles on the crystal grain boundaries during the cooling process by setting the value to the value or more, and the present invention has been accomplished. That is, the aluminum alloy extruded material of the present invention is Si: 0.4% by weight.
0-0.75%, Mg: 0.65-1.0%, and-
0.05 ≦ (Si—Mg / 1.73) ≦ 0.20, Mn is 0.02% or more and less than 0.05%, and Zr is 0.02% or more and less than 0.05%. And Cu: 0.05 to 0.4%, and Fe: 0.
1 to 0.4%, Ti: 0.005% to 0.1%, B:
The composition contains 0.0001 to 0.004%, the balance being Al and unavoidable impurities, the average grain size in the cross section of the crystal grains in the extrusion direction is 100 μm or less, and the length and thickness direction of the crystal grains in the extrusion direction Characterized by having a grain structure having a ratio to the length of 2 or less.

【0005】また本発明のアルミ合金押出材の製造方法
は、重量%でSi:0.40〜0.75%、Mg:0.
65〜1.0%、そして−0.05≦(Si−Mg/
1.73)≦0.20となるように含有し、かつMnを
0.02%以上0.05%未満、Zrを0.02%以上
0.05%未満含有し、かつCu:0.05〜0.4%
を含有し、さらにFe:0.1〜0.4%、Ti:0.
005%〜0.1%、B:0.0001〜0.004%
を含有し、残りがAlと不可避不純物からなるAl合金
鋳塊を460℃〜560℃の温度に加熱した後押出加工
し、押出機から出てきた側での500℃から200℃へ
の平均冷却速度を50℃/秒以上とすることを特徴とす
る。
The method for producing an extruded aluminum alloy according to the present invention is characterized in that, in terms of% by weight, Si: 0.40 to 0.75% and Mg: 0.
65-1.0%, and -0.05 ≦ (Si-Mg /
1.73) ≦ 0.20, Mn in an amount of 0.02% to less than 0.05%, Zr in an amount of 0.02% to less than 0.05%, and Cu: 0.05 ~ 0.4%
, Fe: 0.1 to 0.4%, and Ti: 0.
005% to 0.1%, B: 0.0001 to 0.004%
Is heated to a temperature of 460 ° C. to 560 ° C. and then extruded, and an average cooling from 500 ° C. to 200 ° C. on the side coming out of the extruder. The speed is set to 50 ° C./sec or more.

【0006】本発明のAl合金押出形材は、好適には曲
げ加工性に対する要求の高い自動車のフレーム材やバン
パー補強材などに使用されるが、本発明としては、特に
用途が限定されるものではない。
[0006] The extruded aluminum alloy material of the present invention is preferably used as a frame material for automobiles or a bumper reinforcing material having a high demand for bending workability. is not.

【0007】次に、この発明のAl合金中空材を構成す
るAl合金の成分組成を上記の通りに限定した理由を説
明する。 A.成分組成 (a)SiおよびMg:これらの成分には、微細なMg
2Si化合物として析出して強度を向上させる作用があ
るが、SiおよびMgのいずれかの含有量でもSi:
0.40%未満、およびMg:0.65%未満になると
生成する析出物の量が少なくなって所望の強度を確保す
ることができず、一方これらの含有量がSi:0.75
%およびMg:1.0%を超えると曲げ加工性が低下す
るようになる。さらに、−0.05≦(Si−Mg/
1.73)≦0.20となるように含有させると、押出
加工性をそれほど阻害せず強度が増加する。しかしなが
ら、−0.05≦((Si含有量)−(Mg含有量)/
1.73)なる関係を満足する量未満ではその効果が十
分得られず、一方、((Si含有量)−(Mg含有量)
/1.73)≦0.20なる関係を満足する量を超える
と押出加工後の冷却過程および時効処理時にSi粒子が
結晶粒界に析出するようになって曲げ加工性が劣化す
る。 (b)Cu:Cuは地に固溶することによって強度を向
上させるが、0.05%未満ではその効果が十分ではな
く、一方0.4%を超えるとAl合金の耐食性が低下す
る。 (c)Mn、Zr:これらの成分にはAlと金属間化合
物を形成して、この金属間化合物が再結晶の核生成サイ
トとなり、Al合金押出形材の金属組織を微細な粒状の
結晶粒からなる組織とする効果があり、その結果曲げ加
工性が向上するようになる。しかしながら、MnとZr
がそれぞれの下限値未満では上記の効果が十分に得られ
ず、一方、上限値を超えると押出方向に長く伸びた伸長
粒組織や一部繊維組織が現れるようになり、曲げ加工性
が劣化する。 (d)Ti、B:これらの成分には鋳造組織を微細化
し、鋳造割れを防止する作用があるが、TiおよびBの
いずれの含有量でもTi:0.005%未満、および
B:0.0001%未満の場合には所望の効果を得るこ
とができず、一方、TiおよびBのいずれかの含有量で
も、Ti:0.1%およびB:0.004%を超える
と、巨大な金属間化合物が生成して靱性が低下し、また
曲げ加工性も劣化する。 (e)その他、成分組成としてCr含有量を0.01%
以下に規制することが好ましい。Crは、Al合金押出
材を構成する結晶粒組織を制御する上で、重要である。
Crの含有量が0.01%を超える場合には、Al合金
押出材の結晶粒組織の一部に伸長粒組織が形成されるた
めに、曲げ加工性が著しく劣化する。尚、このように結
晶粒組織の一部のみに伸長粒組織や繊維状組織が形成さ
れたものは、伸長粒組織や繊維状組織のみで結晶粒組織
が構成されているものよりも曲げ加工性が劣るものであ
る。
Next, the reason why the composition of the Al alloy constituting the Al alloy hollow material of the present invention is limited as described above will be described. A. Component composition (a) Si and Mg: These components contain fine Mg
2 has the effect of improving the strength by precipitating as a Si compound, but the Si:
If the content is less than 0.40% and the content of Mg is less than 0.65%, the amount of precipitates formed is so small that the desired strength cannot be secured, while the content of these components is Si: 0.75%.
% And Mg: more than 1.0%, the bending workability is reduced. Further, -0.05 ≦ (Si-Mg /
When 1.73) ≦ 0.20, the extrudability is not significantly impaired, and the strength is increased. However, −0.05 ≦ ((Si content) − (Mg content) /
When the amount is less than the amount satisfying the relationship of 1.73), the effect cannot be sufficiently obtained. On the other hand, ((Si content) − (Mg content))
If the amount satisfies the relationship of (/1.73)≦0.20, the Si particles will precipitate at the crystal grain boundaries during the cooling process and the aging treatment after the extrusion, and the bending workability will deteriorate. (B) Cu: Cu improves the strength by dissolving in the ground, but if its content is less than 0.05%, its effect is not sufficient, while if it exceeds 0.4%, the corrosion resistance of the Al alloy is reduced. (C) Mn, Zr: These components form an intermetallic compound with Al, and the intermetallic compound serves as a nucleation site for recrystallization, and the metal structure of the extruded Al alloy material is formed into fine granular crystal grains. This has the effect of forming a structure consisting of: as a result, the bending workability is improved. However, Mn and Zr
If the lower limit is less than the respective lower limit, the above effect is not sufficiently obtained.On the other hand, if the upper limit is exceeded, an elongated grain structure or a partial fiber structure elongated in the extrusion direction appears, and the bending workability deteriorates. . (D) Ti, B: These components have a function of refining the cast structure and preventing casting cracks. However, in any of the contents of Ti and B, Ti: less than 0.005%, and B: 0. If the content is less than 0001%, the desired effect cannot be obtained. On the other hand, if the content of either Ti or B exceeds 0.1% Ti and 0.004% B, a huge metal Intermetallic compounds are formed to reduce toughness and bending workability. (E) In addition, Cr content is 0.01% as a component composition.
It is preferable to regulate as follows. Cr is important in controlling the grain structure of the extruded Al alloy.
When the content of Cr exceeds 0.01%, an extruded grain structure is formed in a part of the grain structure of the extruded Al alloy, so that the bending workability is significantly deteriorated. It should be noted that, in such a case where the extended grain structure or the fibrous structure is formed only in a part of the grain structure, bending workability is higher than that in which the grain structure is constituted only by the extended grain structure or the fibrous structure. Is inferior.

【0008】B.金属組織 次に、金属組織の限定理由について説明する。本発明の
Al合金押出形材は押出加工によって製造されるが、そ
の金属組織が粒状の結晶粒からなる組織で、かつその平
均結晶粒径が100μm以下で、かつ結晶粒のアスペク
ト比、すなわちAl合金押出形材を構成する結晶粒の押
出方向の長さと厚さ方向の長さの比が2以下の場合に優
れた曲げ加工性が得られるが、その平均結晶粒径が10
0μmを超える場合、あるいは結晶粒のアスペクト比が
2を超えるような伸長粒組織や厚さ方向で一部繊維状組
織の場合には曲げ加工性が劣化する。
B. Next, the reasons for limiting the metallographic structure will be described. The Al alloy extruded profile of the present invention is manufactured by extrusion, and its metal structure is a structure composed of granular crystal grains, and the average crystal grain size is 100 μm or less, and the aspect ratio of the crystal grains, ie, Al Excellent bending workability can be obtained when the ratio of the length in the extrusion direction to the length in the thickness direction of the crystal grains constituting the extruded alloy material is 2 or less, but the average crystal grain size is 10%.
If it exceeds 0 μm, or if it has an elongated grain structure in which the aspect ratio of crystal grains exceeds 2, or if it has a partially fibrous structure in the thickness direction, the bending workability will deteriorate.

【0009】C.製造条件 押出加工温度を460℃〜560℃の温度範囲に限定し
たのは、460℃未満で押出加工すると温度が低すぎる
ために溶質原子を十分に固溶させることができなくな
り、所望の強度を得ることができなくなる。一方、56
0℃を超えた温度で押出加工を行うと、局部融解による
割れなどの欠陥が生じるようになる。また、押出加工後
の冷却速度は、50℃/秒未満では冷却中にSi粒子が
結晶粒界に析出し、曲げ加工性が劣化するようになる。
C. Manufacturing Conditions The reason why the extrusion processing temperature is limited to the temperature range of 460 ° C. to 560 ° C. is that if the extrusion processing is performed at a temperature lower than 460 ° C., the temperature is too low, so that the solute atoms cannot be sufficiently dissolved to obtain a desired strength. You can't get it. On the other hand, 56
Extrusion at a temperature exceeding 0 ° C. causes defects such as cracks due to local melting. If the cooling rate after extrusion is less than 50 ° C./sec, Si particles precipitate at the crystal grain boundaries during cooling, and the bending workability deteriorates.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1は、本発明に係る押出機の押
出ダイスを含む部分の構成を模式的に示す部分断面構成
図である。この図において、押出機1に投入されたAl
合金ビレット2は、押出ダイス3を通過して押出加工さ
れることにより所定の形状へと加工される。また、押出
ダイス3の出口側には、Al合金材を冷却するための冷
却手段4が設けられている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a partial cross-sectional configuration diagram schematically illustrating a configuration of a portion including an extrusion die of an extruder according to the present invention. In this figure, the Al charged in the extruder 1
The alloy billet 2 is processed into a predetermined shape by being extruded through an extrusion die 3. Further, a cooling means 4 for cooling the Al alloy material is provided on the outlet side of the extrusion die 3.

【0011】本発明のAl合金押出材は、前記の組成を
有するAl合金ビレットを常法により溶製し、このビレ
ットに対して500〜600℃程度にて保持して均質化
処理を施し、460〜560℃に加熱した後図1に示す
押出機1を用いて所定の形状に押出加工し、押出機1の
押出ダイス3の出口側に設けられた冷却手段4によって
50℃/秒以上の冷却速度で急速に冷却されて製造され
る。尚、図1に示す冷却手段4は、例えば水冷や、液体
窒素噴射など、押出ダイス3から吐出されたAl合金材
を急速に冷却することが可能な冷却方法であれば、問題
なく適用することができる。
The Al alloy extruded material of the present invention is prepared by smelting an Al alloy billet having the above-described composition by a conventional method, holding the billet at about 500 to 600 ° C., and homogenizing the billet. After heating to about 560 ° C., the extruder 1 is extruded into a predetermined shape using the extruder 1 shown in FIG. 1, and cooled at 50 ° C./sec or more by the cooling means 4 provided at the exit side of the extrusion die 3 of the extruder 1. Manufactured with rapid cooling at speed. The cooling means 4 shown in FIG. 1 can be applied without any problem as long as it is a cooling method capable of rapidly cooling the Al alloy material discharged from the extrusion die 3 such as water cooling or liquid nitrogen injection. Can be.

【0012】[0012]

【実施例】以下、本発明を実施例によりさらに詳細に説
明する。 (実施例1〜4)まず、本発明の要件を満足するAl合
金押出形材として、表1に示す組成の204mm径の合
金ビレットを常法により溶製し、これらのビレットに対
して温度:545℃に4時間保持の均質化処理を施した
後、1650トンの押出機を用いて押出温度:500
℃、押出速度:5m/分、冷却:150℃/秒(水冷)
の条件で押出加工を行い、引き続いてこれらに160℃
で4〜8時間の人工時効処理を施すことにより所望の強
度(耐力が220MPa以上)を有する肉厚3.5m
m、断面70mm×80mmのAl合金押出形材を作製
した。
The present invention will be described in more detail with reference to the following examples. (Examples 1 to 4) First, as an extruded aluminum alloy material satisfying the requirements of the present invention, an alloy billet having a composition shown in Table 1 and having a diameter of 204 mm was melted by a conventional method. After a homogenization treatment of holding at 545 ° C. for 4 hours, an extrusion temperature of 500 using an extruder of 1650 tons.
° C, extrusion speed: 5 m / min, cooling: 150 ° C / sec (water cooling)
Extrusion processing is performed under the conditions of
3.5 m thick having desired strength (proof strength of 220 MPa or more) by applying artificial aging treatment for 4 to 8 hours
m, an Al alloy extruded profile having a cross section of 70 mm × 80 mm was produced.

【0013】(比較例1〜6)次に、合金組成、結晶粒
径、および結晶粒径のアスペクト比の違いによる比較を
行うために、上記実施例1〜4と同一の条件にて表1に
示す組成の合金ビレットから比較例1〜6のAl合金押
出形材を作製した。尚、比較例1は6063合金、比較
例2は6N01合金、比較例3は6061合金である。
(Comparative Examples 1 to 6) Next, in order to compare the alloy composition, the crystal grain size, and the aspect ratio of the crystal grain size according to the difference in aspect ratio, Table 1 was used under the same conditions as those in Examples 1 to 4 above. The aluminum alloy extruded profiles of Comparative Examples 1 to 6 were prepared from alloy billets having the composition shown in Table 1. Comparative Example 1 is a 6063 alloy, Comparative Example 2 is a 6N01 alloy, and Comparative Example 3 is a 6061 alloy.

【0014】(比較例7〜9)次に、製造条件の違いに
よる比較を行うために、表1に示す実施例1と同一の組
成の合金ビレットから比較例7〜9のAl合金押出形材
を作製した。ただし、以下に示す条件以外の製造条件は
上記実施例1と同一の条件とした。
(Comparative Examples 7 to 9) Next, in order to compare the production conditions, the aluminum alloy extruded members of Comparative Examples 7 to 9 were prepared from alloy billets having the same composition as in Example 1 shown in Table 1. Was prepared. However, the manufacturing conditions other than the following conditions were the same as those in Example 1.

【0015】[0015]

【表1】 [Table 1]

【0016】次いで、上記の実施例および比較例のAl
合金押出形材について、ミクロ組織観察、引張試験によ
る耐力測定、および曲げ加工性評価を行った。曲げ加工
性の評価はU字曲げ試験で行った。このU字曲げ試験
は、曲げ半径(先端部半径)が11mmのポンチを用
い、このポンチの先端に沿って試験片を曲げ加工し、試
験片の曲げ先端部外面側に割れが発生するか否かで評価
した。これらの結果を表2および表3に示す。表2に示
す結果から、本発明の要件を満足する実施例1〜4のA
l合金材はいずれも微細な等軸粒組織を有し、耐力22
0MPa以上の所望の強度と優れた曲げ加工性を有して
いることが確認された。これに対して、本発明の要件を
満たさない比較例1〜6のAl合金材はいずれも曲げ加
工性に劣るものであることが確認された。また、本発明
のAl合金押出形材の製造方法の要件を満たさない比較
例7〜9のAl合金押出材はいずれも曲げ加工性に劣る
ものであった。
Next, the Al of the above Examples and Comparative Examples
For the extruded alloy material, microstructure observation, proof stress measurement by a tensile test, and bending workability evaluation were performed. The bending workability was evaluated by a U-shaped bending test. This U-shaped bending test uses a punch having a bending radius (tip radius) of 11 mm, and bends the test piece along the tip of the punch to determine whether or not cracks occur on the outer surface of the bending tip of the test piece. Was evaluated. The results are shown in Tables 2 and 3. From the results shown in Table 2, A of Examples 1-4 satisfying the requirements of the present invention
All alloy materials have a fine equiaxed grain structure and a proof stress of 22
It was confirmed that it had desired strength of 0 MPa or more and excellent bending workability. On the other hand, it was confirmed that all of the Al alloy materials of Comparative Examples 1 to 6 which did not satisfy the requirements of the present invention were inferior in bending workability. Further, the extruded Al alloys of Comparative Examples 7 to 9 which do not satisfy the requirements of the method for producing an extruded Al alloy of the present invention were all inferior in bending workability.

【0017】[0017]

【表2】 [Table 2]

【表3】 [Table 3]

【0018】[0018]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、重量%でSi:0.40〜0.75%、Mg:
0.65〜1.0%、そして−0.05≦(Si−Mg
/1.73)≦0.20となるように含有し、かつMn
を0.02%以上0.05%未満、Zrを0.02%以
上0.05%未満含有し、かつCu:0.05〜0.4
%を含有し、さらにFe:0.1〜0.4%、Ti:
0.005%〜0.1%、B:0.0001〜0.00
4%を含有し、残りがAlと不可避不純物からなる組成
並びに結晶粒の押出方向断面における平均粒径が100
μm以下であり、かつ結晶粒の押出方向の長さと厚さ方
向の長さとの比が2以下である結晶粒組織を有する構成
とすることにより優れた曲げ加工性を有するAl合金押
出形材を提供することができる。
As described in detail above, according to the present invention, Si: 0.40 to 0.75% by weight, Mg:
0.65 to 1.0%, and -0.05 ≦ (Si-Mg
/1.73)≦0.20 and Mn
0.02% to less than 0.05%, Zr 0.02% to less than 0.05%, and Cu: 0.05 to 0.4%
%, Fe: 0.1 to 0.4%, Ti:
0.005% to 0.1%, B: 0.0001 to 0.00
4%, the balance being Al and unavoidable impurities, and the average grain size of the crystal grains in the cross section in the extrusion direction is 100.
μm or less, and the ratio of the length of the crystal grains in the extrusion direction to the length in the thickness direction has a grain structure of 2 or less. Can be provided.

【0019】次に、本発明のAl合金押出形材の製造方
法によれば、ダイス出側での冷却工程における500℃
から200℃への冷却を50℃/秒以上の速度で行うよ
うにすることにより、曲げ加工性に優れるAl合金押出
形材を効率よく安定して製造することができる。
Next, according to the method for producing an extruded aluminum alloy material of the present invention, the temperature of 500 ° C. in the cooling step on the die exit side is obtained.
By cooling at a rate of 50 ° C./sec or more from 200 ° C. to 200 ° C., an extruded Al alloy having excellent bending workability can be efficiently and stably manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、本発明に係る押出機の部分断面構成
図である。
FIG. 1 is a partial cross-sectional configuration diagram of an extruder according to the present invention.

【符号の説明】[Explanation of symbols]

1 押出機 2 Al合金ビレット 3 押出ダイス 4 冷却手段 REFERENCE SIGNS LIST 1 extruder 2 Al alloy billet 3 extrusion die 4 cooling means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 604 C22F 1/00 604 612 612 630 630K 683 683 691 691B 692 692A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 604 C22F 1/00 604 612 612 630 630K 683 683 691 691B 692 692A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%でSi:0.40〜0.75%、
Mg:0.65〜1.0%、そして−0.05≦(Si
−Mg/1.73)≦0.20となるように含有し、か
つMnを0.02%以上0.05%未満、Zrを0.0
2%以上0.05%未満含有し、かつCu:0.05〜
0.4%を含有し、さらにFe:0.1〜0.4%、T
i:0.005%〜0.1%、B:0.0001〜0.
004%を含有し、残りがAlと不可避不純物からなる
組成並びに結晶粒の押出方向断面における平均粒径が1
00μm以下であり、かつ結晶粒の押出方向の長さと厚
さ方向の長さとの比が2以下である結晶粒組織を有する
ことを特徴とする曲げ加工性に優れたアルミニウム合金
押出形材。
1. 0.40 to 0.75% by weight of Si,
Mg: 0.65 to 1.0%, and -0.05 ≦ (Si
-Mg / 1.73) ≦ 0.20, Mn is 0.02% or more and less than 0.05%, and Zr is 0.02% or less.
Contains 2% or more and less than 0.05%, and Cu: 0.05 to
0.4%, Fe: 0.1-0.4%, T
i: 0.005% to 0.1%, B: 0.0001 to 0.
004%, the balance being Al and unavoidable impurities, and the average grain size of the crystal grains in the cross section in the extrusion direction is 1
An extruded aluminum alloy material excellent in bending workability, characterized by having a crystal grain structure of not more than 00 μm and having a ratio of the length of the crystal grains in the extrusion direction to the length in the thickness direction of 2 or less.
【請求項2】 重量%でSi:0.40〜0.75%、
Mg:0.65〜1.0%、そして−0.05≦(Si
−Mg/1.73)≦0.20となるように含有し、か
つMnを0.02%以上0.05%未満、Zrを0.0
2%以上0.05%未満含有し、かつCu:0.05〜
0.4%を含有し、さらにFe:0.1〜0.4%、T
i:0.005%〜0.1%、B:0.0001〜0.
004%を含有し、残りがAlと不可避不純物からなる
Al合金鋳塊を460℃〜560℃の温度に加熱した後
押出加工し、押出機から出てきた側での500℃から2
00℃への平均冷却速度を50℃/秒以上とすることを
特徴とするアルミニウム合金押出形材の製造方法。
2. 0.4% to 0.75% by weight of Si;
Mg: 0.65 to 1.0%, and -0.05 ≦ (Si
-Mg / 1.73) ≦ 0.20, Mn is 0.02% or more and less than 0.05%, and Zr is 0.02% or less.
Contains 2% or more and less than 0.05%, and Cu: 0.05 to
0.4%, Fe: 0.1-0.4%, T
i: 0.005% to 0.1%, B: 0.0001 to 0.
An aluminum alloy ingot containing 004% and the remainder consisting of Al and unavoidable impurities is heated to a temperature of 460 ° C. to 560 ° C., extruded, and extruded from 500 ° C. to 2 °
A method for producing an extruded aluminum alloy material, wherein the average cooling rate to 00 ° C. is 50 ° C./sec or more.
JP2001040249A 2001-02-16 2001-02-16 Aluminum alloy extruded shape having excellent bending workability and manufacturing method thereof Expired - Fee Related JP4169941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001040249A JP4169941B2 (en) 2001-02-16 2001-02-16 Aluminum alloy extruded shape having excellent bending workability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001040249A JP4169941B2 (en) 2001-02-16 2001-02-16 Aluminum alloy extruded shape having excellent bending workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002241880A true JP2002241880A (en) 2002-08-28
JP4169941B2 JP4169941B2 (en) 2008-10-22

Family

ID=18902893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001040249A Expired - Fee Related JP4169941B2 (en) 2001-02-16 2001-02-16 Aluminum alloy extruded shape having excellent bending workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4169941B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241881A (en) * 2001-02-16 2002-08-28 Mitsubishi Alum Co Ltd Energy absorbing member in automobile frame structure
JP2007254833A (en) * 2006-03-24 2007-10-04 Kobe Steel Ltd Aluminum alloy extruded material for tube expanding
JP2009013503A (en) * 2008-09-29 2009-01-22 Showa Denko Kk Aluminum alloy extruded material for machining, machined article made of aluminum alloy, and valve material for automotive part
CN102690978A (en) * 2012-06-21 2012-09-26 辽宁忠旺集团有限公司 Method for inhibiting coarse grain formation of large-section large-width-height ratio aluminum alloy profile
CN109468507A (en) * 2018-12-25 2019-03-15 台州市金美铝业股份有限公司 A kind of fishing gear aluminium alloy and preparation method thereof
CN110643865A (en) * 2019-09-20 2020-01-03 成都阳光铝制品有限公司 Automobile control arm section and manufacturing process thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241881A (en) * 2001-02-16 2002-08-28 Mitsubishi Alum Co Ltd Energy absorbing member in automobile frame structure
JP4611543B2 (en) * 2001-02-16 2011-01-12 三菱アルミニウム株式会社 Energy absorbing member in automobile frame structure
JP2007254833A (en) * 2006-03-24 2007-10-04 Kobe Steel Ltd Aluminum alloy extruded material for tube expanding
JP2009013503A (en) * 2008-09-29 2009-01-22 Showa Denko Kk Aluminum alloy extruded material for machining, machined article made of aluminum alloy, and valve material for automotive part
CN102690978A (en) * 2012-06-21 2012-09-26 辽宁忠旺集团有限公司 Method for inhibiting coarse grain formation of large-section large-width-height ratio aluminum alloy profile
CN109468507A (en) * 2018-12-25 2019-03-15 台州市金美铝业股份有限公司 A kind of fishing gear aluminium alloy and preparation method thereof
CN110643865A (en) * 2019-09-20 2020-01-03 成都阳光铝制品有限公司 Automobile control arm section and manufacturing process thereof
CN110643865B (en) * 2019-09-20 2021-05-07 成都阳光铝制品有限公司 Automobile control arm section and manufacturing process thereof

Also Published As

Publication number Publication date
JP4169941B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
US5961752A (en) High strength Mg-Si type aluminum alloy
KR100994812B1 (en) High-strength high-ductility magnesium alloy extrudate and manufacturing method thereof
US20100068090A1 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
JP2013525608A (en) Damage-resistant aluminum material with hierarchical microstructure
JP6344816B2 (en) High-strength aluminum alloy extruded thin section and method for producing the same
KR20090089905A (en) High-strength aluminum-base alloy products and process for production thereof
JPH09310141A (en) High strength al-zn-mg alloy extruded member for structural material excellent in extrudability and its production
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
JP2000144296A (en) High-strength and high-toughness aluminum alloy forged material
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
JP2004043907A (en) Aluminum alloy forging for reinforcement member and raw material for forging
JP5215710B2 (en) Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same
JPH108172A (en) Production of high strength aluminum-magnesium-silicon base alloy for structural material excellent in extrudability and extruded material
JP6810178B2 (en) High-strength aluminum alloy and its manufacturing method, aluminum alloy plate and aluminum alloy member using the aluminum alloy
JP4169941B2 (en) Aluminum alloy extruded shape having excellent bending workability and manufacturing method thereof
JP2931538B2 (en) High strength aluminum alloy material for bumpers excellent in bending workability and method for producing the same
JP2001181771A (en) High strength and heat resistant aluminum alloy material
EP2006404A1 (en) 6000 aluminum extrudate excelling in paint-baking hardenability and process for producing the same
JP3550944B2 (en) Manufacturing method of high strength 6000 series aluminum alloy extruded material with excellent dimensional accuracy
JP2022156481A (en) Aluminum alloy extruded material and manufacturing method thereof
JP2003034835A (en) Aluminum alloy sheet and manufacturing method therefor
WO2019189521A1 (en) High-strength aluminum alloy, and aluminum alloy sheet and aluminum alloy member using said aluminum alloy
JP3550943B2 (en) Manufacturing method of 6000 series aluminum alloy extruded material with excellent dimensional accuracy
JPS63313635A (en) Production of high strength al pipe stock for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080806

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110815

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120815

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees