JP4203393B2 - Aluminum alloy extruded hollow shape with excellent bending workability and pressure cracking resistance - Google Patents
Aluminum alloy extruded hollow shape with excellent bending workability and pressure cracking resistance Download PDFInfo
- Publication number
- JP4203393B2 JP4203393B2 JP2003338045A JP2003338045A JP4203393B2 JP 4203393 B2 JP4203393 B2 JP 4203393B2 JP 2003338045 A JP2003338045 A JP 2003338045A JP 2003338045 A JP2003338045 A JP 2003338045A JP 4203393 B2 JP4203393 B2 JP 4203393B2
- Authority
- JP
- Japan
- Prior art keywords
- extrusion
- aluminum alloy
- elongation
- delta
- bending
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Extrusion Of Metal (AREA)
Description
本発明は、曲げ加工性と耐圧壊割れ性に優れたAl-Mg-Si系 (以下、6000系とも言う) アルミニウム合金押出中空形材(以下、アルミニウムを単にAlとも言う)に関するものである。 The present invention relates to an Al-Mg-Si-based (hereinafter also referred to as 6000) aluminum alloy extruded hollow shape (hereinafter, aluminum is also simply referred to as Al) having excellent bending workability and pressure cracking resistance.
従来から、自動車、船舶あるいは車両などの輸送機、家電製品、建築、構造物の部材や部品用として、6000系アルミニウム合金押出中空形材が使用されている。特に、輸送車両に対する構造材料は、単なる省エネルギー対策からの軽量化だけでなく、リサイクル性と循環性の必要性もあり、6000系アルミニウム合金材料の位置付けが大きくなってきている。 Conventionally, 6000 series aluminum alloy extruded hollow members have been used for transportation devices such as automobiles, ships or vehicles, household electrical appliances, buildings, and structural members and parts. In particular, structural materials for transportation vehicles are not only reduced in weight from energy saving measures, but also have a need for recyclability and recyclability, and the positioning of 6000 series aluminum alloy materials is increasing.
6000系アルミニウム合金は時効硬化能を有しており、比較的低温の人工時効処理時の加熱により時効硬化して耐力が向上し、必要な強度を確保できる利点がある。また、Mg量などの合金量が多い他の5000系のアルミニウム合金などに比して合金元素量が比較的少ない。このため、これら6000系アルミニウム合金合金材のスクラップを、アルミニウム合金溶解材 (溶解原料) として再利用する際に、元の6000系アルミニウム合金合金鋳塊が得やすく、リサイクル性と循環性にも優れている利点がある。 The 6000 series aluminum alloy has age hardening ability, and has the advantage that the yield strength is improved by age hardening by heating at a relatively low temperature artificial aging treatment, and the required strength can be secured. In addition, the amount of alloying elements is relatively small as compared to other 5000 series aluminum alloys having a large amount of alloy such as Mg. Therefore, when reusing these 6000 series aluminum alloy alloy scrap as aluminum alloy melting material (melting raw material), it is easy to obtain the original 6000 series aluminum alloy alloy ingot, and it is also excellent in recyclability and recyclability. There are advantages.
また、アルミニウム合金押出材は、素材であるビレットを一度の加工によって複雑な中空形材を成形することが可能であり、前記した各用途に対して、断面形状やデザイン性の自由度が大きいという長所を有する。 In addition, the aluminum alloy extruded material can form a complex hollow shape material by processing the billet as a raw material at once, and has a large degree of freedom in cross-sectional shape and designability for each of the above applications. Has advantages.
これらのアルミニウム合金押出中空形材は、適用される部材や製品形状に応じて、その長手方向に亙って曲げ加工が施されることが多い。
しかし、アルミニウム合金押出中空形材に曲げ加工を施した場合、湾曲部外側面に亀裂が発生したり、湾曲部外側面に凹みが生じたり、湾曲部内側面にシワが生じるなどの、加工不良が起きやすい。このような加工不良は、曲げ加工後の部材や製品に要求される、形状精度、強度、他の部材との接合性、美観などを大きく阻害する。
These aluminum alloy extruded hollow shapes are often subjected to bending work in the longitudinal direction according to the applied member and product shape.
However, when bending is performed on an extruded aluminum alloy hollow shape, there are processing defects such as cracks on the outer surface of the curved portion, dents on the outer surface of the curved portion, and wrinkles on the inner surface of the curved portion. Easy to get up. Such processing defects greatly hinder shape accuracy, strength, bondability with other members, aesthetics, and the like required for members and products after bending.
このため、従来から、主として、曲げ加工装置や曲げ加工方法の改良、あるいは押出中空形材の断面形状の工夫によって曲げ加工性の改善が図られている。しかし、曲げ加工装置や曲げ加工方法の改良には、曲げ加工性の改善限界がある。また、押出中空形材の断面形状の工夫も、前記断面形状やデザイン性の自由度の制約に繋がり、押出中空形材の長所を無くすことにつながる。 For this reason, conventionally, improvement of bending workability has been achieved mainly by improvement of a bending apparatus or bending method, or by devising the cross-sectional shape of the extruded hollow profile. However, the improvement of the bending apparatus and the bending method has a limit for improving the bending workability. Further, the device of the cross-sectional shape of the extruded hollow shape material also leads to restrictions on the cross-sectional shape and the degree of freedom in design, thereby eliminating the advantages of the extruded hollow shape material.
これに対して、曲げ加工の素材である、アルミニウム合金押出中空形材側で曲げ加工性が向上すれば、前記曲げ加工装置側や曲げ加工方法側の改良、あるいは押出中空形材の断面形状側の制約の負荷を大きく軽減できる。 On the other hand, if the bendability is improved on the side of the aluminum alloy extruded hollow shape, which is a material for bending, the improvement on the side of the bending apparatus or the bending method, or the cross-sectional shape side of the extruded hollow shape Can greatly reduce the load of constraints.
これまで、曲げ加工の素材であるAl-Mg-Si系アルミニウム合金押出中空形材の曲げ加工性を改善するについては、主として、低強度化や、アルミニウム押出形材の長手方向あるいは押出形材のロッド間などの機械的性質のバラツキを極力小さくすることで対応してきた。 Up to now, the improvement of the bending workability of Al-Mg-Si-based aluminum alloy extruded hollow shapes, which are bending materials, has mainly been achieved by reducing the strength, the longitudinal direction of aluminum extruded shapes or the shape of extruded shapes. This has been dealt with by minimizing variations in mechanical properties such as between rods.
例えば、6063などの6000系アルミニウム合金ビレットを均質化処理し、これを押出加工し、冷却後、時効処理を施してアルミニウム合金押出形材を製造するにあたって、押出後に冷却された押出材から少なくとも1以上のサンプルを取得し、このサンプルを先行して時効処理すると共に機械的特性を評価し、これに基づき、その機械的特性が0.2%耐力が120 〜140 MPa 、伸びが12% 以上となるように時効処理条件を設定することが提案されている。そして、このような方法により、曲げ加工に最適な0.2%耐力及び伸びを有し、曲げ加工精度や耐力値のバラツキが小さく、押し通しなどの曲げ加工においても座屈を生じないアルミニウム押出形材を得ようとしている (特許文献1参照) 。 For example, when producing an aluminum alloy extruded shape by homogenizing a 6000 series aluminum alloy billet such as 6063, extruding it, cooling and aging treatment, at least one from the extruded material cooled after extrusion Obtain the above sample, age the sample in advance, and evaluate the mechanical properties. Based on this, the mechanical properties are 0.2% proof stress 120-140 MPa and the elongation is 12% or more. It has been proposed to set aging treatment conditions. And by such a method, an aluminum extruded profile that has 0.2% proof stress and elongation optimal for bending, has little variation in bending accuracy and proof stress, and does not buckle even in bending such as push-through. We are trying to obtain it (see Patent Document 1).
また、その金属組織を粒状の結晶粒からなる組織 (等軸粒組織) とすることで曲げ加工性を向上させることも提案されている。より具体的には、その平均結晶粒径が100 μm 以下で、かつ結晶粒のアスペクト比、即ちアルミニウム合金押出形材を構成する結晶粒の押出方向の長さと厚さ方向の長さの比が2以下の結晶粒のような等軸粒組織として曲げ加工性を向上させる (特許文献2参照) 。
更に、押出中空形材の軸 (長手) 方向の圧壊特性 (以下、縦圧壊とも言う) や押出中空形材の断面方向の圧壊特性 (以下、横圧壊とも言う) を優れたものとするために、金属組織を上記等軸粒組織ではなく、押出方向に伸長した繊維状組織とすることも知られている (特許文献3参照) 。
Furthermore, in order to improve the crushing characteristics in the axial (longitudinal) direction of the extruded hollow profile (hereinafter also referred to as longitudinal crushing) and the crushing characteristics in the cross-sectional direction of the extruded hollow profile (hereinafter also referred to as lateral crushing). It is also known that the metal structure is not the equiaxed grain structure but a fibrous structure elongated in the extrusion direction (see Patent Document 3).
ただ、これら従来のように、アルミニウム合金押出中空形材の機械的性質のバラツキを極力小さくしても、元々のアルミニウム合金押出中空形材の曲げ加工性の限界自体を押し上げる訳ではない。謂わば、元々曲げ加工しにくい中空形材の中で、更に曲げ加工が著しく劣る中空形材を無くすに過ぎない。 However, even if the variation in the mechanical properties of the aluminum alloy extruded hollow member is minimized as in the conventional case, the limit of the bending workability of the original aluminum alloy extruded hollow member is not raised. In other words, among the hollow shapes that are originally difficult to bend, only the hollow shapes that are significantly inferior in bending are eliminated.
しかも、前記特許文献1は、曲げ加工時のスプリングバックなどを防止するために、0.2%耐力を120 〜140 MPa と規定しているように、結局は曲げ加工性向上の常套手段である低耐力化をしているにすぎない。したがって、0.2%耐力が例えば200MPa以上の高強度のアルミニウム合金押出中空形材には適用できない。言い換えると、構造材料としての前記高強度化や、これによる薄肉化、軽量化を犠牲にしている。
Moreover, in order to prevent springback during bending,
また、自動車のフレーム構造材(衝撃吸収部材= 衝突エネルギー吸収部材)としての適用を考えた場合、強度が200MPaに満たないと、エネルギー吸収特性が低下する。 Moreover, when considering application as a frame structure material (impact absorbing member = collision energy absorbing member) of an automobile, the energy absorbing characteristic is deteriorated if the strength is less than 200 MPa.
更に、前記金属組織を等軸粒組織とした場合には耐圧壊割れ特性は低い。したがって、比較的加圧力が低いU 字曲げなどでの曲げ加工は可能であるにしても、加圧力がかかり、耐圧壊割れ性が問題となる曲げ加工における曲げ加工性は低い。これらの加工方法としては、例えば、引張曲げや圧縮曲げ、伸ばされる力が働く回転引き曲げなどがある。更に、耐圧壊割れ特性が低いために、衝撃吸収部材として、押出形材の軸方向に用いられるにしても、押出形材の断面方向に用いられるにしても、いずれの使用方向のエネルギー吸収特性も劣ることなる。即ち、前記金属組織を等軸粒組織とした場合には、曲げ加工性と耐圧壊割れ特性とを両立させられないか、両者とも低下する。 Furthermore, when the metal structure is an equiaxed grain structure, the pressure cracking characteristics are low. Therefore, even if bending by U-shaped bending with a relatively low pressure is possible, the bending workability in bending where pressure is applied and pressure cracking is a problem is low. As these processing methods, there are, for example, tensile bending, compression bending, and rotational pulling bending in which an extended force is applied. Furthermore, because of its low pressure cracking characteristics, it can be used as an impact absorbing member in the axial direction of the extruded profile, or in the cross-sectional direction of the extruded profile, in any direction of energy absorption. Will also be inferior. That is, when the metal structure is an equiaxed grain structure, both the bending workability and the pressure cracking characteristic cannot be satisfied or both are reduced.
更に、押出形材の金属組織を上記等軸粒組織ではなく、押出方向に伸長した繊維状組織としても、必ずしも、曲げ加工性が向上できる訳では無い。
このため、0.2%耐力が200MPa以上の高強度のアルミニウム合金押出中空形材について、素材側からの曲げ加工性を改良することや、曲げ加工性と耐圧壊割れ特性とを両立させることは、かなり難しい技術課題であり、これまで実質的には無かった、あるいは、あったとしても、上記した通り大きな限界があったと言える。
Furthermore, even if the metal structure of the extruded shape is not the above equiaxed grain structure but a fibrous structure elongated in the extrusion direction, the bending workability is not necessarily improved.
For this reason, it is quite possible to improve the bending workability from the material side and to achieve both the bending workability and the pressure cracking characteristics for high-strength aluminum alloy extruded hollow shapes with 0.2% proof stress of 200 MPa or more. This is a difficult technical issue, and it has been virtually impossible, or if so, it can be said that there were significant limitations as described above.
本発明はこの様な事情に着目してなされたものであって、その目的は、曲げ加工性を向上させ、曲げ加工性と耐圧壊割れ特性とを両立させた、6000系アルミニウム合金押出中空形材を提供しようとするものである。 The present invention has been made paying attention to such circumstances, and its purpose is to improve the bending workability and achieve both the bending workability and the pressure cracking characteristics, and is a hollow type extruded with a 6000 series aluminum alloy. The material is to be provided.
この目的を達成するために、本発明Al-Mg-Si系アルミニウム合金押出中空形材の要旨は、押出中空形材を、結晶粒の押出方向の長さL1と厚さ方向の長さL2とのアスペクト比L1/L2 が5 を超えるような繊維状組織とするとともに、押出方向に対して45度方向の伸びδ1 が、押出方向に対して平行方向の伸びδ2 と押出方向に対して直角方向の伸びδ3 よりも大きく、δ1 とδ2 との比δ1 / δ2 と、δ1 とδ3 との比δ1 / δ3 とが各々1.1 以上であるような異方性を有する組織としたことである。 In order to achieve this object, the gist of the extruded Al-Mg-Si-based aluminum alloy of the present invention is that the extruded hollow profile is divided into a length L 1 in the extrusion direction of the crystal grains and a length L in the thickness direction. with an aspect ratio of 2 L 1 / L 2 is a fibrous tissue, such as more than 5, the elongation [delta] 1 of 45 degree direction to the extrusion direction, parallel elongation [delta] 2 and the extrusion to the extrusion direction greater than a right angle direction of elongation [delta] 3 with respect to the direction, [delta] 1 and the ratio [delta] 1 / [delta] 2 and [delta] 2, such that the ratio δ 1 / δ 3 of the [delta] 1 and [delta] 3 is in each 1.1 or higher This is a structure having anisotropy.
本発明者らの知見によれば、Al-Mg-Si系アルミニウム合金押出中空形材(以下単に押出材とも言う)を、これまでの等方性を有する組織ではなく、特に押出方向に対して45度方向の伸びδ1 が他の方向の伸びよりも大きい異方性を持った組織とすることにより、曲げ加工性、更には、形材断面方向および形材軸 (長手) 方向の圧壊性(変形性)が向上する。 According to the knowledge of the present inventors, an Al-Mg-Si-based aluminum alloy extruded hollow material (hereinafter also simply referred to as an extruded material) is not a conventional isotropic structure, but particularly in the direction of extrusion. By forming a structure with an anisotropy where the elongation δ 1 in the 45-degree direction is greater than the elongation in the other direction, bending workability, and also the crushability in the profile section direction and profile axis (longitudinal) direction (Deformability) is improved.
通常、押出材の組織は、押出後の冷却条件や調質 (熱処理) 条件によって、繊維状 (ファイバー状) と言われる結晶粒が押出方向に長く伸長した組織か、結晶粒の押出方向の長さと厚さ方向の長さの比が2以下の等軸粒組織となる。しかし、いずれの場合でも、機械的な性質としては、通常では、押出材の押出方向に対して、平行方向、直角方向、45度方向のいずれの方向も大きく違うことは無い、謂わば等方性なり均一性を有する素材となる。このため、押出材の伸びや耐力などの機械的性質を言う場合、押出材の押出方向に対して、平行方向または直角方向のいずれかの機械的性質で代表するのが常であった。 Normally, the structure of the extruded material is a structure in which crystal grains called fibers (fibrous) are elongated in the extrusion direction depending on the cooling conditions and tempering (heat treatment) conditions after extrusion, or the length of the crystal grains in the extrusion direction. And an equiaxed grain structure in which the ratio of the length in the thickness direction is 2 or less. However, in any case, the mechanical properties usually do not greatly differ in any of the parallel direction, the perpendicular direction, and the 45 degree direction with respect to the extrusion direction of the extruded material. It becomes a material that is uniform and uniform. For this reason, when referring to the mechanical properties such as elongation and yield strength of the extruded material, it is usual to represent the mechanical properties in either the parallel direction or the perpendicular direction to the extrusion direction of the extruded material.
ただ、通常の等方性を有する押出材の場合にも、上記した製造条件によっては、若干の異方性が生じることが避けられない。即ち、押出方向に対して45度方向の伸びδ1 が、押出方向に対して平行方向の伸びδ2 と押出方向に対して直角方向の伸びδ3 などに比して、低くなる場合なども生じる。これも一応異方性を持った組織と言えるが、このような異方性組織の場合には、曲げ加工性や形材断面方向の圧壊性(変形性)が逆に著しく低下する。 However, even in the case of an extruded material having normal isotropic properties, it is inevitable that some anisotropy occurs depending on the manufacturing conditions described above. That is, the elongation δ 1 in the direction of 45 degrees with respect to the extrusion direction may be lower than the elongation δ 2 in the direction parallel to the extrusion direction and the elongation δ 3 in the direction perpendicular to the extrusion direction. Arise. This can also be said to be a structure having anisotropy, but in the case of such an anisotropic structure, the bending workability and the crushability (deformability) in the cross-section direction of the profile are significantly reduced.
これに対して、本発明のように、押出方向に対して45度方向の伸びδ1 が、前記他の方向の伸びよりも大きくなるような異方性を有する組織とした場合、理由は定かでは無いが、上記等方性を有する組織や、伸びδ1 が前記他の方向の伸びよりも小さくなるような異方性を有する組織に対して、曲げ加工性や形材断面方向および軸方向の圧壊性(変形性)が向上する。 In contrast, as in the present invention, if the elongation [delta] 1 of 45 degree direction to the extrusion direction, and a tissue having anisotropy is larger than the elongation of the other directions, reasons unclear Although not a tissue or with the isotropic for tissues with anisotropic as elongation [delta] 1 is smaller than the elongation of the other direction, the bending workability and profile cross-section and axially The crushability (deformability) of is improved.
しかも、この効果は、押出材の0.2%耐力が200MPa以上であるような高強度の場合に特に発揮される。したがって、従来のように押出材を低強度化して曲げ加工性や断面方向の圧壊性を向上させる必要が無い。 Moreover, this effect is particularly exhibited when the extruded material has a high strength such that the 0.2% proof stress is 200 MPa or more. Therefore, it is not necessary to reduce the strength of the extruded material and improve the bending workability and the crushability in the cross-sectional direction as in the conventional case.
(押出中空形材)
本発明で言うAl-Mg-Si系アルミニウム合金押出中空形材とは、Al-Mg-Si系アルミニウム合金を押出加工後に通常の調質処理を施した形材を言う。通常の調質処理とは、人工時効処理、溶体化および焼き入れ処理や、これら熱処理の組み合わせなどを言う。
(Extruded hollow shape)
The Al-Mg-Si-based aluminum alloy extruded hollow shape referred to in the present invention refers to a shape obtained by subjecting an Al-Mg-Si-based aluminum alloy to normal tempering after extrusion. The normal tempering treatment refers to artificial aging treatment, solution treatment and quenching treatment, a combination of these heat treatments, and the like.
また、中空形材の断面形状は構造材料用途の形状に応じて、矩形、略矩形、円形 (管) 、略円形などの形状が適宜選択できる。更に、通常の押出 (長手) に均一な断面を有する場合の他に、不均一な断面部分を有する場合も含む。 In addition, the cross-sectional shape of the hollow shape member can be appropriately selected from a rectangular shape, a substantially rectangular shape, a circular shape (tube), a substantially circular shape, etc. Furthermore, in addition to the case where the normal extrusion (longitudinal) has a uniform cross section, the case where it has a non-uniform cross section is included.
(押出中空形材)
本発明押出中空形材の異方性組織の要件につき、以下に説明する。
図1 に斜視図で示す、押出中空形材1 の引張試験片の採取方向で、本発明押出中空形材の異方性組織の要件につき説明する。押出中空形材1 において、矢印で示す押出方向A に対して、45度方向に向いた採取試験片X1の引張試験の伸び値が、本発明で言う押出方向に対して45度方向の伸びδ1 である。また、押出方向A に対して平行方向(L方向) に向いた採取試験片X2の引張試験の伸び値が、押出方向に対して平行方向の伸びδ2 である。また、押出方向に対して直角方向(LT 方向) に向いた採取試験片X3の引張試験の伸び値が、押出方向に対して直角方向の伸びδ3 である。なお、図1 では、各方向の採取試験片を平行に各々2 個採取して、この2 個の伸び値の平均をもって、採取試験片の伸び値としている。これは、採取試験片の、機械的性質測定における、引張強度、0.2%耐力でも同様である。
(Extruded hollow shape)
The requirements for the anisotropic structure of the extruded hollow profile of the present invention will be described below.
The requirements for the anisotropic structure of the extruded hollow profile of the present invention will be described in the direction of sampling the tensile test piece of the extruded
本発明では、この押出方向に対して45度方向の伸びδ1 が、押出方向に対して平行方向の伸びδ2 と押出方向に対して直角方向の伸びδ3 よりも大きく、δ1 とδ2 との比δ1 / δ2 と、δ1 とδ3 との比δ1 / δ3 とが各々1.1 以上であるものとする。 In the present invention, the elongation δ 1 in the direction of 45 degrees with respect to the extrusion direction is larger than the elongation δ 2 in the direction parallel to the extrusion direction and the elongation δ 3 in the direction perpendicular to the extrusion direction, δ 1 and δ 2 the ratio [delta] 1 / [delta] 2 of, the ratio δ 1 / δ 3 of the [delta] 1 and [delta] 3 is assumed at each 1.1 or more.
これに対して、等方性組織とは、これらδ1 、δ2 、δ3 とが概ね等しいか、あるいはδ1 が、逆にδ2 やδ3 よりも小さくなるような組織である。このような、押出方向に対して45度方向の伸びδ1 が、前記δ2 やδ3 と概ね等しいか、または、逆に小さいような、等方性を有する組織であれば、曲げ加工性や形材断面方向の圧壊性(変形性)が低下する。 On the other hand, the isotropic structure is a structure in which these δ 1 , δ 2 , and δ 3 are approximately equal or δ 1 is smaller than δ 2 and δ 3 . If the structure has an isotropy such that the elongation δ 1 in the direction of 45 ° with respect to the extrusion direction is substantially equal to or smaller than δ 2 or δ 3 , bending workability In addition, the crushability (deformability) in the cross-section direction of the profile is reduced.
そして、このδ1 とδ2 との比δ1 / δ2 と、δ1 とδ3 との比δ1 / δ3 とが各々1.1 未満であれば、δ1 が、前記δ2 やδ3 と等しい等方性を有する組織と大差なくなり、形材の曲げ加工性や形材断面方向の圧壊性(変形性)が低下する。 Then, if the [delta] 1 and the ratio [delta] 1 / [delta] 2 and [delta] 2, [delta] 1 and [delta] 3 and the ratio δ 1 / δ 3 and are each less than 1.1, [delta] 1 is, the [delta] 2 and [delta] 3 Therefore, the bending workability of the profile and the crushability (deformability) in the cross-section direction of the profile are reduced.
なお、δ1 、δ2 、δ3 自体や、δ1 / δ2 とδ1 / δ3 とは高い乃至大きいほど良く、形材の曲げ加工性や形材断面方向の圧壊性効果発揮からの上限はない。ただ、形材の必要強度(0.2% 耐力) や、6000系Al合金板の化学成分組成と製造工程の冶金的な条件からδ自体の向上は制約されている。また、この同じ制約によって、前記δ1 / δ2 とδ1 / δ3 とも、高くなし得る数値には自ずと冶金的な限界がある。 It should be noted that δ 1 , δ 2 , δ 3 itself, δ 1 / δ 2 and δ 1 / δ 3 are better as they are higher or larger, from the view of the bending workability of the profile and the crushing effect in the profile section direction There is no upper limit. However, the improvement in δ itself is limited by the required strength of the profile (0.2% proof stress), the chemical composition of the 6000 series Al alloy sheet, and the metallurgical conditions of the manufacturing process. Also, due to this same constraint, the numerical values that can be made high for both δ 1 / δ 2 and δ 1 / δ 3 naturally have metallurgical limitations.
(曲げ加工性)
本発明の異方性を有する押出中空形材は、図1 に矢印B で示す方向に (図1 の三次元的な意味で上下方向に) 曲げ加工される場合に、曲げ加工性が向上する。この場合、曲げ加工される中空形材1 の形材面の内、形材面1aが曲げ内側および形材面1bが曲げ外側となる。この矢印B で示す方向に、長手方向に亙って曲げ加工された場合に、前記δ1 がδ2 やδ3 よりも大きいと、曲げ内側となる形材面1aに圧縮力負荷によるシワや、曲げ外側となる形材面1bに引張力負荷による割れが発生することなく、曲げ加工することげできる。
(Bending workability)
The extruded hollow profile having anisotropy of the present invention is improved in bending workability when it is bent in the direction indicated by arrow B in FIG. 1 (up and down in the three-dimensional sense of FIG. 1). . In this case, of the profile surfaces of the
(耐圧壊性)
更に、この曲げ加工性と相関するのが中空形材1 の断面方向の耐圧壊性である。今、図1 に矢印C で示す方向から形材面1aの正面に衝突荷重が負荷された場合、この衝突荷重の吸収性能が向上する。即ち、形材面1aの正面に、矢印C で示す大きな衝突荷重が負荷された場合に、中空形材1 の前記δ1 がδ2 やδ3 よりも大きいと、衝突荷重初期段階では、上記曲げ加工と同様に、曲げ内側となる形材面1aに圧縮力負荷によるシワや、曲げ外側となる形材面1bに引張力負荷による割れが発生しにくい。したがって、衝突荷重初期段階では、上記曲げ加工と同様に、中空形材1 は、矢印B で示す方向に長手方向に亙って曲げられ衝突荷重を吸収する。
(Crush resistance)
Further, correlating with this bending workability is the pressure-proof fracture resistance of the
衝突荷重が大きい場合には、この中空形材1 の長手方向に亙る曲げ変形でも衝突荷重を吸収できず、中空形材1 の断面方向の変形が始まる。ただ、この場合でも、中空形材1 の前記δ1 がδ2 やδ3 よりも大きいと、縦壁( フランジ) としての形材面1a、1bおよび横壁 (ウエブ) としての形材面1c、1dあるいは縦壁と横壁との結合部である角部 (四隅部) 、が各々圧壊( 損壊) せずに、形材断面方向 (矢印C の方向) に変形して、更に衝突荷重を吸収する。したがって、形材断面方向の衝突荷重吸収特性(変形性)が向上する。このため、形材断面方向の衝突荷重吸収特性が要求される、自動車材におけるバンパ、ドアビームなどの用途に好適である。
When the collision load is large, the bending load cannot be absorbed even by bending deformation in the longitudinal direction of the
なお、この中空形材1 の前記δ1 がδ2 やδ3 よりも大きい異方性は、中空形材1 の軸 (長手) 方向の圧壊特性にも同様に寄与する。即ち、中空形材1 が軸 (長手) 方向 (図1 のA 方向) に衝突荷重を受けた際に、中空形材1 が圧壊せずに、軸 (長手) 方向に蛇腹状に変形して衝突荷重を吸収するような圧壊特性にも寄与する。中空形材1 の前記δ1 がδ2 やδ3 よりも大きいと、中空形材1 が軸 (長手) 方向に衝突荷重を受けた際に、前記縦壁としての形材面1a、1bおよび横壁としての形材面1c、1d、あるいは縦壁と横壁との結合部である角部 (四隅部) 、が各々圧壊 (損壊) せずに、形材軸方向に変形して、衝突荷重を吸収する。したがって、形材軸方向の衝突荷重吸収特性(変形性)が向上する。このため、形材軸方向の衝突荷重吸収特性が要求される、自動車材におけるサイドメンバ、バンパステイ、サイドフレームなどの用途に好適である。
It should be noted that the anisotropy of the
(繊維状組織)
本発明のような前記δ1 がδ2 やδ3 よりも大きい異方性組織を得るためには、結晶粒のアスペクト比 (結晶粒の押出方向の長さL1と厚さ方向の長さL2とのアスペクト比L1/L2)が2を超えるような繊維状結晶粒 (伸長粒) 組織とすることが前提となる。微細な繊維状組織が形成されるほど、本発明の異方性組織ができやすくなる。また、強度及び耐圧壊割れ性も向上する。
(Fibrous structure)
In order to obtain an anisotropic structure in which the δ 1 is larger than δ 2 or δ 3 as in the present invention, the aspect ratio of the crystal grains (the length L 1 in the extrusion direction of the crystal grains and the length in the thickness direction) the aspect ratio of the L 2 L 1 / L 2) is greater than 2 such fibrous crystal grains (be extended grain) tissue is a prerequisite. The more the fine fibrous structure is formed, the more easily the anisotropic structure of the present invention is formed. In addition, strength and pressure cracking resistance are improved.
但し、繊維状組織であっても、機械的な性質として、等方性組織 (押出方向に対して平行方向、直角方向、45度方向のいずれも機械的性質がほぼ等しい組織) や、前記δ1 がδ2 やδ3 よりも小さい異方性を持った組織の場合、曲げ加工性や形材断面方向の圧壊性(変形性)が、本発明異方性組織に対して劣る。 However, even in the case of a fibrous structure, as a mechanical property, an isotropic structure (a structure in which the mechanical properties are almost equal in any of the parallel direction, the perpendicular direction, and the 45 degree direction with respect to the extrusion direction) or the δ In the case of a structure in which 1 has an anisotropy smaller than δ 2 or δ 3 , bending workability and crushability (deformability) in the cross-section direction of the profile are inferior to the anisotropic structure of the present invention.
また、前記アスペクト比が2以下の等軸粒組織では、本発明のような前記δ1 がδ2 やδ3 よりも大きい異方性組織は得られず、前記した従来技術のように、曲げ加工性と耐圧壊割れ特性とを両立させられないか、両者とも低下することとなる。 In addition, in an equiaxed grain structure having an aspect ratio of 2 or less, an anisotropic structure in which the δ 1 is larger than δ 2 or δ 3 as in the present invention cannot be obtained, and as in the prior art described above, bending is not possible. Either the workability and the pressure cracking characteristics cannot be made compatible, or both are lowered.
この繊維状組織は押出中空形材の断面を構成する壁全体に形成されているのが望ましい。一般的に、押出中空形材表面には、等軸粒状の再結晶層が形成されやすいが、その場合でも、繊維状組織は、中空形材を構成する壁の断面厚さ (肉厚) の70% 以上の厚さで形成されていることが望ましい。言い換えると、表面再結晶層は全体の肉厚の30% 未満のできるだけ薄い厚さとする必要がある。更に、形成される等軸粒状の再結晶層の、少なくとも押出中空形材表面部(外表面から500 μmまでの部分)の再結晶粒の平均粒径が500 μm以下の微細であることが望ましい。 The fibrous structure is preferably formed on the entire wall constituting the cross section of the extruded hollow profile. In general, an equiaxed granular recrystallized layer is likely to be formed on the surface of an extruded hollow profile, but even in this case, the fibrous structure has a cross-sectional thickness (wall thickness) of the wall constituting the hollow profile. It is desirable that it is formed with a thickness of 70% or more. In other words, the surface recrystallized layer should be as thin as possible, less than 30% of the total wall thickness. Furthermore, it is desirable that the recrystallized grains in the equiaxed granular recrystallized layer to be formed have a fine average recrystallized grain size of 500 μm or less at least on the surface of the extruded hollow profile (the part from the outer surface to 500 μm). .
例えば、押出中空形材が1 〜5mm の薄肉になるほど、再結晶層の悪影響が大きい。これは、再結晶層の結晶粒が繊維状組織に比べて結晶粒径が大きいことと、再結晶層の結晶粒界に析出する析出物が多い場合には、表面再結晶粒の粒界に歪みが集中して割れが発生しやすくなるためである。 For example, the adverse effect of the recrystallized layer increases as the extruded hollow shape becomes thinner 1 to 5 mm. This is because the crystal grains of the recrystallized layer have a larger crystal grain size than the fibrous structure, and when there are many precipitates precipitated at the crystal grain boundaries of the recrystallized layer, This is because strain is concentrated and cracks are likely to occur.
このような繊維状組織を得るには、後述する通り、Mn、Cr、Zrなどの遷移元素を含有させることが好ましい。これらの遷移元素を含有しない場合、押出直後の水冷などによる直接焼入れの際に、冷却速度が比較的低い場合には、上記繊維状組織を得にくくなる。この繊維状組織とは、押出による繊維状組織が押出工程以降の熱処理工程の間においても再結晶せずに残った状態の組織のことである。したがって、押出工程以降の調質処理において、例えば溶体化および焼入れ処理を行なった場合、この繊維状組織が損なわれ、繊維状組織と前記等軸粒組織とが混在する組織か、前記等軸粒に近い組織となる。このような組織では、本発明の結晶粒のアスペクト比が2を超えるような繊維状組織が得られず、更に、本発明のような前記δ1 がδ2 やδ3 よりも大きい異方性組織も得られない。したがって、曲げ加工性と耐圧壊割れ特性とを両立させられないか、両者とも低下することとなる。 In order to obtain such a fibrous structure, it is preferable to contain transition elements such as Mn, Cr, and Zr as described later. When these transition elements are not contained, when the cooling rate is relatively low during direct quenching by water cooling immediately after extrusion, it is difficult to obtain the fibrous structure. This fibrous structure is a structure in which the fibrous structure by extrusion remains without being recrystallized during the heat treatment process after the extrusion process. Therefore, in the tempering treatment after the extrusion step, for example, when solution treatment and quenching treatment are performed, this fibrous structure is damaged, and the fibrous structure and the equiaxed grain structure are mixed, or the equiaxed grain It becomes an organization close to. In such a structure, a fibrous structure in which the aspect ratio of the crystal grains of the present invention exceeds 2 is not obtained, and furthermore, the anisotropy in which the δ 1 is larger than δ 2 and δ 3 as in the present invention. There is no organization. Therefore, the bending workability and the pressure cracking characteristics cannot be made compatible or both are lowered.
以下に、このような本発明組織を得るための、Al-Mg-Si系アルミニウム合金押出中空形材の好ましい成分組成や製造条件を説明する。但し、このような条件で製造された中空形材が、全て、確実に、前記伸びの異方性を有する組織となる保障は無い。成分組成が違えば、製造条件が同じでも、得られる組織が異なる。また、製造条件が違えば、成分組成が同じでも、得られる組織が異なる。更に、前記した特許文献1 ならずとも、アルミニウム押出形材では、薄肉化されるほど、実際の製造条件の振れ (揺れ) やバラツキが影響しやすく、長手方向あるいは押出形材のロッド間などの組織のバラツキが大きい。したがって、前記した化学成分組成と製造条件とをその都度十分に考慮して選択し、確実に本発明異方性組織を得る条件 (成分組成と製造条件) を確認する必要がある。
Below, the preferable component composition and manufacturing conditions of an Al—Mg—Si-based aluminum alloy extruded hollow shape for obtaining such a structure of the present invention will be described. However, there is no guarantee that all of the hollow shapes manufactured under such conditions will surely have a structure having the elongation anisotropy. If the component composition is different, the resulting structure is different even if the production conditions are the same. Moreover, if the production conditions are different, the resulting structure is different even if the component composition is the same. Further, even if the above-mentioned
(アルミニウム合金組成)
本発明では、繊維状組織あるいは押出方向に対して45度方向の0.2%耐力が200MPa以上の高強度や高い伸び異方性などの本発明組織や、更に、上記構造材料としての要求特性を満足させるための、Al-Mg-Si系アルミニウム合金押出中空形材の好ましい成分組成を以下に説明する。
(Aluminum alloy composition)
In the present invention, the structure of the present invention such as high strength of 200 MPa or higher, 0.2% proof stress in the direction of 45 degrees with respect to the fibrous structure or the extrusion direction and high elongation anisotropy, and further satisfy the required characteristics as the structural material. The preferred component composition of the Al-Mg-Si-based aluminum alloy extruded hollow shape material for achieving this is described below.
この観点から、Al-Mg-Si系アルミニウム合金組成は、質量% にて、Mg:0.4〜1.0%、Si:0.4〜1.0%、Cu:0.001〜1.0%を含むとともに、Mn:0.05〜0.40% 、Cr0.05〜0.20% 、Zr:0.05〜0.20% の1種又は2種以上を含み、残部Alおよび不可避的不純物からなることが好ましい。なお、本発明での化学成分組成の% 表示は、全て質量% の意味である。 From this viewpoint, the Al-Mg-Si-based aluminum alloy composition contains Mg: 0.4 to 1.0%, Si: 0.4 to 1.0%, Cu: 0.001 to 1.0%, and Mn: 0.05 to 0.40% in mass%. , Cr 0.05 to 0.20%, Zr: 0.05 to 0.20%, or one or more of them, and the balance is preferably Al and inevitable impurities. In the present invention, “%” in the chemical component composition means “% by mass”.
(Mg:0.4 〜1.0%)
MgとSiとは結合してMg2Si を形成し、合金強度を向上させる。前記衝撃吸収部材など、必要な構造材料として0.2%耐力で200MPa以上の強度を得るためには、Mgは0.4%以上含有されることが必要である。しかし、1.0%を越えて添加されると、焼入れ感受性が鋭くなり、押出加工後の水冷などで、焼入れ速度が低くなると焼きが入らず、0.2%耐力で200MPa以上の強度が出なくなる。従って、Mg含有量の範囲は0.4 〜1.0%とすることが好ましい。
(Mg: 0.4-1.0%)
Mg and Si combine to form Mg 2 Si, improving the alloy strength. In order to obtain a strength of 200 MPa or more with a 0.2% proof stress as a necessary structural material such as the impact absorbing member, it is necessary that Mg is contained in an amount of 0.4% or more. However, if added over 1.0%, the quenching sensitivity becomes sharp, and when the quenching speed is lowered due to water cooling after extrusion, etc., quenching does not occur, and a strength of 200 MPa or more cannot be obtained with 0.2% proof stress. Therefore, the Mg content is preferably set to 0.4 to 1.0%.
(Si:0.4 〜1.0%)
一方、Si含有量が0.4%より少ないと必要な強度が得られず、1.0%を越えると焼入れ感受性が鋭くなり、押出加工直後の水冷による直接焼入れなどで、焼入れ速度が低くなると焼きが入らず、上記必要な強度が出なくなる。従って、Si含有量の範囲は0.4 〜1.0%とすることが好ましい。
(Si: 0.4-1.0%)
On the other hand, if the Si content is less than 0.4%, the required strength cannot be obtained, and if it exceeds 1.0%, the quenching sensitivity becomes sharp, and direct quenching by water cooling immediately after extrusion processing, etc. The required strength is not obtained. Therefore, the range of Si content is preferably 0.4 to 1.0%.
また、好ましくは、MgとSiとを、SiとMgとの質量比Si/Mg で1 を越える、Si過剰型の組成とする。このSi過剰型の組成とした方が、より高強度化が図れるとともに、本発明の繊維状組織や異方性組織ができやすくなる。 Preferably, Mg and Si have a Si-rich composition with a mass ratio Si / Mg of Si / Mg of more than 1. When the Si-rich composition is used, the strength can be further increased, and the fibrous structure and anisotropic structure of the present invention can be easily formed.
(Mn 、Cr、Zr)
Mn、Cr、Zrなどの遷移元素は、押出材に繊維状組織を形成して、本発明異方性組織をできやすくする。また、強度を高め、前記衝撃吸収部材としての耐圧壊割れ性も向上させる作用がある。また、本発明異方性組織ができやすくなる。したがって、これらの中から1種又は2種以上を、Mn:0.05〜0.40% 、Cr0.05〜0.20% 、Zr:0.05〜0.20% の範囲で含有する。これらの遷移元素の含有量が下限未満ではこの効果がなく、製造条件によっても、繊維状組織の形成や本発明異方性組織を作ることが困難となる。また、これらの遷移元素の含有量が上限を越えた場合、溶解、鋳造時に粗大な金属間化合物や晶析出物を生成しやすく、破壊の起点となり易いため、Al合金板の機械的性質を低下させる原因となる。
(Mn, Cr, Zr)
Transition elements such as Mn, Cr, and Zr form a fibrous structure in the extruded material to facilitate the anisotropic structure of the present invention. Moreover, there exists an effect | action which raises an intensity | strength and improves the pressure | voltage resistant cracking property as said shock-absorbing member. Moreover, the anisotropic structure of the present invention is easily formed. Accordingly, one or more of these are contained in the ranges of Mn: 0.05 to 0.40%, Cr 0.05 to 0.20%, Zr: 0.05 to 0.20%. If the content of these transition elements is less than the lower limit, this effect is not achieved, and it becomes difficult to form a fibrous structure or to form the anisotropic structure of the present invention depending on manufacturing conditions. In addition, if the content of these transition elements exceeds the upper limit, coarse intermetallic compounds and crystal precipitates are likely to be generated during melting and casting, which tends to be the starting point of fracture, thus reducing the mechanical properties of the Al alloy sheet. Cause it.
(Cu:0.001 〜1.0%)
Cuは比較的低温短時間の人工時効処理の条件で、アルミニウム合金組織の結晶粒内へのGPゾーンなどの化合物相の析出を促進させ、強度を高めるる効果がある。Cu含有量が0.001%未満ではこの効果がない。一方、1.0%を越えると、耐応力腐食割れ性や溶接性を著しく劣化させる。したがって、Cu含有量の範囲は0.001 〜1.0%である。
(Cu: 0.001 to 1.0%)
Cu has the effect of increasing the strength by promoting the precipitation of a compound phase such as a GP zone in the crystal grains of an aluminum alloy structure under the conditions of artificial aging treatment at a relatively low temperature for a short time. This effect is not obtained when the Cu content is less than 0.001%. On the other hand, if it exceeds 1.0%, the stress corrosion cracking resistance and weldability are significantly deteriorated. Therefore, the range of Cu content is 0.001 to 1.0%.
以下に、必要により選択的に含有させる元素あるいは不純物だが含有効果もある元素について説明する。
(Ti 、B)
Ti、B は、Ti:0.1% 、B:300ppmを各々越えて含有すると、粗大な晶出物を形成する。但し、Ti、B には微量の含有で、鋳塊の結晶粒を微細化させる効果がある。したがって、Ti:0.1% 以下、B:300ppm以下までの含有は許容する。
In the following, elements that are selectively contained as required or elements that are impurities but have an effect of inclusion will be described.
(Ti, B)
When Ti and B are contained in amounts exceeding Ti: 0.1% and B: 300 ppm, coarse crystals are formed. However, Ti and B are contained in a small amount and have the effect of refining the crystal grains of the ingot. Therefore, the content of Ti: 0.1% or less and B: 300ppm or less is allowed.
(Fe)
溶解原料から混入して、不純物として含まれるFeは、Al7Cu2Fe、Al12(Fe,Mn)3Cu2 、(Fe,Mn)Al6などの晶出物を生成する。これらの晶出物は再結晶粒の核となり、Feが0.08% 以上含まれた場合に、結晶粒の粗大化を阻止して、結晶粒を50μm 以下の微細粒とする役割を果たす。しかし、一方で、これらの晶出物は、破壊靱性および疲労特性、更には、前記加工条件が厳しくなったフラットヘム加工性およびプレス成形性を著しく劣化させる。これらの劣化特性は、Feの含有量が0.50% を越えると顕著になる。このため、含有させる場合のFeの含有量は、0.08〜0.50% とすることが好ましい。
(Fe)
Fe mixed in from the melting raw material and contained as impurities produces crystallized products such as Al 7 Cu 2 Fe, Al 12 (Fe, Mn) 3 Cu 2 , and (Fe, Mn) Al 6 . These crystallized substances serve as nuclei of recrystallized grains, and when Fe is contained in an amount of 0.08% or more, the crystal grains are prevented from coarsening and the crystal grains are reduced to a fine grain of 50 μm or less. However, on the other hand, these crystallized materials significantly deteriorate the fracture toughness and fatigue characteristics, and further, the flat hem workability and press formability in which the processing conditions are severe. These deterioration characteristics become significant when the Fe content exceeds 0.50%. For this reason, the content of Fe when contained is preferably 0.08 to 0.50%.
上記合金元素以外の、Zn、Ni、V など、その他の合金元素は、基本的には不純物元素である。しかし、リサイクルの観点から、溶解材として、高純度Al地金だけではなく、6000系合金やその他のアルミニウム合金スクラップ材、低純度アルミニウム地金などを溶解原料として使用して、上記本発明アルミニウム合金組成を溶製する場合には、これら他の合金元素は必然的に含まれることとなる。したがって、本発明では、目的とする効果を阻害しない範囲で、これら他の合金元素が含有されることを許容する。 In addition to the above alloy elements, other alloy elements such as Zn, Ni, and V are basically impurity elements. However, from the viewpoint of recycling, not only high-purity Al ingots but also 6000 series alloys and other aluminum alloy scrap materials, low-purity aluminum ingots, etc. are used as melting raw materials as melting materials. When the composition is melted, these other alloy elements are necessarily included. Therefore, in the present invention, it is allowed to contain these other alloy elements as long as the intended effect is not hindered.
(製造方法)
次に、好ましい製造方法や製造条件について以下に説明する。
本発明のアルミニウム合金押出中空形材は、上記組成のアルミニウム合金の鋳造ビレットを、均質化熱処理を施した後、そのままか、または一旦冷却した後再加熱して熱間押出を行う。この際、均質化熱処理を施すことなく、直接加熱して熱間押出を行っても良い。
(Production method)
Next, a preferable manufacturing method and manufacturing conditions will be described below.
The aluminum alloy extruded hollow section of the present invention is subjected to hot extrusion by subjecting a cast billet of an aluminum alloy having the above composition to homogenization heat treatment, or after being cooled and then reheated. At this time, hot extrusion may be performed by direct heating without performing homogenization heat treatment.
均質化熱処理は、400 〜530 ℃の範囲から選択し、1 〜20時間行うのが好ましい。均質化処理温度が530 ℃を越えると、前記Mn、Cr、Zrなどの遷移元素による分散粒子が粗大化して、微細な繊維状組織化や本発明異方性組織化を促進する分散粒子自体の数が不足する。一方、均質化熱処理温度が400 ℃未満と低過ぎると、粗大な晶出物が残存し、押出中空形材を高強度化することが難しくなる。 The homogenization heat treatment is preferably selected from the range of 400 to 530 ° C. and is preferably performed for 1 to 20 hours. When the homogenization treatment temperature exceeds 530 ° C., the dispersed particles due to the transition elements such as Mn, Cr, Zr are coarsened, and the dispersed particles themselves that promote the fine fibrous structure and the anisotropic structure of the present invention are promoted. Insufficient number. On the other hand, if the homogenization heat treatment temperature is too low, less than 400 ° C., coarse crystallized material remains, and it becomes difficult to increase the strength of the extruded hollow profile.
熱間押出も400 ℃以上、500 ℃未満の温度範囲で行うのが好ましい。押出温度が400 ℃未満では、マトリックス中のMgおよびSiの固溶量が少なく、上記直接焼入れや人工時効処理で十分な強度が得られない。一方、押出温度が500 ℃以上では、前記Mn、Cr、Zrなどの遷移元素による分散粒子が粗大化して、微細な繊維状組織化や本発明異方性組織化を促進する分散粒子自体の数が不足しやすく、これらの組織が得られない可能性が高くなる。また、人工時効処理によってもMg2Si 析出物量が減少する可能性が高い。 Hot extrusion is also preferably performed in a temperature range of 400 ° C. or higher and lower than 500 ° C. When the extrusion temperature is less than 400 ° C., the solid solution amount of Mg and Si in the matrix is small, and sufficient strength cannot be obtained by the above direct quenching or artificial aging treatment. On the other hand, when the extrusion temperature is 500 ° C. or higher, the dispersed particles by the transition elements such as Mn, Cr, and Zr are coarsened, and the dispersed particles themselves that promote the fine fibrous structure and the anisotropic structure of the present invention are promoted. The number is likely to be insufficient, and there is a high possibility that these organizations will not be obtained. In addition, the artificial aging treatment is likely to reduce the amount of Mg 2 Si precipitates.
また、熱間押出の押出比は、前記伸びの異方性を有する組織とするために、90%(押出比で10以上) を越えるできるだけ高い値とする。この押出比が低いと、前記上記繊維状組織と、伸びの異方性を有する組織が得られない可能性が高い。 The extrusion ratio of hot extrusion is as high as possible exceeding 90% (extrusion ratio of 10 or more) in order to obtain a structure having the elongation anisotropy. When this extrusion ratio is low, there is a high possibility that the fibrous structure and a structure having anisotropy in elongation cannot be obtained.
この熱間押出直後に、オンラインにて、押出時の高温から水冷あるいは空冷により焼入れる、直接焼入れを行なうことが好ましい。但し、空冷や放冷などで、冷却速度が比較的遅くなった場合、上記繊維状組織を得にくくなる。 Immediately after this hot extrusion, it is preferable to carry out direct quenching online by quenching from the high temperature during extrusion by water cooling or air cooling. However, when the cooling rate is relatively slow due to air cooling or cooling, it is difficult to obtain the fibrous structure.
押出および上記直接焼入れされたアルミニウム合金中空形材について、160 〜230 ℃×1 〜10時間程度の人工時効処理などの調質処理を行う。なお、溶体化および焼入れ処理は、前記した通り、繊維状組織が得られなくなるので、しない方が好ましい。 The extruded and directly quenched aluminum alloy hollow profile is subjected to a tempering treatment such as an artificial aging treatment of 160 to 230 ° C. × 1 to 10 hours. In addition, it is preferable not to perform solution treatment and quenching treatment because a fibrous structure cannot be obtained as described above.
次に、本発明の実施例を説明する。押出製造条件を種々変えて、図1に示すような矩形断面の押出中空形材1 を得た上で、これら押出中空形材1 の組織の伸びの異方性を変えて、圧壊特性 (縦、横) と曲げ加工性を評価した。
Next, examples of the present invention will be described. Various extrusion production conditions were changed to obtain extruded
即ち、組織の伸びの異方性に影響する、成分、均質化熱処理温度、押出温度、押出比、押出後のオンラインでの直接焼き入れ速度を種々変え、押出中空形材1 の組織として、繊維状組織、等軸状組織など、および、これら組織の結晶粒のアスペクト比、を各々変化させ、伸びの異方性を制御、変化させた。
That is, the composition, the homogenization heat treatment temperature, the extrusion temperature, the extrusion ratio, and the on-line direct quenching speed after the extrusion, which affect the anisotropy of the elongation of the structure, were varied, and the structure of the extruded
具体的には、DC鋳造により、表1に示す各6000系成分組成のアルミニウム合金ビレットを溶製し、表2に示す各温度で、共通して4hr の均質化熱処理を行った。続いて、表2に示す各押出温度押出加工を行い、押出直後にオンラインで各々水冷による直接焼入れを行った。ついで、これらの押出材に対し、共通して190 ℃×3 時間の時効処理を施し、各々供試材とした。各例とも共通して、押出速度は5m/ 分、押出比は61、直接焼入れの際の冷却速度は350 ℃/ 秒と、本発明の繊維状組織ならびに異方性組織が得やすい条件とした。 Specifically, aluminum alloy billets having respective 6000-based component compositions shown in Table 1 were melted by DC casting and subjected to 4 hours of homogenization heat treatment at each temperature shown in Table 2. Subsequently, each extrusion temperature extrusion process shown in Table 2 was performed, and immediately after extrusion, each was directly quenched by water cooling. Next, these extruded materials were commonly subjected to an aging treatment of 190 ° C. × 3 hours to obtain test materials. In common with each example, the extrusion speed was 5 m / min, the extrusion ratio was 61, and the cooling rate during direct quenching was 350 ° C./second, making it easy to obtain the fibrous structure and anisotropic structure of the present invention. .
供試材は、各例とも共通して図1 に示す矩形断面の押出中空形材1 であり、長辺が100mm 、短辺が70mm、肉厚が1.5mm であった。
The test material was an extruded
供試材より試験片を採取し、200 倍の光学顕微鏡により組織観察し、視野内の複数の結晶粒の押出方向の長さL1と厚さ方向の長さL2とのアスペクト比L1/L2 を算出して、平均的なアスペクト比を求めた。また、押出方向に対して平行方向に長く伸長する繊維状組織か、結晶粒の押出方向の長さL1と厚さ方向の長さL2との差が顕著では無い等軸状組織かを判別した。これらの結果を表3 に示す。なお、発明例、比較例とも、結晶粒の厚さ方向の長さL2は20μm 以下の微細結晶粒であり、押出材表面の再結晶層の粒径は50μm 以下、厚みは300 μm 以下であった。 A specimen is collected from the specimen, and the structure is observed with a 200 × optical microscope. The aspect ratio L 1 between the length L 1 in the extrusion direction and the length L 2 in the thickness direction of a plurality of crystal grains in the field of view. / L 2 was calculated to obtain an average aspect ratio. Whether the fibrous structure extends long in the direction parallel to the extrusion direction or the equiaxed structure in which the difference between the length L 1 in the extrusion direction and the length L 2 in the thickness direction is not significant. Determined. These results are shown in Table 3. In both the inventive example and the comparative example, the length L 2 in the thickness direction of the crystal grains is fine crystal grains of 20 μm or less, the grain size of the recrystallized layer on the surface of the extruded material is 50 μm or less, and the thickness is 300 μm or less. there were.
供試材より、JIS5号試験片を採取し、JISZ2241に準拠して引張試験を行った。また、クロスヘッド速度は5mm/分で、試験片が破断するまで一定の速度で行った。ただ、本発明の場合、各例の供試材の押出方向に対して45度方向の引張強さ (σB :MPa )、耐力 (σ0.2:MPa ) を測定した。また、伸び(%)は、図1 で前記した通り、矢印で示す押出方向A に対して、45度方向の伸びδ1 、押出方向A に対して平行方向(L方向) の伸びδ2 、押出方向A に対して直角方向の伸びδ3 を各々測定した。そして、45度方向の伸びの異方性を見るため、δ1 / δ2 、δ1 / δ3 を求めた。これらの結果を表3 に示す。 A JIS No. 5 test piece was collected from the test material, and a tensile test was performed in accordance with JISZ2241. The crosshead speed was 5 mm / min, and the test piece was run at a constant speed until the test piece broke. However, in the case of the present invention, the tensile strength (σ B : MPa) and the proof stress (σ 0.2 : MPa) in the direction of 45 degrees with respect to the extrusion direction of the specimens of each example were measured. Further, as described above with reference to FIG. 1, the elongation (%) is the elongation δ 1 in the direction of 45 ° with respect to the extrusion direction A indicated by the arrow, the elongation δ 2 in the direction parallel to the extrusion direction A (L direction), The elongation δ 3 in the direction perpendicular to the extrusion direction A was measured. Then, in order to observe the anisotropy of elongation in the 45 degree direction, δ 1 / δ 2 and δ 1 / δ 3 were obtained. These results are shown in Table 3.
長さ200 mmの供試材を用い、アムスラー試験機にて図2に示すように軸方向に静的圧縮荷重を加え、これを100mm まで圧縮して縦圧壊特性を評価した。縦圧壊特性評価は、圧縮による軸方向の蛇腹状変形部の割れの有無によって行った。この割れ性の評価は目視にて行い、圧縮変形後のサンプルの蛇腹状変形部に、開口割れや微小な割れを含めて割れが全く発生していないものを縦圧壊特性に優れるとして○、微小な割れの発生したものを△、開口割れの発生したものを縦圧壊特性が劣るとして×と、各々評価した。なお、開口割れとは、図1 において閉断面である中空形材1 のいずれかの壁が開口を形成するように割れた場合を意味する。
Using a 200 mm long specimen, a static compressive load was applied in the axial direction as shown in FIG. 2 using an Amsler tester, and this was compressed to 100 mm to evaluate the longitudinal crushing characteristics. The longitudinal crush characteristic evaluation was performed based on the presence or absence of cracks in the axial bellows-shaped deformed portion due to compression. Evaluation of this cracking property is carried out by visual inspection. If the sample has no cracks at the bellows-shaped deformed part of the sample after compression deformation, including opening cracks and minute cracks, A case where an open crack was generated was evaluated as Δ, and a case where an open crack was generated was evaluated as × because the longitudinal crushing property was inferior. Note that the opening crack means a case where any wall of the
同じく長さ200 mmの供試材を用い、図3 に示すように、供試材の長辺側1a、1bが上下になるように横向きに置いて静的圧縮荷重を加え、これを20 mm まで圧縮して横圧壊特性を評価した。横圧壊特性評価は、圧縮による幅方向の形材面 (壁)1d 、1cの外側へ屈曲する変形に際しての、形材面1d、1c屈曲部や、各形材面結合部での割れの有無によって行った。この割れ性の評価は目視にて行った。圧縮後のサンプルに、前記割れが全く発生していないものを横圧壊特性が優れるとして○、微小な前記割れが発生したものを△、大きな前記割れが発生したものを圧壊特性が劣るとして×と各々評価した。
Similarly, using a specimen with a length of 200 mm, as shown in Fig. 3, place the specimen sideways so that the
長さ2000 mm の供試材を用い、図4 に示すドローベンダーによる曲げ加工試験を行なった。曲げ内側半径Rは300mm とした。曲げ加工の際の、機械的なクリアランスは0.1mm とした。曲げ加工後のサンプルの曲げ外側となる図1 の形材面1aの割れや、曲げ内側となる形材面1b面のしわの発生状況を目視にて評価した。曲げ加工後のサンプルに、割れやしわの発生していないものを曲げ加工性が優れるとして○、微小な割れやしわのの発生したものを△、開口割れの発生したものを曲げ加工性が劣るとして×と、各々評価した。
Using a specimen with a length of 2000 mm, a bending test using a draw bender shown in Fig. 4 was performed. The bending inner radius R was 300 mm. The mechanical clearance during bending was set to 0.1 mm. The appearance of cracks on the
表1 〜3 に示す通り、本発明例は、アルミニウム合金押出中空形材が、本発明範囲内の成分組成を有し、均質化熱処理温度や押出温度が好ましい条件範囲内で製造されている。この結果、結晶粒の押出方向の長さL1と厚さ方向の長さL2とのアスペクト比L1/L2 が10を越える( >10) 繊維状組織が得られるとともに、押出方向に対して45度方向の伸びδ1 が、押出方向に対して平行方向の伸びδ2 と押出方向に対して直角方向の伸びδ3 よりも大きく、δ1 とδ2 との比δ1 / δ2 と、δ1 とδ3 との比δ1 / δ3 とが各々1.1 以上であるような異方性を有する組織となっている。このため、曲げ加工性と、縦、横の耐圧壊割れ性に優れている。しかも、この効果が押出材の0.2%耐力が200MPa以上であるような高強度の場合に特に発揮されている。 As shown in Tables 1 to 3, in the examples of the present invention, the aluminum alloy extruded hollow profile has a component composition within the range of the present invention, and the homogenization heat treatment temperature and the extrusion temperature are manufactured within preferable conditions. As a result, the aspect ratio L 1 / L 2 between the length L 1 in the extrusion direction of the crystal grains and the length L 2 in the thickness direction exceeds 10 (> 10). On the other hand, the elongation δ 1 in the direction of 45 degrees is larger than the elongation δ 2 in the direction parallel to the extrusion direction and the elongation δ 3 in the direction perpendicular to the extrusion direction, and the ratio δ 1 / δ of δ 1 and δ 2 2 and a ratio δ 1 / δ 3 of δ 1 and δ 3 are each an anisotropy having an anisotropy of 1.1 or more. For this reason, it is excellent in bending workability and vertical and horizontal pressure cracking resistance. Moreover, this effect is particularly exhibited when the extruded material has a high strength such that the 0.2% proof stress is 200 MPa or more.
これに対して、比較例8 、9 は、アルミニウム合金押出中空形材が、本発明範囲内の成分組成を有しているにもかかわらず、均質化熱処理温度か押出温度が好ましい条件範囲から外れた高い条件で製造されている。この結果、繊維状組織が得られず、アスペク比が小さい等軸状組織しか得られていない。この結果、発明例のような異方性を有さず、伸びδ1 が前記他の方向の伸びよりも小さくなるような異方性を有する組織しか得られていない。このため、曲げ加工性と、縦、横の耐圧壊割れ性が劣っている。 In contrast, in Comparative Examples 8 and 9, the aluminum alloy extruded hollow profile has a component composition within the range of the present invention, but the homogenization heat treatment temperature or the extrusion temperature is out of the preferable condition range. It is manufactured under high conditions. As a result, a fibrous structure cannot be obtained, and only an equiaxed structure with a small aspect ratio is obtained. As a result, only a structure having no anisotropy as in the invention example and anisotropy such that the elongation δ 1 is smaller than the elongation in the other direction is obtained. For this reason, bending workability and the vertical and horizontal pressure cracking resistance are inferior.
また、比較例11〜13は、アルミニウム合金押出中空形材が、本発明範囲外の成分組成であり、製造条件は均質化熱処理温度や押出温度が好ましい条件範囲内で製造されている。この結果、繊維状組織が得られず、アスペク比が小さい等軸状組織しか得られていない。この結果、発明例のような異方性を有さず、やはり、伸びδ1 が前記他の方向の伸びよりも小さくなるような異方性を有する組織しか得られていない。このため、曲げ加工性と、縦、横の耐圧壊割れ性が劣っている。 The ratio Comparative Examples 11 to 13, aluminum alloy extruded hollow shape member is a component composition outside the scope the present invention, production conditions are produced within preferred conditions ranges homogenization heat treatment temperature and the extrusion temperature. As a result, a fibrous structure cannot be obtained, and only an equiaxed structure with a small aspect ratio is obtained. As a result, only the structure having the anisotropy such that the elongation δ 1 is smaller than the elongation in the other direction is obtained, which does not have the anisotropy as in the invention example. For this reason, bending workability and the vertical and horizontal pressure cracking resistance are inferior.
したがって、これら実施例の結果から、本発明の成分組成、組織の要件の臨界的な意義が裏付けられる。
Therefore, the results of these examples support the critical significance of the component composition and organization requirements of the present invention.
以上説明したように、本発明によれば、曲げ加工性を向上させ、曲げ加工性と耐圧壊割れ特性とを両立させた、6000系アルミニウム合金押出中空形材を提供できる。したがって、サイドメンバー、サイドフレーム、バンパ補強材、バンパステイ、ドアビームなどの、曲げ加工性と耐圧壊割れ特性とが要求される自動車用フレーム材などへのアルミニウム合金の用途の拡大を図れる。 As described above, according to the present invention, it is possible to provide a 6000 series aluminum alloy extruded hollow member that improves bending workability and achieves both bending workability and pressure cracking characteristics. Therefore, it is possible to expand the application of aluminum alloy to automobile frame materials that require bending workability and pressure cracking resistance, such as side members, side frames, bumper reinforcements, bumper stays, and door beams.
1:アルミニウム合金中空形材、A:押出方向、B:曲げ方向、
X1:45度方向の引張試験片、 X2:平行方向の引張試験片、
X3 直角方向の引張試験片、
1: Aluminum alloy hollow shape, A: extrusion direction, B: bending direction,
X 1 : Tensile specimen in 45 ° direction, X 2 : Tensile specimen in parallel direction,
X 3 perpendicular tensile test specimen,
Claims (3)
The Al-Mg-Si-based aluminum alloy contains Mg: 0.4 to 1.0%, Si: 0.4 to 1.0%, Cu: 0.001 to 1.0%, and Mn: 0.05 to 0.40%, Cr 0.05 in mass%. Aluminum alloy extrusion excellent in bending workability and pressure cracking resistance according to claim 1 or 2, comprising at least one of ˜0.20% and Zr: 0.05 to 0.20%, the balance being Al and inevitable impurities Hollow profile.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003338045A JP4203393B2 (en) | 2003-09-29 | 2003-09-29 | Aluminum alloy extruded hollow shape with excellent bending workability and pressure cracking resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003338045A JP4203393B2 (en) | 2003-09-29 | 2003-09-29 | Aluminum alloy extruded hollow shape with excellent bending workability and pressure cracking resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005105317A JP2005105317A (en) | 2005-04-21 |
JP4203393B2 true JP4203393B2 (en) | 2008-12-24 |
Family
ID=34533689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003338045A Expired - Fee Related JP4203393B2 (en) | 2003-09-29 | 2003-09-29 | Aluminum alloy extruded hollow shape with excellent bending workability and pressure cracking resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4203393B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005060297A1 (en) * | 2005-11-14 | 2007-05-16 | Fuchs Kg Otto | Energieabsorbtionsbauteil |
JP5473718B2 (en) * | 2010-03-30 | 2014-04-16 | 株式会社神戸製鋼所 | Aluminum alloy extruded material with excellent bending crushability and corrosion resistance |
WO2019171818A1 (en) * | 2018-03-05 | 2019-09-12 | 昭和電工株式会社 | Al-Mg-Si-BASED ALUMINUM ALLOY HOLLOW EXTRUDED MATERIAL AND METHOD FOR PRODUCING SAME |
CN112281031A (en) * | 2020-10-30 | 2021-01-29 | 辽宁忠旺集团有限公司 | Al-Mg-Si series multi-element aluminum alloy plate and preparation method thereof |
JP7439994B2 (en) * | 2021-06-14 | 2024-02-28 | 株式会社レゾナック | Aluminum alloy extrusion material and its manufacturing method |
CN115029591B (en) * | 2022-05-11 | 2023-05-26 | 宁波信泰机械有限公司 | 6-series aluminum alloy profile with good bending property and preparation method thereof |
-
2003
- 2003-09-29 JP JP2003338045A patent/JP4203393B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005105317A (en) | 2005-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2157200B1 (en) | Al-Mg-Si aluminum alloy extruded product exhibiting excellent fatigue strength and impact fracture resistance | |
CN106605004B (en) | High strength products extruded from 6xxx aluminum alloys having excellent impact properties | |
JP5366748B2 (en) | Aluminum alloy extruded material with excellent bending crushability and corrosion resistance | |
US20070074791A1 (en) | High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same | |
WO2016140335A1 (en) | Aluminum alloy plate | |
JP4942372B2 (en) | Aluminum alloy extrusion for electromagnetic forming | |
JP5473718B2 (en) | Aluminum alloy extruded material with excellent bending crushability and corrosion resistance | |
JP2014198899A (en) | Aluminum alloy plate for structural material | |
CN111989415B (en) | 6XXX aluminum alloys for extrusions having excellent impact properties and high yield strength, and methods of making the same | |
US20090028743A1 (en) | Forming magnesium alloys with improved ductility | |
WO2015141647A1 (en) | Aluminum alloy sheet for structural material | |
JP2017088906A (en) | Aluminum alloy sheet for automobile structural member and manufacturing method therefor | |
JP6329430B2 (en) | High yield strength Al-Zn aluminum alloy extruded material with excellent bendability | |
JP2011074470A (en) | Aluminum alloy extruded form with excellent bending crushability and corrosion resistance | |
JP4203393B2 (en) | Aluminum alloy extruded hollow shape with excellent bending workability and pressure cracking resistance | |
JP2008062255A (en) | SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET | |
JP6005539B2 (en) | Method for producing high strength 7000 series aluminum alloy member | |
JP2005240083A (en) | Method for molding aluminum alloy material | |
JP5288671B2 (en) | Al-Mg-Si-based aluminum alloy extruded material with excellent press workability | |
JP3077974B2 (en) | Al-Mg-Si based aluminum alloy extruded material with excellent axial crushing properties | |
JP4993170B2 (en) | Aluminum alloy extruded shape having excellent impact absorption characteristics and good hardenability, and method for producing the same | |
JP2022156481A (en) | Aluminum alloy extruded material and manufacturing method thereof | |
JP3766334B2 (en) | Aluminum alloy plate with excellent bending workability | |
JP4052641B2 (en) | Aluminum alloy having excellent impact absorption characteristics and good hardenability and extrudability, and method for producing the same | |
JP4588338B2 (en) | Aluminum alloy sheet with excellent bending workability and press formability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050922 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070703 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081007 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081010 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4203393 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111017 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111017 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121017 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131017 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |