JP4611543B2 - Energy absorbing member in automobile frame structure - Google Patents

Energy absorbing member in automobile frame structure Download PDF

Info

Publication number
JP4611543B2
JP4611543B2 JP2001040250A JP2001040250A JP4611543B2 JP 4611543 B2 JP4611543 B2 JP 4611543B2 JP 2001040250 A JP2001040250 A JP 2001040250A JP 2001040250 A JP2001040250 A JP 2001040250A JP 4611543 B2 JP4611543 B2 JP 4611543B2
Authority
JP
Japan
Prior art keywords
alloy
less
content
absorbing member
energy absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001040250A
Other languages
Japanese (ja)
Other versions
JP2002241881A (en
Inventor
武 坂上
紘一 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2001040250A priority Critical patent/JP4611543B2/en
Publication of JP2002241881A publication Critical patent/JP2002241881A/en
Application granted granted Critical
Publication of JP4611543B2 publication Critical patent/JP4611543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、Al−Mg−Si系合金押出形材からなるエネルギー吸収部材に係り、特に、自動車のフレーム構造におけるサイドメンバーなどに用いて好適なエネルギー吸収部材に関するものである。
【0002】
【従来の技術】
自動車のサイドメンバーは、自動車の前方のエンジン部分と、後方のトランク部において、衝突時にアコーディオン状に座屈変形することにより衝突時の衝撃エネルギーを吸収することにより、乗員の安全を確保する機能を有する部材である。この部材としては、従来冷延鋼板をプレス成形し、スポット溶接により組み立てたものが用いられている。しかし、近年、地球温暖化などの環境問題から、排ガス低減や燃費向上などのために自動車の軽量化が強く要請されており、この軽量化の一環として鋼板の代わりに軽量でかつ複雑形状の構造材を一体で製造することができるアルミニウム合金押出形材の使用が検討されている。
このような用途に対しては、現在は主として押出加工性、機械的性質、および耐食性などのバランスが良い6063合金などのAl−Mg−Si系合金押出形材が使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来のAl−Mg−Si系合金、例えば代表的な6063合金は耐力が215MPa程度と低いため、軸方向に圧縮荷重を受けた際に変形が進む平均荷重が低く、したがってエネルギー吸収効率が低いので板厚を厚くする必要がある。一方、6061合金などの耐力の大きい合金は衝突時の変形で割れが発生しやすく、一旦割れが発生するとそれ以降の衝撃は吸収されないので、エネルギー吸収効率は極めて低いものとなるいう問題があった。
また、Al合金押出形材を構成する内部組織を主として繊維状組織としたものが特開2000−54050号公報に開示されている。しかしながら、この主として繊維状組織からなるAl合金押出形材は圧潰特性に優れるものの、その製造において押出加工を行う際の押出速度を大きくすることができないために、生産性が課題となっていた。
【0004】
本発明は、係る問題点に鑑みてなされたものであって、衝突時の圧縮変形を受けた際に割れが発生することがなく、エネルギー吸収効率が高い自動車のフレーム構造におけるエネルギー吸収部材を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者等は、上述のような観点から、Al−Mg−Si系合金押出形材の圧潰特性に及ぼす合金組成および材料特性の影響を明らかにすべく種々の実験を行った結果、微量のMnとZrを複合添加することにより結晶粒のサイズと形状を制御するとともに、該押出形材の耐力と引張強さの比および耐力値をある範囲に制御することによって圧潰特性が向上するという実験結果を得たものである。すなわち、本発明の自動車のフレーム構造におけるエネルギー吸収部材は、重量%でSi:0.50〜0.75%、Mg:0.75〜1.0%を−0.05≦(Si−Mg/1.73)≦0.20となる関係を満たすように含有し、かつMnを0.02%以上0.05%未満、Zrを0.02%以上0.05%未満含有し、かつCu:0.05〜0.4%を含有し、さらにFe:0.1〜0.4%、Ti:0.005〜0.1%、B:0.0001〜0.004%を含有し、残りがAlと不可避不純物から成る組成並びに結晶粒の押出方向の長さと厚さ方向の長さとの比が2以下である結晶粒組織を有する押出形材からなり、耐力と引張強さの比が0.85以上であるとともに、耐力が250〜290MPaの範囲にある機械的性質を有することを特徴とする。
【0006】
また、上記のエネルギー吸収部材において、重量%で0.01%以下のCrを含有することを特徴とする。
【0007】
以下に、本発明における合金組成並びに組織を上記の通りに限定した理由を説明する。
まず、本発明のAl合金中空材を構成するAl合金の成分組成を請求項に記載の通りに限定した理由を説明する。
(a)SiおよびMg:これらの成分には、微細なMg2Si化合物として析出して強度を向上させる作用があるが、SiおよびMgのいずれかの含有量でもSi:0.50%未満、およびMg:0.75%未満になると生成する析出物の量が少なくなって所望の強度を確保することができず、一方これらの含有量がSi:0.75%およびMg:1.0%を超えると押出加工性が低下するとともに、衝突時の変形による割れが発生しやすくなる。さらに、−0.05≦((Si含有量)−(Mg含有量)/1.73)≦0.20となるように含有させると、押出加工性をそれほど阻害せず強度が増加する。しかしながら、Siの含有量が−0.05≦((Si含有量)−(Mg含有量)/1.73)なる関係を満足する量未満ではその効果が十分得られず、一方((Si含有量)−(Mg含有量)/1.73)≦0.20なる関係を満足する量を超えると押出加工後の冷却過程および時効処理時にSi粒子が結晶粒界に析出するようになって圧潰特性が劣化する。したがって、Si含有量は重量%で0.5%以上0.75%以下、Mg含有量は重量%で0.75%以上1.0%以下とされる。
【0008】
(b)Cu:Cuは地に固溶することによって強度を向上させるが、0.05%未満ではその効果が十分ではなく、一方0.4%を超えるとAl合金の耐食性が低下する。したがって、Cu含有量は重量%で0.05%以上0.4%とされる。
【0009】
(c)Mn、Zr:これらの成分にはAlと金属間化合物を形成して、この金属間化合物が再結晶の核生成サイトとなり、Al合金押出形材の金属組織を微細な粒状の結晶粒からなる組織とする効果があり、その結果圧潰特性が向上する。しかしながら、MnとZrがそれぞれの下限値(0.02%)未満では上記の効果が十分に得られず、一方、上限値を超えると結晶組織に部分的に押出方向に長く伸びた伸長粒組織や繊維状組織が現れるようになり、衝突時の変形による割れが発生しやすくなる。従って、MnおよびZrの含有量は、重量%で0.02%以上0.05%未満とされる。
【0010】
(d)Ti、B:これらの成分には鋳造組織を微細化し、鋳造割れを防止する作用があるが、TiおよびBのいずれの含有量でもTi:0.005%未満、およびB:0.0001%未満の場合には所望の効果を得ることができず、一方、TiおよびBのいずれかの含有量でも、Ti:0.1%およびB:0.004%を超えると、巨大な金属間化合物が生成するために靱性が低下し、衝突時の変形による割れが発生しやすくなる。従って、Ti含有量は重量%で0.005%以上0.1%以下とされ、B含有量は重量%で0.0001%以上0.004%以下とされる。
【0011】
(e)その他、成分組成としてCrの含有量が、重量%で0.01%以下であることが好ましい。Cr含有量が0.01%を超えると、結晶組織の一部に上記伸長粒組織や繊維状組織が現れるためである。
【0012】
次に、本発明に係る材料特性の限定理由について説明する。
(a)耐力と引張強さの比
耐力と引張強さの比は合金成分および熱処理により変化する。耐力と引張強さの比が0.85よりも小さいと、衝突時の圧縮変形を受けた際に、座屈変形を起こすことなく加工硬化し、割れが発生しやすくなる。したがって、耐力と引張強さの比は0.85以上であることが必要である。
(b)耐力値
耐力も合金成分および熱処理により変化する。耐力が250MPa未満では十分なエネルギー吸収効率が得られず、一方、290MPaを超えると衝突時の変形による割れが発生しやすくなる。
(c)結晶粒のアスペクト比
本発明のエネルギー吸収部材の要件として結晶組織を構成する結晶粒の長さ方向の長さと、厚さ方向の長さとの比(アスペクト比)は2以下とされる。結晶粒をこのような形状とすることにより、圧潰特性に優れるエネルギー吸収部材とすることができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明するが、本発明は以下の実施の形態に限定されるものではない。図1は、本発明に係る押出機の押出ダイスを含む部分の構成を模式的に示す部分断面構成図である。この図において、押出機1に投入されて加工されるAl合金ビレット2は、押出ダイス3を通過して押出加工されることにより所定の形状へと加工される。また、押出ダイス3の出口側(図示右側)には、押出ダイス3から吐出されたAl合金材を冷却するための冷却手段4が設けられている。
【0014】
本発明のエネルギー吸収部材は、前記の化学組成を有するアルミニウム合金ビレットを均質化処理し、次いで460〜560℃に加熱した後、図1に示す押出機1を用いて押出加工し、この押出機1の押出ダイス3の出口側に設けられた冷却手段4によって押出ダイス3通過直後に水冷して急速冷却することによりAl合金押出形材を作製し、この押出形材を曲げ加工後時効処理を行う方法、あるいは時効処理後曲げ加工を行う方法により時効処理および曲げ加工処理を施されて作製される。尚、この時効処理はいずれの場合も150〜250℃の温度範囲で1〜24時間行う。また、上記冷却手段4は、水冷に限定されるものではなく、液体窒素噴射などの急冷法も適用可能である。
【0015】
【実施例】
以下、実施例により本発明をより詳細に説明する。
表1に示す組成の204mm径の合金ビレットを常法により溶製し、これらのビレットを温度:545℃にて4時間保持して均質化処理を施した後、1650トンの押出機を用い、押出温度:500℃、押出速度:5m/分、冷却:液体窒素吹き付け後水冷の条件で押出加工を行い、引き続いてこれらに温度:205℃にて4時間保持の条件で時効処理を施すことにより肉厚2mm、断面54mm×70mmの寸法の角パイプ状の本発明Al合金押出形材(実施例1〜3)および比較Al合金押出形材(比較例1〜7)をそれぞれ製造した。
【0016】
【表1】

Figure 0004611543
【0017】
次いで、上記にて得られた本発明押出形材および比較押出形材について、引張試験による機械的性質の測定および静的圧縮試験による圧潰特性評価を行った。
これらの結果を表2に示す。
表2に示すように、本発明の要件を満たす実施例1〜3の押出形材は割れが発生することなくアコーディオン状に圧縮変形し、吸収エネルギーも4000J超と圧潰特性に優れるものであった。
これに対し、本発明の要件を満たさない比較例1〜7の押出形材では、Si含有量が多いもの(比較例1)、Mg含有量が多いもの(比較例2)、MnおよびZrの含有量が少ないもの(比較例4)、MnおよびZrの含有量が多いもの(比較例5)の押出形材においては割れが発生した。また、Si含有量が少ないもの(比較例3)およびMg含有量が多いもの(比較例4)の押出形材においては、割れの発生はないものの、吸収エネルギーが4000J未満と低く、圧潰特性に劣るものであった。また、Cr含有量が多いもの(比較例7)の押出形材は割れが発生した。
【0018】
【表2】
Figure 0004611543
【0019】
(実施例4、5、比較例8、9)
次に、実施例4、5および比較例8、9により、本発明のAl合金押出形材の製造方法による生産性の向上効果を明らかにする。
まず、実施例4として表1に示す実施例1と同一の組成の合金ビレットを用いて、押出速度を10m/分とした以外は上記実施例1と同一の条件にてAl合金押出形材を作製した。次に、実施例5として、押出速度を15m/分とした以外は上記実施例4と同一の条件でAl合金押出形材を作製した。
次に、比較例8として表1に示す組成の合金ビレットを用いて、上記実施例1と同一の条件にてAl合金押出形材を作製した。次に、比較例9として上記比較例8と同一の組成の合金ビレットを用いて、押出速度を10m/分とした以外は上記比較例8と同一の条件にてAl合金押出形材を作製した。
【0020】
上記で得られた実施例4、5および比較例8、9のAl合金押出形材について、ミクロ組織観察、引張試験による耐力測定を行った。その結果を実施例1の評価結果とともに以下の表3に示す。
表3に示すように、実施例4および実施例5のAl合金押出形材は、押出速度を速めているにもかかわらず上記実施例1と同等の圧潰特性を示した。また、比較例8のAl合金押出形材の結晶組織は繊維状組織となり、その圧潰特性は上記実施例1と同等であった。しかし、比較例8と同等の組成とし、押出速度を速くした比較例9のAl合金押出形材は、圧潰特性に劣るものであった。
【0021】
【表3】
Figure 0004611543
【0022】
【発明の効果】
以上、詳細に説明したように、本発明によれば、重量%でSi:0.50〜0.75%、Mg:0.75〜1.0%を−0.05≦(Si−Mg/1.73)≦0.20となる関係を満たすように含有し、かつMnを0.02%以上0.05%未満、Zrを0.02%以上0.05%未満含有し、かつCu:0.05〜0.4%を含有し、さらにFe:0.1〜0.4%、Ti:0.005〜0.1%、B:0.0001〜0.004%を含有し、残りがAlと不可避不純物から成る組成並びに結晶粒の押出方向断面における結晶粒の押出方向の長さと厚さ方向の長さとの比が2以下である結晶粒組織を有し、耐力と引張強さの比が0.85以上であるとともに、耐力が250〜290MPaの範囲にある機械的性質を有する構造とすることにより、圧潰特性に優れた自動車のフレーム構造におけるエネルギー吸収部材を提供することができる。
【図面の簡単な説明】
【図1】 図1は、本発明に係る押出機の部分断面構成図である。
【符号の説明】
1 押出機
2 Al合金ビレット
3 押出ダイス
4 冷却手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an energy absorbing member made of an extruded Al-Mg-Si alloy, and more particularly to an energy absorbing member suitable for use as a side member in an automobile frame structure.
[0002]
[Prior art]
The side members of automobiles function to ensure the safety of passengers by absorbing the impact energy at the time of collision by buckling and deforming in the accordion shape at the time of collision in the engine part at the front of the car and the rear trunk part. It is a member having. As this member, a conventional cold-rolled steel sheet is press-formed and assembled by spot welding. However, due to environmental issues such as global warming, there has been a strong demand for reducing the weight of automobiles in order to reduce exhaust gas and improve fuel efficiency. The use of aluminum alloy extruded profiles that can be manufactured in one piece is being considered.
For such applications, Al-Mg-Si alloy extruded profiles such as 6063 alloy having a good balance of extrudability, mechanical properties, and corrosion resistance are currently used.
[0003]
[Problems to be solved by the invention]
However, since the conventional Al—Mg—Si alloy, for example, a typical 6063 alloy, has a low yield strength of about 215 MPa, the average load that causes deformation when subjected to a compressive load in the axial direction is low, and thus the energy absorption efficiency is low. Since it is low, it is necessary to increase the plate thickness. On the other hand, alloys with high yield strength, such as 6061 alloy, are prone to cracking due to deformation at the time of collision, and once cracking occurs, the subsequent impact is not absorbed, so there is a problem that the energy absorption efficiency is extremely low. .
Japanese Patent Laid-Open No. 2000-54050 discloses a structure in which an internal structure constituting an Al alloy extruded profile is mainly a fibrous structure. However, although the Al alloy extruded shape mainly composed of a fibrous structure is excellent in crushing characteristics, the extrusion speed at the time of performing extrusion processing cannot be increased in the production thereof, so that productivity has been a problem.
[0004]
The present invention has been made in view of such problems, and provides an energy absorbing member in a frame structure of an automobile having high energy absorption efficiency without causing cracks when subjected to compressive deformation at the time of a collision. The purpose is to do.
[0005]
[Means for Solving the Problems]
From the above viewpoint, the present inventors conducted various experiments to clarify the influence of the alloy composition and material characteristics on the crushing characteristics of the Al-Mg-Si-based alloy extruded profile. Experiment of controlling the size and shape of crystal grains by adding Mn and Zr in combination, and improving the crushing characteristics by controlling the ratio of proof stress to tensile strength and the proof stress value within a certain range. The result is obtained. That is, the energy absorption member in the frame structure of the automobile of the present invention has Si: 0.50 to 0.75% and Mg: 0.75 to 1.0% in terms of% by weight: −0.05 ≦ (Si—Mg / 1.73) is contained so as to satisfy the relationship of ≦ 0.20, Mn is contained in an amount of 0.02% or more and less than 0.05%, Zr is contained in an amount of 0.02% or more and less than 0.05%, and Cu: 0.05 to 0.4%, Fe: 0.1 to 0.4%, Ti: 0.005 to 0.1%, B: 0.0001 to 0.004%, the rest There consists extruded profile that have a grain structure ratio is 2 or less of the length of the extrusion direction of the length and the thickness direction of the crystal grain in the composition list consisting of Al and inevitable impurities, tensile strength strength of The ratio is 0.85 or more, and the mechanical strength is in the range of 250 to 290 MPa. And wherein the door.
[0006]
The energy absorbing member described above is characterized by containing 0.01% or less by weight of Cr.
[0007]
The reason why the alloy composition and the structure in the present invention are limited as described above will be described below.
First, the reason why the component composition of the Al alloy constituting the Al alloy hollow material of the present invention is limited as described in the claims will be described.
(A) Si and Mg: These components have the effect of precipitating as a fine Mg 2 Si compound to improve the strength, but even if the content of either Si or Mg is Si: less than 0.50%, And if Mg: less than 0.75%, the amount of precipitates produced is small and the desired strength cannot be ensured, while these contents are Si: 0.75% and Mg: 1.0% Exceeding the above tends to lower the extrudability and to cause cracking due to deformation at the time of collision. Furthermore, when it contains so that it may become -0.05 <= ((Si content)-(Mg content) /1.73) <= 0.20, an extrudability will not be inhibited so much and intensity | strength will increase. However, if the Si content is less than the amount satisfying the relationship of −0.05 ≦ ((Si content) − (Mg content) /1.73), the effect cannot be sufficiently obtained, while the ((Si content) Amount) − (Mg content) /1.73) ≦ 0.20 If the amount satisfies the relationship, Si particles are precipitated at the grain boundaries during the cooling process and the aging treatment after the extrusion process. Characteristics deteriorate. Therefore, the Si content is 0.5% to 0.75% by weight and the Mg content is 0.75% to 1.0% by weight.
[0008]
(B) Cu: Cu improves the strength by dissolving in the ground, but if it is less than 0.05%, the effect is not sufficient, while if it exceeds 0.4%, the corrosion resistance of the Al alloy is lowered. Therefore, the Cu content is 0.05% to 0.4% by weight.
[0009]
(C) Mn, Zr: These components form an intermetallic compound with Al, and this intermetallic compound becomes a nucleation site for recrystallization, and the metal structure of the Al alloy extruded profile is changed into fine granular crystal grains. There is an effect that the structure is made of, and as a result, the crushing characteristics are improved. However, if Mn and Zr are less than their respective lower limit values (0.02%), the above effect cannot be sufficiently obtained. On the other hand, if the upper limit value is exceeded, an elongated grain structure in which the crystal structure partially extends in the extrusion direction. And a fibrous structure appear, and cracks due to deformation at the time of collision tend to occur. Accordingly, the contents of Mn and Zr are 0.02% or more and less than 0.05% by weight.
[0010]
(D) Ti, B: These components have the effect of refining the cast structure and preventing casting cracks, but at any content of Ti and B, Ti: less than 0.005%, and B: 0.00. If it is less than 0001%, the desired effect cannot be obtained. On the other hand, if the content of either Ti or B exceeds Ti: 0.1% and B: 0.004%, a huge metal Since the intermetallic compound is formed, the toughness is lowered and cracking due to deformation at the time of collision is likely to occur. Accordingly, the Ti content is 0.005% to 0.1% by weight%, and the B content is 0.0001% to 0.004% by weight%.
[0011]
(E) In addition, the content of Cr as a component composition is preferably 0.01% or less by weight%. This is because if the Cr content exceeds 0.01%, the elongated grain structure or fibrous structure appears in a part of the crystal structure.
[0012]
Next, the reason for limiting the material characteristics according to the present invention will be described.
(A) Ratio of specific strength and tensile strength of yield strength and tensile strength varies depending on alloy components and heat treatment. When the ratio between the proof stress and the tensile strength is less than 0.85, when subjected to compressive deformation at the time of collision, work hardening occurs without causing buckling deformation, and cracking is likely to occur. Therefore, the ratio between the proof stress and the tensile strength needs to be 0.85 or more.
(B) Strength value The yield strength also varies depending on the alloy components and heat treatment. If the proof stress is less than 250 MPa, sufficient energy absorption efficiency cannot be obtained, while if it exceeds 290 MPa, cracking due to deformation at the time of collision tends to occur.
(C) Aspect ratio of crystal grains As a requirement of the energy absorbing member of the present invention, the ratio (aspect ratio) of the length in the length direction and the length in the thickness direction of the crystal grains constituting the crystal structure is 2 or less. . By setting the crystal grains to such a shape, an energy absorbing member having excellent crushing characteristics can be obtained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. FIG. 1 is a partial cross-sectional configuration diagram schematically showing a configuration of a portion including an extrusion die of an extruder according to the present invention. In this figure, an Al alloy billet 2 to be processed by being put into the extruder 1 is processed into a predetermined shape by being extruded through an extrusion die 3. A cooling means 4 for cooling the Al alloy material discharged from the extrusion die 3 is provided on the exit side (right side in the drawing) of the extrusion die 3.
[0014]
The energy absorbing member of the present invention is obtained by homogenizing an aluminum alloy billet having the above chemical composition and then heating to 460 to 560 ° C., followed by extrusion using the extruder 1 shown in FIG. A cooling means 4 provided on the exit side of the extrusion die 1 is cooled with water immediately after passing through the extrusion die 3 and rapidly cooled to produce an Al alloy extruded shape, and the extruded shape is subjected to aging treatment after bending. An aging treatment and a bending treatment are performed by a method of performing aging or bending after aging treatment. In addition, this aging treatment is performed in a temperature range of 150 to 250 ° C. for 1 to 24 hours in any case. The cooling means 4 is not limited to water cooling, and a rapid cooling method such as liquid nitrogen injection can also be applied.
[0015]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Alloy billets with a diameter of 204 mm having the composition shown in Table 1 were melted by a conventional method, and after maintaining these billets for 4 hours at a temperature of 545 ° C., a homogenization treatment was performed, and then a 1650-ton extruder was used. Extrusion temperature: 500 ° C., extrusion rate: 5 m / min, cooling: liquid nitrogen spraying and water cooling followed by water cooling, followed by aging treatment at temperature: 205 ° C. for 4 hours Square pipe-shaped Al alloy extruded profiles of the present invention (Examples 1 to 3) and comparative Al alloy extruded profiles (Comparative Examples 1 to 7) each having a thickness of 2 mm and a cross section of 54 mm × 70 mm were manufactured.
[0016]
[Table 1]
Figure 0004611543
[0017]
Next, the inventive extruded shape and the comparative extruded shape obtained above were subjected to measurement of mechanical properties by a tensile test and evaluation of crushing properties by a static compression test.
These results are shown in Table 2.
As shown in Table 2, the extruded shapes of Examples 1 to 3 satisfying the requirements of the present invention were compressed and deformed into an accordion without cracking, and the absorption energy was more than 4000 J and excellent in crushing characteristics. .
On the other hand, in the extruded shapes of Comparative Examples 1 to 7 that do not satisfy the requirements of the present invention, those having a high Si content (Comparative Example 1), a high Mg content (Comparative Example 2), Mn and Zr Cracks occurred in extruded shapes having a low content (Comparative Example 4) and a high content of Mn and Zr (Comparative Example 5). Further, in the extruded shapes having a low Si content (Comparative Example 3) and a high Mg content (Comparative Example 4), although there is no occurrence of cracking, the absorbed energy is as low as less than 4000 J and the crushing characteristics are improved. It was inferior. In addition, cracks occurred in the extruded shape having a high Cr content (Comparative Example 7).
[0018]
[Table 2]
Figure 0004611543
[0019]
(Examples 4 and 5, Comparative Examples 8 and 9)
Next, Examples 4 and 5 and Comparative Examples 8 and 9 clarify the productivity improvement effect by the method for producing an Al alloy extruded profile of the present invention.
First, using an alloy billet having the same composition as Example 1 shown in Table 1 as Example 4, an Al alloy extruded profile was formed under the same conditions as in Example 1 except that the extrusion speed was 10 m / min. Produced. Next, as Example 5, an Al alloy extruded shape was produced under the same conditions as in Example 4 except that the extrusion speed was 15 m / min.
Next, using an alloy billet having the composition shown in Table 1 as Comparative Example 8, an Al alloy extruded shape was produced under the same conditions as in Example 1. Next, using an alloy billet having the same composition as that of Comparative Example 8 as Comparative Example 9, an Al alloy extruded shape was produced under the same conditions as in Comparative Example 8 except that the extrusion speed was 10 m / min. .
[0020]
The Al alloy extruded profiles of Examples 4 and 5 and Comparative Examples 8 and 9 obtained above were subjected to microstructural observation and yield strength measurement by a tensile test. The results are shown in Table 3 below together with the evaluation results of Example 1.
As shown in Table 3, the Al alloy extruded profiles of Example 4 and Example 5 exhibited the same crushing characteristics as Example 1 despite the increased extrusion speed. Moreover, the crystal structure of the Al alloy extruded profile of Comparative Example 8 was a fibrous structure, and the crushing characteristics were the same as in Example 1 above. However, the Al alloy extruded shape of Comparative Example 9 having a composition equivalent to that of Comparative Example 8 and having a high extrusion speed was inferior in crushing characteristics.
[0021]
[Table 3]
Figure 0004611543
[0022]
【The invention's effect】
As described above in detail, according to the present invention, Si: 0.50 to 0.75% and Mg: 0.75 to 1.0% by weight% are set to −0.05 ≦ (Si—Mg / 1.73) is contained so as to satisfy the relationship of ≦ 0.20, Mn is contained in an amount of 0.02% or more and less than 0.05%, Zr is contained in an amount of 0.02% or more and less than 0.05%, and Cu: 0.05 to 0.4%, Fe: 0.1 to 0.4%, Ti: 0.005 to 0.1%, B: 0.0001 to 0.004%, the rest Has a composition of Al and inevitable impurities and a crystal structure in which the ratio of the length in the extrusion direction and the length in the thickness direction in the cross section in the extrusion direction of the crystal grain is 2 or less. A structure having mechanical properties in which the ratio is 0.85 or more and the proof stress is in the range of 250 to 290 MPa. More, it is possible to provide an energy absorbing member in the frame structure of the superior car crushing characteristics.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional configuration diagram of an extruder according to the present invention.
[Explanation of symbols]
1 Extruder 2 Al Alloy Billet 3 Extrusion Die 4 Cooling Means

Claims (1)

重量%でSi:0.50〜0.75%、Mg:0.75〜1.0%を、−0.05≦(Si−Mg/1.73)≦0.20となる関係を満たすように含有し、かつMnを0.02%以上0.05%未満、Zrを0.02%以上0.05%未満含有し、かつCu:0.05〜0.4%を含有し、さらにFe:0.1〜0.4%、Ti:0.005〜0.1%、B:0.0001〜0.004%を含有し、残りがAlと不可避不純物から成る組成並びに結晶粒の押出方向の長さと厚さ方向の長さとの比が2以下である結晶粒組織を有する押出形材からなり、耐力と引張強さの比が0.85以上であるとともに、耐力が250〜290MPaの範囲にある機械的性質を有することを特徴とする自動車のフレーム構造におけるエネルギー吸収部材。By weight%, Si: 0.50 to 0.75% and Mg: 0.75 to 1.0% so as to satisfy the relationship of −0.05 ≦ (Si—Mg / 1.73) ≦ 0.20 And Mn 0.02% or more and less than 0.05%, Zr 0.02% or more and less than 0.05%, and Cu: 0.05 to 0.4%, and Fe : 0.1~0.4%, Ti: 0.005~0.1% , B: containing from 0.0001 to 0.004%, the remainder of the crystal grain in the composition list consisting of Al and inevitable impurities It consists extruded profile that have a grain structure ratio is 2 or less of the length of the extrusion direction of the length and the thickness direction, with the ratio of the tensile proof stress strength is 0.85 or more, proof stress 250 An energy absorbing member in a frame structure of an automobile having mechanical properties in the range of 290 MPa.
JP2001040250A 2001-02-16 2001-02-16 Energy absorbing member in automobile frame structure Expired - Fee Related JP4611543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001040250A JP4611543B2 (en) 2001-02-16 2001-02-16 Energy absorbing member in automobile frame structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001040250A JP4611543B2 (en) 2001-02-16 2001-02-16 Energy absorbing member in automobile frame structure

Publications (2)

Publication Number Publication Date
JP2002241881A JP2002241881A (en) 2002-08-28
JP4611543B2 true JP4611543B2 (en) 2011-01-12

Family

ID=18902894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001040250A Expired - Fee Related JP4611543B2 (en) 2001-02-16 2001-02-16 Energy absorbing member in automobile frame structure

Country Status (1)

Country Link
JP (1) JP4611543B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5160930B2 (en) * 2008-03-25 2013-03-13 株式会社神戸製鋼所 Aluminum alloy extruded material excellent in bending crushability and corrosion resistance and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625783A (en) * 1992-07-03 1994-02-01 Kobe Steel Ltd Aluminum alloy extruded material excellent in bendability and impact absorption and its manufacture
JPH10317112A (en) * 1997-05-14 1998-12-02 Nippon Light Metal Co Ltd Production of 6000 type aluminum alloy extruded material excellent in dimensional accuracy
JP2000054050A (en) * 1998-08-07 2000-02-22 Mitsubishi Alum Co Ltd Aluminum-magnesium-silicon alloy extruded shape material for side member excellent in collapse characteristic
JP2002241880A (en) * 2001-02-16 2002-08-28 Mitsubishi Alum Co Ltd Aluminum alloy extrusion profile material having excellent bending workability and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625783A (en) * 1992-07-03 1994-02-01 Kobe Steel Ltd Aluminum alloy extruded material excellent in bendability and impact absorption and its manufacture
JPH10317112A (en) * 1997-05-14 1998-12-02 Nippon Light Metal Co Ltd Production of 6000 type aluminum alloy extruded material excellent in dimensional accuracy
JP2000054050A (en) * 1998-08-07 2000-02-22 Mitsubishi Alum Co Ltd Aluminum-magnesium-silicon alloy extruded shape material for side member excellent in collapse characteristic
JP2002241880A (en) * 2001-02-16 2002-08-28 Mitsubishi Alum Co Ltd Aluminum alloy extrusion profile material having excellent bending workability and production method therefor

Also Published As

Publication number Publication date
JP2002241881A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
CN113278851A (en) High strength 6XXX aluminum alloys and methods of making the same
CN108893659B (en) Aluminum alloy for automobile structural member and processing method of section bar of aluminum alloy
EP2072628B1 (en) High strength crash resistant aluminium alloy
JP2016160516A (en) Aluminum alloy sheet
CN111801433A (en) Hollow extrusion material of Al-Mg-Si series aluminum alloy and method for producing the same
JP5473718B2 (en) Aluminum alloy extruded material with excellent bending crushability and corrosion resistance
JPH08144031A (en) Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability
JP2001115226A (en) Malleable aluminum alloy
JP3791408B2 (en) Method for producing extruded aluminum alloy material excellent in bending workability and energy absorption characteristics
JP3757831B2 (en) Al-Mg-Si aluminum alloy extruded material with excellent impact energy absorption performance
JPH116044A (en) High strength/high toughness aluminum alloy
JPH09268342A (en) High strength aluminum alloy
JP3539980B2 (en) Aluminum alloy automobile side door impact beam
JP5288671B2 (en) Al-Mg-Si-based aluminum alloy extruded material with excellent press workability
JP2000054049A (en) Aluminum-magnesium-silicon alloy extruded shape material for side member excellent in collapse characteristic and its production
JP3691254B2 (en) Al-Mg-Si alloy extruded profile for side member and method for producing the same
JP3077974B2 (en) Al-Mg-Si based aluminum alloy extruded material with excellent axial crushing properties
JP4611543B2 (en) Energy absorbing member in automobile frame structure
JP3618807B2 (en) Aluminum alloy hollow shape having excellent bending workability and method for producing the shape
JP2910920B2 (en) Aluminum alloy door beam material
JP3929850B2 (en) Structural aluminum alloy forging with excellent corrosion resistance and method for producing the same
KR102012952B1 (en) Aluminium alloy and manufacturing method thereof
JPH10306338A (en) Hollow extruded material of al-cu-mg-si alloy, excellent in strength and corrosion resistance, and its manufacture
JP4052641B2 (en) Aluminum alloy having excellent impact absorption characteristics and good hardenability and extrudability, and method for producing the same
JP2003034835A (en) Aluminum alloy sheet and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees