JP5288671B2 - Al-Mg-Si-based aluminum alloy extruded material with excellent press workability - Google Patents

Al-Mg-Si-based aluminum alloy extruded material with excellent press workability Download PDF

Info

Publication number
JP5288671B2
JP5288671B2 JP2001060951A JP2001060951A JP5288671B2 JP 5288671 B2 JP5288671 B2 JP 5288671B2 JP 2001060951 A JP2001060951 A JP 2001060951A JP 2001060951 A JP2001060951 A JP 2001060951A JP 5288671 B2 JP5288671 B2 JP 5288671B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
extruded material
based aluminum
crushing
press workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001060951A
Other languages
Japanese (ja)
Other versions
JP2002256368A (en
Inventor
仁 川井
正和 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001060951A priority Critical patent/JP5288671B2/en
Publication of JP2002256368A publication Critical patent/JP2002256368A/en
Application granted granted Critical
Publication of JP5288671B2 publication Critical patent/JP5288671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)
  • Body Structure For Vehicles (AREA)

Description

本発明は、自動車や鉄道車両又は建築部材のフレーム等の成形に好適なプレス加工性に優れたアルミニウム合金押出材に関する。  The present invention relates to an aluminum alloy extruded material excellent in press workability suitable for molding a frame of an automobile, a railway vehicle, or a building member.

近年、地球の温暖化及びオゾン層の破壊など環境問題の観点から、大気中の炭酸ガス等の増加を抑制するために、自動車の軽量化及び電気自動車の導入などが本格的に検討されている。
この軽量化の一貫として、素材の置換、すなわち従来自動車用構造材に主として使用されてきた鋼板の代わりにアルミニウム合金材の使用が増加している。また、電気自動車においても電池を積載するための重量増加を補償するために車体を軽量化する必要が強く求められている。さらに、長手方向に一定ではあるが自由な断面形状が得られる押出材は設計の自由度を広げ、最終形状に近い断面形状を得ることで成形性を向上できるなど、アルミニウム合金材の使用が注目されている。
In recent years, from the viewpoint of environmental problems such as global warming and ozone layer destruction, in order to suppress the increase of carbon dioxide gas in the atmosphere, the weight reduction of automobiles and the introduction of electric cars have been studied in earnest. .
As part of this weight reduction, the replacement of materials, that is, the use of aluminum alloy materials instead of steel plates that have been used mainly in conventional automotive structural materials is increasing. Further, there is a strong demand for reducing the weight of an electric vehicle in order to compensate for an increase in weight for mounting a battery. Furthermore, the use of aluminum alloy materials has attracted attention, such as extrudates that can have a constant cross-sectional shape in the longitudinal direction, but have a wider design freedom and can improve formability by obtaining a cross-sectional shape close to the final shape. Has been.

自動車用フレーム材として利用できるアルミニウム合金押出材としては、少なくとも150MPa、望ましくは200MPa以上の耐力を有することが要求され、高強度アルミニウム合金の中では比較的耐食性に優れ、リサイクル性の面でも他のアルミニウム合金より優れているAl−Mg−Si系アルミニウム合金押出材が多く検討されている。Al−Mg−Si系アルミニウム合金押出材においてこの強度を出すためには、一般にオンラインによるプレス焼入れ又はオフラインによる溶体化・焼入れ処理を行った後、人工時効処理を施している。ここで、人工時効処理を施すのは、押出材の強度を向上させ、かつ組織を安定化し経時的に自然時効が進行して強度が変化するのを防止するためである。  As an aluminum alloy extruded material that can be used as a frame material for automobiles, it is required to have a proof stress of at least 150 MPa, desirably 200 MPa or more. Among high-strength aluminum alloys, it is relatively excellent in corrosion resistance. Many Al-Mg-Si-based aluminum alloy extruded materials that are superior to aluminum alloys have been studied. In order to obtain this strength in an Al—Mg—Si-based aluminum alloy extruded material, generally, an on-line press quenching or off-line solution hardening / quenching treatment is performed, followed by an artificial aging treatment. Here, the artificial aging treatment is performed in order to improve the strength of the extruded material, stabilize the structure, and prevent the natural aging from progressing with time and preventing the strength from changing.

発明が解決しようとする課題Problems to be solved by the invention

一方、アルミニウム合金押出材を自動車用フレーム材として用いる場合、限られた空間のスペースの取り合いのために中空押出材の長さ方向の一部につぶし加工を施して幅や高さを減らしたり、ボルト・ナットによる取付けに際して中空押出材の端部につぶし加工を施し板状とすることが考えられる。そのほか、サイドメンバやバンパーステイなどに用いる中空押出材の板面に軸圧壊の蛇腹ピッチをコントロールするリブを形成したり、押出材の板面に補強リブを形成する目的で、エンボス加工を施すことも考えられる。なお、このようなプレス加工を施すとその部位に残留応力が発生するため、これらの用途にはSCC(応力腐食割れ)の発生の懸念の少ないAl−Mg−Si系アルミニウム合金押出材が適している。  On the other hand, when using an aluminum alloy extruded material as a frame material for automobiles, it is possible to reduce the width and height by crushing part of the length of the hollow extruded material in order to meet the limited space, When mounting with bolts and nuts, it is conceivable to crush the end of the hollow extruded material into a plate shape. In addition, embossing is performed for the purpose of forming ribs that control the bellows pitch of axial crushing on the plate surface of hollow extruded materials used for side members and bumper stays, and forming reinforcing ribs on the plate surface of extruded materials. Is also possible. In addition, since residual stress is generated at the site when such press working is performed, an Al—Mg—Si based aluminum alloy extruded material with less fear of occurrence of SCC (stress corrosion cracking) is suitable for these applications. Yes.

このプレス加工はコスト面から先に述べた時効処理後に実施されるのが望ましいが、時効処理により高強度化したAl−Mg−Si系アルミニウム合金押出材は比較的成形性が劣り、プレス加工時に割れ等の不具合を発生させやすい。もし割れが発生していると、フレーム材の疲労強度が低下し、あるいはサイドメンバ等においては衝突時に割れ部が起点となり蛇腹状の座屈を妨げるなど、それぞれ必要な所期の性能を発揮することができない。  This press working is preferably performed after the aging treatment described above from the viewpoint of cost, but the Al-Mg-Si-based aluminum alloy extruded material that has been strengthened by the aging treatment has relatively poor formability, and during the press working. It is easy to cause defects such as cracks. If cracks occur, the fatigue strength of the frame material will decrease, or the side members will exhibit the desired performance, such as cracking starting from the cracked part at the time of collision and preventing bellows-like buckling. I can't.

本発明は、このような従来技術の問題点に鑑みてなされたもので、焼入れ及び人工時効処理後においてつぶし加工やエンボス加工などのプレス加工性に優れ、自動車や鉄道車両又は建築部材のフレーム等の成形に好適なAl−Mg−Si系アルミニウム合金押出材を提供することを目的としてなされたものである。  The present invention has been made in view of such problems of the prior art, and is excellent in press workability such as crushing and embossing after quenching and artificial aging treatment, such as a frame of an automobile, a railway vehicle, or a building member. The present invention was made for the purpose of providing an Al—Mg—Si-based aluminum alloy extruded material suitable for molding.

課題を解決するための手段Means for solving the problem

本発明者らは、焼入れ及び人工時効処理後においてプレス加工性に優れるAl−Mg−Si系アルミニウム合金押出材を開発すべく種々実験研究を行う過程で、引張試験を実施したときの破断面の肉厚減少率が、押出材のプレス加工性と密接な関係にあることを見いだし、それをもとに本発明を得ることができた。  In the process of conducting various experimental studies to develop an Al-Mg-Si-based aluminum alloy extrudate that is excellent in press workability after quenching and artificial aging treatment, the inventors of the fracture surface when conducting a tensile test It was found that the thickness reduction rate is closely related to the press workability of the extruded material, and based on this, the present invention could be obtained.

すなわち、本発明は、Mg:0.4〜1.2%及びSi:0.3〜1.2%を含有し、焼入れ及び人工時効処理を行ったAl−Mg−Si系アルミニウム合金押出材において、引張試験を実施したときの破断面の肉厚減少率が20%以上であることを特徴とし、つぶし加工やエンボス加工等のプレス加工性に優れる。
ここで、破断面の肉厚減少率(以下、絞りという)とは、引張試験片の破断面を正面からみたときの当該破断面の中央部の肉厚(試験片の板面に対し垂直に測定した肉厚)をa(図1参照)とし、引張試験片の元の肉厚をaとしたとき、(1−a/a)×100で表されるものとする。この引張試験片は押出材からJISの規定に準じて採取する。なお、押出材から種類の異なる引張試験片(JIS準拠)を採取して試験しても、絞りの値は変わらない。
That is, the present invention relates to an Al—Mg—Si-based aluminum alloy extruded material containing Mg: 0.4 to 1.2% and Si: 0.3 to 1.2% and subjected to quenching and artificial aging treatment. The thickness reduction rate of the fracture surface when the tensile test is carried out is 20% or more, and it is excellent in press workability such as crushing and embossing.
Here, the thickness reduction rate of the fracture surface (hereinafter referred to as “squeezing”) is the thickness at the center of the fracture surface when the fracture surface of the tensile specimen is viewed from the front (perpendicular to the plate surface of the specimen). The measured thickness is represented by (1-a / a 0 ) × 100, where a (see FIG. 1) is a and the original thickness of the tensile test piece is a 0 . The tensile test piece is collected from the extruded material in accordance with JIS regulations. It should be noted that the drawing value does not change even if different types of tensile test pieces (JIS compliant) are sampled from the extruded material and tested.

上記Al−Mg−Si系アルミニウム合金は、上記以外の添加元素として必要に応じて、例えば▲1▼Cu、▲2▼Mn、Cr及びZrの1種又は2種以上、▲3▼Tiを含み(▲1▼〜▲3▼を単独で又はこれらの2組(▲1▼+▲2▼、▲1▼+▲3▼、▲2▼+▲3▼)又は3組(▲1▼+▲2▼+▲3▼)を組み合わせて)、さらに不可避不純物としてFe、その他の元素を含むことができる。
以下、本発明に係るアルミニウム合金押出材における各成分の添加理由について説明する。
The Al-Mg-Si-based aluminum alloy contains, for example, (1) Cu, (2) one or more of Mn, Cr and Zr, and (3) Ti as an additional element other than the above as necessary. (▲ 1 ▼ to ▲ 3) alone or two sets of these (▲ 1 ▼ + ▲ 2 ▼, ▲ 1 ▼ + ▲ 3 ▼, ▲ 2 ▼ + ▲ 3 ▼) or 3 sets (▲ 1 ▼ + ▲ 2 ▼ + ▲ 3 ▼)), and Fe and other elements can be included as inevitable impurities.
Hereinafter, the reason for addition of each component in the aluminum alloy extruded material according to the present invention will be described.

Mg、Si
MgとSiは結合してMgSiを形成し、合金強度を向上させる。自動車用フレーム材等の構造部材として必要な強度を得るためには、Mgは0.4%以上の添加が必要である。しかし、1.2%を越えて添加されると粒界析出物が多くなり過ぎ、20%以上の絞りを得ることが難しくなり、優れたプレス加工性が得られなくなる。従って、Mg含有量は0.4〜1.2%とする。より望ましい範囲は0.4〜0.7%、さらに望ましくは0.45〜0.6%である。
Mg, Si
Mg and Si combine to form Mg 2 Si, improving the alloy strength. In order to obtain strength required as a structural member such as a frame material for automobiles, Mg needs to be added in an amount of 0.4% or more. However, if it is added in excess of 1.2%, the amount of grain boundary precipitates becomes excessive, making it difficult to obtain a drawing of 20% or more, and excellent press workability cannot be obtained. Therefore, the Mg content is 0.4 to 1.2%. A more desirable range is 0.4 to 0.7%, and further desirably 0.45 to 0.6%.

一方、Si量が0.3%より少ないと必要な強度が得られず、1.2%を越えて添加されると、同じく粒界析出物が多くなり、20%以上の絞りを得ることが難しく、優れたプレス加工性が得られなくなる。従って、Si含有量は0.3〜1.2%とする。より望ましい範囲は、0.3〜1.0%、さらに望ましくは0.5〜0.7%である。
なお、焼入れ感受性が鋭くなるのを抑え、空冷によるプレス焼入れでも焼きが入り必要な強度が得られるようにするには、Mg:0.7%以下、Si:1.0%以下、過剰Si(MgSiのバランス組成よりも過剰のSi、「総Si量−0.578×Mg量」で定義される):0.1〜0.5%とするのが望ましい。
On the other hand, if the amount of Si is less than 0.3%, the required strength cannot be obtained, and if added over 1.2%, grain boundary precipitates increase, and a drawing of 20% or more can be obtained. Difficult to obtain excellent press workability. Therefore, the Si content is set to 0.3 to 1.2%. A more desirable range is 0.3 to 1.0%, and further desirably 0.5 to 0.7%.
In order to suppress sharpening of quenching sensitivity and to obtain the necessary strength by press quenching by air cooling, Mg: 0.7% or less, Si: 1.0% or less, excess Si ( It is desirable that the amount of Si is more than the balance composition of Mg 2 Si, defined by “total Si amount−0.578 × Mg amount”: 0.1 to 0.5%.

Cu
Cuは微細な金属間化合物として析出してAl−Mg−Si系アルミニウム合金押出材の組織を微細化し、強度を高め絞りを大きくする効果がある。しかし、0.05%未満ではその効果が十分でなく、一方、0.7%を越えると耐食性及び溶接性を低下させる。従って、Cuの含有量は0.05〜0.7%とし、望ましくは0.1〜0.6%、さらに望ましくは0.1〜0.4%とする。
Cu
Cu precipitates as a fine intermetallic compound and has the effect of refining the microstructure of the Al—Mg—Si-based aluminum alloy extruded material, increasing the strength and enlarging the aperture. However, if it is less than 0.05%, the effect is not sufficient. On the other hand, if it exceeds 0.7%, the corrosion resistance and weldability are deteriorated. Therefore, the Cu content is 0.05 to 0.7%, preferably 0.1 to 0.6%, and more preferably 0.1 to 0.4%.

Mn、Cr、Zr
Mn、Cr、Zrの遷移元素は、それぞれビレットの均熱処理の際、微細な金属間化合物として析出して押出材の結晶粒を微細化し、強度を高め絞りを大きくする効果がある。しかし、それぞれ0.05%、0.001%、0.05%未満では前記効果が発揮されず、一方、それぞれ0.6%、0.2%、0.2%を越えると前記効果が飽和してしまう。従って、Mn、Cr、Zrの含有量は、Mn:0.05〜0.6%、Cr:0.001〜0.2%、Zr:0.05〜0.2%とし、これらの1種又は2種以上が適宜添加される。より望ましくは、Mn:0.1〜0.2%、Cr:0.001〜0.1%、Zr:0.1〜0.15%の1種又は2種以上である。
Mn, Cr, Zr
The transition elements of Mn, Cr, and Zr are each precipitated as a fine intermetallic compound during the soaking process of the billet, and have the effect of refining the crystal grains of the extruded material to increase the strength and increase the aperture. However, if the amount is less than 0.05%, 0.001%, and 0.05%, respectively, the effect is not exhibited. On the other hand, if the amount exceeds 0.6%, 0.2%, and 0.2%, the effect is saturated. Resulting in. Therefore, the contents of Mn, Cr, and Zr are Mn: 0.05 to 0.6%, Cr: 0.001 to 0.2%, Zr: 0.05 to 0.2%, and one of these Or 2 or more types are added suitably. More desirably, it is 1 type or 2 types or more of Mn: 0.1-0.2%, Cr: 0.001-0.1%, Zr: 0.1-0.15%.

ところで、Al−Mg−Si系アルミニウム合金押出材において、押出材に繊維状組織が形成されると強度及び絞りが向上する。この繊維状組織は押出材断面全体に形成されているのが望ましく、表面再結晶層が形成された場合でも、押出材断面厚さの1/2程度以上の厚さで形成されていることが望ましい。なお、この繊維状組織とは、熱間押出による繊維状組織が押出工程以降の熱処理工程の間においても再結晶せずに残った状態の組織のことである。この繊維状組織を得るには、Mn、Cr、Zrを合計で0.1%以上含有させる必要がある。  By the way, in the Al—Mg—Si-based aluminum alloy extruded material, when a fibrous structure is formed in the extruded material, strength and drawing are improved. This fibrous structure is desirably formed over the entire cross section of the extruded material, and even when the surface recrystallized layer is formed, it may be formed with a thickness of about 1/2 or more of the cross section thickness of the extruded material. desirable. In addition, this fibrous structure is a structure | tissue of the state which the fibrous structure by hot extrusion remained without recrystallizing also between the heat processing processes after an extrusion process. In order to obtain this fibrous structure, it is necessary to contain 0.1% or more of Mn, Cr, and Zr in total.

一方、製造コストの低減及び焼入れ後の寸法精度の向上のため、必要な強度を空冷によるプレス焼入れで得ることが望まれている。しかし、冷却速度の比較的遅い(通常、100〜400℃/min)空冷の場合、Mn、Cr、Zrを添加すると、これらの元素はAl−Mg−Si系アルミニウム合金の焼入れ感受性を鋭くするため、合計含有量が0.4%を越えると十分に焼きが入らず高い強度が得難くなる。特に耐力200MPa以上を目標にするのであれば、合計含有量が0.4%を超えるべきではない。従って、Mn、Cr、Zrを添加して繊維状組織を得る場合、特に空冷によるプレス焼入れを行うときは、Mn、Cr、Zrの合計含有量は0.1〜0.4%とする。ただし、通常のファン空冷(200℃/min程度)において繊維状組織を得るには、0.18%以上の含有量が望ましい。  On the other hand, in order to reduce manufacturing costs and improve dimensional accuracy after quenching, it is desired to obtain the necessary strength by press quenching by air cooling. However, in the case of air cooling with a relatively slow cooling rate (usually 100 to 400 ° C./min), when Mn, Cr and Zr are added, these elements sharpen the quenching sensitivity of the Al—Mg—Si based aluminum alloy. When the total content exceeds 0.4%, it is difficult to obtain high strength due to insufficient baking. In particular, if the target is a yield strength of 200 MPa or more, the total content should not exceed 0.4%. Accordingly, when a fibrous structure is obtained by adding Mn, Cr, and Zr, particularly when performing press quenching by air cooling, the total content of Mn, Cr, and Zr is 0.1 to 0.4%. However, a content of 0.18% or more is desirable to obtain a fibrous structure in normal fan air cooling (about 200 ° C./min).

Ti
Tiは鋳造時における結晶粒を微細化することにより合金強度を向上させる。この効果を発揮させるには、Ti添加量は0.005%以上とすることが必要である。また、0.005%より少ないと、結晶粒が粗大化して絞りが小さくなる。一方、Ti添加量が0.2%を超えると前記効果が飽和してしまい、また粗大な金属間化合物が晶出し所定の合金強度が得られない。また、20%以上の絞りを得るのが難しくなる。従って、Tiの含有量は0.005〜0.2%とし、より望ましくは0.01〜0.1%、さらに望ましくは0.01〜0.05%とする。
Ti
Ti improves alloy strength by refining crystal grains during casting. In order to exert this effect, the Ti addition amount needs to be 0.005% or more. On the other hand, if it is less than 0.005%, the crystal grains become coarse and the aperture becomes small. On the other hand, if the amount of Ti added exceeds 0.2%, the effect is saturated, and a coarse intermetallic compound is crystallized and a predetermined alloy strength cannot be obtained. In addition, it becomes difficult to obtain an aperture of 20% or more. Therefore, the Ti content is 0.005 to 0.2%, more preferably 0.01 to 0.1%, and still more preferably 0.01 to 0.05%.

不可避不純物
不可避不純物のうちFeはアルミニウム地金に最も多く含まれる不純物であり、0.35%を超えて合金中に存在すると鋳造時に粗大な金属間化合物を晶出し、合金の機械的性質を損なう。従って、Feの含有量は0.35%以下に規制する。望ましくは0.30%以下であり、さらに0.25%以下が望ましい。また、アルミニウム合金を鋳造する際には地金、添加元素の中間合金等様々な経路より不純物が混入する。混入する元素は様々であるが、Fe以外の不純物は単体で0.05%以下、総量で0.15%以下であれば合金の特性にほとんど影響を及ぼさない。従って、これらの不純物は単体で0.05%以下、総量で0.15%以下とする。なお、不純物のうちBについてはTiの添加に伴い合金中にTi含有量の1/5程度の量で混入するが、より望ましい範囲は0.02%以下、さらに0.01%以下が望ましい。
Inevitable Impurities Among the inevitable impurities, Fe is the most abundant impurity in aluminum ingots. If it exceeds 0.35% in the alloy, coarse intermetallic compounds are crystallized during casting, which impairs the mechanical properties of the alloy. . Therefore, the Fe content is restricted to 0.35% or less. Desirably, it is 0.30% or less, and further 0.25% or less is desirable. Further, when casting an aluminum alloy, impurities are mixed from various paths such as a metal base and an intermediate alloy of an additive element. The elements to be mixed are various, but impurities other than Fe alone are 0.05% or less, and if the total amount is 0.15% or less, the characteristics of the alloy are hardly affected. Accordingly, these impurities are 0.05% or less as a single substance, and the total amount is 0.15% or less. Of the impurities, B is mixed in the alloy in an amount of about 1/5 of the Ti content with the addition of Ti, but the more desirable range is 0.02% or less, and further preferably 0.01% or less.

また、前記組成のAl−Mg−Si系アルミニウム合金押出材において、本発明で定義された絞りの値が20%以上のとき、つぶし加工やエンボス加工等のプレス加工性に優れる理由については、絞りの値は材料の局部的な変形能を示す1つの指標であり、一方、押出材がつぶし加工やエンボス加工等を受ける場合、被加工部の表面に発生する伸びは20%程度に達し、このような領域では材料は絞りのような局部的な変形をしていると考えられることから、絞りの値が所定値以上の場合に割れの発生が抑制されたものと推測される。この絞りの値は、25%以上であることが望ましい。  In addition, in the Al—Mg—Si-based aluminum alloy extruded material having the above composition, when the drawing value defined in the present invention is 20% or more, the reason why it is excellent in press workability such as crushing and embossing is shown in FIG. The value of is an index indicating the local deformability of the material. On the other hand, when the extruded material undergoes crushing or embossing, the elongation generated on the surface of the processed part reaches about 20%. In such a region, since the material is considered to be locally deformed like a diaphragm, it is presumed that the occurrence of cracking was suppressed when the diaphragm value was a predetermined value or more. The aperture value is preferably 25% or more.

絞りの値を大きくするには、繊維状組織の割合を大きくすること、粒界析出物を少なくする(例えば焼入れは空冷より水冷、MgSiの化学量論的Si量より過剰のSiを少なくする)こと、より時効の進んだ状態とする(時効温度、時効時間)ことが有効であり、これらを適宜組み合わせることで、実施例に示す通り20%以上の絞りを得ることができる。
なお、後述する実施例に示されるように、破断伸び(全伸び)の大きさと絞りの値の間に一定の関係は見いだせない。
In order to increase the value of the squeeze, the proportion of the fibrous structure is increased, and the grain boundary precipitates are decreased (for example, quenching is water cooling rather than air cooling, and excess Si is less than the stoichiometric amount of Mg 2 Si). It is effective to make the aging more advanced (aging temperature, aging time), and by appropriately combining these, a 20% or more aperture can be obtained as shown in the examples.
It should be noted that, as shown in examples described later, a certain relationship cannot be found between the magnitude of elongation at break (total elongation) and the value of the drawing.

以下、本発明の実施例について説明する。
先ず、下記表1に示す組成のアルミニウム合金鋳塊を通常の方法により溶製し、これらの鋳塊に対し500℃×4hrの均質化処理を施し、その後押出温度が500℃、押出速度が4m/minの条件で押出加工を行い、40×40×2tの口型中空押出材(図2参照)を得た。なお、押出直後に材料を強制ファン空冷(冷却速度200℃/min程度)又は水冷(冷却速度10000℃/min以上)で冷却し焼入れた。これを表1の焼入方法の欄に示す。続いて表1に示す条件で人工時効処理を施し、供試材とした。
Examples of the present invention will be described below.
First, an aluminum alloy ingot having the composition shown in Table 1 below is melted by a usual method, and these ingots are subjected to a homogenization treatment of 500 ° C. × 4 hr. Thereafter, the extrusion temperature is 500 ° C., and the extrusion speed is 4 m. Extrusion was performed under the conditions of / min to obtain a 40 × 40 × 2 t mouth-shaped hollow extruded material (see FIG. 2). Immediately after extrusion, the material was cooled and quenched by forced fan air cooling (cooling rate of about 200 ° C./min) or water cooling (cooling rate of 10,000 ° C./min or more). This is shown in the column of quenching method in Table 1. Subsequently, artificial aging treatment was performed under the conditions shown in Table 1 to obtain test materials.

Figure 0005288671
Figure 0005288671

この供試材を用いて、以下の測定を行った。その結果を表2に示す。
繊維状組織;
光学顕微鏡により外側表面及び内側表面からの再結晶層厚を測定し、残部を繊維状組織層としてその厚さの割合を求めた。
機械的特性;
押出方向に平行方向にJIS5号試験片を採取し、引張強さσB、耐力σ0.2、破断伸びδをJISZ2241に規定する金属材料引張試験方法に準じて測定した。
The following measurements were performed using this sample material. The results are shown in Table 2.
Fibrous tissue;
The thickness of the recrystallized layer from the outer surface and the inner surface was measured with an optical microscope, and the ratio of the thickness was determined with the remainder as the fibrous tissue layer.
Mechanical properties;
A JIS No. 5 test piece was taken in a direction parallel to the extrusion direction, and the tensile strength σ B, the yield strength σ 0.2, and the breaking elongation δ were measured in accordance with the metal material tensile test method specified in JIS Z2241.

絞り;
引張試験後の試験片について、先に説明した方法で破断面の中央部の肉厚を測定し、先に定義した絞りの値を求めた。元の肉厚は2mmである。
プレス加工性;
供試材を長さ200mmに切断し、30Ton万能試験機を用い、図3に示すように、供試材を左右の辺が鉛直、上下の辺が水平になるように置き、上方から50×50mm角の治具1を鉛直に20mm押し込んでつぶし試験を行い、供試材の表面状態及び割れの有無を目視にて観察し、◎:割れ、肌荒れなし、○:割れなし、微小な肌荒れあり、×:割れ発生、と評価した。
Aperture;
About the test piece after a tensile test, the thickness of the center part of a torn surface was measured by the method demonstrated previously, and the value of the aperture | phragm defined previously was calculated | required. The original wall thickness is 2 mm.
Press workability;
The specimen is cut into a length of 200 mm, and a 30 Ton universal testing machine is used. As shown in FIG. 3, the specimen is placed so that the left and right sides are vertical and the upper and lower sides are horizontal. A 50 mm square jig 1 is pushed 20 mm vertically to perform a crushing test, and the surface condition of the specimen and the presence or absence of cracks are visually observed. ◎: No crack, rough skin, ○: No crack, rough skin X: Evaluated as occurrence of cracks.

Figure 0005288671
Figure 0005288671

成分組成及び絞りの値が本発明の規定を満たす発明例No.1〜5はいずれもつぶし加工性が良好であり、特に絞りの値が25%以上であるNo.1、2、4、5は加工部に割れも表面の肌荒れも生じなかった。また、Mn、Cr及びZrの1種又は2種以上が適量添加され、繊維状組織とされたNo.1、4、5は絞りの値が大きく、そのうちNo.1は空冷であるが、耐力値をみると焼きが入っていることが分かる。
一方、絞りの値が小さい比較例No.6〜9、11、12は開口割れが発生し、つぶし加工性が劣る。また比較例No.10は絞りの値が大きくつぶし加工性は比較的よいがSi及びMg含有量が少なく、耐力値が小さくなっている。
Invention Example No. in which the component composition and the value of the drawing satisfy the requirements of the present invention. Nos. 1 to 5 have good crushing workability, especially No. 1 with a drawing value of 25% or more. Nos. 1, 2, 4, and 5 did not cause cracks or rough surface in the processed part. In addition, a suitable amount of one or more of Mn, Cr and Zr was added to obtain a fibrous structure. Nos. 1, 4, and 5 have large aperture values. Although 1 is air-cooled, it can be seen from the proof stress that baking is included.
On the other hand, Comparative Example No. 6-9, 11 and 12 have open cracks and are inferior in crushing workability. Comparative Example No. No. 10 has a large squeezing value and relatively good crushing workability, but has a low Si and Mg content and a low proof stress.

発明の効果Effect of the invention

以上説明したように、Al−Mg−Si系アルミニウム合金押出材において、焼入れ及び人工時効処理後の破断面の肉厚減少率(絞り)の値を20%以上とすることにより、優れたプレス加工性が得られる。このAl−Mg−Si系アルミニウム合金押出材は、つぶし加工やエンボス加工を伴う自動車フレーム(サイドメンバー、クロスメンバー、バンパーステイ、サイドフレーム、ピラー)、バンパー、ドアビーム、インパクトビーム(ドア内に前後方向に配置され軸方向の衝撃荷重を受け止める安全部材)等の自動車用構造部材、鉄道車両、船舶又は建築部材のフレーム等の構造部材として好適である。  As described above, in an Al—Mg—Si-based aluminum alloy extruded material, excellent press working is achieved by setting the thickness reduction rate (drawing) value of the fracture surface after quenching and artificial aging treatment to 20% or more. Sex is obtained. This Al-Mg-Si-based aluminum alloy extruded material is used for automobile frames (side members, cross members, bumper stays, side frames, pillars) with crushing and embossing, bumpers, door beams, impact beams (front-rear direction in the door) It is suitable as a structural member such as a structural member for automobiles such as a safety member for receiving an impact load in the axial direction and a frame of a railway vehicle, a ship or a building member.

破断面の肉厚減少率(絞り)の測定方法を説明する図である。  It is a figure explaining the measuring method of the thickness reduction rate (drawing) of a torn surface. 実施例の供試材の断面形状を示す図である。  It is a figure which shows the cross-sectional shape of the test material of an Example. つぶし試験方法を説明する図である。  It is a figure explaining a crushing test method.

Claims (5)

Mg:0.4〜1.2%(質量%、以下同じ)、Si:0.3〜1.2%、及びTi:0.005〜0.2%を含有し、残部Al及び不可避不純物からなり、焼入れ及び人工時効処理を行ったAl−Mg−Si系アルミニウム合金中空押出材において、押出方向に平行方向に採取したJIS5号試験片を用いて引張試験を実施したときの破断面の肉厚減少率が20%以上であることを特徴とするプレス加工性に優れたつぶし加工用Al−Mg−Si系アルミニウム合金押出材。
Mg: 0.4-1.2% (mass%, the same shall apply hereinafter), Si: 0.3-1.2%, and Ti: 0.005-0.2%, the balance from Al and inevitable impurities In the Al-Mg-Si-based aluminum alloy hollow extruded material that has been subjected to quenching and artificial aging treatment, the thickness of the fracture surface when a tensile test was carried out using a JIS No. 5 test piece taken in the direction parallel to the extrusion direction An Al-Mg-Si-based aluminum alloy extruded material for crushing, which is excellent in press workability and has a reduction rate of 20% or more.
さらにCu:0.05〜0.7%を含有することを特徴とする請求項1に記載されたプレス加工性に優れたつぶし加工用Al−Mg−Si系アルミニウム合金押出材。
Furthermore, Cu: 0.05-0.7% is contained, The Al-Mg-Si type aluminum alloy extrusion material for crushing process excellent in press workability described in Claim 1 characterized by the above-mentioned.
さらにMn:0.05〜0.6%、Cr:0.001〜0.2%、Zr:0.05〜0.2%の1種又は2種以上を含有し、自動車用構造部材(ドアビームを除く)に用いられる請求項1又は2に記載されたプレス加工性に優れたつぶし加工用Al−Mg−Si系アルミニウム合金押出材。
Further, it contains one or more of Mn: 0.05 to 0.6%, Cr: 0.001 to 0.2%, Zr: 0.05 to 0.2%, and a structural member for an automobile (door beam). 3. An extruding material of Al—Mg—Si-based aluminum alloy for crushing excellent in press workability according to claim 1 or 2, which is used for
Mn、Cr及びZrの1種又は2種以上の含有量が合計で0.10〜0.40%であり、繊維状組織を有し、空冷によるプレス焼入れ後人工時効処理を行ったことを特徴とする請求項3に記載されたプレス加工性に優れたつぶし加工用Al−Mg−Si系アルミニウム合金押出材。
The total content of one or more of Mn, Cr and Zr is 0.10 to 0.40%, has a fibrous structure, and has been subjected to artificial aging treatment after press quenching by air cooling The Al-Mg-Si-based aluminum alloy extruded material for crushing excellent in press workability according to claim 3.
請求項1〜4のいずれかに記載されたAl−Mg−Si系アルミニウム合金押出材からなり、長さ方向の一部につぶし加工を施された自動車用構造部材。   An automotive structural member comprising the Al-Mg-Si-based aluminum alloy extruded material according to any one of claims 1 to 4 and having been crushed in a part in a length direction.
JP2001060951A 2001-03-05 2001-03-05 Al-Mg-Si-based aluminum alloy extruded material with excellent press workability Expired - Lifetime JP5288671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001060951A JP5288671B2 (en) 2001-03-05 2001-03-05 Al-Mg-Si-based aluminum alloy extruded material with excellent press workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001060951A JP5288671B2 (en) 2001-03-05 2001-03-05 Al-Mg-Si-based aluminum alloy extruded material with excellent press workability

Publications (2)

Publication Number Publication Date
JP2002256368A JP2002256368A (en) 2002-09-11
JP5288671B2 true JP5288671B2 (en) 2013-09-11

Family

ID=18920314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001060951A Expired - Lifetime JP5288671B2 (en) 2001-03-05 2001-03-05 Al-Mg-Si-based aluminum alloy extruded material with excellent press workability

Country Status (1)

Country Link
JP (1) JP5288671B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5329746B2 (en) * 2006-07-13 2013-10-30 株式会社神戸製鋼所 Aluminum alloy sheet for warm forming
JP5473718B2 (en) * 2010-03-30 2014-04-16 株式会社神戸製鋼所 Aluminum alloy extruded material with excellent bending crushability and corrosion resistance
US20140166165A1 (en) * 2012-01-31 2014-06-19 Aisin Keikinzoku Co., Ltd. High-strength aluminum alloy extruded shape exhibiting excellent corrosion resistance, ductility, and hardenability, and method for producing the same
ES2695698T3 (en) 2012-04-25 2019-01-10 Norsk Hydro As Extruded aluminum alloy profile Al-Mg-Si with improved properties
KR102644089B1 (en) 2017-05-26 2024-03-07 노벨리스 인크. High intensity corrosion resistance 6XXX series aluminum alloy and a method of manufacture thereof
CN112342442A (en) * 2020-11-23 2021-02-09 超捷紧固系统(上海)股份有限公司 Method for manufacturing and preparing materials by using aluminum functional connecting piece and fastening piece
CN115011848B (en) * 2022-05-11 2023-03-28 北京理工大学 High-purity aluminum alloy conductor and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212336A (en) * 1993-01-13 1994-08-02 Mitsubishi Alum Co Ltd Al alloy extruded material excellent in strength and bendability

Also Published As

Publication number Publication date
JP2002256368A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
JP5344855B2 (en) Aluminum alloy extruded material with excellent crushing properties
JP4942372B2 (en) Aluminum alloy extrusion for electromagnetic forming
JP5473718B2 (en) Aluminum alloy extruded material with excellent bending crushability and corrosion resistance
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
KR20170072332A (en) Aluminum alloy products and a method of preparation
CN116694969A (en) Door impact beam for a motor vehicle formed from an aluminum alloy extrusion and method for the production thereof
KR100390225B1 (en) Energy-absorbing member
JP2011074470A (en) Aluminum alloy extruded form with excellent bending crushability and corrosion resistance
JP3772962B2 (en) Automotive bumper reinforcement
JP5288671B2 (en) Al-Mg-Si-based aluminum alloy extruded material with excellent press workability
EP1041165A1 (en) Shock absorbing material
JP3454755B2 (en) Shock absorbing member with excellent pressure-resistant cracking resistance
KR20010087232A (en) Aℓ-Mg-Si BASED ALUMINUM ALLOY EXTRUSION FOR DOOR BEAM AND DOOR BEAM
JP2003034834A (en) Al-Mg-Si ALUMINUM ALLOY EXTRUSION MATERIAL SUPERIOR IN ENERGY IMPACT ABSORPTIVITY, AND MANUFACTURING METHOD THEREFOR
CN108884524B (en) Aluminum alloy sheet and method for producing aluminum alloy sheet
JP3077974B2 (en) Al-Mg-Si based aluminum alloy extruded material with excellent axial crushing properties
JP4183396B2 (en) Aluminum alloy extruded material with excellent crushing properties
JP2022156481A (en) Aluminum alloy extruded material and manufacturing method thereof
JP3691254B2 (en) Al-Mg-Si alloy extruded profile for side member and method for producing the same
JP4274674B2 (en) Aluminum alloy member excellent in crushability and manufacturing method thereof
JP5823010B2 (en) High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance
JP5631379B2 (en) High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance
JPH09241785A (en) High toughness aluminum alloy
JPH05311309A (en) Impact beam made of aluminum alloy for automobile side door
JP4052641B2 (en) Aluminum alloy having excellent impact absorption characteristics and good hardenability and extrudability, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R150 Certificate of patent or registration of utility model

Ref document number: 5288671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term