JP2011208251A - Aluminum alloy extruded member excellent in bending crush resistance and corrosion resistance - Google Patents

Aluminum alloy extruded member excellent in bending crush resistance and corrosion resistance Download PDF

Info

Publication number
JP2011208251A
JP2011208251A JP2010078673A JP2010078673A JP2011208251A JP 2011208251 A JP2011208251 A JP 2011208251A JP 2010078673 A JP2010078673 A JP 2010078673A JP 2010078673 A JP2010078673 A JP 2010078673A JP 2011208251 A JP2011208251 A JP 2011208251A
Authority
JP
Japan
Prior art keywords
aluminum alloy
extruded material
extrusion
temperature
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010078673A
Other languages
Japanese (ja)
Other versions
JP5473718B2 (en
Inventor
Takahiro Shikama
隆広 志鎌
Shinji Yoshihara
伸二 吉原
Keiji Morita
啓二 森田
Kentaro Ihara
健太郎 伊原
Manabu Nakai
学 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010078673A priority Critical patent/JP5473718B2/en
Publication of JP2011208251A publication Critical patent/JP2011208251A/en
Application granted granted Critical
Publication of JP5473718B2 publication Critical patent/JP5473718B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy extruded member that is excellent in both of bending crush resistance and corrosion resistance required for an energy-absorbing member for an automobile, even if the collision conditions of an automobile are made severe.SOLUTION: The Al-Mg-Si aluminum alloy extruded member comprises, by mass, 0.60 to 1.20% Mg, 0.30 to 0.95% Si, 0.01 to 0.40% Fe, 0.20 to 0.45% Mn, 0.001 to 0.65% Cu, 0.001 to 0.10% Ti, 0.10 to 0.20% Zr and the balance being Al and unavoidable impurities, wherein the contents of the Mg and Si satisfy the relations: Mg(%)≤1.73×Si(%)+0.2 and Mg(%)≥1.73×Si(%)-0.2. The extruded member has an almost rectangular hollow section with a thickness of 2-7 mm, and the 0.2% proof stress of 270-330 MPa. The main structure in the thickness direction section is a fibrous structure, and the thickness of a recrystallized structure in a surface layer is ≤500 μm on each side.

Description

本発明は、曲げ圧壊性に優れたAl-Mg-Si系アルミニウム合金押出材およびその製造方法(以下、アルミニウムを単にAlとも言う)に関する。なお、本発明で言うアルミニウム合金押出材とは、熱間押出された押出材のことを言うが、後述する自動車車体補強材(エネルギー吸収部材)として組み付けられた後の部材も含む。以下、Al-Mg-Si系を6000系とも言う。   The present invention relates to an Al—Mg—Si-based aluminum alloy extruded material excellent in bending crushability and a method for producing the same (hereinafter, aluminum is also simply referred to as Al). In addition, although the aluminum alloy extruded material said by this invention means the extruded material hot-extruded, the member after assembled | attached as a vehicle body reinforcing material (energy absorption member) mentioned later is also included. Hereinafter, the Al—Mg—Si system is also referred to as 6000 system.

自動車車体には、周知の通り、多くの車体補強材(エネルギー吸収部材)が設けられている。例えば、自動車の車体の前端(フロント)および後端(リア)に取り付けられているバンパの内部には、周知の通り、強度補強材としてのバンパ補強材(バンパリインフォースメント、バンパアマチャアとも言う)が設けられている。このバンパ補強材は断面形状が略矩形であり、周知の通り、バンパと車体との間に、車体に対し略水平方向で車幅方向に対し平行に延在するように配置される。そして、バンパとその後方のステイまたはクラッシュボックスで、車体の衝突に対するエネルギー吸収部材を構成する。   As is well known, many body reinforcement members (energy absorbing members) are provided in the automobile body. For example, as is well known, a bumper reinforcing material (also called a bumper reinforcement or a bumper armchair) is used as a strength reinforcing material inside a bumper attached to the front end (front) and rear end (rear) of a vehicle body. Is provided. The bumper reinforcing member has a substantially rectangular cross-sectional shape, and as is well known, is disposed between the bumper and the vehicle body so as to extend in a substantially horizontal direction with respect to the vehicle body and parallel to the vehicle width direction. The bumper and the stay or the crash box behind the bumper constitute an energy absorbing member against the collision of the vehicle body.

このバンパ補強材の支持構造は、衝突面に対する背面から、断面形状が略矩形の中空構造のバンパステイなどの支持部材を介して、車体長さ方向に延在するフロントサイドメンバやリヤサイドメンバ等の車体フレームに連結、固定される。このような支持構造によって、バンパ補強材は、車体の衝突に対して、横方向に(断面方向、幅方向に)圧壊変形(横圧壊)して衝突エネルギーを吸収し、車体を保護する。即ち、バンパ補強材は、車体衝突時の大荷重付加時に、損壊、飛散などせずに、加わった衝突エネルギーを、自らの長手方向の曲げ変形や、断面のつぶれ変形(横圧壊)により、荷重エネルギーを吸収する性能が求められる。   The support structure for the bumper reinforcing material is such that a front side member or a rear side member such as a front side member or a rear side member that extends in the vehicle body length direction from a rear surface with respect to the collision surface via a support member such as a hollow structure having a substantially rectangular cross section. Connected and fixed to the frame. With such a support structure, the bumper reinforcing member absorbs collision energy by crushing and deforming (lateral crushing) in the lateral direction (cross-sectional direction and width direction) against the collision of the vehicle body, and protects the vehicle body. In other words, the bumper reinforcement does not cause damage or scattering when a heavy load is applied during a vehicle collision, and the applied collision energy is loaded by bending deformation in the longitudinal direction or crushing deformation of the cross section (lateral crushing). The ability to absorb energy is required.

このような機能や支持構造は、ドアーガードバー(ドアビーム、ドア補強材)など、他の自動車車体補強材でも基本的には同じである。このドアーガードバーは、車体側方から衝突された場合に、ドアの車室内への陥入を防止して乗員を保護するために、ドアの内部に設けられて、車体側方からの衝突に対し、横方向に(幅方向に)断面が圧壊変形(横圧壊)して衝突エネルギーを吸収する。   Such functions and support structures are basically the same for other automobile body reinforcements such as door guard bars (door beams, door reinforcements). This door guard bar is provided inside the door to protect the occupant by preventing the door from entering the passenger compartment when it is collided from the side of the vehicle body. In the lateral direction (in the width direction), the cross section undergoes crushing deformation (lateral crushing) to absorb the collision energy.

近年、これら補強材には、軽量化のために、従来使用されていた鋼材に代わって、6000系、7000系等の高強度アルミニウム合金押出材(長手方向に同一断面形状を有する押出形材、以下では押出形材とも言う)が使用されている。アルミニウム合金は、鋼などに比して、同じ補強材重量の場合には、前記したエネルギー吸収性能に優れる。また、長手方向に亙って同一の断面形状を有するアルミニウム合金押出材は、補強材としての強度や剛性に優れた略矩形の中空断面構造を、効率的に、かつ大量に製造することが可能である。このため、アルミニウム合金押出材は、車体用エネルギー吸収部材としての前記補強材に好適である。    In recent years, in order to reduce the weight of these reinforcing materials, instead of steel materials conventionally used, high-strength aluminum alloy extruded materials such as 6000 series and 7000 series (extruded profiles having the same cross-sectional shape in the longitudinal direction, Hereinafter, it is also referred to as an extruded profile). An aluminum alloy is superior in energy absorption performance in the case of the same weight of reinforcing material as compared with steel or the like. In addition, the aluminum alloy extruded material having the same cross-sectional shape in the longitudinal direction can efficiently and in large quantities produce a substantially rectangular hollow cross-sectional structure with excellent strength and rigidity as a reinforcing material. It is. For this reason, an aluminum alloy extruded material is suitable for the reinforcing material as an energy absorbing member for a vehicle body.

ここで、前記した高強度アルミニウム合金の内、6000系アルミニウム合金を前記補強材として用いると、他のアルミニウム合金に比して色々な利点がある。6000系アルミニウム合金は、基本的には、Si、Mgのみを必須として含み、優れた時効硬化能を有している。このため、曲げ加工などの成形時には、低耐力化により成形性を確保するとともに、成形後の塗装焼付処理などの、比較的低温の人工時効( 硬化) 処理時の加熱により時効硬化して耐力が向上し、必要な強度を確保できるBH性 (ベークハード性、人工時効硬化能、塗装焼付硬化性) がある。   Here, among the high-strength aluminum alloys described above, when a 6000 series aluminum alloy is used as the reinforcing material, there are various advantages over other aluminum alloys. The 6000 series aluminum alloy basically includes only Si and Mg, and has excellent age hardening ability. For this reason, at the time of molding such as bending, the moldability is ensured by reducing the yield strength, and the strength is increased by age hardening by heating at a relatively low temperature artificial aging (curing) treatment such as paint baking after molding. BH properties (bake hardness, artificial age hardening, paint bake hardenability) that can improve and secure the required strength.

また、6000系アルミニウム合金は、Mg、Znなどの合金量が多い7000系アルミニウム合金などに比して、合金元素量が比較的少ない。このため、これら6000系アルミニウム合金のスクラップを、アルミニウム合金溶解材 (溶解原料) として再利用する際に、元の6000系アルミニウム合金鋳塊が得やすく、リサイクル性にも優れている。更に、フード、フェンダー、ドア、ルーフ、トランクリッドなどの自動車車体パネルには、前記した特性から6000系アルミニウム合金板が使用されることが多い。このため、自動車車体を解体してリサイクルする際には、本発明が対象とする補強材も、これら車体パネルと同種の6000系アルミニウム合金であれば、異種合金が混入するよりも、前記溶解原料として、選別、リサイクルがしやすい。   Further, the 6000 series aluminum alloy has a relatively small amount of alloy elements as compared to a 7000 series aluminum alloy having a large amount of alloy such as Mg and Zn. For this reason, when the scraps of these 6000 series aluminum alloys are reused as the aluminum alloy melting material (melting raw material), the original 6000 series aluminum alloy ingot is easily obtained and the recyclability is excellent. Furthermore, 6000 series aluminum alloy plates are often used for automobile body panels such as hoods, fenders, doors, roofs, trunk lids and the like because of the aforementioned characteristics. For this reason, when disassembling and recycling an automobile body, if the reinforcing material targeted by the present invention is also a 6000 series aluminum alloy of the same type as these body panels, the melting raw material can be used rather than a foreign alloy mixed therein. It is easy to sort and recycle.

このような6000系アルミニウム合金押出材を前記補強材として用いるために、従来から、補強材としての横圧壊性の向上や、補強材への曲げ加工性を改善するため、種々の提案がなされてきた。   In order to use such a 6000 series aluminum alloy extruded material as the reinforcing material, various proposals have been conventionally made in order to improve the lateral crushability as the reinforcing material and to improve the bending workability to the reinforcing material. It was.

例えば、特許文献1では、6063などの6000系アルミニウム合金ビレットを均質化処理し、これを押出加工し、冷却後、時効処理を施してアルミニウム合金押出材を製造するにあたって、その機械的特性に関し0.2%耐力が120〜140MPa、伸びが12%以上となるように時効処理条件を設定することが提案されている。この方法では、曲げ加工に最適な0.2%耐力及び伸びを有し、曲げ加工精度や耐力値のバラツキが小さく、押し通しなどの曲げ加工においても座屈を生じないアルミニウム押出材を得ようとしている。   For example, in Patent Document 1, a 6000 series aluminum alloy billet such as 6063 is homogenized, extruded, cooled, and subjected to aging treatment to produce an aluminum alloy extruded material. It has been proposed to set aging treatment conditions so that the 2% proof stress is 120 to 140 MPa and the elongation is 12% or more. In this method, it is intended to obtain an aluminum extruded material having 0.2% proof stress and elongation optimum for bending processing, small variation in bending processing accuracy and proof stress value, and no buckling even in bending processing such as push-through. Yes.

また、特許文献2では、6000系アルミニウム合金押出材の組織を等軸粒組織とすることで曲げ加工性を向上させることが提案されている。同特許文献では、等軸粒組織とするために、MgとSiとの含有量が化学量論的に当量であり、繊維状組織を促進するMn、Cr、Zrなどの遷移元素を実施例レベルでは合計量で0.1%以下と規制し、500℃以上の押出温度で押出して、押出直後に水焼入れ(強制冷却)を行って製造している。これによって、平均結晶粒径が100μm以下で、かつ結晶粒のアスペクト比(結晶粒の押出方向の長さと厚さ方向の長さの比)が2以下である等軸粒組織としている。   Patent Document 2 proposes to improve the bending workability by making the structure of the extruded material of 6000 series aluminum alloy an equiaxed grain structure. In this patent document, in order to obtain an equiaxed grain structure, the contents of Mg and Si are stoichiometrically equivalent, and transition elements such as Mn, Cr, Zr, etc. that promote the fibrous structure are used as the example level. The total amount is regulated to 0.1% or less, extruded at an extrusion temperature of 500 ° C. or higher, and subjected to water quenching (forced cooling) immediately after the extrusion. Thus, an equiaxed grain structure having an average crystal grain size of 100 μm or less and an aspect ratio of the crystal grains (ratio between the length of the crystal grains in the extrusion direction and the length in the thickness direction) of 2 or less is obtained.

一方、特許文献3では、逆に、その組織を上記等軸粒組織ではなく、押出方向に長く伸長した繊維状結晶粒組織(繊維状組織)として、中空押出形材の曲げ加工性を向上させることが提案されている。この特許文献3では、Mn、Cr、Zrなどの遷移元素を実施例レベルでは合計量で0.45〜0.53%と比較的多量に含ませ、500℃以上の押出温度で押出して、押出直後に水焼入れ槽に浸漬する水焼入れ(強制冷却)を行って製造している。これにより実施例において294MPa以下の0.25耐力が得られている。   On the other hand, in Patent Document 3, conversely, the structure is not the equiaxed grain structure but a fibrous crystal grain structure (fibrous structure) elongated in the extrusion direction to improve the bending workability of the hollow extruded shape. It has been proposed. In this Patent Document 3, transition elements such as Mn, Cr, Zr and the like are included in a relatively large amount of 0.45 to 0.53% in a total amount at an example level, extruded at an extrusion temperature of 500 ° C. or higher, and extruded. Immediately after that, it is manufactured by water quenching (forced cooling) immersed in a water quenching tank. Thereby, in the Example, 0.25 proof stress of 294 MPa or less is obtained.

これに対して、サイドメンバやバンパステイなどの押出材の軸 (長手) 方向の圧壊特性(縦圧壊) が要求されるエネルギ吸収部材として、オイラー座屈(くの字状の折れ曲がり)を防止して、蛇腹状の変形形態として優れたものとするために、その組織を上記繊維状組織とすることも知られている (特許文献4,5参照) 。特許文献4では、化学量論的に平衡なMgとSiとからなる6000系アルミニウム合金押出材の組織を上記繊維状組織としている。MgとSiとが化学量論的に平衡であるために、再結晶組織となりやすい押出材を、同特許文献では、Mn、Cr、Zrなどの遷移元素を実施例レベルでは合計量で0.5%と比較的多量に含ませ、500℃以上の押出温度で押出して、押出直後に水焼入れを行って繊維状組織として製造している。   On the other hand, as an energy absorbing member that requires crushing characteristics (vertical crushing) in the axial (longitudinal) direction of extruded materials such as side members and bumper stays, it prevents Euler buckling (bending in a U-shape). It is also known that the tissue is the above fibrous structure in order to be excellent as a bellows-like deformation form (see Patent Documents 4 and 5). In Patent Document 4, the structure of a 6000 series aluminum alloy extruded material composed of stoichiometrically balanced Mg and Si is defined as the fibrous structure. Since Mg and Si are stoichiometrically balanced, an extruded material that tends to have a recrystallized structure is used. In this patent document, transition elements such as Mn, Cr, and Zr are added at a total amount of 0.5 at an example level. %, And is extruded at an extrusion temperature of 500 ° C. or higher, and water-quenched immediately after extrusion to produce a fibrous structure.

特許文献5では、押出材の組成を過剰Si型とし、かつ、Mn、Cr、Zrなどの遷移元素を実施例レベルでは合計量で0.25〜0.48%と比較的多量に含む6000系アルミニウム合金組成としている。そして、同特許文献では、押出を500℃の押出温度で行い、表面の再結晶層(GG層)の厚みと結晶粒径とを規制した繊維状組織としている。そして、押出材を、縦圧壊だけでなく、横圧壊にも優れたものとしている。   In Patent Document 5, the composition of the extruded material is an excess Si type, and transition elements such as Mn, Cr, Zr and the like are included in a comparatively large amount of 0.25 to 0.48% in a total amount at an example level. The aluminum alloy composition. And in the said patent document, extrusion is performed at the extrusion temperature of 500 degreeC, and it is set as the fibrous structure which controlled the thickness and crystal grain size of the surface recrystallized layer (GG layer). The extruded material is excellent not only in vertical crushing but also in lateral crushing.

特開2001−316788号公報JP 2001-316788 A 特開2002−241880号公報JP 2002-241880 A 特開平5−171328号公報JP-A-5-171328 特開平9−256096号公報Japanese Patent Laid-Open No. 9-256096 特開2003−183757号公報JP 2003-183757 A

実際に、6000系アルミニウム合金押出材が、バンパ補強材やドアーガードバーなどの車体補強材として使用された場合には、略水平方向からの衝突荷重が、補強材の衝突部に、より局部的に集中して加わる衝突形態が多い。このような衝突形態では、例え、特許文献3〜5のような繊維状組織であっても、また、特許文献2のような等軸粒組織であっても、6000系アルミニウム合金押出材は、横圧壊性向上のために重要な、曲げ圧壊性が不足しやすいという問題が依然ある。   Actually, when a 6000 series aluminum alloy extruded material is used as a vehicle body reinforcing material such as a bumper reinforcing material or a door guard bar, the collision load from the substantially horizontal direction is more locally applied to the impacting material of the reinforcing material. Many types of collisions are concentrated. In such a collision mode, even if it is a fibrous structure as in Patent Documents 3 to 5, or an equiaxed grain structure as in Patent Document 2, the 6000 series aluminum alloy extruded material is There is still a problem that the bending crushability, which is important for improving the lateral crushability, tends to be insufficient.

このような衝突形態の典型としては、ポール衝突、オフセット衝突などが例示される。このような衝突形態の場合には、特に略水平方向からの衝突荷重が、補強材の局所に集中するために、バンパ補強材などの車体補強材が、衝突部(衝突荷重負荷部)より長手方向に折れ曲がり、車体に損傷を与えるような事態が生じやすい。
このように自動車の衝突条件が厳しくなった場合に対しては、6000系アルミニウム合金押出材の曲げ圧壊性をより高めることが必要である。しかし、前記した比較的強度が高い繊維状組織であっても、これに対応できる曲げ圧壊性向上には、大きな限界がある。これは、繊維状組織だけではなく、前記特許文献2のような等軸粒組織であっても、全く同様である。
Typical examples of such collision modes include pole collision and offset collision. In the case of such a collision mode, in particular, a collision load from a substantially horizontal direction is concentrated locally on the reinforcement material, so that the vehicle body reinforcement material such as a bumper reinforcement material is longer than the collision portion (collision load load portion). It tends to bend in the direction and damage the car body.
As described above, when the collision condition of the automobile becomes severe, it is necessary to further improve the bending crushability of the extruded material of the 6000 series aluminum alloy. However, even if the fibrous structure has a relatively high strength as described above, there is a great limitation in improving the bending crushability that can cope with this. This is exactly the same not only in the fibrous structure but also in the equiaxed grain structure as in Patent Document 2.

一方で、補強材の曲げ圧壊性を高めるには、素材強度だけではなく、押出材(補強材)の断面形状の工夫も有効である。しかし、衝突荷重の大きさによっては、断面形状が口形の矩形中空断面だけではなく、断面形状が日形、あるいは目形、田形等の中リブを設けてより補強したタイプの矩形中空断面からなるバンパ補強材においても、横圧壊性向上に重要な曲げ圧壊性が不足する可能性が大いにある。   On the other hand, in order to improve the bending crushability of the reinforcing material, not only the strength of the material but also the device of the cross-sectional shape of the extruded material (reinforcing material) is effective. However, depending on the magnitude of the impact load, the cross-sectional shape is not only a rectangular hollow cross section with a mouth shape, but also a rectangular hollow cross section of a type in which the cross-sectional shape is reinforced by providing a middle rib or a middle rib such as an eye shape or a square shape. There is also a great possibility that the bumper reinforcement lacks the bending crushability, which is important for improving the lateral crushability.

このため、実際にも、バンパ補強材やドアーガードバーなどの横圧壊する(横圧壊性が要求される)エネルギー吸収部材としては、6000系アルミニウム合金押出材よりも強度が高い、7000系アルミニウム合金押出材が未だ主流として使用されている。しかし、この7000系アルミニウム合金押出材は、合金成分が多いために、前記したリサイクルがしにくく、製造コストも高い。また6000系アルミニウム合金押出材よりも耐食性が劣る問題もある   For this reason, in fact, as an energy absorbing member for lateral crushing (a lateral crushing property is required) such as a bumper reinforcing material and a door guard bar, a 7000 series aluminum alloy extruded material having higher strength than a 6000 series aluminum alloy extruded material. The material is still used as mainstream. However, since this 7000 series aluminum alloy extruded material has many alloy components, it is difficult to recycle and the manufacturing cost is high. There is also a problem that the corrosion resistance is inferior to that of the extruded material of 6000 series aluminum alloy

本発明はこの様な事情に着目してなされたものであって、その目的は、自動車の衝突条件が厳しくなっても、自動車車体補強材(エネルギー吸収部材)として要求される、曲げ圧壊性と耐食性との両方に優れた6000系(Al−Mg−Si系)アルミニウム合金押出材およびその製造方法を提供しようとするものである。   The present invention has been made paying attention to such circumstances, and its purpose is to provide bending crushability required as an automobile body reinforcing material (energy absorbing member) even when the collision condition of the automobile becomes severe. An object of the present invention is to provide a 6000 series (Al-Mg-Si series) aluminum alloy extruded material excellent in both corrosion resistance and a method for producing the same.

この目的を達成するために、本発明の曲げ圧壊性と耐食性に優れたアルミニウム合金押出材の要旨は、肉厚が2〜7mmで略矩形中空断面を有し、押出方向と直角方向に荷重を受けて圧壊するエネルギー吸収部材に用いられるAl−Mg−Si系アルミニウム合金押出材であって、質量%で、Mg:0.60〜1.20%、Si:0.30〜0.95%、Fe:0.01〜0.40%、Mn:0.20〜0.45%、Cu:0.001〜0.65%、Ti:0.001〜0.10%、Zr:0.10〜0.20%を各々含み、MgとSiの含有量が、Mg(%)≦1.73×Si(%)+0.2、かつMg(%)≧1.73×Si(%)−0.2の関係を満たし、残部がAlおよび不可避的不純物からなり、0.2%耐力が270〜330MPaであり、この押出材の厚み方向断面における組織が主として繊維状組織であり、表層部の再結晶組織の厚さが片側500μm以下であることを特徴とする。   In order to achieve this object, the gist of the aluminum alloy extruded material excellent in bending crushability and corrosion resistance of the present invention has a thickness of 2 to 7 mm, a substantially rectangular hollow cross section, and a load perpendicular to the extrusion direction. It is an Al—Mg—Si-based aluminum alloy extruded material used for an energy absorbing member that receives and crushes, and in mass%, Mg: 0.60 to 1.20%, Si: 0.30 to 0.95%, Fe: 0.01-0.40%, Mn: 0.20-0.45%, Cu: 0.001-0.65%, Ti: 0.001-0.10%, Zr: 0.10 Each containing 0.20%, and the contents of Mg and Si are Mg (%) ≦ 1.73 × Si (%) + 0.2 and Mg (%) ≧ 1.73 × Si (%) − 0. 2 with the balance being Al and inevitable impurities, 0.2% proof stress is 270-330MP a, the structure in the cross section in the thickness direction of the extruded material is mainly a fibrous structure, and the thickness of the recrystallized structure of the surface layer portion is 500 μm or less on one side.

上記組成及び組織形態をとることにより、本発明に係るアルミニウム合金押出材では、前記曲げ圧壊性として、JIS Z2248に規定された押し曲げ法による、板状採取試験片の曲げ線が押出方向となる180°曲げ試験にて、割れが発生しない限界曲げRが3.0mm以下の性能が得られる。また、前記耐食性として、ISO/DIS11846B法に規定された交互浸漬法による腐食試験にて粒界腐食が発生しない性能が得られる。前記アルミニウム合金押出材は、押出方向と直角方向に荷重を受けて圧壊するエネルギー吸収部材に用いられることが好ましい。   By adopting the above composition and structure, in the aluminum alloy extruded material according to the present invention, the bending line of the plate-like specimen obtained by the push bending method defined in JIS Z2248 is the extrusion direction as the bending crushability. In the 180 ° bending test, performance with a limit bend R of 3.0 mm or less at which cracks do not occur is obtained. Further, as the corrosion resistance, a performance in which intergranular corrosion does not occur in a corrosion test by an alternating immersion method defined in the ISO / DIS11846B method can be obtained. The aluminum alloy extruded material is preferably used for an energy absorbing member that receives a load in a direction perpendicular to the extrusion direction and collapses.

上記アルミニウム合金押出材は、上記組成を有するAl-Mg-Si系アルミニウム合金鋳造ビレットを、560℃以上の温度で均質化熱処理後に、100℃/hr以上の平均冷却速度で400℃以下の温度まで強制冷却し、更に、押出出口側の押出材温度が500℃以上の溶体化温度域になるように、前記鋳造ビレットを再加熱して5〜10m/分の押出速度で熱間押出を行い、この押出出口側の押出材を押出加工直後から16秒以内に100℃/秒以上の平均冷却速度で強制冷却し、その後、この押出材を更に時効処理して、0.2%耐力を270〜330MPaとすることにより製造できる。   The aluminum alloy extruded material is obtained by homogenizing heat treatment of an Al—Mg—Si-based aluminum alloy cast billet having the above composition at a temperature of 560 ° C. or higher and a temperature of 400 ° C. or lower at an average cooling rate of 100 ° C./hr or higher. Forcibly cooled, and further, the cast billet is reheated so that the temperature of the extruded material on the extrusion outlet side is in a solution temperature range of 500 ° C. or higher, and hot extrusion is performed at an extrusion speed of 5 to 10 m / min. The extruded material on the extrusion outlet side was forcibly cooled at an average cooling rate of 100 ° C./second or more within 16 seconds immediately after the extrusion process, and then this extruded material was further aged to give a 0.2% yield strength of 270 to 270. It can manufacture by setting it as 330 MPa.

本発明に係る6000系アルミニウム合金押出材は、高強度で、曲げ圧壊性に優れ、7000系アルミニウム合金押出材と同等に、バンパ補強材やドアーガードバーなどの横方向に荷重を受けて圧壊するエネルギー吸収部材に好適に用いることができる。また、耐食性は7000系アルミニウム合金押出材より優れる。   The 6000 series aluminum alloy extruded material according to the present invention has high strength and excellent bending crushability, and is the same energy as the 7000 series aluminum alloy extruded material. It can use suitably for an absorption member. Moreover, corrosion resistance is superior to 7000 series aluminum alloy extruded material.

試験No.5の押出方向に平行な断面の光学顕微鏡写真である。Test No. 5 is an optical micrograph of a cross section parallel to the extrusion direction of No. 5;

以下、本発明に係る6000系アルミニウム合金押出材の実施態様につき具体的に説明する。
(繊維状組織と表層部再結晶組織)
本発明で、Al−Mg−Si系アルミニウム合金押出材の組織を主として繊維状組織とし、表層部に生成する再結晶組織の層の厚さを片側500μm以下に限定するのは、高い0.2%耐力と優れた曲げ圧壊性を得るためである。本発明において主として繊維状組織とは、板厚の50%以上が繊維状組織であることを意味する。
(0.2%耐力)
本発明で、Al−Mg−Si系アルミニウム合金押出材の0.2%耐力を270〜330MPaの範囲に限定するのは、7000系アルミニウム合金押出材と同等の0.2%耐力と優れた曲げ圧壊性を同時に実現するためである。また、本発明の組成で、時効処理後の0.2%耐力が270MPa未満又は330MPa超の場合、曲げ圧壊性が低下する。
Hereinafter, embodiments of the extruded material of 6000 series aluminum alloy according to the present invention will be specifically described.
(Fibrous structure and surface recrystallized structure)
In the present invention, the structure of the Al—Mg—Si-based aluminum alloy extruded material is mainly a fibrous structure, and the thickness of the recrystallized structure layer formed on the surface layer is limited to 500 μm or less on one side. This is to obtain% yield strength and excellent bending crushability. In the present invention, the fibrous structure mainly means that 50% or more of the plate thickness is a fibrous structure.
(0.2% yield strength)
In the present invention, the 0.2% proof stress of the Al-Mg-Si-based aluminum alloy extruded material is limited to the range of 270 to 330 MPa. The 0.2% proof stress equivalent to that of the 7000-based aluminum alloy extruded material and excellent bending This is to achieve crushability at the same time. Further, when the 0.2% proof stress after aging treatment is less than 270 MPa or more than 330 MPa with the composition of the present invention, the bending crushability is lowered.

(化学成分組成)
本発明が対象とする6000系アルミニウム合金の化学成分組成について説明する。本発明が対象とする6000系アルミニウム合金は、前記した自動車車体補強材用の押出材として、優れた曲げ圧壊性や耐食性などの諸特性が要求される。
(Chemical composition)
The chemical composition of the 6000 series aluminum alloy targeted by the present invention will be described. The 6000 series aluminum alloy targeted by the present invention is required to have excellent properties such as bending crushability and corrosion resistance as an extruded material for the above-mentioned automobile body reinforcement.

このような要求を満足するために、本発明が対象とする6000系アルミニウム合金押出材(あるいはその素材である鋳造ビレット)の組成は、質量%で、Mg:0.60〜1.20%、Si:0.30〜0.95%、Fe:0.01〜0.40%、Mn:0.20〜0.45%、Cu:0.001〜0.65%、Ti:0.001〜0.10%、Zr:0.10〜0.20%を各々含み、MgとSiの含有量が、Mg(%)≦1.73×Si(%)+0.2、かつMg(%)≧1.73×Si(%)−0.2の関係を満たし、残部がAlおよび不可避的不純物からなるAl−Mg−Si系アルミニウム合金とする。   In order to satisfy such a requirement, the composition of the extruded material of 6000 series aluminum alloy (or the cast billet which is the material) targeted by the present invention is mass%, Mg: 0.60 to 1.20%, Si: 0.30-0.95%, Fe: 0.01-0.40%, Mn: 0.20-0.45%, Cu: 0.001-0.65%, Ti: 0.001- 0.10%, Zr: 0.10 to 0.20%, respectively, and the contents of Mg and Si are Mg (%) ≦ 1.73 × Si (%) + 0.2 and Mg (%) ≧ An Al—Mg—Si based aluminum alloy satisfying the relationship of 1.73 × Si (%) − 0.2, the balance being Al and inevitable impurities is used.

これ以外のその他の元素は、基本的には不純物であり、AA乃至JIS規格などに沿った各不純物レベルの含有量 (許容量) とする。しかし、リサイクルの観点から、溶解材として、高純度Al地金だけではなく、6000系合金やその他のアルミニウム合金スクラップ材、低純度Al地金などを溶解原料として多量に使用した場合には、不純物元素が混入される可能性が高い。そして、これら不純物元素を例えば検出限界以下に低減すること自体コストアップとなり、ある程度の含有の許容が必要となる。したがって、その他の元素は、各々AA乃至JIS規格などに沿った許容量の範囲での含有を許容する。   Other elements other than these are basically impurities, and the content (allowable amount) of each impurity level is in accordance with AA to JIS standards. However, from the viewpoint of recycling, not only high-purity Al bullion but also 6000 series alloys and other aluminum alloy scrap materials, low-purity Al bullion, etc. are used as melting materials. There is a high possibility that elements will be mixed. Then, reducing these impurity elements to, for example, below the detection limit itself increases the cost, and a certain amount of allowance is required. Accordingly, the other elements are allowed to be contained within a permissible range in accordance with AA to JIS standards.

上記6000系アルミニウム合金における、各元素の好ましい含有範囲と意義、あるいは許容量について以下に説明する。
Si:
Mgとの前記量的関係を満足することを前提として、Si含有量は0.30〜0.95%の範囲とする。SiとMgのバランス合金とするための、Siの好ましい含有量範囲は0.30〜0.50%である。SiはMgとともに、固溶強化と、低温での人工時効処理時に、強度向上に寄与する時効析出物を結晶粒内に形成して、時効硬化能を発揮し、補強材として必要な270MPa以上の必要強度(耐力)を得るための必須の元素である。Si含有量が少なすぎると、人工時効処理時に前記化合物相を形成できず、前記時効硬化能や必要強度を満たすことができない。一方、Si含有量が多すぎると、前記したバランス合金とすることができない。また、曲げ加工性なども低下し、更に、溶接性も阻害される。
The preferable content range and significance of each element in the 6000 series aluminum alloy, or the allowable amount will be described below.
Si:
On the premise that the quantitative relationship with Mg is satisfied, the Si content is set to a range of 0.30 to 0.95%. A preferable content range of Si for obtaining a balanced alloy of Si and Mg is 0.30 to 0.50%. Si, together with Mg, forms aging precipitates that contribute to strength improvement during solid solution strengthening and low-temperature artificial aging treatment in the crystal grains, exhibits age-hardening ability, and is required to be 270 MPa or more necessary as a reinforcing material. It is an essential element for obtaining the required strength (proof strength). When there is too little Si content, the said compound phase cannot be formed at the time of artificial aging treatment, and the said age-hardening ability and required intensity | strength cannot be satisfy | filled. On the other hand, when there is too much Si content, it cannot be set as the above-mentioned balance alloy. Moreover, bending workability etc. also fall and weldability is also inhibited.

Mg:
Siとの前記量的関係を満足することを前提として、Mg含有量は0.60〜1.20%の範囲とする。前記したバランス合金とするための、Mgの好ましい含有量範囲は0.60〜1.0%である。Mgは、固溶強化と、前記人工時効処理時に、Siとともに強度向上に寄与する時効析出物を結晶粒内に形成して、時効硬化能を発揮し、補強材として必要な270MPa以上の必要強度(耐力)を得るための必須の元素である。Mg含有量が少なすぎると、人工時効処理時に前記化合物相を形成できず、前記時効硬化能や必要強度を満たすことができない。時効硬化能を発揮できない。一方、Mg含有量が多すぎると、前記したバランス合金とすることができない。また、曲げ加工性も低下する。
Mg:
Assuming that the quantitative relationship with Si is satisfied, the Mg content is set to a range of 0.60 to 1.20%. A preferable content range of Mg for obtaining the above-described balance alloy is 0.60 to 1.0%. Mg forms an aging precipitate that contributes to strength improvement together with Si during solid solution strengthening and artificial aging treatment, exhibits age hardening ability, and has a required strength of 270 MPa or more necessary as a reinforcing material. It is an essential element for obtaining (yield strength). When there is too little Mg content, the said compound phase cannot be formed at the time of artificial aging treatment, and the said age-hardening ability and required intensity | strength cannot be satisfy | filled. Can not show age hardening ability. On the other hand, when there is too much Mg content, it cannot be set as the above-mentioned balance alloy. In addition, bending workability also decreases.

MgとSiのバランス
本発明では、MgとSiとの含有量が、Mg(%)≦1.73×Si(%)+0.2、かつMg(%)≧1.73×Si(%)−0.2の関係を満たすようにする。この関係規定は、本発明合金を、6000系アルミニウム合金の中でも、MgとSiとの含有量が互いに化学量論的にほぼ当量であるようなバランス合金とするためのものである。望ましくはMg(%)≦1.73×Si(%)+0.1、かつMg(%)≧1.73×Si(%)−0.1の関係を満たすようにする。
Mgの含有量が多すぎる過剰Mg型6000系アルミニウム合金押出材では、曲げ圧壊性が低下する。また、押出性が低下し、焼入れ感受性も高くなり、押出の生産性が低下するというデメリットもある。
Siの含有量が多すぎる過剰Si型6000系アルミニウム合金押出材では、Siに起因する粒界析出物が粗大化する。したがって、Siの含有量が上記関係を超えて多くなると、補強材としての押出材の、曲げ圧壊性や耐食性を向上させることができなくなる。
Balance of Mg and Si In the present invention, the content of Mg and Si is Mg (%) ≦ 1.73 × Si (%) + 0.2 and Mg (%) ≧ 1.73 × Si (%) −. The relationship of 0.2 is satisfied. This relation is intended to make the alloy of the present invention a balance alloy in which the contents of Mg and Si are substantially stoichiometrically equivalent among 6000 series aluminum alloys. Desirably, the relationship of Mg (%) ≦ 1.73 × Si (%) + 0.1 and Mg (%) ≧ 1.73 × Si (%) − 0.1 is satisfied.
In an excessive Mg-type 6000 series aluminum alloy extruded material having an excessive Mg content, the bending crushability is lowered. Further, there are demerits that extrudability is lowered, quenching sensitivity is increased, and extrusion productivity is lowered.
In the excessive Si-type 6000 series aluminum alloy extruded material having an excessive Si content, grain boundary precipitates due to Si are coarsened. Therefore, when the Si content exceeds the above relationship, the bending crushability and corrosion resistance of the extruded material as the reinforcing material cannot be improved.

Fe:
Feは、Mn、Zrなどと同じ働きをして、分散粒子 (分散相) を生成し、再結晶後の粒界移動を妨げ、結晶粒の粗大化を防止するとともに、結晶粒を微細化させる効果がある。また、Feは溶解原料としてのスクラップなどから一定量(実質量)が必然的に混入しやすい元素である。このため、Feの含有量は0.01〜0.40%の範囲とする。Feの含有量が少な過ぎると、これらの効果が無い。一方、Feの含有量が多過ぎると、Al-Fe-Si晶出物などの粗大な晶出物を生成しやすくなり、これらの晶出物は破壊靱性および疲労特性などを劣化させる。より望ましい範囲は0.1〜0.3%である。
Fe:
Fe has the same function as Mn, Zr, etc., generates dispersed particles (dispersed phase), prevents grain boundary movement after recrystallization, prevents coarsening of crystal grains, and refines crystal grains. effective. Fe is an element that inevitably tends to be mixed in a certain amount (substantial amount) from scrap as a melting raw material. For this reason, content of Fe is taken as 0.01 to 0.40% of range. If the Fe content is too small, these effects are not obtained. On the other hand, when the content of Fe is too large, coarse crystallized products such as Al-Fe-Si crystallized products are likely to be generated, and these crystallized products deteriorate the fracture toughness and fatigue characteristics. A more desirable range is 0.1 to 0.3%.

Mn:
押出材の組織を押出方向に伸長した繊維状組織とするために、Mnの含有量は0.20〜0.45%の範囲とする。Mnは、Zrと同じく遷移元素であり、結晶粒の粗大化を防止するために必要である。Mnは、均質化熱処理時およびその後の熱間押出加工時に、他の合金元素と選択的に結合したAl−Mn系などの金属間化合物からなる分散粒子 (分散相) を生成する。これらの分散粒子は、製造条件にもよるが、微細で高密度、均一に分散して、再結晶後の粒界移動を妨げる効果(ピン止め効果)があるため、結晶粒の粗大化を防止するとともに、結晶粒を微細化させる効果も高く、押出材の組織を繊維状組織化させる作用がある。Mnはマトリックスへの固溶による強度の増大も見込める。
Mnの含有量が少なすぎると、この効果が期待できず、表層部の再結晶層が厚く生成され、押出材の強度や靱性が低下する可能性がある。一方、Mnを過剰に含有すると強度が高くなりすぎ、補強材としての前記曲げ圧壊性や、押出材の曲げ加工性などを却って低下させる原因となる。
Mn:
In order to make the structure of the extruded material a fibrous structure elongated in the extrusion direction, the Mn content is set to a range of 0.20 to 0.45%. Mn is a transition element, like Zr, and is necessary to prevent coarsening of crystal grains. Mn generates dispersed particles (dispersed phase) composed of an intermetallic compound such as an Al—Mn system selectively bonded to other alloy elements during the homogenization heat treatment and the subsequent hot extrusion process. Depending on the manufacturing conditions, these dispersed particles are dispersed finely, densely and uniformly, and have the effect of preventing grain boundary movement after recrystallization (pinning effect), preventing coarsening of crystal grains. In addition, the effect of refining the crystal grains is high, and there is an action of making the structure of the extruded material into a fibrous structure. Mn is also expected to increase in strength due to solid solution in the matrix.
If the Mn content is too small, this effect cannot be expected, the surface recrystallized layer is formed thick, and the strength and toughness of the extruded material may be reduced. On the other hand, if Mn is contained excessively, the strength becomes too high, which causes a decrease in the bending crushability as a reinforcing material and the bending workability of the extruded material.

Cu:
Cuは固溶強化にて強度の向上に寄与する他、時効処理に際して、最終製品の時効硬化を著しく促進する効果も有する。したがって、0.001〜0.65%を含有させる。Cuの含有量が少な過ぎると、これらの効果が無い。一方、Cuの含有量が多過ぎると、押出材組織の応力腐食割れや粒界腐食の感受性を著しく高め、耐食性や耐久性を低下させる。したがって、Cuの含有量は前記範囲とする。より望ましい範囲は0.2〜0.5%である。
Cu:
Cu contributes to improvement of strength by solid solution strengthening, and also has an effect of significantly accelerating age hardening of the final product during aging treatment. Therefore, 0.001 to 0.65% is contained. If the Cu content is too small, these effects are not obtained. On the other hand, when there is too much content of Cu, the sensitivity of the stress corrosion cracking and intergranular corrosion of an extrusion material structure will be raised remarkably, and corrosion resistance and durability will be reduced. Therefore, the Cu content is within the above range. A more desirable range is 0.2 to 0.5%.

Ti:
Tiは、鋳塊の結晶粒を微細化し、押出材組織を微細な結晶粒とする効果がある。したがって、Tiは0.001〜0.10%の範囲で含有させる。また、Tiを含有させる際に混入しやすいBを含有する場合には、B:1〜300ppmの範囲とする。Tiの含有量が少な過ぎるとこの効果が発揮されない。しかし、Tiの含有量が多過ぎると、粗大な晶析出物を形成し、補強材としての前記曲げ圧壊性や耐食性などの要求特性や、押出材の曲げ加工性などを低下させる原因となる。したがってTiの含有量は前記範囲とする。
Ti:
Ti has the effect of refining the crystal grains of the ingot to make the extruded material structure fine crystal grains. Therefore, Ti is contained in the range of 0.001 to 0.10%. Moreover, when it contains B which is easy to mix when it contains Ti, it is set as the range of B: 1-300 ppm. If the Ti content is too small, this effect cannot be exhibited. However, when there is too much content of Ti, a coarse crystal precipitate will be formed and it will cause the required characteristics, such as the bending crushability and corrosion resistance as a reinforcing material, and the bending workability of an extrusion material to fall. Therefore, the Ti content is within the above range.

Zr:
Zrは、Mnと同じく、Al-Zr系などの金属間化合物からなる分散粒子 (分散相) を生成して、結晶粒の粗大化を防止するために有効(ピン止め効果)である。また、Zrを添加すると、Mnと同じく、押出材の組織が押出方向に伸長した繊維状組織となりやすくなる。したがって、Zrは0.10〜0.20%の範囲で含有させる。
Zr:
Zr, like Mn, is effective (pinning effect) for generating dispersed particles (dispersed phase) made of an intermetallic compound such as an Al—Zr system and preventing coarsening of crystal grains. In addition, when Zr is added, the structure of the extruded material tends to be a fibrous structure elongated in the extrusion direction, like Mn. Therefore, Zr is contained in the range of 0.10 to 0.20%.

(押出材断面形状)
Al−Mg−Si系アルミニウム合金押出材が軽量化と補強材としての曲げ圧壊性とを兼備するためには、断面形状が略矩形中空形状であることが好ましく、その代表的な(基本的な)形状は、断面形状が略口形の矩形中空断面であり、口形を構成する両フランジ(前壁、後壁)と両ウエブ(両フランジをつなぐ上下側壁)とからなる。この口形中空断面の基本形に対して、曲げ圧壊性を高めるに、更に中リブを設けて補強した、断面形状が日形(上下側壁と平行な1本の中リブを断面内の中央部に設ける)、あるいは目形(上下側壁と平行な2本の中リブを断面内に間隔を開けて設ける)、田形(十字の中リブを断面内に設ける)等の矩形中空断面としても良い。
(Extruded material cross-sectional shape)
In order for the Al—Mg—Si-based aluminum alloy extruded material to have both a light weight and a bending crushability as a reinforcing material, the cross-sectional shape is preferably a substantially rectangular hollow shape. ) The shape is a rectangular hollow cross section having a substantially mouth shape, and includes both flanges (front wall and rear wall) and both webs (upper and lower side walls connecting both flanges) constituting the mouth shape. To improve the bending crushability of the basic shape of this hollow hollow cross section, it is further reinforced by providing an intermediate rib. The cross-sectional shape is a Japanese shape (one intermediate rib parallel to the upper and lower side walls is provided in the center of the cross section. ), Or a rectangular hollow cross section such as an eye shape (two middle ribs parallel to the upper and lower side walls are provided in the cross section at intervals), and a square shape (a cross middle rib is provided in the cross section).

また、前記フランジ両端の長さをウエブ間の幅よりも長くして、左右方向(あるいは上下方向)に張り出した形状、あるいは、各々のフランジとウエブを、直線状の他に、外方に膨らむか、内方に凹む円弧状としても良い。また、押出材(補強材)の長手方向に渡る断面形状は、必ずしも同一でなくとも部分的あるいは順次断面形状が変化するような中空形状が、補強材の設計側から自由に選択できる。   Further, the length of both ends of the flange is made longer than the width between the webs, and the flanges and webs bulge outward in addition to the straight shape, or the flanges and webs bulge outward. Or it is good also as circular arc shape dented inward. In addition, the cross-sectional shape of the extruded material (reinforcing material) in the longitudinal direction is not necessarily the same, but a hollow shape in which the cross-sectional shape changes partially or sequentially can be freely selected from the design side of the reinforcing material.

(押出材の肉厚)
押出材の肉厚は、上記した断面形状との関係で、自動車車体の補強材としての曲げ圧壊性を高めることができる肉厚が適宜選択される。ただ、本発明が対象とするのは、車体の衝突に対するエネルギーを吸収する補強材であり、補強材としての曲げ圧壊性を高めるためにも、前記した圧延薄板からなる車体パネルのように薄くはなく、厚みを厚くする必要がある。曲げ圧壊性を高めるためには、肉厚が厚い方が良いが、あまり厚くしても、重量が増加して、軽量化が図れない。この点、肉厚は2〜7mmの範囲から選択することが好ましい。この肉厚で板厚の50%以上が繊維状組織、再結晶組織の層の厚さが片側500μm以下であれば、高い0.2%耐力と優れた曲げ圧壊性が得られる。また、前記した各断面形状において、両フランジ、両ウエブ、中リブなどの肉厚を、全て同じとする必要はなく、フランジなど衝突する(荷重を受ける)側の壁を厚くし、その他を薄くするなどの工夫ができる。
(Wall thickness of extruded material)
As the thickness of the extruded material, a thickness capable of enhancing the bending crushability as a reinforcing material for the automobile body is appropriately selected in relation to the above-described cross-sectional shape. However, the object of the present invention is a reinforcing material that absorbs energy against the collision of the vehicle body, and in order to enhance the bending crushability as the reinforcing material, it is not as thin as a vehicle body panel made of the above-described rolled thin plate. However, it is necessary to increase the thickness. In order to improve the bending crushability, it is better that the wall thickness is thick, but even if it is too thick, the weight increases and the weight cannot be reduced. In this respect, the thickness is preferably selected from a range of 2 to 7 mm. If the thickness is 50% or more of the thickness and the thickness of the layer of the recrystallized structure is 500 μm or less on one side, a high 0.2% proof stress and excellent bending crushability can be obtained. Further, in each of the cross-sectional shapes described above, it is not necessary that the thicknesses of both flanges, both webs, and intermediate ribs are all the same, the flanges and other impacting (loading) side walls are thickened, and the others are thinned. You can devise such as doing.

(製造方法)
次ぎに、本発明に係る6000系アルミニウム合金押出材の製造方法について以下に説明する。本発明押出材は、熱間押出後に、焼入れ処理、及び人工時効硬化処理などの適宜の調質が施された押出材を言う。
(Production method)
Next, a method for producing a 6000 series aluminum alloy extruded material according to the present invention will be described below. The extruded material of the present invention refers to an extruded material that has been subjected to appropriate tempering such as quenching and artificial age hardening after hot extrusion.

本発明押出材の製造工程は、先ず、上記6000系成分組成のアルミニウム合金鋳塊をビレットに鋳造する。次いで、ビレットを均質化熱処理後、一旦、下記室温近傍の温度まで冷却する。そして、溶体化処理温度まで再加熱して熱間押出し、押出直後から室温近傍温度まで水冷によるオンラインにて強制冷却して、上記した所定の断面形状の押出材とする。この押出材は、これら一連の熱間押出工程によって、溶体化および焼入れ処理も行われたこととなる。その後、切断、矯正処理後に、押出材は、人工時効硬化処理が施される。なお、この人工時効硬化処理は、押出材の段階で予め行わず、自動車の補強材として自動車車体に組み付け後に、自動車車体塗装後の塗料の焼き付け硬化処理によって行っても良い。   In the production process of the extruded material of the present invention, first, an aluminum alloy ingot having the above-mentioned 6000 series component composition is cast into a billet. Next, after the billet is homogenized and heat-treated, the billet is once cooled to a temperature in the vicinity of the following room temperature. And it reheats to solution treatment temperature, it extrudes hot, and it forcibly cools on-line by water cooling from just after extrusion to the temperature near room temperature, It is set as the extruded material of the above-mentioned predetermined cross-sectional shape. This extruded material was also subjected to a solution treatment and a quenching process through a series of hot extrusion processes. Thereafter, after cutting and straightening treatment, the extruded material is subjected to artificial age hardening treatment. In addition, this artificial age hardening treatment may not be performed in advance at the stage of the extruded material, but may be performed by baking and curing the paint after painting the automobile body after assembling to the automobile body as an automobile reinforcing material.

溶解、鋳造:
溶解、鋳造工程では、上記6000系成分組成範囲内に溶解調整されたアルミニウム合金溶湯を、連続鋳造法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。
Melting and casting:
In the melting and casting process, the molten aluminum alloy melt-adjusted within the above-mentioned 6000 series component composition range is cast by appropriately selecting a normal melting casting method such as a continuous casting method or a semi-continuous casting method (DC casting method). .

均質化熱処理:
次いで、前記鋳造されたアルミニウム合金鋳塊(ビレット)に均質化熱処理を施す。均質化熱処理の温度は500〜570℃の温度範囲から選択される。この均質化熱処理(均熱処理)は、組織の均質化、すなわち、鋳塊組織中の結晶粒内の偏析をなくし、合金元素や粗大な化合物を十分に固溶させることを目的とする。本合金を500〜570℃で均質化熱処理することにより、添加したMn,Zrの析出が良好な状態で得られ、押出加工時の再結晶を抑制し、押出材の組織が押出方向に伸長した繊維状組織となりやすくなり、高い曲げ圧壊性が得られる。均質化熱処理の温度が500℃より低温であれば、Mn,Zrの析出が不十分であり、上記のような効果が得られない。また、結晶粒内の偏析を十分に無くすことができず、これが破壊の起点として作用するために、曲げ圧壊性や機械的な性質、曲げ加工性などが低下する。一方、570℃より高温であればMn,Zrの析出物は粗大となり、上記のような効果がなくなる。
Homogenization heat treatment:
Next, the cast aluminum alloy ingot (billet) is subjected to a homogenization heat treatment. The temperature of the homogenization heat treatment is selected from a temperature range of 500 to 570 ° C. The purpose of this homogenization heat treatment (soaking) is to homogenize the structure, that is, to eliminate segregation in the crystal grains in the ingot structure and to sufficiently dissolve the alloy elements and coarse compounds. By subjecting this alloy to a homogenization heat treatment at 500 to 570 ° C., the precipitation of the added Mn and Zr was obtained in a good state, the recrystallization during extrusion was suppressed, and the structure of the extruded material was elongated in the extrusion direction. It becomes easy to become a fibrous structure, and high bending crushability is obtained. If the temperature of the homogenization heat treatment is lower than 500 ° C., the precipitation of Mn and Zr is insufficient and the above effects cannot be obtained. Further, segregation within the crystal grains cannot be sufficiently eliminated, and this acts as a starting point of fracture, so that the bending crushability, mechanical properties, bending workability, etc. are lowered. On the other hand, if the temperature is higher than 570 ° C., the precipitates of Mn and Zr become coarse and the above effects are lost.

この均熱処理後に、鋳造ビレットを、100℃/hr以上の平均冷却速度で、室温までを含む、400℃以下の温度まで、強制冷却する。この強制冷却の冷却速度は大きい(速い)方が好ましく、ファンか水冷かの強制冷却にて行う。均熱処理後の400℃以下の温度までの強制冷却を行えば、それ以降は、この温度で強制冷却を停止するか、この温度で強制冷却停止後は室温まで放冷するか、室温まで引き続き強制冷却するか、は自由に選択できる。なお、通常行われる放冷の場合には、均熱処理後の平均冷却速度は40℃/hr程度である。   After this soaking, the cast billet is forcibly cooled to a temperature of 400 ° C. or lower, including room temperature, at an average cooling rate of 100 ° C./hr or higher. The cooling rate of this forced cooling is preferably large (fast), and is performed by forced cooling using a fan or water cooling. If forced cooling to a temperature of 400 ° C. or lower after soaking is performed, thereafter, forced cooling is stopped at this temperature, or after the forced cooling is stopped at this temperature, it is allowed to cool to room temperature, or it is continuously forced to room temperature. The cooling can be freely selected. In the case of normal cooling, the average cooling rate after soaking is about 40 ° C./hr.

熱間押出:
次に、押出出口側の押出材温度が500℃以上の溶体化温度域になるように、前記鋳造ビレットを再加熱し、5〜10m/分の押出速度で熱間押出を行い、この押出出口側の押出材を押出加工直後から100℃/秒以上の平均冷却速度で強制冷却し、T5の調質処理材とするか、あるいは、その後の人工の時効処理と併せてT6(時効)あるいはT7(過時効)の調質処理材とする。このT5の調質処理においては、押出出口側の押出材の温度を500℃以上の溶体化温度域の温度として、オンライン(押出加工)にて溶体化処理され、引き続き、押出直後から16秒以内に押出材を室温近傍の温度まで、オンライン(押出機出口側)にて強制冷却する焼入れ処理を行う。
Hot extrusion:
Next, the cast billet is reheated so that the temperature of the extruded material on the extrusion outlet side becomes a solution temperature range of 500 ° C. or higher, and hot extrusion is performed at an extrusion speed of 5 to 10 m / min. The extruded material on the side is forcibly cooled at an average cooling rate of 100 ° C./second or more immediately after extrusion, and is used as a tempered material for T5, or T6 (aging) or T7 in combination with artificial aging treatment thereafter. Use an over-aged tempered material. In the tempering treatment of T5, the temperature of the extruded material on the extrusion outlet side is set to a temperature in the solution temperature range of 500 ° C. or more, and the solution treatment is performed online (extrusion process), and then within 16 seconds immediately after the extrusion. A quenching process is performed in which the extruded material is forcibly cooled on-line (extruder exit side) to a temperature close to room temperature.

熱間押出時の温度は、低温の方がビレットの加熱が短時間で済む利点がある。しかし、押出出口側の押出材の温度が、溶体化温度域より低い500℃未満となった場合には、粗大なMgとSiとの化合物(晶析出物)がマトリックス中に溶けずに残留して、破壊の起点となり、曲げ圧壊性を低下させる。したがって、これらの兼ね合いから、押出出口側の押出材の温度は500℃以上の溶体化温度域としつつも、この中で、より低い温度を選択することが好ましい。この際、鋳造ビレットの再加熱温度を、必ずしも500℃以上の溶体化温度域として押出加工せずとも良く、鋳造ビレットの再加熱温度を500℃未満としても、熱間押出時の加工発熱によって、押出出口側の押出材温度を500℃以上の溶体化温度域とすることができる。
なお、押出出口側の押出材の温度は、ダイス出口直後(出口からの距離0mm)における材料表面温度である。ダイス出口直後で測定することが困難な場合、ダイス出口からある距離(押出プレスによって温度測定ができる位置が異なる)において材料表面温度を接触式温度計で測定し、予め測定したおいた押出材の冷却曲線を用い、ダイス出口直後の温度を逆算して求めることができる。
The temperature at the time of hot extrusion has an advantage that the billet can be heated in a short time at a lower temperature. However, when the temperature of the extruded material on the extrusion outlet side is less than 500 ° C., which is lower than the solution temperature range, the coarse compound of Mg and Si (crystal precipitate) remains in the matrix without dissolving. Thus, it becomes a starting point of fracture and decreases the bending crushability. Therefore, it is preferable to select a lower temperature among these, while the temperature of the extruded material on the extrusion outlet side is set to a solution temperature range of 500 ° C. or higher in consideration of these factors. At this time, the reheating temperature of the cast billet does not necessarily need to be extruded as a solution temperature range of 500 ° C. or more, and even if the reheating temperature of the cast billet is less than 500 ° C., due to the processing heat generated during hot extrusion, The extrusion material temperature on the extrusion outlet side can be set to a solution temperature range of 500 ° C. or higher.
The temperature of the extruded material on the extrusion outlet side is the material surface temperature immediately after the die outlet (distance 0 mm from the outlet). If it is difficult to measure immediately after the die exit, the surface temperature of the material is measured with a contact thermometer at a certain distance from the die exit (the position where the temperature can be measured differs depending on the extrusion press). Using the cooling curve, the temperature immediately after the die exit can be calculated by back calculation.

また、押出直後の強制冷却は、押出機出口側のラインに、ミスト、水などのスプレイやシャワー、あるいは水槽、空冷ファンなどの強制冷却手段を設けたり、組み合わせて、オンラインにて行うことができる。これら強制冷却手段の場合の冷却速度は、設備の仕様にも勿論よるが、押出材を放冷する場合の5℃/秒以下の冷却速度レベルに比して、100℃/秒以上と速い。押出材をこの冷却速度で冷却することにより、MgSi析出粒子が粗大化するのを防止して、耐力及び曲げ圧壊性を向上させることができる。
この強制冷却は、押出材がダイス出口直後(出口からの距離0mm)の位置から、16秒以内に開始される。先に押出材断面形状及び押出材の肉厚に関して具体的に説明した略矩形中空断面で、肉厚が2〜7mmの中空押出材であれば、強制冷却開始までの自然冷却を考慮しても、押出後16秒以内に強制冷却を開始することにより、MgSi析出粒子の粗大化、及び耐力及び曲げ圧壊性の低下を防止することができる。
In addition, forced cooling immediately after extrusion can be performed on-line by combining or combining a spray or shower of mist, water, etc., or a water tank, an air cooling fan, or the like on the line on the exit side of the extruder. . The cooling rate in the case of these forced cooling means is of course as high as 100 ° C./second or more as compared with the cooling rate level of 5 ° C./second or less when the extruded material is allowed to cool, although it depends on the specifications of the equipment. By cooling the extruded material at this cooling rate, the Mg 2 Si precipitated particles can be prevented from becoming coarse, and the proof stress and the bending crushability can be improved.
This forced cooling is started within 16 seconds from the position where the extruded material is immediately after the die exit (distance 0 mm from the exit). If it is a hollow extruded material having a substantially rectangular hollow cross-section specifically described with respect to the cross-sectional shape of the extruded material and the thickness of the extruded material and has a thickness of 2 to 7 mm, natural cooling until the start of forced cooling can be considered. By starting forced cooling within 16 seconds after extrusion, it is possible to prevent coarsening of Mg 2 Si precipitated particles and a decrease in yield strength and bending crushability.

熱間押出の押出速度は5〜10m/分とされる。押出速度が5m/分以上であれば、一般的な押出機において、出口側に配置した前記強制冷却手段により、押出後16秒以内に強制冷却を開始することが可能である。しかし、押出速度が10m/分を超えると、中リブ等の形状が崩れ、断面形状の維持が困難になる。
このT5調質処理によって、押出工程後に、押出材を別途再加熱して溶体化および焼入れ処理を行う工程が省略できる。ただ、諸事情や都合により、このT5調質処理ではなく、熱間押出工程後に、押出材を別途500℃以上の溶体化温度域に再加熱して溶体化処理および焼入れ処理を行い、その後に人工時効処理を行うT6の調質処理材としても良い。
The extrusion speed of hot extrusion is set to 5 to 10 m / min. If the extrusion speed is 5 m / min or more, in a general extruder, forced cooling can be started within 16 seconds after extrusion by the forced cooling means arranged on the outlet side. However, when the extrusion speed exceeds 10 m / min, the shape of the middle ribs or the like collapses and it becomes difficult to maintain the cross-sectional shape.
By this T5 tempering treatment, it is possible to omit the step of performing resolution and quenching by separately reheating the extruded material after the extrusion step. However, due to various circumstances and circumstances, instead of this T5 tempering treatment, after the hot extrusion process, the extruded material is separately reheated to a solution temperature range of 500 ° C. or more, and solution treatment and quenching treatment are performed. It is good also as a tempering treatment material of T6 which performs artificial aging treatment.

時効処理:
押出材は、所定の長さに切断あるいは矯正処理後に、人工時効硬化処理が施される。この人工時効硬化処理は、好ましくは150〜250℃の温度範囲に必要時間保持する。この保持時間によって、押出材の時効硬化は調節され、強度を最大にするピーク時効とする時間や、これより長時間として耐食性を向上させる過時効とする時間から適宜選択される。
Aging treatment:
The extruded material is subjected to artificial age hardening after cutting or straightening to a predetermined length. This artificial age hardening treatment is preferably held in a temperature range of 150 to 250 ° C. for a necessary time. The age hardening of the extruded material is adjusted by this holding time, and is appropriately selected from the time for peak aging to maximize the strength and the time for overaging to improve the corrosion resistance for a longer time.

次に、本発明の実施例を説明する。表1に示す各成分組成で、断面日型の6000系アルミニウム合金押出材を、表2に示す条件で製造し、表3に示すように、押出材の組織を調査し、また特性(機械的特性、曲げ圧壊性)を調査した。   Next, examples of the present invention will be described. With each component composition shown in Table 1, a 6000 series aluminum alloy extruded material having a cross-sectional shape was manufactured under the conditions shown in Table 2, and as shown in Table 3, the structure of the extruded material was investigated and characteristics (mechanical) Characteristics, bending crushability) were investigated.

より具体的には、押出材の製造は、表1に示す各成分組成の各アルミニウム合金溶湯から、各々ビレットを鋳造した。このビレットを表2に示す各温度で均質化熱処理後、ファンによる強制空冷により、一旦、室温まで冷却した。その冷却速度は、表2に示すように120℃/hrであった。
この均質化熱処理後のビレットを再加熱して、直ちに表2に示す押出速度(m/分)と押出出口温度(℃)にて熱間押出した。そして、ダイス出口直後(出口からの距離0mm)の位置から所定時間経過後の位置において、オンラインで強制冷却を開始し、室温近傍温度まで冷却して、断面日型の押出材とした。水冷手段は表2に示すように水スプレイであり、その平均冷却速度は500℃/秒程度である。この押出材に対し表2に示す条件で人工時効硬化処理を施した。
More specifically, in the manufacture of the extruded material, billets were cast from the respective aluminum alloy melts having the respective component compositions shown in Table 1. The billet was subjected to homogenization heat treatment at each temperature shown in Table 2 and then cooled to room temperature by forced air cooling with a fan. The cooling rate was 120 ° C./hr as shown in Table 2.
The billet after this homogenization heat treatment was reheated and immediately hot extruded at the extrusion speed (m / min) and extrusion outlet temperature (° C.) shown in Table 2. Then, forced cooling was started online at a position immediately after the die exit (distance 0 mm from the exit) after a lapse of a predetermined time, and cooled to a temperature near room temperature to obtain an extruded material having a cross-section with a die shape. The water cooling means is a water spray as shown in Table 2, and the average cooling rate is about 500 ° C./second. This extruded material was subjected to artificial age hardening treatment under the conditions shown in Table 2.

断面日型の押出材の外寸形状は、バンパ補強材用の大きさとし、各例とも共通して、各フランジ(前面壁、後面壁)の各長さ40mm、厚さ2.3mm、各ウエブ(側壁)や中リブの長さ40mm、各厚さ2.0mm、切断後の長さは1300mmとした。   The outer shape of the extruded material of the cross-section of the mold is the size for the bumper reinforcement, and in common with each example, each flange (front wall, rear wall) is 40 mm long, 2.3 mm thick, each web The length of the (side wall) and the middle rib was 40 mm, each thickness was 2.0 mm, and the length after cutting was 1300 mm.

これら人工時効硬化処理後の押出材のウエブ(側壁)部分から供試材(板状試験片)を切り出し、供試材の組織や特性を測定、評価した。これらの結果を表3に示す。   A specimen (plate-shaped test piece) was cut out from the web (side wall) portion of the extruded material after the artificial age hardening treatment, and the structure and properties of the specimen were measured and evaluated. These results are shown in Table 3.

(供試材組織)
前記調質処理後15日間の室温放置後の供試材について、SEM(走査型電子顕微鏡)−EBSP(後方散乱電子回折像)を用いて、各供試材の結晶粒の平均アスペクト比を測定した。結晶粒の平均アスペクト比が5以下を再結晶組織、平均アスペクト比が5を超えるものを繊維状組織とし、表層部の再結晶組織の厚さ(両面の再結晶組織のうち厚い側)を求めた。表層部の再結晶組織以外は全て繊維状組織であった。図1に試験No.5の押出方向に平行な断面の光学顕微鏡写真を示す。
(Sample structure)
About the test material after standing at room temperature for 15 days after the tempering treatment, the average aspect ratio of crystal grains of each test material was measured using SEM (scanning electron microscope) -EBSP (backscattered electron diffraction image). did. Recrystallized structure with an average aspect ratio of 5 or less and a fibrous structure with an average aspect ratio exceeding 5 are obtained, and the thickness of the recrystallized structure of the surface layer (the thicker side of the recrystallized structures on both sides) is obtained. It was. Except for the recrystallized structure of the surface layer part, all had a fibrous structure. In FIG. An optical micrograph of a cross section parallel to the extrusion direction of 5 is shown.

(供試材特性)
前記調質処理後30日間の室温放置後の供試材の特性として、0.2%耐力(As耐力: MPa)、伸び(%)を各々測定した。また、曲げ圧壊性および耐食性を測定、評価した。これらの結果も表3に示す。
(Sample material properties)
As the characteristics of the test material after standing at room temperature for 30 days after the tempering treatment, 0.2% yield strength (As yield strength: MPa) and elongation (%) were measured, respectively. Also, bending crushability and corrosion resistance were measured and evaluated. These results are also shown in Table 3.

引張試験:
引張試験は、前記供試材からJISZ2201の5号試験片(25mm幅×50mm長さ×押出材厚み)を採取し、室温引張りを行った。このときの試験片の採取、引張方向を押出方向とした。引張り速度は、0.2%耐力までは5mm/分、耐力以降は20mm/分とした。測定N数は5として、各機械的性質は、これらの平均値とした。
Tensile test:
In the tensile test, a No. 5 test piece (25 mm width × 50 mm length × extruded material thickness) of JISZ2201 was sampled from the test material and subjected to room temperature tension. At this time, the specimen was collected and the tensile direction was taken as the extrusion direction. The tensile speed was 5 mm / min up to 0.2% proof stress and 20 mm / min after proof stress. The measured N number was 5, and each mechanical property was an average of these values.

曲げ圧壊性(曲げ加工性)試験:
前記供試材(板状試験片)を、JIS Z2248に規定された押し曲げ法により、曲げ線が押出方向となるように(押出方向と直角方向に)180°曲げ試験し、曲げコーナーの外側(引張側部位)に割れが発生しない限界曲げR(mm)を求めた。この限界曲げRが3.0mm以下であれば、曲げ圧壊性に優れ、自動車用の補強材として使用可能である。
Bending crushability (bending workability) test:
The specimen (plate-shaped test piece) was subjected to a 180 ° bending test (in a direction perpendicular to the extrusion direction) by the bending method specified in JIS Z2248 so that the bending line is in the extrusion direction, and the outside of the bending corner. The limit bend R (mm) at which no crack was generated at the (tensile side portion) was determined. If this limit bending R is 3.0 mm or less, it is excellent in bending crushability and can be used as a reinforcing material for automobiles.

耐食性試験:
前記供試材を、ISO/DIS11846B法に規定された浸漬法により腐食試験を行った。試験条件は、押出材を、NaClを30g/lの濃度およびHClを10ml/lの濃度で各々溶解させた水溶液に、室温で24時間浸漬した後の、押出材の断面観察を行って腐食形態を調査し、粒界腐食割れ発生の有無を判定した。そして、粒界腐食割れが発生している場合を×、粒界腐食割れではないが、粒界腐食が発生している場合を△、粒界腐食割れや粒界腐食が発生していない場合(表面的な全面腐食が発生している場合を含む)を○として評価した。
Corrosion resistance test:
The specimen was subjected to a corrosion test by an immersion method defined in the ISO / DIS11846B method. The test condition was that the extruded material was immersed in an aqueous solution in which NaCl was dissolved at a concentration of 30 g / l and HCl was dissolved at a concentration of 10 ml / l for 24 hours at room temperature. Were examined to determine whether intergranular corrosion cracking occurred. And when the intergranular corrosion cracking has occurred x, not the intergranular corrosion cracking, but when the intergranular corrosion has occurred Δ, when the intergranular corrosion cracking or intergranular corrosion has not occurred ( A case where superficial general corrosion occurred) was evaluated as ◯.

表1,2に示す通り、試験No.1〜7は、前記したMgとSiとの含有量の関係を含めて本発明成分組成範囲内で、かつ、本発明に規定する条件範囲で、均質化熱処理(均熱温度、強制冷却)、熱間押出(押出出口温度、押出速度、押出直後からの強制水冷)及び時効硬化処理を行なっている。このため、表3に示す通り、表層部の再結晶層が500μm以下で、主として繊維状組織を有する。この結果、試験No.1〜7は、強度(0.2%耐力270MPa以上)、伸びなど機械的特性に優れ、同時に曲げ圧壊性と耐食性に優れている。これらの性能は、押出材が、補強材として、ポール衝突、オフセット衝突などの自動車の衝突条件が厳しくなった場合にでも対応できる、曲げ圧壊性を有していることを示している。また補強材として要求される耐食性にも優れていることを示している。   As shown in Tables 1 and 2, test no. 1-7 are within the composition range of the present invention component including the relationship between the content of Mg and Si described above, and in the condition range defined in the present invention, homogenization heat treatment (soaking temperature, forced cooling), Hot extrusion (extrusion outlet temperature, extrusion speed, forced water cooling immediately after extrusion) and age hardening are performed. For this reason, as shown in Table 3, the recrystallized layer of the surface layer part is 500 μm or less and mainly has a fibrous structure. As a result, test no. Nos. 1 to 7 are excellent in mechanical properties such as strength (0.2% yield strength of 270 MPa or more) and elongation, and at the same time, excellent in bending crushability and corrosion resistance. These performances indicate that the extruded material has a bending crushing property that can cope even when the collision conditions of the automobile such as pole collision and offset collision become severe as a reinforcing material. Moreover, it has shown that it is excellent also in the corrosion resistance requested | required as a reinforcing material.

これに対して、試験No.8〜15は、表1の成分組成又は表2の製造条件が本発明の範囲を外れている。このため、耐力、曲げ圧壊性のいずれか又は両方が試験No.1〜7に比べて劣る。
試験No.8〜10は、表2の製造条件が本発明範囲内を外れている。試験No.8は、押出後の強制冷却開始までの時間が長すぎるため、析出物が粗大化して耐力が低く、また粗大な析出物が粒界にも密に析出し、曲げ圧壊性も劣る。試験No.9は、均熱処理温度が高すぎるため、Mn,Zrの析出物が粗大化して再結晶層の厚さが厚くなり、耐力が低く、曲げ圧壊性も劣る。試験No.10は、均熱処理温度が低すぎるため、Mn,Zrの析出不十分により再結晶層の厚さが厚くなり、耐力が低く、曲げ圧壊性も劣る。
In contrast, test no. As for 8-15, the component composition of Table 1 or the manufacturing conditions of Table 2 are outside the scope of the present invention. For this reason, either or both of the proof stress and the bending crushability are test numbers. It is inferior to 1-7.
Test No. As for 8-10, the manufacturing conditions of Table 2 are outside the scope of the present invention. Test No. In No. 8, since the time until the start of forced cooling after extrusion is too long, the precipitates are coarsened and the proof stress is low, and the coarse precipitates are also densely precipitated at the grain boundaries, resulting in poor bending crushability. Test No. In No. 9, since the soaking temperature is too high, the precipitates of Mn and Zr are coarsened, the thickness of the recrystallized layer is increased, the yield strength is low, and the bending crushability is also inferior. Test No. In No. 10, since the soaking temperature is too low, the recrystallization layer becomes thick due to insufficient precipitation of Mn and Zr, the yield strength is low, and the bending crushability is also inferior.

一方、試験No.11〜15は、合金No.6〜10の成分組成が本発明範囲内を外れている。試験No.11は、合金No.6のMn含有量が少ないため、再結晶層の厚さが厚くなり、耐力が低い。試験No.12は、合金No.7のMn含有量が多いため、強度が高くなりすぎ、曲げ圧壊性が劣る。試験No.13は、合金No.8のZr含有量が少ないため、再結晶層の厚さが厚くなり、耐力が低い。試験No.14は、合金No.9のZr含有量が多いため、強度が高くなりすぎ、曲げ圧壊性が劣る。試験No.15は、合金No.10のMg含有量が多く、Mg,SiバランスがMg過剰であるため、強度が高くなりすぎ、曲げ圧壊性が劣る。   On the other hand, test no. 11 to 15 are alloy nos. The component composition of 6-10 is outside the scope of the present invention. Test No. 11 is alloy no. Since the Mn content of 6 is small, the thickness of the recrystallized layer is increased and the yield strength is low. Test No. 12 is alloy no. Since there is much Mn content of 7, strength becomes high too much and bending crushability is inferior. Test No. 13 is alloy no. Since the Zr content of 8 is small, the thickness of the recrystallized layer is increased and the yield strength is low. Test No. 14 is an alloy no. Since there is much Zr content of 9, intensity | strength becomes high too much and bending crushability is inferior. Test No. 15 is an alloy no. Since the Mg content of 10 is large and the Mg and Si balance is excessive, the strength becomes too high and the bending crushability is poor.

Claims (2)

肉厚が2〜7mmで略矩形中空断面を有し、押出方向と直角方向に荷重を受けて圧壊するエネルギー吸収部材に用いられるAl−Mg−Si系アルミニウム合金押出材であって、質量%で、Mg:0.60〜1.20%、Si:0.30〜0.95%、Fe:0.01〜0.40%、Mn:0.20〜0.45%、Cu:0.001〜0.65%、Ti:0.001〜0.10%、Zr:0.10〜0.20%を各々含み、MgとSiの含有量が、Mg(%)≦1.73×Si(%)+0.2、かつMg(%)≧1.73×Si(%)−0.2の関係を満たし、残部がAlおよび不可避的不純物からなり、0.2%耐力が270〜330MPaであり、この押出材の厚み方向断面における組織が主として繊維状組織であり、表層部の再結晶組織の厚さが片側500μm以下であることを特徴とする曲げ圧壊性に優れたアルミニウム合金押出材。 An Al—Mg—Si-based aluminum alloy extruded material used for an energy absorbing member that has a thickness of 2 to 7 mm, has a substantially rectangular hollow cross section, and is crushed by receiving a load in a direction perpendicular to the extrusion direction, , Mg: 0.60 to 1.20%, Si: 0.30 to 0.95%, Fe: 0.01 to 0.40%, Mn: 0.20 to 0.45%, Cu: 0.001 -0.65%, Ti: 0.001-0.10%, Zr: 0.10-0.20%, respectively, and the content of Mg and Si is Mg (%) ≦ 1.73 × Si ( %) + 0.2 and Mg (%) ≧ 1.73 × Si (%) − 0.2, the balance is made of Al and inevitable impurities, and the 0.2% proof stress is 270 to 330 MPa. The structure in the cross section in the thickness direction of the extruded material is mainly a fibrous structure, and the recrystallized structure of the surface layer portion An aluminum alloy extruded material excellent in bending crushability, characterized by having a thickness of 500 μm or less on one side. 質量%で、Mg:0.60〜1.20%、Si:0.30〜0.95%、Fe:0.01〜0.40%、Mn:0.20〜0.45%、Cu:0.001〜0.65%、Ti:0.001〜0.10%、Zr:0.10〜0.20%を各々含み、MgとSiの含有量が、Mg(%)≦1.73×Si(%)+0.2、かつMg(%)≧1.73×Si(%)−0.2の関係を満たし、残部がAlおよび不可避的不純物からなるAl−Mg−Si系アルミニウム合金ビレットを、500〜570℃の温度で均質化熱処理後に、100℃/hr以上の平均冷却速度で400℃以下の温度まで強制冷却し、更に、押出出口側の押出材温度が500℃以上の溶体化温度域になるように、前記鋳造ビレットを再加熱して5〜10m/分の押出速度で熱間押出を行い、この押出出口側の押出材を押出加工直後から16秒以内に100℃/秒以上の平均冷却速度で強制冷却し、その後、押出材を更に時効処理して0.2%耐力を270〜330MPaとすることを特徴とする請求項1に記載された曲げ圧壊性に優れたアルミニウム合金押出材の製造方法。 In mass%, Mg: 0.60 to 1.20%, Si: 0.30 to 0.95%, Fe: 0.01 to 0.40%, Mn: 0.20 to 0.45%, Cu: 0.001 to 0.65%, Ti: 0.001 to 0.10%, Zr: 0.10 to 0.20%, respectively, and the content of Mg and Si is Mg (%) ≦ 1.73 Al-Mg-Si-based aluminum alloy billet satisfying the relationship of x Si (%) + 0.2 and Mg (%) ≥1.73 x Si (%)-0.2 with the balance being Al and inevitable impurities After the homogenization heat treatment at a temperature of 500 to 570 ° C., the solution is forcibly cooled to a temperature of 400 ° C. or less at an average cooling rate of 100 ° C./hr or more. The cast billet is reheated to a temperature range and hot pressed at an extrusion speed of 5 to 10 m / min. The extruded material on the extrusion outlet side was forcibly cooled at an average cooling rate of 100 ° C./second or more within 16 seconds immediately after the extrusion processing, and then the extruded material was further aged to obtain 0.2% yield strength. The method for producing an extruded aluminum alloy material having excellent bending crushability according to claim 1, wherein the pressure is 270 to 330 MPa.
JP2010078673A 2010-03-30 2010-03-30 Aluminum alloy extruded material with excellent bending crushability and corrosion resistance Expired - Fee Related JP5473718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010078673A JP5473718B2 (en) 2010-03-30 2010-03-30 Aluminum alloy extruded material with excellent bending crushability and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010078673A JP5473718B2 (en) 2010-03-30 2010-03-30 Aluminum alloy extruded material with excellent bending crushability and corrosion resistance

Publications (2)

Publication Number Publication Date
JP2011208251A true JP2011208251A (en) 2011-10-20
JP5473718B2 JP5473718B2 (en) 2014-04-16

Family

ID=44939603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010078673A Expired - Fee Related JP5473718B2 (en) 2010-03-30 2010-03-30 Aluminum alloy extruded material with excellent bending crushability and corrosion resistance

Country Status (1)

Country Link
JP (1) JP5473718B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013115227A1 (en) * 2012-01-31 2015-05-11 アイシン軽金属株式会社 High strength aluminum alloy extruded material excellent in corrosion resistance, ductility and hardenability and method for producing the same
EP2841611A4 (en) * 2012-04-25 2016-01-20 Norsk Hydro As Ai-mg-si aluminium alloy with improved properties
JP2019151918A (en) * 2018-03-05 2019-09-12 昭和電工株式会社 Al-Mg-Si-BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL AND MANUFACTURING METHOD THEREFOR
JPWO2021187626A1 (en) * 2021-03-31 2021-09-23
EP3631030B1 (en) 2017-05-26 2022-06-29 Novelis Inc. High-strength corrosion-resistant 6xxx series aluminum alloys and methods of making the same
CN115029591A (en) * 2022-05-11 2022-09-09 宁波信泰机械有限公司 6-series aluminum alloy section with good bending property and preparation method thereof
CN115807173A (en) * 2022-11-04 2023-03-17 上海友升铝业股份有限公司 Preparation method of aluminum alloy material for improving crushing and cracking grade of threshold beam
CN118036409A (en) * 2024-04-11 2024-05-14 江西省水利科学院(江西省大坝安全管理中心、江西省水资源管理中心) Method for monitoring aqueduct structural stress

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860285A (en) * 1994-06-16 1996-03-05 Furukawa Electric Co Ltd:The Bumper reinforcement made of aluminum alloy and its production
JPH11343534A (en) * 1997-08-05 1999-12-14 株式会社神戸製鋼所 Energy absorbing member made of extruded aluminum alloy
JP2000054048A (en) * 1998-08-07 2000-02-22 Kobe Steel Ltd Aluminum alloy extruded shape material excellent in axial collapse characteristic
JP2000128017A (en) * 1998-10-27 2000-05-09 Kobe Steel Ltd Al-Mg-Si TYPE ALUMINUM COMPOUND EXTRUSION MATERIAL
JP2000256772A (en) * 1999-03-04 2000-09-19 Kobe Steel Ltd Al-Mg-Si ALUMINUM ALLOY EXTRUDED SHAPE MATERIAL EXCELLENT IN IMPACT ENERGY ABSORBING CHARACTERISTIC IN DIRECTION OF EXTRUDING AXIS
JP2000345270A (en) * 1999-04-02 2000-12-12 Kobe Steel Ltd Impact absorbing member in automotive frame structure
JP2001003128A (en) * 1999-06-18 2001-01-09 Kobe Steel Ltd Impact absorbing member excellent in crushing crack resistance
JP2002003974A (en) * 2000-06-19 2002-01-09 Kobe Steel Ltd Al-Mg-Si ALLOY EXTRUDED ARTICLE EXCELLENT IN IMPACT-ENERGY ABSORBABILITY
JP2002256368A (en) * 2001-03-05 2002-09-11 Kobe Steel Ltd Al-Mg-Si BASED ALUMINUM ALLOY EXTRUSION MATERIAL HAVING EXCELLENT PRESS WORKABILITY
JP2003034834A (en) * 2001-07-26 2003-02-07 Nippon Light Metal Co Ltd Al-Mg-Si ALUMINUM ALLOY EXTRUSION MATERIAL SUPERIOR IN ENERGY IMPACT ABSORPTIVITY, AND MANUFACTURING METHOD THEREFOR
JP2003181530A (en) * 2001-12-20 2003-07-02 Mitsubishi Alum Co Ltd Method for manufacturing aluminum alloy extruded material having excellent bending workability and energy absorbing characteristics
JP2003183757A (en) * 2002-09-18 2003-07-03 Kobe Steel Ltd Shock-absorbing member showing excellent crush resistance
JP2003221636A (en) * 2002-01-29 2003-08-08 Aisin Keikinzoku Co Ltd Al-Mg-Si ALUMINUM ALLOY EXTRUSION MOLDED MATERIAL SHOWING EXCELLENT RESISTANCE TO IMPACT FRACTURE
JP2004131826A (en) * 2002-10-11 2004-04-30 Kobe Steel Ltd Impact absorbing member having excellent axial crushing crack property
JP2005105317A (en) * 2003-09-29 2005-04-21 Kobe Steel Ltd Aluminum alloy extruded hollow shape material excellent in bending workability and crush resistance
JP2009228111A (en) * 2008-03-25 2009-10-08 Kobe Steel Ltd Aluminum alloy extruded material having excellent bending-crashed property and corrosion resistance and method for manufacturing the same
JP2011074471A (en) * 2009-09-30 2011-04-14 Kobe Steel Ltd Aluminum alloy extruded form with excellent bending crushability and corrosion resistance
JP2011074470A (en) * 2009-09-30 2011-04-14 Kobe Steel Ltd Aluminum alloy extruded form with excellent bending crushability and corrosion resistance

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860285A (en) * 1994-06-16 1996-03-05 Furukawa Electric Co Ltd:The Bumper reinforcement made of aluminum alloy and its production
JPH11343534A (en) * 1997-08-05 1999-12-14 株式会社神戸製鋼所 Energy absorbing member made of extruded aluminum alloy
JP2000054048A (en) * 1998-08-07 2000-02-22 Kobe Steel Ltd Aluminum alloy extruded shape material excellent in axial collapse characteristic
JP2000128017A (en) * 1998-10-27 2000-05-09 Kobe Steel Ltd Al-Mg-Si TYPE ALUMINUM COMPOUND EXTRUSION MATERIAL
JP2000256772A (en) * 1999-03-04 2000-09-19 Kobe Steel Ltd Al-Mg-Si ALUMINUM ALLOY EXTRUDED SHAPE MATERIAL EXCELLENT IN IMPACT ENERGY ABSORBING CHARACTERISTIC IN DIRECTION OF EXTRUDING AXIS
JP2000345270A (en) * 1999-04-02 2000-12-12 Kobe Steel Ltd Impact absorbing member in automotive frame structure
JP2001003128A (en) * 1999-06-18 2001-01-09 Kobe Steel Ltd Impact absorbing member excellent in crushing crack resistance
JP2002003974A (en) * 2000-06-19 2002-01-09 Kobe Steel Ltd Al-Mg-Si ALLOY EXTRUDED ARTICLE EXCELLENT IN IMPACT-ENERGY ABSORBABILITY
JP2002256368A (en) * 2001-03-05 2002-09-11 Kobe Steel Ltd Al-Mg-Si BASED ALUMINUM ALLOY EXTRUSION MATERIAL HAVING EXCELLENT PRESS WORKABILITY
JP2003034834A (en) * 2001-07-26 2003-02-07 Nippon Light Metal Co Ltd Al-Mg-Si ALUMINUM ALLOY EXTRUSION MATERIAL SUPERIOR IN ENERGY IMPACT ABSORPTIVITY, AND MANUFACTURING METHOD THEREFOR
JP2003181530A (en) * 2001-12-20 2003-07-02 Mitsubishi Alum Co Ltd Method for manufacturing aluminum alloy extruded material having excellent bending workability and energy absorbing characteristics
JP2003221636A (en) * 2002-01-29 2003-08-08 Aisin Keikinzoku Co Ltd Al-Mg-Si ALUMINUM ALLOY EXTRUSION MOLDED MATERIAL SHOWING EXCELLENT RESISTANCE TO IMPACT FRACTURE
JP2003183757A (en) * 2002-09-18 2003-07-03 Kobe Steel Ltd Shock-absorbing member showing excellent crush resistance
JP2004131826A (en) * 2002-10-11 2004-04-30 Kobe Steel Ltd Impact absorbing member having excellent axial crushing crack property
JP2005105317A (en) * 2003-09-29 2005-04-21 Kobe Steel Ltd Aluminum alloy extruded hollow shape material excellent in bending workability and crush resistance
JP2009228111A (en) * 2008-03-25 2009-10-08 Kobe Steel Ltd Aluminum alloy extruded material having excellent bending-crashed property and corrosion resistance and method for manufacturing the same
JP2011074471A (en) * 2009-09-30 2011-04-14 Kobe Steel Ltd Aluminum alloy extruded form with excellent bending crushability and corrosion resistance
JP2011074470A (en) * 2009-09-30 2011-04-14 Kobe Steel Ltd Aluminum alloy extruded form with excellent bending crushability and corrosion resistance

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013115227A1 (en) * 2012-01-31 2015-05-11 アイシン軽金属株式会社 High strength aluminum alloy extruded material excellent in corrosion resistance, ductility and hardenability and method for producing the same
EP2811043A4 (en) * 2012-01-31 2015-11-18 Aisin Keikinzoku Co Ltd High-strength aluminum alloy extrudate with excellent corrosion resistance, ductility, and hardenability and process for producing same
EP2841611A4 (en) * 2012-04-25 2016-01-20 Norsk Hydro As Ai-mg-si aluminium alloy with improved properties
EP2841611B1 (en) 2012-04-25 2018-04-04 Norsk Hydro ASA Extruded profile of Al-Mg-Si aluminium alloy with improved properties
EP3339457A1 (en) * 2012-04-25 2018-06-27 Norsk Hydro ASA Al-mg-si aluminium alloy with improved properties
EP3631030B1 (en) 2017-05-26 2022-06-29 Novelis Inc. High-strength corrosion-resistant 6xxx series aluminum alloys and methods of making the same
JP2019151918A (en) * 2018-03-05 2019-09-12 昭和電工株式会社 Al-Mg-Si-BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL AND MANUFACTURING METHOD THEREFOR
JP7215920B2 (en) 2018-03-05 2023-01-31 昭和電工株式会社 Al-Mg-Si based aluminum alloy hollow extruded material
JPWO2021187626A1 (en) * 2021-03-31 2021-09-23
WO2021187626A1 (en) * 2021-03-31 2021-09-23 三菱アルミニウム株式会社 High-strength aluminum alloy extruded material having excellent surface qualities
CN113597478A (en) * 2021-03-31 2021-11-02 三菱铝株式会社 High-strength aluminum alloy extruded material having excellent surface quality
JP7151002B2 (en) 2021-03-31 2022-10-11 Maアルミニウム株式会社 High-strength aluminum alloy extrusions with excellent surface quality
CN115029591A (en) * 2022-05-11 2022-09-09 宁波信泰机械有限公司 6-series aluminum alloy section with good bending property and preparation method thereof
CN115807173A (en) * 2022-11-04 2023-03-17 上海友升铝业股份有限公司 Preparation method of aluminum alloy material for improving crushing and cracking grade of threshold beam
CN118036409A (en) * 2024-04-11 2024-05-14 江西省水利科学院(江西省大坝安全管理中心、江西省水资源管理中心) Method for monitoring aqueduct structural stress

Also Published As

Publication number Publication date
JP5473718B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5160930B2 (en) Aluminum alloy extruded material excellent in bending crushability and corrosion resistance and method for producing the same
JP5366748B2 (en) Aluminum alloy extruded material with excellent bending crushability and corrosion resistance
EP3299482B1 (en) Method of manufacturing a high-strength 6xxx-series forging material
US10661338B2 (en) Damage tolerant aluminium material having a layered microstructure
JP5473718B2 (en) Aluminum alloy extruded material with excellent bending crushability and corrosion resistance
JP6273158B2 (en) Aluminum alloy plate for structural materials
KR20180095591A (en) High strength 6XXX aluminum alloys and methods for making them
WO2016140335A1 (en) Aluminum alloy plate
US20100201155A1 (en) Automobile Body Part
JP5981842B2 (en) AlMgSi strip for applications with high formability requirements
US9399437B2 (en) Bumper reinforcement and method for manufacturing the same
KR101621592B1 (en) Aluminum alloy plate for hood inner panel of automobile
JP2016160516A (en) Aluminum alloy sheet
JP2011074470A (en) Aluminum alloy extruded form with excellent bending crushability and corrosion resistance
JP2019026897A (en) Aluminum alloy sheet for structural member, and manufacturing method of aluminum alloy structural member
JP4452696B2 (en) Method for producing high-strength aluminum alloy material for automobile headrest frame with improved workability
JP5288671B2 (en) Al-Mg-Si-based aluminum alloy extruded material with excellent press workability
JP4203393B2 (en) Aluminum alloy extruded hollow shape with excellent bending workability and pressure cracking resistance
JP2022156481A (en) Aluminum alloy extruded material and manufacturing method thereof
JP3766334B2 (en) Aluminum alloy plate with excellent bending workability
JPH05311309A (en) Impact beam made of aluminum alloy for automobile side door
JP5179396B2 (en) Shock absorbing member
JP2017179469A (en) Aluminum alloy sheet and aluminum alloy structural member
JP4611543B2 (en) Energy absorbing member in automobile frame structure
WO2022248465A1 (en) A 6xxx alloy for high strength extruded products with high processability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R150 Certificate of patent or registration of utility model

Ref document number: 5473718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees