JP2017088906A - Aluminum alloy sheet for automobile structural member and manufacturing method therefor - Google Patents

Aluminum alloy sheet for automobile structural member and manufacturing method therefor Download PDF

Info

Publication number
JP2017088906A
JP2017088906A JP2015215541A JP2015215541A JP2017088906A JP 2017088906 A JP2017088906 A JP 2017088906A JP 2015215541 A JP2015215541 A JP 2015215541A JP 2015215541 A JP2015215541 A JP 2015215541A JP 2017088906 A JP2017088906 A JP 2017088906A
Authority
JP
Japan
Prior art keywords
plate
aluminum alloy
treatment
content
crushability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015215541A
Other languages
Japanese (ja)
Other versions
JP6506678B2 (en
Inventor
貴浩 橋本
Takahiro Hashimoto
貴浩 橋本
貴彦 中村
Takahiko Nakamura
貴彦 中村
高木 康夫
Yasuo Takagi
康夫 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015215541A priority Critical patent/JP6506678B2/en
Priority to CN201610711238.4A priority patent/CN106636786B/en
Priority to US15/336,322 priority patent/US20170121801A1/en
Publication of JP2017088906A publication Critical patent/JP2017088906A/en
Application granted granted Critical
Publication of JP6506678B2 publication Critical patent/JP6506678B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a 6000 series aluminum alloy sheet suitable for an automobile structural member.SOLUTION: Mg amount and Si amount of an Al-Mg-Si-based aluminum alloy sheet is balanced with a specific relation, especially Cube direction is increased as an aggregate structure in a surface area of the sheet, yield ratio of the sheet is reduced, the sheet is made with high strength with 0.2% bearing force of 220 MPa, which is necessary as an automobile structural member and crushability by a VDA flexure test shown in the Figure 1 is enhanced.SELECTED DRAWING: Figure 1

Description

本発明は、通常の圧延(常法)によって製造される6000系アルミニウム合金板であって、圧壊性に優れた高強度6000系自動車構造部材用アルミニウム合金板およびその製造方法に関するものである。
本発明で言うアルミニウム合金板とは、熱間圧延板や冷間圧延板などの圧延板であり、溶体化処理および焼入れ処理などの調質が施された後であって、使用される自動車構造部材に成形され、塗装焼付硬化処理などの人工時効硬化処理される前の、素材アルミニウム合金板を言う。また、以下の記載ではアルミニウムをアルミやAlとも言う。
The present invention relates to a 6000 series aluminum alloy plate produced by ordinary rolling (ordinary method) and having excellent crushability, and relates to a method for producing the same.
The aluminum alloy sheet referred to in the present invention is a rolled sheet such as a hot-rolled sheet or a cold-rolled sheet, and after being subjected to tempering such as a solution treatment and a quenching process, the automobile structure used The material aluminum alloy plate before being formed into a member and subjected to artificial age hardening such as paint baking hardening. In the following description, aluminum is also referred to as aluminum or Al.

近年、地球環境などへの配慮から、自動車車体の軽量化の社会的要求はますます高まってきている。かかる要求に答えるべく、自動車車体のうち、パネル(フード、ドア、ルーフなどのアウタパネル、インナパネル)や、バンパリーンフォース(バンパーR/F)やドアビームなどの補強材などの部分に、それまでの鋼板等の鉄鋼材料に代えて、アルミニウム合金材料を適用することが行われている。   In recent years, due to consideration for the global environment, social demands for reducing the weight of automobile bodies are increasing. In order to meet such demands, parts of automobile bodies such as panels (outer panels such as hoods, doors and roofs, inner panels), reinforcements such as bumper force (bumper R / F) and door beams, etc. An aluminum alloy material is applied instead of a steel material such as a steel plate.

自動車車体の更なる軽量化のためには、自動車部材のうちでも特に軽量化に寄与する、サイドメンバー等のメンバ、フレーム類や、ピラーなどの自動車構造部材にも、アルミニウム合金材の適用を拡大することが必要となる。ただ、これら自動車構造部材には、前記自動車パネル材に比べて、素材板の更なる高強度化や、車体衝突時の衝撃吸収性や乗員の保護にもつながる、圧壊性(耐圧壊性、圧壊特性)を新たな特性として付与することが必要である。   In order to further reduce the weight of automobile bodies, the use of aluminum alloy materials has been expanded to include members such as side members, frames, and automobile structural members such as pillars that contribute to weight reduction. It is necessary to do. However, these automotive structural members have a higher level of strength compared to the above-mentioned automotive panel materials, impact resistance in case of a vehicle collision, and protection of passengers. Characteristic) as a new characteristic.

この点で、自動車構造部材のうちの前記補強材として、JIS乃至AA7000系アルミニウム合金を熱間押出加工して製造される押出形材が、素材として既に汎用されている。これに対して、前記メンバ、フレーム、ピラーなどの大型の自動車構造部材は、鋳塊を均熱処理後に熱間圧延する、あるいは更に冷間圧延するような、圧延板を素材とすることが好ましい。ただ、前記した7000系アルミニウム合金は、圧延板としては、高強度で成形性に劣るため、これまであまり実用化されていない。   In this respect, an extruded profile produced by hot extrusion of a JIS or AA7000 series aluminum alloy has already been widely used as the reinforcing material of the automobile structural member. On the other hand, it is preferable that a large-sized automobile structural member such as the member, frame, pillar, or the like is made of a rolled plate such that the ingot is hot-rolled after soaking or further cold-rolled. However, the above-described 7000 series aluminum alloy has not been practically used so far because it has high strength and poor formability as a rolled sheet.

このため、通常の圧延(常法)によって製造される圧延板用の合金としては、前記7000系よりも低強度で成形性に優れる、Al−Mg−Si系アルミニウム合金である、JIS乃至AA6000系アルミニウム合金が注目される。   For this reason, as an alloy for a rolled sheet manufactured by ordinary rolling (ordinary method), it is an Al—Mg—Si aluminum alloy having a lower strength and better formability than the 7000 series, and is a JIS to AA6000 series. Aluminum alloys are noted.

ただ、前記補強材には、従来から6000系アルミニウム合金押出形材が提案され、実用化されているものの、圧延板では、あまり提案例がない。
板の組織として、結晶粒のサイズやアスペクト比を制御し、人工時効処理後の耐力を230MPa以上とした、圧壊性を高めた6000系アルミニウム合金板が、特許文献1などで提案されている程度である。
However, although a 6000 series aluminum alloy extruded shape has been proposed and put to practical use as the reinforcing material, there are not many proposals for rolled plates.
The extent to which a 6000 series aluminum alloy plate with improved crushability, in which the grain size and aspect ratio are controlled as the structure of the plate and the yield strength after artificial aging treatment is 230 MPa or more, is proposed in Patent Document 1 and the like It is.

この一方で、6000系アルミニウム合金板は、自動車の大型ボディパネル(フード、フェンダー、ドア、ルーフ、トランクリッドなどのアウタパネルやインナパネル)としては既に用いられている。
このため、これら自動車の大型ボディパネルに要求される、プレス成形性とBH性(ベークハード性)との兼備や向上のために、従来から、成分組成や組織、あるいは集合組織などの冶金的な改善策が、数多く提案されている。
On the other hand, 6000 series aluminum alloy plates are already used as large body panels (outer panels and inner panels such as hoods, fenders, doors, roofs and trunk lids) of automobiles.
For this reason, in order to combine and improve the press formability and BH property (bake hardness) required for large body panels of these automobiles, conventionally, metallurgical such as component composition, structure, or texture Many improvements have been proposed.

例えば、特許文献2では、前記パネル材として、プレス成形加工時の、フラットヘム加工などの曲げ加工性を向上させるために、集合組織のCube方位の方位密度を20以上に高めることが提案されている。   For example, Patent Document 2 proposes to increase the orientation density of the Cube orientation of the texture to 20 or more in order to improve bending workability such as flat hem processing at the time of press forming as the panel material. Yes.

特開2001−294965号公報JP 2001-294965 A 特許第5148930号公報Japanese Patent No. 5148930

ただ、従来の集合組織のCube方位の方位密度や平均面積率を高めた6000系アルミニウム合金板は、前記自動車パネル用の素材である。
一方、本発明が用途とする、前記したメンバ、フレーム、ピラーなどの自動車構造部材では、前記した通り、このような自動車パネル用途とは違って、更なる高強度化や、圧壊性を新たに持たせた上での、プレス成形性や耐食性などの、この用途特有の諸特性の兼備が要求される。
However, the conventional 6000 series aluminum alloy plate having an increased orientation density and average area ratio in the Cube orientation of the texture is a material for the automobile panel.
On the other hand, in the above-described automotive structural members such as members, frames, and pillars, which are used by the present invention, as described above, unlike such automotive panel uses, further enhancement of strength and crushability are newly added. It is necessary to combine various properties peculiar to this application such as press formability and corrosion resistance.

この圧壊性の一例として、近年の自動車の衝突安全基準のレベルアップ(厳格化)によって、ヨーロッパなどでは、前記フレーム、ピラーなどの自動車構造部材に、ドイツ自動車工業会(VDA)で規格化されている「VDA238−100 Plate bending test for metallic materials(以後、VDA曲げ試験と言う)」にて評価される、圧壊性を満たすことが求められるようになっている。   As an example of this collapsibility, in recent years the standardization of automobile collision safety standards has been standardized by the German Automobile Manufacturers Association (VDA) for automobile structural members such as frames and pillars in Europe. Satisfying the crushability evaluated by “VDA 238-100 Plate Bending Test for Metallic Materials” (hereinafter referred to as “VDA bending test”).

これに対して、従来の自動車パネル用の6000系アルミニウム合金板における、プレス成形加工時の曲げ加工性の向上のため、板表面のCube方位の方位密度や面積率を高めることが、果たして、圧壊性の向上に対して有効かどうかは不明である。   On the other hand, in order to improve the bending workability at the time of press forming in a conventional 6000 series aluminum alloy plate for an automobile panel, increasing the orientation density and the area ratio of the Cube orientation on the surface of the plate has been achieved. It is unclear whether it is effective for improving sex.

ちなみに、圧壊性向上を目的とした前記特許文献1における、圧壊性の評価は180°曲げ試験後の割れの有無により行っている。板の圧壊性の評価試験としての前記VDA曲げ試験は、この自動車衝突時の圧壊性と相関性があることが知られている。圧壊性の優劣を曲げ角度で表せるVDA曲げ試験は、定量的評価であり、より適切に圧壊性を表現できる。   Incidentally, the evaluation of the crushability in Patent Document 1 for the purpose of improving the crushability is performed based on the presence or absence of a crack after the 180 ° bending test. It is known that the VDA bending test as an evaluation test of the crushability of the plate has a correlation with the crushability at the time of the automobile collision. The VDA bending test that can express the superiority or inferiority of the crushability by the bending angle is a quantitative evaluation, and can express the crushability more appropriately.

このような状況に鑑み、本発明の目的は、通常の圧延によって製造される6000系アルミニウム合金板を、高強度化させ、圧壊性を新たに持たせた上で、プレス成形性や耐食性を持たせるなど、自動車構造部材用途に特有の諸特性を兼備させることである。   In view of such a situation, the object of the present invention is to increase the strength of a 6000 series aluminum alloy plate produced by ordinary rolling, and to provide a new crushing property, and has press formability and corrosion resistance. It is to combine various characteristics peculiar to the use of automobile structural members.

この目的を達成するために、本発明の耐圧壊性に優れた自動車構造部材用アルミニウム合金板の要旨は、質量%で、Mg:0.3〜1.0%、Si:0.5〜1.2%、Cu:0.08〜0.20%を各々含み、かつ、前記Mgの含有量[Mg]と、前記Siの含有量[Si]とが、 [Si]/[Mg] ≧0.7と、1.4%≦1.3[Mg]+[Si]≦1.9%との関係を各々満足し、残部がAl及び不可避不純物からなり、板厚が2.0mm以上であるAl−Mg−Si系アルミニウム合金板であって、この板の表面から前記板厚の10%の深さまでの表面領域におけるCube方位の平均面積率が22%以上、およびこの板の降伏比が0.63以下であるとともに、前記アルミニウム合金板を2%のストレッチ後に180℃20分の人工時効処理した後の特性として、0.2%耐力が220MPa以上、およびVDA曲げ試験での曲げ角度が60°以上である圧壊性を有することとする。   In order to achieve this object, the gist of the aluminum alloy plate for automobile structural members excellent in the pressure-resistant fracture resistance of the present invention is mass%, Mg: 0.3-1.0%, Si: 0.5-1 0.2% and Cu: 0.08 to 0.20%, respectively, and the Mg content [Mg] and the Si content [Si] are [Si] / [Mg] ≧ 0 .7 and 1.4% ≦ 1.3 [Mg] + [Si] ≦ 1.9%, respectively, the balance is made of Al and inevitable impurities, and the plate thickness is 2.0 mm or more. An Al—Mg—Si-based aluminum alloy plate having an average area ratio of Cube orientation of 22% or more in a surface region from the surface of the plate to a depth of 10% of the plate thickness, and a yield ratio of the plate of 0 And after the aluminum alloy sheet was subjected to artificial aging treatment at 180 ° C. for 20 minutes after stretching by 2%. As properties, a 0.2% proof stress above 220 MPa, and the bending angle at the VDA bending test is to have a crush resistance is 60 ° or more.

また、上記目的を達成するために、本発明の耐圧壊性に優れた自動車構造部材用アルミニウム合金板の製造方法の要旨は、質量%で、Mg:0.3〜1.0%、Si:0.5〜1.2%、Cu:0.08〜0.20%を各々含み、かつ、前記Mgの含有量[Mg]と、前記Siの含有量[Si]とが、 [Si]/[Mg] ≧0.7と、1.4%≦1.3[Mg]+[Si]≦1.9%との関係を各々満足し、残部がAl及び不可避不純物からなるAl−Mg−Si系アルミニウム合金鋳塊を、均質化熱処理後に圧延して、板厚が2.0mm以上の圧延板とし、この圧延板に対して、540〜570℃の範囲で0.1〜30秒間保持する溶体化処理と焼入れ処理とを連続的に行い、前記焼入れ処理の終了後10分以内に、再加熱処理を行って素材温度が60〜90℃の範囲に3〜20時間保持して、自動車構造部材用アルミニウム合金板となし、この板の組織および特性として、この板の表面から前記板厚の10%の深さまでの表面領域におけるCube方位の平均面積率を22%以上、およびこの板の降伏比を0.63以下とするとともにし、この板を2%のストレッチした後に180℃20分の人工時効処理した後の特性として、0.2%耐力を220MPa以上、およびVDA曲げ試験での曲げ角度を60°以上とした圧壊性を有するようにしたことである。   Moreover, in order to achieve the said objective, the summary of the manufacturing method of the aluminum alloy plate for motor vehicle structural members excellent in the fracture resistance of this invention is the mass%, Mg: 0.3-1.0%, Si: 0.5 to 1.2% and Cu: 0.08 to 0.20%, respectively, and the Mg content [Mg] and the Si content [Si] are [Si] / Al—Mg—Si satisfying the relationship of [Mg] ≧ 0.7 and 1.4% ≦ 1.3 [Mg] + [Si] ≦ 1.9%, the balance being Al and inevitable impurities The aluminum alloy ingot is rolled after homogenization heat treatment to obtain a rolled plate having a plate thickness of 2.0 mm or more, and the solution is held for 0.1 to 30 seconds in the range of 540 to 570 ° C. with respect to this rolled plate The material temperature is 60 to 90 by performing reheating treatment within 10 minutes after completion of the quenching treatment. Cubic orientation in the surface region from the surface of the plate to a depth of 10% of the plate thickness is made as an aluminum alloy plate for automobile structural members by holding in the range of ° C for 3 to 20 hours. The average area ratio is 22% or more, the yield ratio of this plate is 0.63 or less, and the plate is stretched 2% and then subjected to artificial aging treatment at 180 ° C. for 20 minutes. The 2% proof stress is 220 MPa or more, and the bending angle in the VDA bending test is 60 ° or more.

本発明では、従来のアルミニウム合金組成や製造条件を大きく変えないことを前提に、6000系アルミニウム合金板の合金組成として、MgとSiの含有量バランスや集合組織と、自動車構造部材用途に特有の前記諸特性との関係を改めて見直した。
この結果、MgとSiの含有量をバランスさせることや、Cube方位面積率を増加させるなどして、更なる高強度化や、圧壊性を新たに持たせた上で、プレス成形性や耐食性などの、この用途特有の諸特性の兼備できることを知見した。
本発明によれば、自動車構造部材用に好適な6000系アルミニウム合金板を、常法によって得ることができる。
In the present invention, on the assumption that the conventional aluminum alloy composition and manufacturing conditions are not greatly changed, the alloy composition of the 6000 series aluminum alloy sheet is specific to the balance of Mg and Si content and texture, and the use of automobile structural members. The relationship with the above characteristics was reviewed again.
As a result, it is possible to balance the contents of Mg and Si, increase the Cube orientation area ratio, etc., and further increase the strength and crushability, and then press formability and corrosion resistance. It has been found that various properties peculiar to this use can be combined.
According to the present invention, a 6000 series aluminum alloy plate suitable for automobile structural members can be obtained by a conventional method.

圧壊性を評価するVDA曲げ試験の態様を示す斜視図である。It is a perspective view which shows the aspect of the VDA bending test which evaluates crushability. 図1のポンチの正面および側面図である。It is the front and side view of the punch of FIG.

以下に、本発明の実施の形態につき、要件ごとに具体的に説明する。
その前提として、本発明のAl−Mg−Si系(以下、6000系とも言う)アルミニウム合金板は、その用途が、従来の自動車パネル材ではなく、前記自動車構造部材である。
このため、この自動車構造部材(以下、単に構造部材とも記載)の要求特性として、前記した従来の自動車パネル材には無い、圧壊性に優れるともに、降伏比が低く複雑な形状に加工することができ、高ベーク後耐力で高耐粒界腐食性である諸特性を満足および両立させるものである。これらの特性のどれが欠けても、構造部材としては適用できない。
Hereinafter, embodiments of the present invention will be specifically described for each requirement.
As a premise thereof, the use of the Al—Mg—Si-based (hereinafter also referred to as 6000-based) aluminum alloy plate of the present invention is not the conventional automotive panel material but the automotive structural member.
For this reason, as a required characteristic of this automobile structural member (hereinafter, also simply referred to as a structural member), the above-described conventional automobile panel material has excellent crushability and can be processed into a complicated shape with a low yield ratio. It is possible to satisfy and satisfy various properties of high inter-bake strength and high intergranular corrosion resistance. Any of these characteristics is not applicable as a structural member.

これらの構造部材の要求特性とは、より具体的には、降伏比が0.63以下のプレス成形性を有し、前記アルミニウム合金板を2%のストレッチ後に180℃20分の人工時効処理した後の特性として、220MPa以上の0.2%耐力となるBH性を有するとともに、VDA曲げ試験にて60°以上の曲げ角度となる圧壊性を有しているものと規定できる。
そして、より好ましくは、前記アルミニウム合金板の前記Cube方位の平均面積率が35%以上であるとともに、前記VDA曲げ試験にて90°以上の曲げ角度となる圧壊性を有しているものとする。
More specifically, the required characteristics of these structural members have a press formability with a yield ratio of 0.63 or less, and the aluminum alloy sheet was subjected to artificial aging treatment at 180 ° C. for 20 minutes after stretching 2%. As the later characteristics, it can be defined as having a BH property of 0.2% proof stress of 220 MPa or more and a crushing property of a bending angle of 60 ° or more in the VDA bending test.
More preferably, the average area ratio of the Cube orientation of the aluminum alloy plate is 35% or more, and the aluminum alloy plate has a crushing property with a bending angle of 90 ° or more in the VDA bending test. .

したがって、以下の本発明の要件の説明は、これら構造部材用とし、具体的な要求特性を満足および両立させるために意義づけられているものである。   Therefore, the following description of the requirements of the present invention is intended for these structural members and is meaningful in order to satisfy and satisfy specific required characteristics.

化学成分(合金)組成:
本発明では、前記構造部材の要求特性を組成の面から満たすようにするため、Al−Mg−Si系(以下、6000系とも言う)アルミニウム合金板の組成を、質量%で、Mg:0.3〜1.0%、Si:0.5〜1.2%、Cu:0.08〜0.20%、を各々含み、かつ、前記Mgの含有量[Mg]と、前記Siの含有量[Si]が、[Si]/[Mg] ≧0.7と、1.4%≦1.3[Mg]+[Si]≦1.9%との関係を各々満足し、残部がAl及び不可避不純物からなるものとする。
Chemical composition (alloy) composition:
In the present invention, in order to satisfy the required characteristics of the structural member from the viewpoint of composition, the composition of the Al—Mg—Si-based (hereinafter also referred to as 6000-based) aluminum alloy plate is expressed in terms of mass%, Mg: 0.00. 3 to 1.0%, Si: 0.5 to 1.2%, Cu: 0.08 to 0.20%, respectively, and the Mg content [Mg] and the Si content [Si] satisfies [Si] / [Mg] ≧ 0.7 and 1.4% ≦ 1.3 [Mg] + [Si] ≦ 1.9%, with the balance being Al and It shall consist of inevitable impurities.

上記6000系アルミニウム合金における、各元素の含有範囲と意義、あるいは許容量について以下に説明する。なお、各元素の含有量の%表示は全て質量%の意味である。   The content range and significance of each element in the 6000 series aluminum alloy, or the allowable amount will be described below. In addition,% display of content of each element means the mass% altogether.

Mg:0.3〜1.0%
MgはSiとともに、焼付け塗装処理などの人工時効処理時に、Mg2Siなどの化合物相を形成し、この化合物相が析出することで強度を高める。
Mgの含有量が0.3%未満と少なすぎると、十分な強度が得られない。
一方、Mgの含有量が1.0%を超えて多すぎると、Mg2Si等の化合物相が鋳造時及び溶体化焼入れ処理時に、粗大な粒子として晶出又は析出して微小な破壊の起点として働く。このため、破断限界が低下することで降伏比が増加し、プレス成形性が低下する。
従って、Mgの含有量は0.3〜1.0%とする。
Mg: 0.3-1.0%
Mg, together with Si, forms a compound phase such as Mg 2 Si during an artificial aging treatment such as a baking coating treatment, and the strength is increased by precipitation of this compound phase.
If the Mg content is too low, less than 0.3%, sufficient strength cannot be obtained.
On the other hand, if the Mg content exceeds 1.0% and is too large, a compound phase such as Mg 2 Si crystallizes or precipitates as coarse particles during casting and solution hardening treatment, and the origin of minute fracture Work as. For this reason, the yield ratio increases and the press formability decreases due to a decrease in the fracture limit.
Therefore, the Mg content is set to 0.3 to 1.0%.

Si:0.5〜1.2%
SiもMgとともに、焼付け塗装処理などの人工時効処理時に、Mg2Siなどの化合物相を形成し、この化合物相が析出することで強度を高める。
Siの含有量が0.5%未満と少なすぎると、十分な強度が得られない。
一方、Siの含有量が1.2%を超えて多すぎると、Mg2Si等の化合物相が鋳造時及び溶体化焼入れ処理時に、粗大な粒子として晶出又は析出して微小な破壊の起点として働く。このため、破断限界が低下することで降伏比が増加し、プレス成形性が低下する。
従って、Siの含有量は0.5〜1.2%とする。
Si: 0.5-1.2%
Si, together with Mg, forms a compound phase such as Mg 2 Si during artificial aging treatment such as baking coating treatment, and the compound phase precipitates to increase the strength.
If the Si content is too low, less than 0.5%, sufficient strength cannot be obtained.
On the other hand, if the Si content exceeds 1.2% and the compound phase such as Mg 2 Si is crystallized or precipitated as coarse particles during casting and solution hardening, the origin of minute fracture Work as. For this reason, the yield ratio increases and the press formability decreases due to a decrease in the fracture limit.
Therefore, the Si content is 0.5 to 1.2%.

Mgの含有量[Mg]とSiの含有量[Si]
Mgの含有量とSiの含有量とは、前記した各々の含有量の他に、組成面でプレス成形性や圧壊性を向上させるためには、両者のバランスが重要である。
この点で、前記Mgの含有量[Mg]と、前記Siの含有量[Si]とが、[Si]/[Mg] ≧0.7と、1.4%≦1.3[Mg]+[Si]≦1.9%との関係を各々満足するようにする。
Mg content [Mg] and Si content [Si]
The content of Mg and the content of Si, in addition to the above-mentioned respective contents, are important in order to improve press formability and crushability in terms of composition.
In this regard, the Mg content [Mg] and the Si content [Si] are [Si] / [Mg] ≧ 0.7 and 1.4% ≦ 1.3 [Mg] + The relationship of [Si] ≦ 1.9% is satisfied.

[Si]/[Mg] ≧0.7
Si含有量がより多く、Mgの含有量がより少ない方が、Siが母相に固溶することによる固溶強化により、加工硬化能が向上し、降伏比が低下し、プレス成形性が向上する。
[Si]/[Mg]が0.7未満では、十分な加工硬化能が得られず、降伏比は増加するため、プレス成形性が低下する。
従って、[Si]/[Mg]は0.7以上とする。また、[Si]/[Mg]は1.8以上であれば、さらに降伏比が低くなり、プレス成形性が向上するので、好ましくは、[Si]/[Mg]は1.8以上とする。
[Si] / [Mg] ≧ 0.7
The higher the Si content and the lower the Mg content, the higher the work hardening ability, the lower the yield ratio, and the higher the press formability due to the solid solution strengthening due to the solid solution of Si in the matrix. To do.
When [Si] / [Mg] is less than 0.7, sufficient work hardening ability cannot be obtained, and the yield ratio increases, so that press formability is lowered.
Accordingly, [Si] / [Mg] is set to 0.7 or more. In addition, if [Si] / [Mg] is 1.8 or more, the yield ratio is further reduced and press formability is improved. Preferably, [Si] / [Mg] is 1.8 or more. .

1.4%≦1.3[Mg]+[Si]≦1.9%
SiとMgは、ベークハード(人工時効硬化処理)後に、強化相となるβ’’相を形成し、この化合物相が析出することで強度を高める。
しかし、MgやSiを含有しすぎると、Mg2Si等の化合物相が鋳造時及び溶体化焼入れ処理時に、粗大な粒子として晶出又は析出して微小な破壊の起点として働くため、圧壊性を大きく低下させる。これらの晶出状態又は析出状態は、SiとMgの含有量に依存する。
1.3[Mg+[Si]が1.4%未満では、十分なBH性(ベーク後耐力)を得ることができない。
一方、1.3[Mg]+[Si]が1.9%を超えると、鋳造時及び焼入れ処理時に粗大粒として晶出又は析出し、圧壊性が著しく低下する。
従って、1.3[Mg](=1.3×Mg含有量の意味)+[Si](Si含有量の意味)は1.4〜1.9%の範囲、好ましくは、1.6〜1.9%の範囲とする。
1.4% ≦ 1.3 [Mg] + [Si] ≦ 1.9%
Si and Mg form a β ″ phase that becomes a strengthening phase after baking hard (artificial age hardening treatment), and this compound phase precipitates to increase the strength.
However, if it contains too much Mg or Si, the compound phase such as Mg 2 Si crystallizes or precipitates as coarse particles during casting and solution hardening treatment, and acts as a starting point for minute fractures. Decrease greatly. These crystallization states or precipitation states depend on the contents of Si and Mg.
If 1.3 [Mg + [Si] is less than 1.4%, sufficient BH properties (bake strength after baking) cannot be obtained.
On the other hand, if 1.3 [Mg] + [Si] exceeds 1.9%, it crystallizes or precipitates as coarse grains during casting and quenching, and the crushability is significantly reduced.
Therefore, 1.3 [Mg] (= 1.3 × meaning Mg content) + [Si] (meaning Si content) is in the range of 1.4 to 1.9%, preferably 1.6 to The range is 1.9%.

Cu:0.08〜0.20%
Cuは、マトリックスに固溶して、固溶強化により、加工硬化能を向上させて、降伏比を減少させ、プレス成形性を向上させる。
しかし、0.20%を超えて、過剰にCuを含有すると、時効析出とともに粒界近傍にCuの溶質欠乏層PFZが形成され、腐食環境にて、粒内より電位的に卑なその層が選択的に溶解し、耐粒界腐食性が劣化する。
一方で、Cu含有量が0.08%より少ないと、十分な加工硬化能が得られず、降伏比を減少させられずに、プレス成形性が低下する。
従って、Cuの含有量は0.08〜0.20%の範囲とする。
Cu: 0.08 to 0.20%
Cu dissolves in the matrix and improves the work hardening ability by solid solution strengthening, reduces the yield ratio, and improves the press formability.
However, if the Cu content exceeds 0.20%, Cu solute-deficient layer PFZ is formed in the vicinity of the grain boundary along with aging precipitation, and in the corrosive environment, the layer that is lower in potential than the inside of the grain is formed. It dissolves selectively and the intergranular corrosion resistance deteriorates.
On the other hand, if the Cu content is less than 0.08%, sufficient work hardening ability cannot be obtained, and the yield ratio cannot be reduced, and the press formability is lowered.
Therefore, the Cu content is in the range of 0.08 to 0.20%.

その他の元素
その他の元素は、本発明では、基本的に不純物であり、スクラップなど、鋳塊の溶解原料などから含有される場合の許容量として、以下の上限量とする。なお、下記上限規定には0%を含む。
Mn:1.0%以下、Fe:0.5%以下、Cr:0.3%以下、Zr:0.2%以下、V:0.2%以下、Ti:0.1%以下、Zn:0.5%以下、Ag:0.1%以下、Sn:0.15%以下。
Other Elements In the present invention, other elements are basically impurities, and the following upper limit is set as an allowable amount when contained from a melting raw material of an ingot such as scrap. The following upper limit regulations include 0%.
Mn: 1.0% or less, Fe: 0.5% or less, Cr: 0.3% or less, Zr: 0.2% or less, V: 0.2% or less, Ti: 0.1% or less, Zn: 0.5% or less, Ag: 0.1% or less, Sn: 0.15% or less.

BH性(ベークハード性、人工時効硬化性):
自動車構造部材としての必要な強度、剛性を有するために、アルミニウム合金板を、再現性のために、2%のストレッチ後に180℃20分の特定条件にて、人工時効硬化処理(以下、単に時効処理とも言う)した後の、BH性を規定する。
自動車構造部材として、BH性は高いほど良いが、本発明では、220MPa以上の0.2%耐力となるBH性を有するものを合格とする。
BH property (bake hard property, artificial age hardening):
In order to have the necessary strength and rigidity as an automotive structural member, an aluminum alloy plate is subjected to artificial age hardening treatment (hereinafter simply referred to as aging) under specific conditions at 180 ° C. for 20 minutes after stretching 2% for reproducibility. BH property is defined after the processing.
As an automobile structural member, the higher the BH property, the better. However, in the present invention, a material having a BH property of 0.2 MPa proof stress of 220 MPa or more is regarded as acceptable.

降伏比:
降伏比が低いということは、引張強さに対する耐力が低いことを示す。耐力に対する引張強さが高いほど破断限界が高く、引張強さに対する耐力が低いほど、スプリングバック量が小さく、プレス成形性が向上する。したがって、複雑な構造部材形状に加工することができる、プレス成形性を有するために、降伏比は0.63以下とする。
Yield ratio:
A low yield ratio indicates a low yield strength for tensile strength. The higher the tensile strength with respect to the proof stress, the higher the breaking limit, and the lower the proof strength with respect to the tensile strength, the smaller the springback amount and the better the press formability. Therefore, in order to have press formability that can be processed into a complicated structural member shape, the yield ratio is set to 0.63 or less.

板厚:
アルミニウム合金板の板厚は、自動車構造部材としての必要な強度、剛性を有するためには、板厚が2.0mm以上必要である。この板厚の上限は特に定めないが、プレス成形などの成形加工の限界や、比較材としての鋼板からの軽量化効果を損ねない重量増加の範囲を考慮すると、4.0mm程度である。この好ましい板厚の範囲(2.0〜4.0mm)から熱延板とするか、冷延板とするかが適宜選択される。
Thickness:
The thickness of the aluminum alloy plate is required to be 2.0 mm or more in order to have the necessary strength and rigidity as an automobile structural member. The upper limit of the plate thickness is not particularly defined, but is about 4.0 mm in consideration of the limit of forming process such as press forming and the range of weight increase that does not impair the lightening effect from the steel plate as a comparative material. From this preferable thickness range (2.0 to 4.0 mm), a hot rolled sheet or a cold rolled sheet is appropriately selected.

Cube方位の面積率:
本発明では、板の圧壊性(耐圧壊性、圧壊特性)を向上させるために、この板の表面から板厚の10%の深さまでの任意の表面領域におけるCube方位の面積率を22%以上とする。
ここで、本発明でいう「板の表面」とは、アルミニウム合金マトリックスの上(表面)に形成された自然酸化皮膜(厚みは数十〜数百nmレベル)の表面の意味である。
この板の表面から、板厚(深さ)方向に、板厚の10%の深さまでの表面領域において、Cube方位を含有する層が板厚の表面近傍に存在する場合、Cube方位の面積率が高いほど、曲げ外側におけるせん断帯形成が抑制され、板の圧壊性が向上する。
圧壊性に重大な影響を与える曲げ外側層の厚さの目安は板厚の10% 程度であるので、Cube方位の面積率が高い領域を、この板の表面から板厚の10%の範囲の任意の領域(範囲)とする。
Area ratio of Cube orientation:
In the present invention, in order to improve the crushability (crush resistance, crushing characteristics) of the plate, the area ratio of the Cube orientation in an arbitrary surface region from the surface of the plate to a depth of 10% of the plate thickness is 22% or more. And
Here, the “surface of the plate” in the present invention means the surface of a natural oxide film (thickness of several tens to several hundreds nm) formed on (surface) the aluminum alloy matrix.
In the surface area from the surface of this plate to the depth of 10% of the plate thickness in the plate thickness (depth) direction, when the layer containing the Cube orientation exists in the vicinity of the surface of the plate thickness, the area ratio of the Cube orientation Is higher, the formation of shear bands on the outer side of the bend is suppressed, and the crushability of the plate is improved.
Since the standard of the thickness of the outer bending layer that has a significant influence on the crushability is about 10% of the plate thickness, an area where the area ratio of the Cube orientation is high is within the range of 10% of the plate thickness from the surface of the plate. Arbitrary area (range).

この表面領域のCube方位面積率が22%より小さいと、圧壊性が著しく劣化する。
したがって、この表面領域のCube方位面積率は22%以上とし、更に、Cube方位面積率が35%より大きいと、圧壊性に優れるので、好ましくは、この表面領域のCube方位面積率は35%以上とする。
If the Cube orientation area ratio of the surface region is smaller than 22%, the crushability is significantly deteriorated.
Therefore, the Cube orientation area ratio of this surface region is set to 22% or more, and if the Cube orientation area ratio is more than 35%, the crushability is excellent. Preferably, the Cube orientation area ratio of this surface region is 35% or more. And

Cube方位の面積率の測定:
これら板の結晶粒のCube方位の平均面積率は、前記した板の表面から深さ方向に板厚の10%の深さまでの表面領域(範囲)のうちの、任意の深さ位置から採取した測定試料(3個)の、この板(測定試料)の平面視で圧延面(圧延表面)と平行に延在する観察面として、板の表面から板厚の10%の深さまでの表面領域のうちの、任意の深さ位置における観察面が出るよう、機械研磨あるいはバフ研磨などで研磨する。
Measurement of area ratio of Cube orientation:
The average area ratio of the Cube orientation of the crystal grains of these plates was taken from an arbitrary depth position in the surface region (range) from the surface of the plate to the depth of 10% of the plate thickness in the depth direction. As an observation surface extending in parallel with the rolling surface (rolling surface) of the measurement sample (three pieces) in plan view of the plate (measurement sample), the surface region from the surface of the plate to a depth of 10% of the plate thickness Of these, polishing is performed by mechanical polishing or buffing so that an observation surface at an arbitrary depth position appears.

このように得られた試験片について、SEM−EBSDを用いて、前記観察面における、板の圧延方向の辺の長さが1000μm×板幅方向の辺の長さが320μmの矩形領域の測定範囲に対して、 5μmのピッチで電子線を照射する。
SEM装置として、例えば、日本電子社製SEM(JEOLJSM5410)、TSL社製のEBSD測定・解析システム:OIM(Orientation Imaging Macrograph、解析ソフト名「OIM Analysis」)を用いて、各結晶粒が、Cube方位(理想方位から15°以内)か否かを判定し、測定視野における各結晶方位の面積を求める。
この測定は、例えば5μmのステップ間隔で電子線を走査して行い、各測定点の結晶方位を測定し、測定点位置データと組み合わせて解析することにより、測定領域内の個々の結晶粒の結晶方位を測定する。
そして、1試料当たりのCube方位を有する結晶粒の、測定全面積である前記測定範囲の面積(320000μm)に対する、平均面積率(%)を測定し、更に、測定した試料数3個で平均化する。
About the test piece obtained in this way, using SEM-EBSD, the measurement range of a rectangular region in which the length of the side in the rolling direction of the plate is 1000 μm × the length of the side in the plate width direction is 320 μm on the observation surface In contrast, the electron beam is irradiated at a pitch of 5 μm.
As the SEM apparatus, for example, SEM (JEOLJSM5410) manufactured by JEOL Ltd., EBSD measurement / analysis system manufactured by TSL: OIM (Orientation Imaging Macrograph, analysis software name “OIM Analysis”) is used, and each crystal grain has a Cube orientation. It is determined whether or not (within 15 ° from the ideal orientation), and the area of each crystal orientation in the measurement visual field is obtained.
This measurement is performed, for example, by scanning an electron beam at a step interval of 5 μm, and the crystal orientation of each measurement point is measured and analyzed in combination with the measurement point position data. Measure orientation.
And the average area ratio (%) with respect to the area (320,000 micrometers 2 ) of the said measurement range which is a measurement total area of the crystal grain which has Cube orientation per sample is measured, and also it averages by the number of the measured samples 3 pieces Turn into.

SEM−EBSD(EBSP)法は、電界放出型走査電子顕微鏡(Field Emission Scanning Electron Microscope: FESEM)に、後方散乱電子回折像[EBSD: Electron Back Scattering (Scattered) Diffraction Pattern] システムを搭載した、汎用される結晶方位解析法である。
より具体的に、SEM−EBSDの前記観察用試料の調整は、前記観察試料 (断面組織)を、更に機械研磨して鏡面化する。そして、FESEM の鏡筒内にセットし、試料の鏡面化した表面に、電子線を照射してスクリーン上にEBSD(EBSP)を投影する。 これを高感度カメラで撮影して、コンピュータに画像として取り込む。コンピュータでは、この画像を解析して、既知の結晶系を用いたシミュレーションによるパターンとの比較によって、結晶の方位が決定される。算出された結晶の方位は3次元オイラー角として、位置座標(x、y)などとともに記録される。このプロセスが全測定点に対して自動的に行なわれるので、測定終了時には、板の断面における数万〜数十万点の結晶方位データが得られる。
このため、観察視野が広く、多数の結晶粒に対する、分布状態,平均結晶粒径、平均結晶粒径の標準偏差、あるいは方位解析の情報を、数時間以内で得られる利点がある。したがって、本発明のようなCube方位の面積率などの集合組織を正確に測定する場合には最適である。
The SEM-EBSD (EBSP) method is a general-purpose field-emission scanning electron microscope (FESEM) equipped with an EBSD (Electron Back Scattering (Scattered) Diffraction Pattern) system. This is a crystal orientation analysis method.
More specifically, in the preparation of the observation sample of SEM-EBSD, the observation sample (cross-sectional structure) is further mechanically polished into a mirror surface. Then, it is set in a lens barrel of FESEM, and an electron beam is irradiated onto the mirror-finished surface of the sample to project EBSD (EBSP) on the screen. This is taken with a high-sensitivity camera and captured as an image on a computer. In the computer, the orientation of the crystal is determined by analyzing this image and comparing it with a pattern obtained by simulation using a known crystal system. The calculated crystal orientation is recorded as a three-dimensional Euler angle together with position coordinates (x, y) and the like. Since this process is automatically performed for all measurement points, crystal orientation data of tens of thousands to hundreds of thousands of points in the cross section of the plate can be obtained at the end of measurement.
For this reason, there is an advantage that the observation field is wide, and the distribution state, the average crystal grain size, the standard deviation of the average crystal grain size, or the information of orientation analysis can be obtained within a few hours for a large number of crystal grains. Therefore, it is optimal when accurately measuring the texture such as the area ratio of the Cube orientation as in the present invention.

アルミニウム合金板の場合、通常は、以下に示す多くの方位因子(これら各方位を有する結晶粒)からなる集合組織を形成し、それらに応じた結晶面が存在する。一般に、アルミニウム合金の圧延再結晶板における集合組織は、主としてCube方位、Goss方位、Brass方位、S方位、およびCopper方位から構成される。これらの集合組織の表現は、圧延による板材の集合組織の場合は、圧延面と圧延方向で表されており、圧延面は{hkl}で表現され、圧延方向は<uvw>で表現される。かかる表現に基づき、各方位は下記の如く表現される。
Cube方位 {001}<100>
Goss方位 {011}<100>
Brass方位(B方位) {011}<211>
Cu方位(Copper方位){112}<111>
S方位 {123}<634>
In the case of an aluminum alloy plate, a texture composed of many orientation factors (crystal grains having these orientations) shown below is usually formed, and there are crystal planes corresponding to them. In general, the texture in an aluminum alloy rolled recrystallized plate is mainly composed of a Cube orientation, a Goss orientation, a Brass orientation, an S orientation, and a Copper orientation. In the case of a texture of a sheet material by rolling, these texture expressions are expressed by a rolling surface and a rolling direction, the rolling surface is expressed by {hkl}, and the rolling direction is expressed by <uvw>. Based on this expression, each direction is expressed as follows.
Cube orientation {001} <100>
Goss orientation {011} <100>
Brass orientation (B orientation) {011} <211>
Cu orientation (Copper orientation) {112} <111>
S orientation {123} <634>

圧壊性:
圧壊性とは、自動車の衝突等の衝撃的な荷重が加わったときに、変形初期や途上で構造部材に割れや圧壊が発生せずに(あるいは発生しても)、最後まで変形する特性であり、圧壊性が良好な部材は、割れや圧壊が生じることなく(あるいは発生しても)、蛇腹状に曲げ変形する。
本発明において、圧壊性は、VDA曲げ試験にて60°以上の曲げ角度となる圧壊性を有しているものを自動車構造部材用として合格と評価する。この曲げ角度は大きいほど圧壊性が高く、90°以上がより好ましい。一方、この曲げ角度が60°未満の圧壊性では、自動車構造部材用として採用できない。
Crushability:
Crushability is the property that when a shocking load such as a car crash is applied, the structural member does not crack or collapse in the initial stage or on the way of deformation (or even if it occurs) and deforms to the end. In addition, a member having good crushability is bent and deformed into a bellows shape without cracking or crushing (or even if it occurs).
In the present invention, the crushability is evaluated as acceptable for a vehicle structural member having a crushing property of a bending angle of 60 ° or more in the VDA bending test. The larger the bending angle, the higher the crushability, and 90 ° or more is more preferable. On the other hand, if the bending angle is less than 60 °, it cannot be used for automobile structural members.

この圧壊性を評価する曲げ試験は、VDA曲げ試験として、ドイツ自動車工業会(VDA)の規格の中の「VDA238−100 Plate bending test for metallic materials」に従って実施する。
この試験方法を、図1に斜視図で示し、図2に使用するポンチの正面および側面図で示す。
先ず、板状試験片を、ロールギャップを設けて、互いに平行に配置した2個のロール上に、図1に点線で示すように、水平で左右均等の長さに載置する。
具体的には、板状試験片を、その圧延方向と、上方に垂直に立てて配置した板状の押し曲げ治具の延在方向とが、互いに直角になるように、ロールギャップ中央にその中央部が位置するよう、2個のロール上に、水平で左右均等の長さに載置する。
そして、上方から前記押し曲げ治具を板状試験片の中央部に押し当てて荷重を負荷し、この板状試験片を前記狭いロールギャップに向けて押し曲げ(突き曲げ)て、曲げ変形した板状試験片中央部を前記狭いロールギャップ内に押し込む。
This bending test for evaluating the crushability is carried out as a VDA bending test in accordance with “VDA 238-100 Plate Bending Test for Metallic Materials” in the standards of the German Automobile Manufacturers Association (VDA).
This test method is shown in perspective view in FIG. 1 and in front and side views of the punch used in FIG.
First, a plate-shaped test piece is placed on two rolls arranged parallel to each other with a roll gap, as shown by dotted lines in FIG.
Specifically, the plate-shaped test piece is placed at the center of the roll gap so that the rolling direction and the extending direction of the plate-shaped pushing and bending jig arranged vertically are perpendicular to each other. It is placed horizontally and equally on the left and right on the two rolls so that the central part is located.
Then, the pressing and bending jig is pressed against the center of the plate-shaped test piece from above to apply a load, and the plate-shaped test piece is bent toward the narrow roll gap (bending) to bend and deform. The center part of the plate-shaped test piece is pushed into the narrow roll gap.

この際に、上方からの押し曲げ治具からの荷重Fが最大となる時(板状試験片中央部の曲げ先端が割れる寸前)の板状試験片の中央部の曲げ外側の角度を曲げ角度(°)として測定して、その曲げ角度の大きさで圧壊性を評価する。この曲げ角度が大きいほど、板状試験片は、途中で圧壊せずに、曲げ変形が持続しており、圧壊性が高い。   At this time, when the load F from the upper bending jig is maximized (just before the bending tip at the center of the plate test piece breaks), the angle of the bending outside of the center of the plate test piece is the bending angle. The degree of crushability is evaluated by measuring as (°) and the bending angle. The larger the bending angle, the more the plate-shaped test piece is not crushed in the middle, the bending deformation is continued, and the crushability is higher.

このVDA曲げ試験の試験条件として、図1に記載した記号を用いて示すと、板状試験片は、幅b:60mm×長さl:60mmの正方形形状とし、2個のロール直径Dは各々30mm、ロールギャップLは板状試験片板厚の2.0倍(後述する実施例では冷延板板厚2.5mmの2.0倍の5mm)とした。Sは荷重Fが最大となる時の板状試験片中央部のロールギャップ内への押し込み深さである。
また、板状の押し曲げ治具であるポンチは、図2に示すように、板状試験片の中央部に押し当たる下側の薄板状(厚み2mm)の刃の先端は、先端(下端)の半径rが0.2mmφと尖った、テーパ形状とされている。
As test conditions for this VDA bending test, the symbols shown in FIG. 1 are used to indicate that the plate-shaped test piece has a square shape of width b: 60 mm × length l: 60 mm, and the two roll diameters D are respectively 30 mm and the roll gap L were 2.0 times the plate-shaped test piece plate thickness (in the examples described later, 2.0 mm of the cold-rolled plate thickness 2.5 mm, 5 mm). S is the depth of intrusion into the roll gap at the center of the plate-like test piece when the load F is maximum.
In addition, as shown in FIG. 2, the punch, which is a plate-like pushing and bending jig, has a tip of the lower thin plate-like (thickness 2 mm) blade that presses against the center portion of the plate-like test piece. The taper shape has a sharp radius r of 0.2 mmφ.

製造方法:
次ぎに、本発明アルミニウム合金板の製造方法について以下に説明する。本発明アルミニウム合金板は、製造工程自体は常法あるいは公知の方法であり、上記6000系成分組成のアルミニウム合金鋳塊を鋳造後に均質化熱処理し、熱間圧延、冷間圧延が施されて所定の板厚とされ、更に溶体化焼入れなどの調質処理が施されて製造される。
Production method:
Next, a method for producing the aluminum alloy plate of the present invention will be described below. The aluminum alloy sheet of the present invention is a conventional process or a known process, and the aluminum alloy ingot having the above-mentioned 6000 series component composition is subjected to homogenization heat treatment after casting, and then subjected to hot rolling and cold rolling to obtain a predetermined process. It is manufactured by being subjected to a tempering treatment such as solution hardening and quenching.

但し、これらの製造工程中で、本発明の規定する集合組織を得るためには、後述する通り、冷間圧延の圧延率条件を好ましい範囲とし、溶体化および焼入れ処理後の予備時効処理条件を、好ましい範囲とする。   However, in these manufacturing processes, in order to obtain a texture defined by the present invention, as described later, the rolling rate condition of the cold rolling is in a preferred range, the pre-aging treatment conditions after solution treatment and quenching treatment, The preferable range.

(溶解、鋳造冷却速度)
先ず、溶解、鋳造工程では、上記6000系成分組成範囲内に溶解調整されたアルミニウム合金溶湯を、連続鋳造法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。
(Dissolution, casting cooling rate)
First, in the melting and casting process, an ordinary molten casting method such as a continuous casting method and a semi-continuous casting method (DC casting method) is appropriately selected for the molten aluminum alloy adjusted to be dissolved within the above-mentioned 6000 series component composition range. Cast.

(均質化熱処理)
次いで、前記鋳造されたアルミニウム合金鋳塊に、熱間圧延に先立って、均質化熱処理を施す。この均質化熱処理(均熱処理)は、通常の目的である、組織の均質化(鋳塊組織中の結晶粒内の偏析をなくす)の他に、SiやMgを充分に固溶させるために重要である。この目的を達成する条件であれば、特に限定されるものではなく、通常の1回または1段の処理でも良い。
(Homogenization heat treatment)
Next, the cast aluminum alloy ingot is subjected to a homogenization heat treatment prior to hot rolling. This homogenization heat treatment (uniform heat treatment) is important for sufficiently dissolving Si and Mg in addition to the normal purpose of homogenizing the structure (eliminating segregation in crystal grains in the ingot structure). It is. The conditions are not particularly limited as long as the object is achieved, and normal one-stage or one-stage processing may be performed.

均質化熱処理温度は、500℃以上で、560℃以下、均質(保持)時間は1時間以上の範囲から適宜選択する。この均質化温度が低いと、結晶粒内の偏析を十分に無くすことができず、これが破壊の起点として作用するために、圧壊性が低下する可能性がある。   The homogenization heat treatment temperature is appropriately selected from the range of 500 ° C. or more and 560 ° C. or less, and the homogenization (retention) time is 1 hour or more. If this homogenization temperature is low, segregation within the crystal grains cannot be sufficiently eliminated, and this acts as a starting point of fracture, so that the crushability may be lowered.

(熱間圧延)
この均質化熱処理を行った後に熱間圧延を行い、熱延板を製造する。熱間圧延は、圧延する板厚に応じて、鋳塊 (スラブ) の粗圧延工程と、仕上げ圧延工程とから構成される。 これら粗圧延工程や仕上げ圧延工程では、リバース式あるいはタンデム式などの圧延機が適宜用いられる。
熱延板は、熱間圧延の加工組織が残留し、Cube方位の集積度が高くなり、この板の表面から前記板厚の10%の深さまでの表面領域におけるCube方位の平均面積率が、好ましい35%以上となり、圧壊性が著しく向上する。したがって、熱延板に対して冷間圧延を行わずに、熱延板のままで、2.0mm以上の最終板厚の製品板としても良い。
(Hot rolling)
After performing this homogenization heat treatment, hot rolling is performed to produce a hot rolled sheet. Hot rolling is composed of an ingot (slab) rough rolling process and a finish rolling process according to the thickness of the rolled sheet. In these rough rolling process and finish rolling process, a reverse or tandem rolling mill is appropriately used.
The hot-rolled sheet retains the hot-rolled processed structure, and the degree of accumulation of the Cube orientation increases, and the average area ratio of the Cube orientation in the surface region from the surface of this plate to a depth of 10% of the plate thickness is It becomes preferable 35% or more, and the crushability is remarkably improved. Therefore, it is good also as a product board of the final board thickness of 2.0 mm or more with a hot-rolled sheet, without performing cold rolling with respect to a hot-rolled sheet.

(冷間圧延)
上記熱延板を冷間圧延して所望の板厚とする場合には、熱間圧延の加工組織を残留させ、Cube方位の集積度を高め、この板の表面から前記板厚の10%の深さまでの表面領域におけるCube方位の平均面積率を22%以上、好ましくは35%以上と高くするために、冷間圧延率を70%以下の、できるだけ小さい圧延率とすることが好ましい。
冷間圧延の圧延率が70%を超えて高くなると、冷間圧延後に、板厚方向で均一な歪が導入され、溶体化熱処理時に均一微細で等軸結晶粒になるが、Cube方位以外の結晶方位の面積率が大きくなることで、板表面から板厚の10%の深さまでの表面領域のCube方位面積率は、必然的に22%より小さくなり、圧壊性が劣化する可能性がある。
この点で、冷間圧延の圧延率は、更に5%未満と小さい方が好ましい。冷間圧延の圧延率が5%未満の場合には、冷間圧延によってほとんど歪が導入されず、前記熱延板と同様に、熱間圧延ままの組織が残留し、Cube方位の集積度を高くなり、板表面から板厚の10%の深さまでの表面領域のCube方位面積率が35%以上となり、圧壊性が著しく向上する。従って、冷間圧延の圧延率は5%未満の方が望ましい。
なお、冷間圧延パス間で、適宜中間焼鈍を行っても良い。
(Cold rolling)
When the hot-rolled sheet is cold-rolled to have a desired thickness, the hot-rolled processed structure remains, the degree of accumulation of the Cube orientation is increased, and 10% of the sheet thickness is increased from the surface of the sheet. In order to increase the average area ratio of the Cube orientation in the surface region up to the depth to 22% or more, preferably 35% or more, it is preferable to set the cold rolling rate to 70% or less and the smallest possible rolling rate.
When the rolling rate of the cold rolling is higher than 70%, a uniform strain is introduced in the thickness direction after the cold rolling, resulting in uniform fine and equiaxed grains during the solution heat treatment, but other than the Cube orientation. As the area ratio of the crystal orientation increases, the Cube orientation area ratio of the surface region from the plate surface to a depth of 10% of the plate thickness inevitably becomes smaller than 22%, and the crushability may be deteriorated. .
In this respect, the rolling rate of cold rolling is preferably as small as less than 5%. When the rolling ratio of the cold rolling is less than 5%, almost no strain is introduced by the cold rolling, and as in the hot-rolled sheet, the structure as hot-rolled remains and the degree of accumulation of the Cube orientation is increased. The Cube orientation area ratio in the surface region from the plate surface to a depth of 10% of the plate thickness becomes 35% or more, and the crushability is remarkably improved. Therefore, the rolling rate of cold rolling is preferably less than 5%.
In addition, you may perform intermediate annealing suitably between cold rolling passes.

(溶体化および焼入れ処理)
冷間圧延後、溶体化処理と、これに続く、室温までの焼入れ処理を行う。この溶体化焼入れ処理については、通常の連続熱処理ラインを用いてよい。ただ、Mg、Siなどの各元素の十分な固溶量を得るためには、540℃以上、570℃以下の溶体化処理温度(到達温度)で、0.1秒〜60秒保持した後に焼入れ処理を連続的に行うことが好ましい。
溶体化温度が540℃より低いと、MgとSiの十分な固溶度が確保されず、十分なベーク後強度が得られない可能性がある。一方、溶体化温度が570℃を超えると、融点に近く、溶体化処理中に融解する恐れがある。溶体化の保持時間が60秒より長いと、初期強度が高く、降伏比が増大する可能性がある。従って、溶体化温度は、好ましくは540℃乃至570℃、溶体化保持時間は好ましくは0.1〜60秒とする。
(Solution and quenching)
After the cold rolling, solution treatment and subsequent quenching to room temperature are performed. For this solution hardening treatment, a normal continuous heat treatment line may be used. However, in order to obtain a sufficient solid solution amount of each element such as Mg and Si, quenching is performed after holding at a solution treatment temperature (attainment temperature) of 540 ° C. or more and 570 ° C. or less for 0.1 second to 60 seconds. It is preferable to carry out the treatment continuously.
When the solution temperature is lower than 540 ° C., sufficient solid solubility of Mg and Si is not ensured, and sufficient post-baking strength may not be obtained. On the other hand, when the solution temperature exceeds 570 ° C., it is close to the melting point and may be melted during the solution treatment. If the retention time for solution treatment is longer than 60 seconds, the initial strength is high and the yield ratio may increase. Accordingly, the solution temperature is preferably 540 ° C. to 570 ° C., and the solution retention time is preferably 0.1 to 60 seconds.

溶体化処理に連続して続く、焼入れ処理は、冷却中に主にMg−Si系の析出物が生成して固溶Mg量と固溶Si量が低下しないような冷却速度を確保するために、ファンなどの空冷、ミスト、スプレー、浸漬等の水冷手段や条件を各々選択して用いる。   The quenching process that follows the solution treatment is performed in order to ensure a cooling rate such that Mg-Si-based precipitates are generated during cooling and the solid solution Mg amount and the solid solution Si amount do not decrease. Water cooling means and conditions such as air cooling such as a fan, mist, spray, and immersion are selected and used.

(再加熱処理:予備時効処理)
このような溶体化処理後に焼入れ処理して室温まで冷却した後(焼入れ処理終了後)10分以内に、再加熱処理を行い、素材温度が60〜90℃の範囲に3〜20時間保持することが好ましい。
再加熱処理の開始(加熱開始)までの室温保持時間が長すぎると、室温時効によりSiリッチのMg−Siクラスタが生成してしまい、MgとSiのバランスが良いMg−Siクラスタを増加させることができにくくなるため、BH性が低下する可能性がある。したがって、この室温保持時間は短いほど良く、溶体化および焼入れ処理と再加熱処理とが、時間差が殆ど無いように連続していても良く、下限の時間は特に設定しない。
(Reheating treatment: preliminary aging treatment)
After such solution treatment, after quenching and cooling to room temperature (after completion of quenching), perform reheating treatment and keep the material temperature in the range of 60 to 90 ° C. for 3 to 20 hours. Is preferred.
If the room temperature holding time until the start of reheating treatment (heating start) is too long, Si-rich Mg-Si clusters are generated due to room temperature aging, and Mg-Si clusters with a good balance between Mg and Si are increased. Since it becomes difficult to perform, the BH property may be lowered. Accordingly, the shorter the room temperature holding time is better, the solution treatment and quenching treatment and the reheating treatment may be continued so that there is almost no time difference, and the lower limit time is not particularly set.

再加熱処理において、60〜90℃に3〜20時間保持することによって、前記MgとSiのバランスが良いMg−Siクラスタが形成され、BH性が向上する。
再加熱処理温度が60℃未満か、または保持時間が3時間未満であると、この再加熱処理をしない場合と同様となって、前記MgとSiのバランスが良いMg−Siクラスタを増加させにくくなり、焼付塗装後の耐力(BH性)が低くなりやすい。
一方、再加熱処理温度が90℃を超える、または、保持時間が20時間を超えては、初期強度が高く、降伏比が増大する可能性がある。
In the reheating treatment, by holding at 60 to 90 ° C. for 3 to 20 hours, the Mg—Si cluster having a good balance between Mg and Si is formed, and the BH property is improved.
When the reheat treatment temperature is less than 60 ° C. or the holding time is less than 3 hours, it is difficult to increase the Mg—Si cluster having a good balance between Mg and Si, as in the case where the reheat treatment is not performed. Therefore, the yield strength (BH property) after baking coating tends to be low.
On the other hand, when the reheating treatment temperature exceeds 90 ° C. or the holding time exceeds 20 hours, the initial strength is high and the yield ratio may increase.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

表1に示す各成分組成の6000系アルミニウム合金の冷延板の集合組織を、表2のように製造条件を変えて種々変えたものについて、BH後に、降伏比、強度などの機械的な特性と、VDA曲げ試験にて評価される圧壊性、構造部材として必要な耐食性として、粒界腐食性を評価した。これらの結果も表2に示す。   Mechanical properties such as yield ratio, strength, etc. after BH with respect to the texture of the 6000 series aluminum alloy cold-rolled sheet of each component composition shown in Table 1 with various production conditions changed as shown in Table 2 The intergranular corrosion resistance was evaluated as the crushability evaluated in the VDA bending test and the corrosion resistance necessary as a structural member. These results are also shown in Table 2.

表1に示す化学組成を有するアルミニウム合金を溶解鋳造し、得られた鋳塊540℃×4時間の条件で均質化処理した後、そのまま引き続いて終了温度が260℃乃至350℃で、熱間圧延を行った。次に、最終板厚が2.5mmとなるように、表2に示す各圧延率で冷間圧延を行い、冷延板とした。
その後、この冷延板を100℃/分以上の加熱速度で加熱し、表2に示す各温度と各保持時間での溶体化処理後、室温まで水中に浸漬させる、溶体化焼入れ処理を連続して行った。その後、再加熱処理を行うものは、表2に示す各温度域に再加熱し、60℃以上に保持する時間を表2に示す条件とし、その後室温まで放冷した。
An aluminum alloy having the chemical composition shown in Table 1 is melt cast, and the resulting ingot is homogenized under conditions of 540 ° C. × 4 hours, followed by hot rolling at 260 ° C. to 350 ° C. as it is. Went. Next, it cold-rolled by each rolling rate shown in Table 2 so that the final board thickness might be set to 2.5 mm, and it was set as the cold rolled sheet.
Thereafter, this cold-rolled sheet is heated at a heating rate of 100 ° C./min or more, and after the solution treatment at each temperature and each holding time shown in Table 2, the solution hardening and quenching treatment is continued until it is immersed in water to room temperature. I went. Then, what performed a reheating process reheated to each temperature range shown in Table 2, made the time hold | maintained at 60 degreeC or more into the conditions shown in Table 2, and it stood to cool to room temperature after that.

このアルミニウム合金板から供試材を採取し、その断面の前記表面領域の集合組織や降伏比を測定し、更にBH後の機械的特性や圧壊性、さらに、自動車構造部材として通常要求される耐粒界腐食性について調べた。   Samples are taken from this aluminum alloy plate, and the texture and yield ratio of the surface region of the cross section are measured. Further, mechanical properties and crushability after BH, and the resistance usually required for automobile structural members are obtained. Intergranular corrosion was investigated.

Cube方位の平均面積率:
Cube方位の面積率(%)は、前記再加熱処理後の供試材の板幅方向と直交する断面に対して機械研磨し、電解研磨後、SEM−EBSD法により、前記表面領域における板幅面法線方向の結晶方位を測定した。
なお、±5°以内の結晶方位のずれは同一の結晶方位に属するものと定義した。板表面から板厚の10%の深さまでの表面領域のCube方位の平均面積率を表2に示す。
Average area ratio of Cube orientation:
The area ratio (%) of the Cube orientation is mechanically polished with respect to the cross section perpendicular to the plate width direction of the test material after the reheating treatment, and after electrolytic polishing, the plate width surface in the surface region is measured by SEM-EBSD method. The crystal orientation in the normal direction was measured.
The crystal orientation deviation within ± 5 ° was defined as belonging to the same crystal orientation. Table 2 shows the average area ratio of the Cube orientation in the surface region from the plate surface to a depth of 10% of the plate thickness.

機械的特性:
機械的特性は下記条件での引張試験を実施して各々求めた。
降伏比は、前記再加熱処理後6ヶ月経過後(室温時効後)の供試材について求め、構造部材用として、降伏比が0.63以下を良好、0.60以下をさらに良好、0.64以上を不良とした。
BH後の耐力も、前記再加熱処理後6ヶ月経過後(室温時効後)の供試材に、板のプレス成形を模擬した2%の予歪を引張試験機により与えた後に、180℃20分の熱処理の条件にて人工時効させたもの(AB材)の耐力を測定した。そして、構造部材用として、220MPa以上を合格、230MPaをさらに良好と評価した。
Mechanical properties:
The mechanical properties were obtained by carrying out a tensile test under the following conditions.
The yield ratio was determined for the test material after 6 months (after aging at room temperature) after the reheating treatment, and as a structural member, the yield ratio was 0.63 or less, 0.60 or less was even better. 64 or more was regarded as defective.
The yield strength after BH was also measured at 180 ° C. after applying a pre-strain of 2% simulating press forming of a plate to a test material 6 months after the reheating treatment (after aging at room temperature) using a tensile tester. The proof stress of an artificially aged product (AB material) was measured under the heat treatment conditions for 1 minute. And for structural members, it was evaluated that 220 MPa or more passed and 230 MPa was even better.

前記引張試験は、前記各供試材から、各々JISZ2201の5号試験片(25mm×50mmGL×板厚)を採取し、室温にて引張試験を行った。このときの試験片の引張り方向を圧延方向の直角方向とした。引張り速度は、0.2%耐力までは5mm/分、耐力以降は20mm/分とした。機械的特性測定のN数は5とし、各々平均値で算出した。   In the tensile test, No. 5 test pieces (25 mm × 50 mmGL × plate thickness) of JISZ2201 were sampled from the respective test materials and subjected to a tensile test at room temperature. The tensile direction of the test piece at this time was the direction perpendicular to the rolling direction. The tensile speed was 5 mm / min up to 0.2% proof stress and 20 mm / min after proof stress. The N number for the measurement of mechanical properties was 5, and each was calculated as an average value.

圧壊性:
圧壊性は、前記再加熱処理後6ヶ月経過後(室温時効後)の供試材に、2%の予歪を引張試験機により与えた後に、180℃20分の熱処理の条件にて人工時効させたものを、前記VDA曲げ試験の測定対象とした。
Crushability:
Crushability is determined by artificial aging under conditions of heat treatment at 180 ° C. for 20 minutes after applying a pre-strain of 2% to the specimen after 6 months (after room temperature aging) after the reheating treatment. This was used as a measurement target of the VDA bending test.

前記各供試材については、圧延方向に対して直角の方向に2%ストレッチを行い、板厚が2.5mmで、幅bを60mm、長さlを60mmの正方形の試験片に切り出した。
この試験片を用いて、前記VDA238−100に準拠し、曲げ線が圧延方向と平行となる3点曲げ試験を行った。荷重が30Nに達するまでの試験速度は10mm/分、それ以降の試験速度を20mm/分とした。クラック発生、もしくは、板厚減少により、最大荷重から60N減少したとき、曲げ加工がストップする設定とした。
上記曲げ試験は、各例とも板状試験片3枚ずつ(3回)行い、曲げ角度(°)はこれらの平均値を採用した。
そして、構造部材用として、この曲げ試験後の板状試験片の最大の曲げ角度(前記押し曲げ治具からの荷重Fが最大となる時=板状試験片中央部の曲げ先端が割れる寸前の曲げ角度)が90°以上は◎、60°以上は○で合格、60°未満を×で不合格と評価した。
Each specimen was stretched 2% in a direction perpendicular to the rolling direction, and cut into square test pieces having a plate thickness of 2.5 mm, a width b of 60 mm, and a length l of 60 mm.
Using this test piece, a three-point bending test was performed in which the bending line was parallel to the rolling direction in accordance with VDA238-100. The test speed until the load reached 30 N was 10 mm / min, and the test speed thereafter was 20 mm / min. The bending process is set to stop when the maximum load is reduced by 60 N due to the occurrence of cracks or the reduction of the plate thickness.
In each example, the above bending test was carried out by three plate-like test pieces (three times), and the average value of the bending angles (°) was adopted.
And, for the structural member, the maximum bending angle of the plate-shaped test piece after this bending test (when the load F from the push-bending jig is maximized = just before the bending tip of the center portion of the plate-shaped test piece breaks) When the bending angle was 90 ° or more, it was evaluated as “以上”, when it was 60 ° or more, “good”, and less than 60 ° was evaluated as “poor”.

耐粒界腐食性:
耐粒界腐食性の評価試験は、ISO11846 Method Bに準拠した。
供試材は、前記再加熱処理後6ヶ月経過後(室温時効後)の供試材に、2%の予歪を引張試験機により与えた後に、180℃20分の熱処理の条件にて人工時効させたものとし、表面皮膜を除去するため、5%NaOH(60℃)に1分浸漬後、水洗を行い、70%HNOに1分浸漬後、再び水洗し、室温乾燥を行った。
腐食液として、HClおよびNaClを含む水溶液(NaClを30g/Lおよび36%の濃塩酸を10±1ml/L含有する)を使用し、25℃で24時間、材料の表面積1cmあたり5mlの腐食液に浸漬させた。次いで、70%HNOへの浸漬およびプラスチックブラシを用いたブラッシングにより腐食生成物を除去し、水洗後、室温乾燥させた。
焦点深度法により腐食が深いと判断される部位を3箇所選び、それぞれの部位を断面埋め込みし、光学顕微鏡にて各断面で最も深い粒界腐食の深さを測定した。
前記供試材は、板の任意の3箇所から採取したもの3個を使用し、構造部材用として、この3個の供試材を測定した中で、最大の粒界腐食深さが300μm未満であるものを○で合格とし、300μm以上のものを×で不合格とした。
Intergranular corrosion resistance:
The intergranular corrosion resistance evaluation test was based on ISO11846 Method B.
The test material was artificially subjected to heat treatment at 180 ° C. for 20 minutes after 2% pre-strain was applied to the test material after 6 months (after room temperature aging) after the reheating treatment. In order to remove the surface film, the film was aged and immersed in 5% NaOH (60 ° C.) for 1 minute, washed with water, immersed in 70% HNO 3 for 1 minute, washed again with water, and dried at room temperature.
An aqueous solution containing HCl and NaCl (containing 30 g / L of NaCl and 10 ± 1 ml / L of 36% concentrated hydrochloric acid) was used as the corrosive solution, and the corrosive solution was 5 ml per 1 cm 2 of the surface area of the material at 25 ° C. for 24 hours. It was immersed in the liquid. Next, the corrosion products were removed by immersion in 70% HNO 3 and brushing with a plastic brush, washed with water, and dried at room temperature.
Three sites where corrosion was judged to be deep by the depth of focus method were selected, and each site was embedded in a cross-section, and the depth of intergranular corrosion at each cross-section was measured with an optical microscope.
The three specimens taken from three arbitrary locations on the plate were used, and the maximum intergranular corrosion depth was less than 300 μm among the three specimens measured for structural members. Those with a value of ○ were accepted with a circle, and those with 300 μm or more were rejected with a ×.

表1、2から明らかなように、各発明例は、本発明アルミニウム合金組成範囲内であり、前記した好ましい条件の範囲内で製造されている。
この結果、上記、表2に示すように、発明例No.1〜11は、この板の表面から前記板厚の10%の深さまでの表面領域におけるCube方位の平均面積率が22%以上であるとともに、降伏比が0.63以下であり、前記アルミニウム合金板を2%のストレッチ後に180℃20分の人工時効処理した後の特性として、220MPa以上の0.2%耐力を有するとともに、VDA曲げ試験にて60°以上の曲げ角度となる圧壊性を有している。
As is clear from Tables 1 and 2, each of the inventive examples is within the composition range of the aluminum alloy of the present invention, and is manufactured within the range of the preferred conditions described above.
As a result, as shown in Table 2 above, Invention Example No. 1 to 11, the average area ratio of the Cube orientation in the surface region from the surface of this plate to the depth of 10% of the plate thickness is 22% or more, the yield ratio is 0.63 or less, and the aluminum alloy As a characteristic after the artificial aging treatment at 180 ° C. for 20 minutes after stretching 2% of the plate, it has a 0.2% proof stress of 220 MPa or more, and has a crushing property with a bending angle of 60 ° or more in the VDA bending test. doing.

このうち、特に、発明例No.1、2は、板表面から板厚の10%の深さまでの表面領域のCube面積率が35%以上であったため、さらに優れた圧壊性を示した。
また、発明例No.3は、前記Mgの含有量[Mg]と、前記Siの含有量[Si]とが、更に、[Si]/[Mg]≧1.8と、1.6%≦1.3[Mg]+[Si]≦1.9%との関係を各々満足するため、さらに優れた降伏比とBH後耐力を示した。
Among these, in particular, Invention Example No. In Nos. 1 and 2, the Cube area ratio in the surface region from the plate surface to a depth of 10% of the plate thickness was 35% or more, and thus further excellent crushability was exhibited.
In addition, Invention Example No. 3 is that the Mg content [Mg] and the Si content [Si] are further [Si] / [Mg] ≧ 1.8 and 1.6% ≦ 1.3 [Mg]. In order to satisfy the relationship of + [Si] ≦ 1.9%, an excellent yield ratio and post-BH yield strength were exhibited.

これに対して、各比較例は、表1の通り、合金組成が本発明範囲から外れるか、合金組成は本発明範囲内であるものの、前記した好ましい熱延条件の範囲からはずれて各々製造されている。この結果、表2の通り、Cube方位の平均面積率や降伏比が要件を満たさず、BH後の強度や圧壊性、あるいは粒界腐食性が劣っている。   On the other hand, as shown in Table 1, each comparative example is manufactured by deviating from the above-mentioned range of preferable hot rolling conditions although the alloy composition is out of the scope of the present invention or the alloy composition is within the scope of the present invention. ing. As a result, as shown in Table 2, the average area ratio and yield ratio of the Cube orientation do not satisfy the requirements, and the strength and crushability after BH, or intergranular corrosion properties are inferior.

比較例No.12〜23は合金組成が発明範囲から外れている。
比較例No.12、13は、表1の合金番号6、7であり、Mgの含有量が下限値未満(比較例No.12は1.3[Mg]+[Si]も下限未満)であるため、ベーク後耐力が劣っている。
比較例No.14は、表1の合金番号8であり、Mgの含有量が上限値を超えるため、降伏比が0.63を超えている。また、1.3[Mg]+[Si]が本発明の上限値を超えているため、圧壊性が劣っている。
比較例No.15は、表1の合金番号9であり、1.3[Mg]+[Si]が上限値を超えているため、圧壊性が劣っている。
比較例No.16は、表1の合金番号10であり、Siの含有量が下限値未満であるため、BH後耐力が劣っている。また、[Si]/[Mg]が下限値未満であるため、降伏比が0.63を超えている。
比較例No.17は、表1の合金番号11であり、Siの含有量が上限値を超えているため、降伏比が0.63を超えている。また、1.3[Mg]+[Si]が上限値を超えているため、圧壊性が劣っている。
比較例No.18は、表1の合金番号12であり、1.3[Mg]+[Si]が上限値を超えているため、圧壊性が劣っている。
比較例No.19は、表1の合金番号13であり、Cuが下限値未満のため、降伏比が0.63を超えている。また、ベーク後耐力も劣っている。
比較例No.20は、表1の合金番号14であり、Cuが上限値を超えているため、粒界腐食性が劣っている。
比較例No.21は、表1の合金番号15であり、Mgの含有量が下限値未満で、[Si]/[Mg]が本発明の下限値未満のため、降伏比が0.63を超えている。また、1.3[Mg]+[Si]が本発明の下限値未満であるため、BH後耐力が劣っている。
比較例No.22は、表1の合金番号16であり、1.3[Mg]+[Si]が下限値未満であるため、BH後耐力が劣っている。
比較例No.23は、表1の合金番号17であり、1.3[Mg]+[Si]が上限値を超えているため、圧壊性が劣っている。
Comparative Example No. Nos. 12 to 23 have an alloy composition outside the scope of the invention.
Comparative Example No. 12 and 13 are alloy numbers 6 and 7 in Table 1, and the Mg content is less than the lower limit (Comparative Example No. 12 is less than the lower limit of 1.3 [Mg] + [Si]). Post-proof strength is inferior.
Comparative Example No. 14 is Alloy No. 8 in Table 1, and since the Mg content exceeds the upper limit value, the yield ratio exceeds 0.63. Moreover, since 1.3 [Mg] + [Si] exceeds the upper limit of the present invention, the crushability is inferior.
Comparative Example No. 15 is the alloy number 9 of Table 1, and since 1.3 [Mg] + [Si] exceeds the upper limit, the crushability is inferior.
Comparative Example No. No. 16 is alloy number 10 of Table 1, and since the Si content is less than the lower limit, the post-BH yield strength is inferior. Further, since [Si] / [Mg] is less than the lower limit value, the yield ratio exceeds 0.63.
Comparative Example No. 17 is Alloy No. 11 in Table 1, and since the Si content exceeds the upper limit, the yield ratio exceeds 0.63. Moreover, since 1.3 [Mg] + [Si] exceeds the upper limit, the crushability is inferior.
Comparative Example No. 18 is alloy number 12 of Table 1, and since 1.3 [Mg] + [Si] exceeds the upper limit, the crushability is inferior.
Comparative Example No. 19 is alloy number 13 of Table 1, and since Cu is less than a lower limit, the yield ratio exceeds 0.63. Moreover, the yield strength after baking is also inferior.
Comparative Example No. 20 is alloy number 14 of Table 1, and since Cu has exceeded the upper limit, intergranular corrosion property is inferior.
Comparative Example No. 21 is Alloy No. 15 in Table 1, and the yield ratio exceeds 0.63 because the Mg content is less than the lower limit and [Si] / [Mg] is less than the lower limit of the present invention. Moreover, since 1.3 [Mg] + [Si] is less than the lower limit of the present invention, the yield strength after BH is inferior.
Comparative Example No. No. 22 is alloy number 16 in Table 1, and 1.3 [Mg] + [Si] is less than the lower limit value, so the post-BH yield strength is inferior.
Comparative Example No. 23 is alloy number 17 of Table 1, and since 1.3 [Mg] + [Si] exceeds the upper limit, the crushability is inferior.

比較例No.24〜35、表1の合金番号1、2であり、合金組成は発明範囲内であるが、製法が好ましい範囲から外れている。
比較例No.24、25は、冷間圧延の圧延率が高すぎ、前記板の表面領域のCube平均面積率が22%未満であったため、圧壊性が劣っている。
比較例No.26は、再加熱処理を実施しないため、ベーク後耐力が劣っている。
比較例No.27、28は、再加熱処理を実施しないため、ベーク後耐力が劣っている。また、冷間圧延の圧延率が高すぎ、前記板の表面領域のCube平均面積率が22%未満であったため、圧壊性が劣っている。
比較例No.29は、溶体化温度が好ましい下限値未満であるため、BH後耐力が劣っている。
比較例No.30は、溶体化保持時間が好ましい上限値を超えているため、降伏比が0.63を超えている。
比較例No.31は、再加熱までの所要時間が10分を超えるため、BH後耐力が劣っている。
比較例No.32は、再加熱温度が好ましい下限値未満のため、BH後耐力が劣っている。
比較例No.33は、再加熱温度が好ましい上限値を超えているため、降伏比が0.63を超えている。
比較例No.34は、再加熱後、60℃以上の保持時間が好ましい下限値未満のため、BH後耐力が劣っている。
比較例No.35は、再加熱後、60℃以上の保持時間が好ましい上限値を超えているため、降伏比が0.63を超えている。
Comparative Example No. 24 to 35, alloy numbers 1 and 2 in Table 1, and the alloy composition is within the scope of the invention, but the production method is out of the preferred range.
Comparative Example No. Nos. 24 and 25 are inferior in crushability because the rolling ratio of the cold rolling is too high and the Cube average area ratio of the surface area of the plate is less than 22%.
Comparative Example No. Since No. 26 does not perform a reheating process, the post-baking yield strength is inferior.
Comparative Example No. 27 and 28 are inferior in post-baking proof stress because no reheating treatment is performed. Moreover, since the rolling rate of cold rolling was too high and the Cube average area ratio of the surface area of the plate was less than 22%, the crushability was inferior.
Comparative Example No. No. 29 is inferior in yield strength after BH because the solution temperature is less than the preferred lower limit.
Comparative Example No. No. 30, because the solution retention time exceeds the preferred upper limit, so the yield ratio exceeds 0.63.
Comparative Example No. No. 31 has poor post-BH yield strength because the time required for reheating exceeds 10 minutes.
Comparative Example No. No. 32 is inferior in yield strength after BH because the reheating temperature is less than the preferred lower limit.
Comparative Example No. In No. 33, since the reheating temperature exceeds the preferable upper limit value, the yield ratio exceeds 0.63.
Comparative Example No. No. 34 is inferior in post-BH yield strength because the retention time of 60 ° C. or higher is less than the preferred lower limit after reheating.
Comparative Example No. No. 35 has a retention ratio of 60 ° C. or higher after the reheating exceeds the preferable upper limit value, so the yield ratio exceeds 0.63.

したがって、以上の実施例の結果から、自動車構造部材用として、本発明で規定する組成や組織を全て満たす意義が裏付けられる。   Therefore, the results of the above examples support the significance of satisfying all the compositions and structures defined in the present invention for automobile structural members.

本発明によれば、通常の圧延によって製造される6000系アルミニウム合金板を、高強度化させ、圧壊性を新たに持たせた上で、プレス成形性や耐食性を持たせるなど、自動車構造部材用途に特有の諸特性を兼備させることができる。このため、自動車構造部材として、6000系アルミニウム合金板の適用を拡大できる。   According to the present invention, a 6000 series aluminum alloy sheet produced by ordinary rolling is used for automobile structural members such as pressurization and corrosion resistance after increasing strength and providing new crushability. Can have various characteristics peculiar to. For this reason, application of a 6000 series aluminum alloy plate can be expanded as an automobile structural member.

Claims (4)

質量%で、Mg:0.3〜1.0%、Si:0.5〜1.2%、Cu:0.08〜0.20%を各々含み、かつ、前記Mgの含有量[Mg]と、前記Siの含有量[Si]とが、 [Si]/[Mg] ≧0.7と、1.4%≦1.3[Mg]+[Si]≦1.9%との関係を各々満足し、残部がAl及び不可避不純物からなり、板厚が2.0mm以上であるAl−Mg−Si系アルミニウム合金板であって、この板の表面から前記板厚の10%の深さまでの表面領域におけるCube方位の平均面積率が22%以上、およびこの板の降伏比が0.63以下であるとともに、前記アルミニウム合金板を2%のストレッチ後に180℃20分の人工時効処理した後の特性として、0.2%耐力が220MPa以上、およびVDA曲げ試験での曲げ角度が60°以上である圧壊性を有することを特徴とする自動車構造部材用アルミニウム合金板。   In mass%, Mg: 0.3-1.0%, Si: 0.5-1.2%, Cu: 0.08-0.20%, respectively, and the content of Mg [Mg] And the Si content [Si] is as follows: [Si] / [Mg] ≧ 0.7 and 1.4% ≦ 1.3 [Mg] + [Si] ≦ 1.9% Each is an Al—Mg—Si based aluminum alloy plate, the balance of which is made of Al and inevitable impurities, and the plate thickness is 2.0 mm or more, from the surface of this plate to a depth of 10% of the plate thickness. After the average area ratio of Cube orientation in the surface region is 22% or more and the yield ratio of this plate is 0.63 or less, the aluminum alloy plate is subjected to artificial aging treatment at 180 ° C. for 20 minutes after stretching by 2%. As characteristics, the 0.2% proof stress is 220 MPa or more, and the bending angle in the VDA bending test is 60 ° or more. Automobile structural member for an aluminum alloy sheet and having a to crushing. 前記アルミニウム合金板の前記Mgの含有量[Mg]と、前記Siの含有量[Si]とが、更に、[Si]/[Mg]≧1.8と、1.6%≦1.3[Mg]+[Si]≦1.9%との関係を各々満足する請求項1に記載の自動車構造部材用アルミニウム合金板。   The Mg content [Mg] and the Si content [Si] of the aluminum alloy plate are further set to [Si] / [Mg] ≧ 1.8 and 1.6% ≦ 1.3 [ The aluminum alloy plate for automotive structural members according to claim 1, wherein the relationship of Mg] + [Si] ≤1.9% is satisfied. 前記アルミニウム合金板の前記Cube方位の平均面積率が35%以上であるとともに、前記VDA曲げ試験での曲げ角度が90°以上である圧壊性を有している請求項1または2に記載の自動車構造部材用アルミニウム合金板。   3. The automobile according to claim 1, wherein the aluminum alloy plate has a crushing property in which an average area ratio of the Cube orientation is 35% or more and a bending angle in the VDA bending test is 90 ° or more. Aluminum alloy plate for structural members. 質量%で、Mg:0.3〜1.0%、Si:0.5〜1.2%、Cu:0.08〜0.20%を各々含み、かつ、前記Mgの含有量[Mg]と、前記Siの含有量[Si]とが、 [Si]/[Mg] ≧0.7と、1.4%≦1.3[Mg]+[Si]≦1.9%との関係を各々満足し、残部がAl及び不可避不純物からなるAl−Mg−Si系アルミニウム合金鋳塊を、均質化熱処理後に圧延して、板厚が2.0mm以上の圧延板とし、この圧延板に対して、540〜570℃の範囲で0.1〜30秒間保持する溶体化処理と焼入れ処理とを連続的に行い、前記焼入れ処理の終了後10分以内に、再加熱処理を行って素材温度が60〜90℃の範囲に3〜20時間保持して、自動車構造部材用アルミニウム合金板となし、この板の組織および特性として、この板の表面から前記板厚の10%の深さまでの表面領域におけるCube方位の平均面積率を22%以上、およびこの板の降伏比を0.63以下とするとともにし、この板を2%のストレッチした後に180℃20分の人工時効処理した後の特性として、0.2%耐力を220MPa以上、およびVDA曲げ試験での曲げ角度を60°以上とした圧壊性を有するようにしたことを特徴とする自動車構造部材用アルミニウム合金板の製造方法。
In mass%, Mg: 0.3-1.0%, Si: 0.5-1.2%, Cu: 0.08-0.20%, respectively, and the content of Mg [Mg] And the Si content [Si] is as follows: [Si] / [Mg] ≧ 0.7 and 1.4% ≦ 1.3 [Mg] + [Si] ≦ 1.9% An Al—Mg—Si-based aluminum alloy ingot consisting of Al and inevitable impurities in the balance is rolled after homogenization heat treatment to obtain a rolled plate having a plate thickness of 2.0 mm or more. The solution treatment and the quenching treatment, which are held in the range of 540 to 570 ° C. for 0.1 to 30 seconds, are continuously performed, and within 10 minutes after the quenching treatment is completed, the reheating treatment is performed and the material temperature is 60. Hold for 3 to 20 hours in the range of ~ 90 ° C to make an aluminum alloy plate for automobile structural members. As the structure and characteristics of this plate, this plate The average area ratio of the Cube orientation in the surface region from the surface of the sheet to a depth of 10% of the plate thickness is set to 22% or more, and the yield ratio of the plate is set to 0.63 or less. After being subjected to an artificial aging treatment at 180 ° C. for 20 minutes, the 0.2% proof stress is 220 MPa or more, and the bending angle in the VDA bending test is 60 ° or more. A method for producing an aluminum alloy plate for an automotive structural member.
JP2015215541A 2015-11-02 2015-11-02 Aluminum alloy sheet for automobile structural member and method of manufacturing the same Expired - Fee Related JP6506678B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015215541A JP6506678B2 (en) 2015-11-02 2015-11-02 Aluminum alloy sheet for automobile structural member and method of manufacturing the same
CN201610711238.4A CN106636786B (en) 2015-11-02 2016-08-23 Automotive structural members aluminium alloy plate and its manufacturing method
US15/336,322 US20170121801A1 (en) 2015-11-02 2016-10-27 Aluminum alloy sheet for vehicle structural component and method of manufacturing the aluminum alloy sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015215541A JP6506678B2 (en) 2015-11-02 2015-11-02 Aluminum alloy sheet for automobile structural member and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2017088906A true JP2017088906A (en) 2017-05-25
JP6506678B2 JP6506678B2 (en) 2019-04-24

Family

ID=58634540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015215541A Expired - Fee Related JP6506678B2 (en) 2015-11-02 2015-11-02 Aluminum alloy sheet for automobile structural member and method of manufacturing the same

Country Status (3)

Country Link
US (1) US20170121801A1 (en)
JP (1) JP6506678B2 (en)
CN (1) CN106636786B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12000026B2 (en) 2019-12-13 2024-06-04 Kobe Steel, Ltd. Aluminum alloy sheet for automotive structural member, automotive structural member, and method for manufacturing aluminum alloy sheet for automotive structural member

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210025046A1 (en) * 2017-08-02 2021-01-28 Aleris Aluminum Duffel Bvba Automotive outer panel made from a 6xxx-series aluminium alloy sheet product
KR20210088670A (en) * 2018-12-05 2021-07-14 아르코닉 테크놀로지스 엘엘씨 6xxx aluminum alloy
JP2021070871A (en) * 2019-10-29 2021-05-06 昭和電工株式会社 Aluminum alloy forging and production method thereof
CN113020287B (en) * 2021-03-01 2023-08-18 太原理工大学 Setting method of sine roll type corrugated roll gap of metal composite plate
CN114058885B (en) * 2021-11-16 2022-12-09 中铝材料应用研究院有限公司 6XXX series aluminum alloy plate and preparation method and welding method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329328A (en) * 2000-03-15 2001-11-27 Nippon Steel Corp Aluminum alloy sheet excellent in coating/baking hardenability and workability and its production method
JP2005139537A (en) * 2003-11-10 2005-06-02 Kobe Steel Ltd Aluminum alloy sheet having excellent baking finish hardenability
US20070137738A1 (en) * 2003-11-20 2007-06-21 Corrado Bassi Automobile body part
JP2007270204A (en) * 2006-03-30 2007-10-18 Kobe Steel Ltd Al alloy sheet superior in formability for stretch flange and manufacturing method therefor
JP2008144279A (en) * 2008-02-01 2008-06-26 Furukawa Electric Co Ltd:The Aluminum material having high moldability

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100415917C (en) * 2001-03-28 2008-09-03 住友轻金属工业株式会社 Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
US6780259B2 (en) * 2001-05-03 2004-08-24 Alcan International Limited Process for making aluminum alloy sheet having excellent bendability
JP3819263B2 (en) * 2001-07-10 2006-09-06 株式会社神戸製鋼所 Aluminum alloy material with excellent room temperature aging control and low temperature age hardening
JP4238019B2 (en) * 2001-11-30 2009-03-11 トヨタ自動車株式会社 Aluminum alloy panel for flat hem processing
JP4836486B2 (en) * 2005-04-26 2011-12-14 住友軽金属工業株式会社 Al-Mg-Si alloy sheet having excellent deep drawability and method for producing the same
JP5148930B2 (en) * 2007-06-11 2013-02-20 住友軽金属工業株式会社 Method for producing Al-Mg-Si aluminum alloy plate for press forming, and Al-Mg-Si aluminum alloy plate for press forming
JP5203772B2 (en) * 2008-03-31 2013-06-05 株式会社神戸製鋼所 Aluminum alloy sheet excellent in paint bake hardenability and suppressing room temperature aging and method for producing the same
KR101251237B1 (en) * 2008-03-31 2013-04-08 가부시키가이샤 고베 세이코쇼 Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
JP5758676B2 (en) * 2011-03-31 2015-08-05 株式会社神戸製鋼所 Aluminum alloy plate for forming and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329328A (en) * 2000-03-15 2001-11-27 Nippon Steel Corp Aluminum alloy sheet excellent in coating/baking hardenability and workability and its production method
JP2005139537A (en) * 2003-11-10 2005-06-02 Kobe Steel Ltd Aluminum alloy sheet having excellent baking finish hardenability
US20070137738A1 (en) * 2003-11-20 2007-06-21 Corrado Bassi Automobile body part
JP2007270204A (en) * 2006-03-30 2007-10-18 Kobe Steel Ltd Al alloy sheet superior in formability for stretch flange and manufacturing method therefor
JP2008144279A (en) * 2008-02-01 2008-06-26 Furukawa Electric Co Ltd:The Aluminum material having high moldability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12000026B2 (en) 2019-12-13 2024-06-04 Kobe Steel, Ltd. Aluminum alloy sheet for automotive structural member, automotive structural member, and method for manufacturing aluminum alloy sheet for automotive structural member

Also Published As

Publication number Publication date
US20170121801A1 (en) 2017-05-04
CN106636786A (en) 2017-05-10
JP6506678B2 (en) 2019-04-24
CN106636786B (en) 2018-07-03

Similar Documents

Publication Publication Date Title
KR102121156B1 (en) Highly formable automotive aluminum sheet with reduced or no surface roping and a method of preparation
WO2016140335A1 (en) Aluminum alloy plate
CN102549185B (en) Aluminum alloy extrudate with excellent bending crushing strength and corrosion resistance
JP6506678B2 (en) Aluminum alloy sheet for automobile structural member and method of manufacturing the same
JP4312819B2 (en) Aluminum alloy sheet with excellent ridging marks during molding
JP6005544B2 (en) Aluminum alloy sheet with excellent bake hardenability
JP6165687B2 (en) Aluminum alloy plate
JP4939088B2 (en) Manufacturing method of aluminum alloy sheet with excellent ridging mark property during forming
JP5406745B2 (en) Aluminum alloy sheet with excellent ridging marks during molding
JP2017125240A (en) Aluminum alloy structural member, manufacturing method thereof, and aluminum alloy sheet
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
WO2015141647A1 (en) Aluminum alloy sheet for structural material
JP2016222958A (en) High strength aluminum alloy sheet
JP2019026897A (en) Aluminum alloy sheet for structural member, and manufacturing method of aluminum alloy structural member
JP7244407B2 (en) Aluminum alloy sheet for automobile structural member, automobile structural member, and method for producing aluminum alloy plate for automobile structural member
JP2009173973A (en) Aluminum alloy sheet having excellent ridging mark property upon forming
JP6223670B2 (en) Aluminum alloy sheet for automobile parts
JP2018204116A (en) Aluminum alloy sheet
JP2010116594A (en) Al-Mg-Si-BASED ALUMINUM ALLOY SHEET SUPERIOR IN BENDABILITY
WO2019189517A1 (en) Aluminum alloy sheet for automotive structural member, automotive structural member, and method for manufacturing aluminum alloy sheet for automotive structural member
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JP6768568B2 (en) Aluminum alloy plate with excellent press formability, rigging mark property, and BH property
JP2017210673A (en) Aluminum alloy sheet for press molding small in anisotropy of r value and manufacturing method therefor
JP2019183264A (en) High strength aluminum alloy, aluminum alloy sheet and aluminum alloy member using the aluminum alloy
JP3766334B2 (en) Aluminum alloy plate with excellent bending workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190329

R150 Certificate of patent or registration of utility model

Ref document number: 6506678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees