JP2003034834A - Al-Mg-Si ALUMINUM ALLOY EXTRUSION MATERIAL SUPERIOR IN ENERGY IMPACT ABSORPTIVITY, AND MANUFACTURING METHOD THEREFOR - Google Patents

Al-Mg-Si ALUMINUM ALLOY EXTRUSION MATERIAL SUPERIOR IN ENERGY IMPACT ABSORPTIVITY, AND MANUFACTURING METHOD THEREFOR

Info

Publication number
JP2003034834A
JP2003034834A JP2001225509A JP2001225509A JP2003034834A JP 2003034834 A JP2003034834 A JP 2003034834A JP 2001225509 A JP2001225509 A JP 2001225509A JP 2001225509 A JP2001225509 A JP 2001225509A JP 2003034834 A JP2003034834 A JP 2003034834A
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
extruded material
pfz
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001225509A
Other languages
Japanese (ja)
Other versions
JP3757831B2 (en
Inventor
Masahito Yatsukura
政仁 谷津倉
Shigeru Okaniwa
茂 岡庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2001225509A priority Critical patent/JP3757831B2/en
Publication of JP2003034834A publication Critical patent/JP2003034834A/en
Application granted granted Critical
Publication of JP3757831B2 publication Critical patent/JP3757831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an Al-Mg-Si-based aluminum alloy extruded material superior in energy impact absorptivity. SOLUTION: This Al-Mg-Si aluminum alloy extrusion material has a composition containing, by mass%, 0.4-0.7% Si, 0.4-0.7% Mg, 0.02-0.2% Cu, 0.1-0.3% Fe, 0.002-0.2% Ti, and further containing at least one of 0.05-0.3% Mn, 0.05-0.2% Cr, and 0.05-0.4% Zr, so as to be 0.05-0.4% in total of Mn+Cr+Zr, has crystal grains controlled to 0.2 mm<2> or less in the cross section, and has width of a region free from precipitates in the vicinity of the crystal grains controlled to 3 μm or less. The manufacturing method for forming the above structure comprises holding an aluminum alloy billet having the above composition at 480-580 deg.C for 1-8 hours to homogenize it, cooling it at an average cooling rate of 300 deg.C/min or higher in a range of 450-520 deg.C, and then holding it at 160-230 deg.C for 1-15 hours.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム合金押出
材に関し、特に自動車のスペースフレームやバンパー等
に好適に使用される衝撃エネルギー吸収性能に優れたA
l−Mg−Si系アルミニウム合金押出材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy extruded material, which is particularly suitable for use in automobile space frames and bumpers.
The present invention relates to an l-Mg-Si-based aluminum alloy extruded material.

【0002】[0002]

【従来の技術】近年、省エネルギーや環境保護等の関係
から、自動車の軽量化が叫ばれ、その構造材としてアル
ミニウム合金押出材が使用されるようになってきてい
る。アルミニウム合金は軽く、押出成形で任意な断面形
状のものが製造できるので、自動車のスペースフレーム
やバンパーに採用されようとしているが、中でも、押出
性等の加工性や機械的特性、リサイクル性等を考慮して
Al−Mg−Si系アルミニウム合金が使用されるよう
になっている。
2. Description of the Related Art In recent years, weight saving of automobiles has been demanded from the viewpoint of energy saving and environmental protection, and an aluminum alloy extruded material has been used as a structural material thereof. Aluminum alloys are lightweight and can be produced with extrusions of any cross-sectional shape, so they are about to be used for automobile space frames and bumpers. Considering this, an Al-Mg-Si-based aluminum alloy has been used.

【0003】[0003]

【発明が解決しようとする課題】また近年、自動車の安
全性確保の観点から、自動車の構造材に衝撃エネルギー
吸収性も求められるようになっている。本発明は、この
ような問題を解消すべく案出されたものであり、成分・
組成と組織を厳密に調整し、衝撃エネルギー吸収性能を
高めたAl−Mg−Si系アルミニウム合金押出材を提
供することを目的とする。
Recently, from the viewpoint of ensuring the safety of automobiles, the structural energy of automobiles is also required to have impact energy absorption. The present invention has been devised in order to solve such a problem.
It is an object of the present invention to provide an Al-Mg-Si-based aluminum alloy extruded material whose composition and structure are strictly adjusted to improve impact energy absorption performance.

【0004】[0004]

【課題を解決するための手段】本発明の衝撃エネルギー
吸収性能に優れたAl−Mg−Si系アルミニウム合金
押出材は、その目的を達成するため、成分・組成をS
i:0.4〜0.7質量%、Mg:0.4〜0.7質量
%、Cu:0.02〜0.2質量%、Fe:0.1〜
0.3質量%、Ti:0.002〜0.2質量%を含有
し、さらにMn:0.05〜0.3質量%、Cr:0.
05〜0.2質量%、Zr:0.05〜0.2質量%の
内の少なくとも1種以上をMn+Cr+Zrの合計で
0.05〜0.4質量%含有したものとし、結晶粒の断
面積を0.2mm2以下にするとともに、結晶粒界近傍
の析出物の無い部分の幅を0.3μm以下にした組織を
もつようにしたものである。必要に応じて、Bを0.0
005〜0.01質量%の範囲で含有させてもよい。ま
た、そのような組織とするために前記成分・組成を有す
るアルミニウム合金ビレットを480〜580℃で1〜
8時間保持し、均質化処理した後、450〜520℃間
の平均冷却速度を300℃/min以上で冷却し、冷却
後160〜230℃間で1〜15時間保持して製造する
ものである。
The Al-Mg-Si-based aluminum alloy extruded material of the present invention, which is excellent in impact energy absorption performance, has a composition of S and S in order to achieve its object.
i: 0.4 to 0.7 mass%, Mg: 0.4 to 0.7 mass%, Cu: 0.02 to 0.2 mass%, Fe: 0.1
0.3% by mass, Ti: 0.002 to 0.2% by mass, Mn: 0.05 to 0.3% by mass, Cr: 0.
05-0.2 mass%, Zr: 0.05-0.2 mass%, at least one or more of them are contained in a total amount of Mn + Cr + Zr of 0.05-0.4 mass%, and the cross-sectional area of the crystal grains is Of 0.2 mm 2 or less, and a structure in which the width of a portion having no precipitate near the crystal grain boundaries is 0.3 μm or less is provided. If necessary, add B to 0.0
You may make it contain in the range of 005-0.01 mass%. Further, in order to obtain such a structure, the aluminum alloy billet having the above-mentioned components / compositions at 1 to 480 ° C.
After being kept for 8 hours and homogenized, it is manufactured by cooling at an average cooling rate of 450 to 520 ° C. at 300 ° C./min or more, and then holding at 160 to 230 ° C. for 1 to 15 hours after cooling. .

【0005】[0005]

【作用】アルミニウム合金押出材が衝突エネルギーを受
けると、まずそのエネルギーを吸収して変形し、エネル
ギー吸収能を超えた時点で破断する。衝突時の衝撃を十
分に吸収するためには、衝突の際に、アルミニウム合金
押出材の変形能を大きくさせることが重要になる。そこ
で、本発明者らは、まず、割れの機構について鋭意研究
を重ねた。その結果、結晶粒界の近傍に析出物の無い領
域、一般にはPrecipitate Free Zone(以下「PFZ」
と称す。)と呼ばれる領域があり、衝撃エネルギーが加
わった際にPFZにおいて延性破壊が発生し、これが衝
突時の割れの原因になっていることがわかった。
When the aluminum alloy extruded material receives collision energy, it first absorbs the energy and is deformed, and is broken when the energy absorption capacity is exceeded. In order to sufficiently absorb the impact at the time of collision, it is important to increase the deformability of the aluminum alloy extruded material at the time of collision. Therefore, the present inventors first conducted earnest research on the mechanism of cracking. As a result, there is no precipitate near the grain boundaries, generally the Precipitate Free Zone (hereinafter "PFZ").
Called. It is found that there is a region called), and ductile fracture occurs in the PFZ when impact energy is applied, which causes cracking at the time of collision.

【0006】アルミニウム合金押出材に、その押出方向
に衝撃を与えた際のクラック発生状況を図1に示す。ま
た、図2に示したクラック発生部の拡大観察状況からわ
かるように、上記PFZには、他の部分と比較して析出
物が無いため柔らかく、衝撃エネルギーを受けると応力
がそこに集中し、延性破壊を発生している。この状況を
模式的に図3に示す。
FIG. 1 shows the state of crack generation when an aluminum alloy extruded material is impacted in the extruding direction. Further, as can be seen from the enlarged observation state of the cracked portion shown in FIG. 2, the PFZ is softer than other portions because there are no precipitates, and stress is concentrated there when impact energy is applied, Ductile fracture has occurred. This situation is schematically shown in FIG.

【0007】そこで、粒界近傍に生成されるPFZの幅
を狭くすることにより、PFZに応力が集中することを
防止し、衝突時の割れ発生を抑制できることに到達し
た。PFZの幅を0.3μm以下にすることでPFZで
の破壊を抑制できた。PFZ幅を狭くしたときの割れ発
生の模式的状況を図4に示す。なお、PFZは、結晶粒
界を挟んでその両側にできる。具体的には、析出領域−
PFZ−結晶粒界−PFZ−析出領域となるが、本発明
で規定するPFZの幅とは、結晶粒界から結晶粒内の析
出領域までの距離を意味する。
Therefore, by narrowing the width of the PFZ formed in the vicinity of the grain boundary, it has been possible to prevent the stress from being concentrated on the PFZ and suppress the occurrence of cracks at the time of collision. By setting the width of the PFZ to 0.3 μm or less, breakage in the PFZ could be suppressed. FIG. 4 shows a schematic situation of crack generation when the PFZ width is narrowed. The PFZ can be formed on both sides of the crystal grain boundary with the grain boundary in between. Specifically, the precipitation area −
PFZ-grain boundary-PFZ-precipitation region, and the width of PFZ defined in the present invention means the distance from the grain boundary to the precipitation region in the crystal grain.

【0008】また、粒界での破壊を抑えるためには、結
晶粒を小さくする必要がある。粗大再結晶組織が存在す
ると粗大再結晶粒の粒界に応力集中が起こり易くなるた
めである。アルミニウム合金中の粒粗大化抑制作用をも
つMn、Cr、Zr等の合金成分添加量と熱処理条件の
厳密なる調整により、結晶粒を小さく、具体的には0.
2mm2以下にする必要がある。
Further, in order to suppress the destruction at the grain boundary, it is necessary to make the crystal grain small. This is because the presence of the coarse recrystallized structure makes it easier for stress concentration to occur at the grain boundaries of the coarse recrystallized grains. By strictly adjusting the amount of alloying components such as Mn, Cr, and Zr having the effect of suppressing grain coarsening in the aluminum alloy and the heat treatment conditions, the crystal grains are made small, specifically, 0.
It should be 2 mm 2 or less.

【0009】以下に、各要素について詳述する。Si:0.4〜0.7質量% Mgとともに添加することにより、時効処理後にMg−
Si系析出物を形成し、強度を高める。0.4%に満た
ないと十分な強度が得られず、逆に0.7%を超えて含
有させるとテアリング等の押出欠陥が発生し易くなっ
て、押出性が低下する。
Each element will be described in detail below. Si: 0.4-0.7 mass% By adding together with Mg, Mg-after the aging treatment
It forms Si-based precipitates and enhances strength. If it is less than 0.4%, sufficient strength cannot be obtained. On the contrary, if it exceeds 0.7%, extrusion defects such as tearing tend to occur and the extrudability deteriorates.

【0010】Mg:0.4〜0.7質量% 上記の通り、強度を高めるために添加する元素である。
0.4%未満では時効処理後に十分な強度が得られな
い。0.7%を超えて添加すると、熱間変形抵抗値が高
くなり押出性が低下する。
Mg: 0.4 to 0.7 mass% As described above, it is an element added to enhance strength.
If it is less than 0.4%, sufficient strength cannot be obtained after the aging treatment. If it is added in excess of 0.7%, the hot deformation resistance value increases and the extrudability decreases.

【0011】Cu:0.02〜0.2質量% Si、Mgと同様に添加すると時効処理後に強度が上昇
する。0.02%未満では効果が得られない。また、
0.2%を超えて添加すると耐食性が低下する。
Cu: 0.02 to 0.2 mass% When added in the same manner as Si and Mg, the strength increases after the aging treatment. If it is less than 0.02%, the effect cannot be obtained. Also,
If added in excess of 0.2%, the corrosion resistance decreases.

【0012】Fe:0.1〜0.3質量% 鋳造時にAl−Fe−Si系の晶出物を形成する。均質
化処理後もその多くが残存し、押出加工により分断され
て分布することにより、粒界の移動を妨げる。この作用
により、結晶粒の粗大化を防止する。0.1%未満では
その効果が得られない。また0.3%を超えて添加する
と、粗大なAl−Fe−Si系化合物を生成し、押出材
の表面性状が低下する。
Fe: 0.1 to 0.3 mass% An Al-Fe-Si-based crystallized product is formed during casting. Most of them remain even after the homogenization treatment, and they are divided by the extrusion process and distributed, which hinders the movement of grain boundaries. This action prevents coarsening of crystal grains. If it is less than 0.1%, the effect cannot be obtained. Further, if added in excess of 0.3%, a coarse Al-Fe-Si compound is generated, and the surface properties of the extruded material deteriorate.

【0013】Ti:0.002〜0.2質量% 鋳造時の結晶粒組織を微細化し、鋳造割れを防止する。
また、時効処理後の耐食性を高める。0.002%未満
ではその効果が得られない。0.2%を超えて添加する
と、粗大なAl−Ti系化合物を生成し、押出材の表面
性状を低下させることになる。B:0.0005〜0.01質量% また、必要に応じて鋳造時の結晶粒組織を微細化するた
めに、0.0005〜0.01%のBを添加することも
できる。
Ti: 0.002 to 0.2 mass% The crystal grain structure during casting is refined to prevent casting cracks.
It also increases the corrosion resistance after aging treatment. If it is less than 0.002%, the effect cannot be obtained. If it is added in excess of 0.2%, a coarse Al-Ti compound is generated, and the surface quality of the extruded material is deteriorated. B: 0.0005 to 0.01% by mass In addition, 0.0005 to 0.01% of B can be added as necessary in order to refine the crystal grain structure during casting.

【0014】Mn:0.05〜0.3質量%、 Cr:0.05〜0.2質量%、 Zr:0.05〜0.2質量%、 Mn+Cr+Zr:0.05〜0.4質量% Mn、Cr、Zrは、それぞれ均質処理後にAl−Mn
系、Al−Cr系、Al−Zr系の析出物を生成し、粒
界の移動を妨げることで押出材の結晶粒粗大化を防止す
る(ピン止め効果)。またMn、Cr、Zrは、衝撃吸
収性能を高めるサブグレイン(亜結晶粒)を押出加工や
熱処理時に残存させる作用もある。サブグレインを残存
させると、結晶粒そのものを微細化したと同じ効果があ
る。それらの含有量が0.05%未満では効果が得られ
ない。逆にMn、Cr、Zrを、それぞれMnは0.3
%、Cr、Zrは0.2%を超えて添加するか、Mn+
Cr+Zrの合計が0.4%を超えるように添加すると
熱間変形抵抗が上昇し、押出性が低下する。したがって
Mn、Cr、Zrの添加量は上記の通りとする。
Mn: 0.05 to 0.3 mass%, Cr: 0.05 to 0.2 mass%, Zr: 0.05 to 0.2 mass%, Mn + Cr + Zr: 0.05 to 0.4 mass% Mn, Cr, and Zr are each Al-Mn after the homogeneous treatment.
-Type, Al-Cr-type, and Al-Zr-type precipitates are generated to prevent movement of grain boundaries, thereby preventing crystal grain coarsening of the extruded material (pinning effect). Further, Mn, Cr, and Zr also have an action of leaving subgrains (subcrystalline grains) that enhance the impact absorption performance during extrusion processing or heat treatment. If the subgrain is left, it has the same effect as making the crystal grains themselves fine. If their content is less than 0.05%, no effect can be obtained. On the contrary, Mn, Cr, and Zr are 0.3, respectively.
%, Cr, Zr added in excess of 0.2%, or Mn +
If added so that the total of Cr + Zr exceeds 0.4%, the hot deformation resistance increases and the extrudability decreases. Therefore, the amounts of Mn, Cr, and Zr added are as described above.

【0015】均質化条件:480〜580℃×1〜8時
鋳塊中に偏析して存在するMg、Si、Cuなどを、押
出中の加工熱で十分に溶体化(以後、「プレス焼入れ」
と称す。)できるように均質化させる。また、Al−M
n(またはCr,Zr)系化合物を析出させることで粒
界の移動を防御し、結晶粒の粗大化を防止する。480
℃未満では偏析したMg、Si、Cuなどの均質化が不
十分である。また、580℃を超えるとAl−Mn(ま
たはCr,Zr)系析出物が粗大化し、粒界の移動を防
ぐ効果が低下し、結晶粒が粗大化する。なお、処理時間
については、1時間未満では偏析したMg、Si、Cu
などの均質化が不十分である。また、8時間を超えると
Al−Mn(またはCr,Zr)系析出物が粗大化する
傾向にあり、粒界をピン止めする効果が低下し、結晶粒
が粗大化し易い。
Homogenization conditions: 480 to 580 ° C. for 1 to 8 hours
The Mg, Si, Cu, etc. segregated and present in the ingot are sufficiently solutionized by the processing heat during extrusion (hereinafter, "press hardening").
Called. ) Homogenize as possible. Also, Al-M
By precipitating an n (or Cr, Zr) -based compound, movement of grain boundaries is prevented and coarsening of crystal grains is prevented. 480
If the temperature is lower than ° C, homogenization of segregated Mg, Si, Cu, etc. is insufficient. On the other hand, if the temperature exceeds 580 ° C., the Al—Mn (or Cr, Zr) -based precipitates become coarse, the effect of preventing the movement of grain boundaries decreases, and the crystal grains become coarse. Regarding the processing time, if the processing time is less than 1 hour, segregated Mg, Si, Cu
Is not sufficiently homogenized. Further, if it exceeds 8 hours, the Al-Mn (or Cr, Zr) -based precipitate tends to be coarsened, the effect of pinning the grain boundaries is reduced, and the crystal grains are likely to be coarsened.

【0016】押出前のビレット温度条件:450〜52
0℃ プレス焼入れでMg、Si、Cuを十分に固溶させ、時
効処理後に十分な強度を得ること、また、形材出口温度
の過昇温(形材のダイス出口温度が高温になりすぎるこ
と)を抑え、結晶粒の粗大化を防止する必要がある。時
効処理後に十分な強度を得るには、形材出口温度を51
0℃以上にする必要がある。ビレット温度が450℃未
満では形材出口温度510℃を安定して得ることはでき
ない。また、形材出口温度が580℃を超えると、Al
−Fe−Si系晶出物およびAl−Mn(Cr,Zr)
系析出物の粒界をピン止めする効果が低下し、結晶粒が
粗大化し易い。ビレット温度520℃を超えて押出すと
形材温度が580℃を超える場合がある。アルミニウム
合金の成分・組成、特にMn、Cr、Zr含有量を厳密
に制御し、かつ均質化条件および押出前のビレット温度
条件を厳密に制御することにより、押出材の結晶粒の断
面積を0.2mm2以下にすることができる。
Billet temperature condition before extrusion: 450 to 52
Mg, Si, and Cu are sufficiently solid-solved by press quenching at 0 ° C to obtain sufficient strength after aging treatment, and the temperature of the profile outlet is excessively increased (the profile die outlet temperature becomes too high. ) To prevent the crystal grains from coarsening. In order to obtain sufficient strength after aging treatment, the profile outlet temperature should be 51
It is necessary to make it 0 ° C or higher. If the billet temperature is lower than 450 ° C, the shape member outlet temperature of 510 ° C cannot be stably obtained. Also, if the profile outlet temperature exceeds 580 ° C, Al
-Fe-Si system crystallized product and Al-Mn (Cr, Zr)
The effect of pinning the grain boundaries of the system precipitates decreases, and the crystal grains tend to become coarse. When extruded at a billet temperature exceeding 520 ° C, the profile temperature may exceed 580 ° C. By strictly controlling the components / compositions of the aluminum alloy, particularly the Mn, Cr, and Zr contents, and by strictly controlling the homogenization conditions and the billet temperature conditions before extrusion, the cross-sectional area of the crystal grains of the extruded material is reduced to 0. It can be less than 0.2 mm 2 .

【0017】PFZ幅:0.3μm以下 本発明の最大の特徴であるPFZ幅について説明する。
前記したように、粒界近傍に生成されるPFZの幅を狭
くすることにより、PFZに応力が集中することを防止
し、衝突時の割れ発生を抑制できることを確認した。こ
の効果が得られるPFZ幅≦0.3μmの要件は、次に
説明する各種実験結果に基づいて設定したものである。
PFZ width: 0.3 μm or less The PFZ width, which is the greatest feature of the present invention, will be described.
As described above, by narrowing the width of the PFZ generated near the grain boundaries, it was confirmed that stress could be prevented from concentrating on the PFZ and the occurrence of cracks during collision could be suppressed. The requirement of PFZ width ≦ 0.3 μm for obtaining this effect is set based on various experimental results described below.

【0018】押出直後450〜250℃間の冷却速度:
300℃/min以上 上記のような、PFZの幅を0.3μm以下にするため
には、これも次に説明する各種実験例から求めた結果で
あるが、押出直後の冷却工程において、450〜250
℃間の平均冷却速度を300℃/min以上にする必要
がある。この速度に満たないと、PFZの幅が0.3μ
mを超え、粒界破壊が起こるようになって、所期の目的
を達成しなくなる。なお、参考として、6N01材(S
i:0.56%、Mg:0.53%、Cu:0.07
%、Mn:0.15%、Fe:0.18%、Ti:0.
01%、B:0.001%)を押出後、各種冷却速度で
冷却したもののPFZ幅を、図5〜7に示す。なお水冷
での冷却速度は約1000℃/secである。冷却速度
300℃/minでは、PFZ幅は0.3μm以下にな
っていることがわかる。
Immediately after extrusion, cooling rate between 450 and 250 ° C .:
300 ° C./min or more In order to set the width of the PFZ to 0.3 μm or less as described above, this is also the result obtained from various experimental examples described below. 250
It is necessary to set the average cooling rate between ° C to 300 ° C / min or more. If this speed is not reached, the PFZ width will be 0.3μ.
If it exceeds m, grain boundary fracture will occur and the intended purpose will not be achieved. For reference, 6N01 material (S
i: 0.56%, Mg: 0.53%, Cu: 0.07
%, Mn: 0.15%, Fe: 0.18%, Ti: 0.
(01%, B: 0.001%) and then cooled at various cooling rates, the PFZ width is shown in FIGS. The cooling rate with water cooling is about 1000 ° C./sec. It can be seen that the PFZ width is 0.3 μm or less at the cooling rate of 300 ° C./min.

【0019】時効処理条件:160〜230℃×1〜1
5時間 プレス焼入れで固溶させたMg、Si、Cuを化合物と
して適切なサイズおよび分布状態で析出させることで強
度を高め、エネルギー吸収性能を高める。160℃未満
で処理すると長時間を要する。処理時間が15時間を超
えると経済的ではない。また、時効温度が高いほど処理
に必要な時間は短くなるが、析出物が大きくなり、ピー
ク強度が低下する。230℃を超えると十分な強度は得
られない。なお、熱処理炉内の温度を安定させるには保
持時間で1時間は必要である。
Aging treatment conditions: 160 to 230 ° C. × 1 to 1
For 5 hours , Mg, Si, and Cu solid-dissolved by press quenching as compounds are precipitated in an appropriate size and distribution state to increase strength and energy absorption performance. It takes a long time to process at less than 160 ° C. If the treatment time exceeds 15 hours, it is not economical. Also, the higher the aging temperature, the shorter the time required for the treatment, but the larger the precipitates and the lower the peak strength. If it exceeds 230 ° C, sufficient strength cannot be obtained. A holding time of 1 hour is required to stabilize the temperature in the heat treatment furnace.

【0020】適切なPFZ幅を選定するために行った各
種実験について説明する。実験例 表1に示す合金No.1〜4を203φの鋳塊に鋳造し
た後、540℃まで、それぞれ100℃/時間で昇温
し、2時間保持し、その後室温まで250℃/時間で冷
却した(均質化処理)。次いで480℃に加熱し、50
mm×50mm×2mmtの口の字形状に押出加工し、
押出中の形状を表2に示す冷却条件で冷却した。なお、
ダイスから出てきた直後の押出材の温度(以下、「出口
温度」と言う。)は、530〜550℃であった。
Various experiments conducted for selecting an appropriate PFZ width will be described. Experimental Example Alloy No. shown in Table 1 After casting 1 to 4 in a 203φ ingot, the temperature was raised to 540 ° C. at 100 ° C./hour, held for 2 hours, and then cooled to room temperature at 250 ° C./hour (homogenization treatment). Then heat to 480 ° C., 50
Extruded into a square shape of mm × 50 mm × 2 mmt,
The shape during extrusion was cooled under the cooling conditions shown in Table 2. In addition,
The temperature of the extruded material immediately after coming out from the die (hereinafter, referred to as "outlet temperature") was 530 to 550 ° C.

【0021】 [0021]

【0022】 [0022]

【0023】得られた押出材に180℃×6時間の時効
処理を施した後。PFZ幅を測定し、また、軸方向の圧
縮試験を実施し、吸収エネルギーの測定と試験後の外観
判定を行った。なお、PFZ幅の測定は、走査電子顕微
鏡観察によって行った。また、吸収エネルギーは、押出
材を25cmの長さに切断し、押出方向に1mm/秒の
速度で圧縮変形させ、その時の荷重−変位曲線を作成
し、曲線と横軸で形成される部分の面積を吸収エネルギ
ー量(吸収エネルギー=荷重×変位)とした。得られた
PFZ幅、吸収エネルギー量および試験後の外観を表3
に示す。
After the obtained extruded material was aged at 180 ° C. for 6 hours. The PFZ width was measured, and a compression test in the axial direction was performed to measure the absorbed energy and determine the appearance after the test. The PFZ width was measured by scanning electron microscope observation. The absorbed energy is obtained by cutting the extruded material into a length of 25 cm, compressing and deforming the extruded material at a speed of 1 mm / sec in the extrusion direction, creating a load-displacement curve at that time, and measuring the portion formed by the curve and the horizontal axis. The area was defined as the amount of absorbed energy (absorbed energy = load x displacement). Table 3 shows the obtained PFZ width, absorbed energy amount and appearance after the test.
Shown in.

【0024】 [0024]

【0025】なお、この種のアルミニウム合金押出材に
あっては引張強さで245MPa、0.2%耐力で20
5MPa、吸収エネルギーとして2700N・mm以上
の特性を有することが望ましい。表3の結果から、押出
後450〜250℃間を平均冷却速度300℃/min
以上で冷却した合金No.1〜4の試験No.1〜3の
ものでは、PFZ幅が0.3μm以下であり、エネルギ
ー吸収量も大きいことがわかる。圧縮変形させた押出材
を観察したところ、割れは全く発生しておらず、蛇腹状
に変形していた。また上記必要特性をも十分満たしてい
る。さらに、これらの試料について組織観察したとこ
ろ、結晶粒は大きいものでもその断面積は0.1mm2
以下であり、多くの結晶の中にサブグレインが観察され
た。
The aluminum alloy extruded material of this type has a tensile strength of 245 MPa and a 0.2% proof stress of 20.
It is desirable to have a characteristic of 5 MPa and an absorbed energy of 2700 N · mm or more. From the results shown in Table 3, the average cooling rate of 300 ° C / min was measured between 450 and 250 ° C after extrusion.
Alloy No. Test Nos. 1 to 4 It can be seen that in the case of Nos. 1 to 3, the PFZ width is 0.3 μm or less, and the energy absorption amount is large. Observation of the extruded material that had been compressed and deformed revealed that no cracks had occurred and that it deformed into a bellows shape. Moreover, the above-mentioned required characteristics are sufficiently satisfied. Further, when the structure of these samples was observed, the cross-sectional area was 0.1 mm 2 even though the crystal grains were large.
Below, subgrains were observed in many crystals.

【0026】これに対して、押出後450〜250℃間
を平均冷却速度150℃/minで冷却した試験No.
4の試験片では、引張強さおよび0.2%耐力は十分で
あるものの、吸収エネルギーが2500N・mmに達し
ていなかった。軸方向の圧縮変形時に押出材は蛇腹変形
せず一部で破断していた。この試験片のPFZが0.3
μmを超えていたため、粒界で延性破壊した結果による
ものである。
On the other hand, after the extrusion, the test No. 1 was cooled between 450 ° C. and 250 ° C. at an average cooling rate of 150 ° C./min.
In the test piece of No. 4, although the tensile strength and the 0.2% proof stress were sufficient, the absorbed energy did not reach 2500 N · mm. During the axial compressive deformation, the extruded material did not undergo bellows deformation and was partially broken. The PFZ of this test piece is 0.3
This is due to the result of ductile fracture at the grain boundaries because the diameter exceeds μm.

【0027】また、比較材料である合金No.5で押出
後の冷却を400℃/minで行った試験材では、PF
Zの幅が0.3μm以下であっても軸方向の圧縮変形時
に押出材は蛇腹変形せず、一部で破断した。組織観察し
たところと、大部分が0.1mm2以下の断面積の微細
な再結晶組織であったが、サブグラインはほとんど観察
されず、部分的に断面積が0.3mm2を超える粗大再
結晶組織が見られ、全体として細粒と粗大粒が混在する
組織となっていた。合金No.5においては、Mn+C
r+Zrの量が少ないために、サブグレインが消滅し、
また粗大再結晶組織が発生し、圧縮変形を行った際に、
粗大再結晶組織に応力が集中し、粒界割れが発生したも
のと推察される。
In addition, the alloy No. In the test material that was cooled at 400 ° C./min after extrusion in No. 5, PF
Even if the width of Z was 0.3 μm or less, the extruded material did not undergo bellows deformation during compression deformation in the axial direction, and partly fractured. When the structure was observed, most of the structure was a fine recrystallized structure with a cross-sectional area of 0.1 mm 2 or less, but sub-grains were hardly observed, and the coarse recrystallized partly had a cross-sectional area of more than 0.3 mm 2. The texture was observed, and the texture was a mixture of fine and coarse grains as a whole. Alloy No. In 5, Mn + C
Since the amount of r + Zr is small, subgrains disappear,
In addition, when a coarse recrystallized structure is generated and compression deformation is performed,
It is presumed that stress was concentrated in the coarse recrystallized structure and grain boundary cracking occurred.

【0028】以上のことから、結晶粒径を小さくかつ粒
界のPFZ幅を0.3μm以下にすることで、押出材を
圧縮変形させた際、蛇腹状に変形し、多くのエネルギー
を吸収して破壊を防ぐことができるのに対し、PFZ幅
が0.3μmを超えると、圧縮変形時に蛇腹状に変形せ
ず割れて、エネルギーをあまり多く吸収できないことが
わかる。
From the above, when the crystal grain size is small and the PFZ width of the grain boundary is 0.3 μm or less, when the extruded material is compressed and deformed, it deforms into a bellows shape and absorbs much energy. It can be seen that, while the destruction can be prevented, when the PFZ width exceeds 0.3 μm, it does not deform in a bellows shape during compression deformation and cracks, so that much energy cannot be absorbed.

【0029】[0029]

【発明の効果】以上に説明したように、成分・組成を厳
密に調整し、製造条件を制御することにより結晶粒界の
PFZ幅を小さくすることにより、衝撃エネルギー吸収
性能を高めたAl−Mg−Si系アルミニウム合金押出
材を得ることができ、自動車のスペースフレームやバン
パー等に好適に使用される押出材を提供することができ
る。
As described above, Al-Mg having improved impact energy absorption performance by reducing the PFZ width of the crystal grain boundary by strictly adjusting the components / compositions and controlling the production conditions. An -Si-based aluminum alloy extruded material can be obtained, and an extruded material suitably used for a space frame or bumper of an automobile can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 アルミニウム合金押出材圧縮時のクラック発
生箇所の観察画面
[Fig.1] Screen for observing crack locations during compression of extruded aluminum alloy

【図2】 クラック発生箇所の拡大観察観察画面[Fig. 2] Observation screen for enlarged observation of cracks

【図3】 PFZ幅が大きい材料でのクラックの発生状
況を模式的に説明する図
FIG. 3 is a diagram schematically illustrating a crack generation state in a material having a large PFZ width.

【図4】 PFZ幅を小さくした材料でのクラックの発
生状況を模式的に説明する図
FIG. 4 is a diagram schematically illustrating a crack generation state in a material having a small PFZ width.

【図5】 6N01材を押出後、冷却速度50℃/mi
nで冷却した材料のPFZ幅を観察した画面
FIG. 5: Cooling rate 50 ° C./mi after extruding 6N01 material
Screen for observing PFZ width of material cooled by n

【図6】 6N01材を押出後、冷却速度300℃/m
inで冷却した材料のPFZ幅を観察した画面
FIG. 6 is a cooling rate of 300 ° C./m after extruding 6N01 material.
Screen for observing PFZ width of material cooled in in

【図7】 6N01材を押出後、水冷(冷却速度100
0℃/sec)した材料のPFZ幅を観察した画面
FIG. 7: 6N01 material was extruded and then water-cooled (cooling rate 100
Screen showing the PFZ width of the material (0 ° C / sec)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 682 C22F 1/00 682 691 691B 691C 692 692A 692B (72)発明者 岡庭 茂 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 Fターム(参考) 4E029 AA06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI Theme Coat (reference) C22F 1/00 682 C22F 1/00 682 692 691 691B 691C 692 692A 692B (72) Inventor Shigeru Okaba Shizuoka Prefecture Anbara-gun 1-34-1, Kambara-cho, Kambara-cho F-term (reference) in the Group Technology Center of Nippon Light Metal Co., Ltd. 4E029 AA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Si:0.4〜0.7質量%、Mg:
0.4〜0.7質量%、Cu:0.02〜0.2質量
%、Fe:0.1〜0.3質量%、Ti:0.002〜
0.2質量%を含有し、さらにMn:0.05〜0.3
質量%、Cr:0.05〜0.2質量%、Zr:0.0
5〜0.2質量%の内の少なくとも1種以上をMn+C
r+Zrの合計で0.05〜0.4質量%含有し、残部
が実質的にAlからなる成分・組成を有し、結晶粒の断
面積が0.2mm2以下であるとともに、結晶粒界近傍
の析出物の無い部分の幅が0.3μm以下である組織を
有することを特徴とする衝撃エネルギー吸収性能に優れ
たAl−Mg−Si系アルミニウム合金押出材。
1. Si: 0.4 to 0.7 mass%, Mg:
0.4-0.7 mass%, Cu: 0.02-0.2 mass%, Fe: 0.1-0.3 mass%, Ti: 0.002-
It contains 0.2% by mass and further Mn: 0.05 to 0.3.
% By mass, Cr: 0.05 to 0.2% by mass, Zr: 0.0
At least one of 5 to 0.2 mass% is Mn + C
The total content of r + Zr is 0.05 to 0.4% by mass, the balance is a component / composition substantially consisting of Al, the cross-sectional area of the crystal grains is 0.2 mm 2 or less, and the vicinity of the crystal grain boundaries. An Al-Mg-Si based aluminum alloy extruded material having excellent impact energy absorption performance, characterized in that it has a structure in which the width of the precipitate-free portion is 0.3 μm or less.
【請求項2】 成分・組成がさらにB:0.0005〜
0.01質量%を含有するものである請求項1に記載の
衝撃エネルギー吸収性能に優れたAl−Mg−Si系ア
ルミニウム合金押出材。
2. The component / composition further has B: 0.0005.
The Al-Mg-Si based aluminum alloy extruded material excellent in impact energy absorption performance according to claim 1, which contains 0.01% by mass.
【請求項3】 請求項1または2に記載の成分・組成を
有するアルミニウム合金ビレットを480〜580℃で
1〜8時間保持し、均質化処理した後、450〜520
℃間の平均冷却速度を300℃/min以上で冷却し、
冷却後160〜230℃間で1〜15時間保持すること
を特徴とする衝撃エネルギー吸収性能に優れたAl−M
g−Si系アルミニウム合金押出材の製造方法。
3. An aluminum alloy billet having the components and composition according to claim 1 or 2 is held at 480 to 580 ° C. for 1 to 8 hours and homogenized, and then 450 to 520.
Cooling at an average cooling rate of 300 ° C / min or more between ° C,
Al-M excellent in impact energy absorption performance characterized by holding at 160 to 230 ° C for 1 to 15 hours after cooling
A method for producing a g-Si based aluminum alloy extruded material.
JP2001225509A 2001-07-26 2001-07-26 Al-Mg-Si aluminum alloy extruded material with excellent impact energy absorption performance Expired - Lifetime JP3757831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001225509A JP3757831B2 (en) 2001-07-26 2001-07-26 Al-Mg-Si aluminum alloy extruded material with excellent impact energy absorption performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001225509A JP3757831B2 (en) 2001-07-26 2001-07-26 Al-Mg-Si aluminum alloy extruded material with excellent impact energy absorption performance

Publications (2)

Publication Number Publication Date
JP2003034834A true JP2003034834A (en) 2003-02-07
JP3757831B2 JP3757831B2 (en) 2006-03-22

Family

ID=19058490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001225509A Expired - Lifetime JP3757831B2 (en) 2001-07-26 2001-07-26 Al-Mg-Si aluminum alloy extruded material with excellent impact energy absorption performance

Country Status (1)

Country Link
JP (1) JP3757831B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105473A (en) * 2001-09-28 2003-04-09 Furukawa Electric Co Ltd:The Aluminum alloy sheet having excellent bendability and drawability and method for manufacturing the same
EP2006404A1 (en) * 2006-03-30 2008-12-24 Toyota Jidosha Kabushiki Kaisha 6000 aluminum extrudate excelling in paint-baking hardenability and process for producing the same
JP2009228111A (en) * 2008-03-25 2009-10-08 Kobe Steel Ltd Aluminum alloy extruded material having excellent bending-crashed property and corrosion resistance and method for manufacturing the same
WO2011040453A1 (en) * 2009-09-30 2011-04-07 株式会社神戸製鋼所 Aluminum alloy extrudate with excellent bending crushing strength and corrosion resistance
JP2011074470A (en) * 2009-09-30 2011-04-14 Kobe Steel Ltd Aluminum alloy extruded form with excellent bending crushability and corrosion resistance
JP2011208251A (en) * 2010-03-30 2011-10-20 Kobe Steel Ltd Aluminum alloy extruded member excellent in bending crush resistance and corrosion resistance
CN104797724A (en) * 2013-03-29 2015-07-22 古河电器工业株式会社 Aluminum alloy conductor, aluminum alloy twisted wire, coated electric wire, wire harness, and production method for aluminum alloy conductor
CN108203779A (en) * 2016-12-20 2018-06-26 株式会社神户制钢所 Aluminium alloy plate
CN109468507A (en) * 2018-12-25 2019-03-15 台州市金美铝业股份有限公司 A kind of fishing gear aluminium alloy and preparation method thereof
CN115382934A (en) * 2022-08-11 2022-11-25 广东伟业铝厂集团有限公司 Aluminum profile for 3C electronic equipment and preparation method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105473A (en) * 2001-09-28 2003-04-09 Furukawa Electric Co Ltd:The Aluminum alloy sheet having excellent bendability and drawability and method for manufacturing the same
EP2006404A1 (en) * 2006-03-30 2008-12-24 Toyota Jidosha Kabushiki Kaisha 6000 aluminum extrudate excelling in paint-baking hardenability and process for producing the same
EP2006404A4 (en) * 2006-03-30 2009-12-16 Toyota Motor Co Ltd 6000 aluminum extrudate excelling in paint-baking hardenability and process for producing the same
JP2009228111A (en) * 2008-03-25 2009-10-08 Kobe Steel Ltd Aluminum alloy extruded material having excellent bending-crashed property and corrosion resistance and method for manufacturing the same
JP2011074470A (en) * 2009-09-30 2011-04-14 Kobe Steel Ltd Aluminum alloy extruded form with excellent bending crushability and corrosion resistance
JP2011074471A (en) * 2009-09-30 2011-04-14 Kobe Steel Ltd Aluminum alloy extruded form with excellent bending crushability and corrosion resistance
WO2011040453A1 (en) * 2009-09-30 2011-04-07 株式会社神戸製鋼所 Aluminum alloy extrudate with excellent bending crushing strength and corrosion resistance
CN102549185A (en) * 2009-09-30 2012-07-04 株式会社神户制钢所 Aluminum alloy extrudate with excellent bending crushing strength and corrosion resistance
JP2011208251A (en) * 2010-03-30 2011-10-20 Kobe Steel Ltd Aluminum alloy extruded member excellent in bending crush resistance and corrosion resistance
CN104797724A (en) * 2013-03-29 2015-07-22 古河电器工业株式会社 Aluminum alloy conductor, aluminum alloy twisted wire, coated electric wire, wire harness, and production method for aluminum alloy conductor
CN108203779A (en) * 2016-12-20 2018-06-26 株式会社神户制钢所 Aluminium alloy plate
CN109468507A (en) * 2018-12-25 2019-03-15 台州市金美铝业股份有限公司 A kind of fishing gear aluminium alloy and preparation method thereof
CN115382934A (en) * 2022-08-11 2022-11-25 广东伟业铝厂集团有限公司 Aluminum profile for 3C electronic equipment and preparation method thereof
CN115382934B (en) * 2022-08-11 2023-09-01 广东伟业铝厂集团有限公司 Aluminum profile for 3C electronic equipment and preparation method thereof

Also Published As

Publication number Publication date
JP3757831B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
JP4977281B2 (en) High-strength aluminum alloy extruded material excellent in shock absorption and stress corrosion cracking resistance and method for producing the same
JP3194742B2 (en) Improved lithium aluminum alloy system
EP2072628B1 (en) High strength crash resistant aluminium alloy
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
JP2003034834A (en) Al-Mg-Si ALUMINUM ALLOY EXTRUSION MATERIAL SUPERIOR IN ENERGY IMPACT ABSORPTIVITY, AND MANUFACTURING METHOD THEREFOR
JP2011001563A (en) Aluminum alloy extruded product exhibiting excellent impact cracking resistance
JP5946425B2 (en) Method for producing aluminum alloy extruded material
JP2003181530A (en) Method for manufacturing aluminum alloy extruded material having excellent bending workability and energy absorbing characteristics
JP3454755B2 (en) Shock absorbing member with excellent pressure-resistant cracking resistance
JP4452696B2 (en) Method for producing high-strength aluminum alloy material for automobile headrest frame with improved workability
JP5288671B2 (en) Al-Mg-Si-based aluminum alloy extruded material with excellent press workability
JP4587588B2 (en) Aluminum alloy extruded material with excellent axial crushing characteristics and method for producing the same
JP3077974B2 (en) Al-Mg-Si based aluminum alloy extruded material with excellent axial crushing properties
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
WO2015077880A1 (en) Aluminum alloy combining high strength and extrudability, and low quench sensitivity
KR102012952B1 (en) Aluminium alloy and manufacturing method thereof
JP2000054049A (en) Aluminum-magnesium-silicon alloy extruded shape material for side member excellent in collapse characteristic and its production
JP3961324B2 (en) Hollow shock absorbing member with excellent bellows-like crushability
JP5823010B2 (en) High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance
JP4993170B2 (en) Aluminum alloy extruded shape having excellent impact absorption characteristics and good hardenability, and method for producing the same
JP5631379B2 (en) High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance
JPH10306338A (en) Hollow extruded material of al-cu-mg-si alloy, excellent in strength and corrosion resistance, and its manufacture
JPH09241785A (en) High toughness aluminum alloy
JP2003155535A (en) Aluminum alloy extruded material for automobile bracket, and production method therefor
JP4052641B2 (en) Aluminum alloy having excellent impact absorption characteristics and good hardenability and extrudability, and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3757831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term