JP2008144279A - Aluminum material having high moldability - Google Patents

Aluminum material having high moldability Download PDF

Info

Publication number
JP2008144279A
JP2008144279A JP2008022501A JP2008022501A JP2008144279A JP 2008144279 A JP2008144279 A JP 2008144279A JP 2008022501 A JP2008022501 A JP 2008022501A JP 2008022501 A JP2008022501 A JP 2008022501A JP 2008144279 A JP2008144279 A JP 2008144279A
Authority
JP
Japan
Prior art keywords
mass
less
aluminum material
orientation
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008022501A
Other languages
Japanese (ja)
Other versions
JP2008144279A5 (en
Inventor
Hideo Morimoto
秀夫 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2008022501A priority Critical patent/JP2008144279A/en
Publication of JP2008144279A publication Critical patent/JP2008144279A/en
Publication of JP2008144279A5 publication Critical patent/JP2008144279A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum material capable of achieving a high hem bendability and a high sheet moldability. <P>SOLUTION: The aluminum material is composed of crystal grains of different crystal orientations comprising Brass-oriented grains, Copper-oriented grains and the balance being other crystal-oriented grains. The occupancy ratio of the Brass-oriented grains is 0.2-0.4, the occupancy ratio of the Copper-oriented crystal grains is 0.05-0.1, the total occupancy ratio of these crystal orientations is 0.25-0.5, and the balance is other crystal-oriented grains. An automobile member is obtained using the same. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はアルミニウム材料に関し、特に、自動車ボディシート、自動車部品、機械部品などの組立時に要求される高度なヘム曲げ性およびボディ形成や筐体形成時のプレス成形などの板成形性に優れたアルミニウム材料に関する。   TECHNICAL FIELD The present invention relates to an aluminum material, and in particular, aluminum having excellent hem bendability required when assembling automobile body sheets, automobile parts, machine parts, and plate formability such as press forming when forming a body or a casing. Regarding materials.

自動車は、ボディシートなどのアルミ化が進んでおり、アウター材にはベークハード性(塗装焼付時の加熱で析出硬化する性質)に優れ、塗装焼付後に高強度となる6000系(Al−Mg−Si系)アルミニウム合金が多用され、インナー材には絞り成形性に優れた5000系(Al−Mg系)アルミニウム合金が使用されている。
この6000系アルミニウム合金からなるアウター材は、通常インナー材とかしめて用いられるヘム曲げと呼ばれる曲げ加工性に優れることが要求されるが、6000系(Al−Mg−Si系合金板)は、このヘム曲げ加工性が劣り、特にベークハード性を高めるために高温で溶体化処理した材料では著しくこのヘム曲げ加工性が劣るという問題がある。
Automobiles are aluminized, such as body sheets. Outer materials are excellent in bake hardness (property that precipitates and hardens when heated during paint baking), and have high strength after paint baking (6000 series) (Al-Mg- Si-based) aluminum alloys are frequently used, and 5000-based (Al-Mg-based) aluminum alloys having excellent drawability are used as the inner material.
The outer material made of this 6000 series aluminum alloy is required to be superior in bending workability called hem bending, which is usually used by caulking with the inner material, but the 6000 series (Al-Mg-Si based alloy plate) There is a problem that bending workability is inferior, and particularly in a material solution-treated at a high temperature in order to enhance the bake hardness, the hem bending workability is remarkably deteriorated.

更に、この6000系アルミニウム合金のアウター材には、自動車のデザインを決定するために制約の少ない板成形の一種であるプレス成形性が良いことも必要とされているが、一般に従来の鋼板や5000系アルミニウム合金板に比較してプレス成形性が劣り、自動車部品のリサイクル問題を考慮した使用材質の統合化を図る上で、その改善が望まれている。   Further, the outer material of the 6000 series aluminum alloy is required to have good press formability, which is a kind of plate forming with less restrictions in order to determine the design of an automobile. The press formability is inferior to that of aluminum-based aluminum alloy plates, and improvements are desired in order to integrate the materials used in consideration of the problem of recycling automobile parts.

このような状況において、曲げ加工性の向上には、アルミニウム合金板表面硬さを制御する方法(例えば、特許文献1参照)、結晶粒サイズや析出物サイズを制御する方法(例えば、特許文献2、3参照)、アルミニウム合金板表面の結晶方位を制御する方法(例えば、特許文献4、5参照)、アルミニウム合金板全体の結晶方位を制御する方法(例えば、特許文献6参照)、アルミニウム合金表面から一定深さまでの結晶方位を制御することで曲げ加工性を制御する方法(例えば、特許文献7参照)などが提案されている。   In such a situation, for improving the bending workability, a method for controlling the surface hardness of the aluminum alloy plate (for example, see Patent Document 1), a method for controlling the crystal grain size and the precipitate size (for example, Patent Document 2). 3), a method for controlling the crystal orientation of the surface of the aluminum alloy plate (for example, see Patent Documents 4 and 5), a method for controlling the crystal orientation of the entire aluminum alloy plate (for example, see Patent Document 6), the surface of the aluminum alloy A method of controlling the bending workability by controlling the crystal orientation from a certain depth to a certain depth (see, for example, Patent Document 7) has been proposed.

板成形の向上に対しては、アルミニウム合金板の圧延方向に対する0°方向、45°方向、90°方向の各方向のランクフォード値を制御することによりプレス成形性を高める方法(例えば、特許文献8、9参照)、並びに引張強度と耐力の関係及びアルミニウム合金板表面の結晶粒サイズと無析出帯(PFZ)を制御することでプレス成形性と曲げ加工性を高める方法(例えば、特許文献10参照)が提案されている。   In order to improve plate forming, a method of improving press formability by controlling the rankford value in each of the 0 ° direction, 45 ° direction, and 90 ° direction with respect to the rolling direction of the aluminum alloy plate (for example, patent document) 8, 9), and a method for improving press formability and bending workability by controlling the relationship between tensile strength and proof stress and the crystal grain size and precipitation free zone (PFZ) of the aluminum alloy plate surface (for example, Patent Document 10). Have been proposed).

なお、板成形における結晶粒の結晶方位と板成形性の良否の関係が、Cube方位、Brass方位およびCopper方位の単結晶方位材料から求めた結果を基にして最適に設計できることが知られている(例えば、非特許文献1参照)。また、板成形の一種である深絞り加工における単方位結晶粒材料の変形能の違いが知られている(例えば、非特許文献2参照)。   It is known that the relationship between the crystal orientation of crystal grains in plate forming and the quality of plate formability can be optimally designed based on the results obtained from single crystal orientation materials of Cube, Brass, and Copper orientations. (For example, refer nonpatent literature 1). Moreover, the difference in the deformability of the unidirectional grain material in deep drawing which is a kind of plate forming is known (for example, see Non-Patent Document 2).

しかしながら、特に自動車のボディシートには、ボディの組立に必要であるヘム曲げのような強烈な曲げ加工とボディ形状を精緻に加工する上で必要となるプレス成形性に代表される板成形性の両者が高いレベルで要求されるが、ヘム曲げ性のみを向上させることは可能であったが、同時に板成形性を従来の鋼製ボディと同等のレベルに引き上げることは難しく、逆に板成形性のレベルを引き上げようとするとヘム曲げ性のレベルが低くなり、また引張強度と耐力の関係及びアルミニウム合金板表面の結晶粒サイズと無析出帯(PFZ)を制御することでプレス成形性と曲げ加工性を高める方法を以ってしても、高いレベルの板成形性の獲得は難しいものであった。   However, especially for automobile body seats, it has strong plate forming properties such as hem bending, which is necessary for the assembly of the body, and plate formability typified by press formability required for precise processing of the body shape. Although both are required at a high level, it was possible to improve only the hem bendability, but at the same time it was difficult to raise the plate formability to the same level as the conventional steel body, conversely the plate formability Attempting to raise the level of hem lowers the level of hem bendability, and also controls the press formability and bending by controlling the relationship between tensile strength and proof stress and the crystal grain size and precipitation free zone (PFZ) of the aluminum alloy sheet surface. Even with a method for improving the properties, it was difficult to obtain a high level of plate formability.

特開2003−129201号公報JP 2003-129201 A 特開2003−221637号公報JP 2003-221737 A 特開2003−268472号公報JP 2003-268472 A 特開2003−226926号公報JP 2003-226926 A 特開2003−226927号公報JP 2003-226927 A 特開2003−268475号公報JP 2003-268475 A 特開2004−27253号公報JP 2004-27253 A 特開2002−146462号公報JP 2002-146462 A 特開2004−10982号公報JP 2004-10982 A 特開2003−105473号公報JP 2003-105473 A 仲町英治、濱田佳紀:塑性と加工、39−446(1998)、252.Eiji Nakamachi, Yoshinori Hamada: Plasticity and processing, 39-446 (1998), 252. 森本秀夫、仲町英治:古河電工時報、103(1999)、7.Hideo Morimoto, Eiji Nakamachi: Furukawa Electric Times, 103 (1999), 7.

このような状況において、本発明者は、結晶粒の結晶方位分布がヘム曲げ性、板成形性に与える影響を検討した結果、ヘム曲げ性及び板成形性を高レベルで両立できる本発明を見出した。
本発明は、ヘム曲げ性及び板成形性を高レベルで両立できるアルミニウム材料を提供することを課題とするものである。
具体的には、アルミニウム材料を構成する結晶粒が示す結晶方位のうち、Cube方位、Brass方位、Copper方位の3者の割合を制御することで、ヘム曲げのような峻烈な曲げ性やプレス成形のような板成形性の両特性に優れたアルミニウム材料を提供することを課題とする。
Under such circumstances, the present inventors have examined the influence of the crystal orientation distribution of crystal grains on hem bendability and plate formability, and as a result, found the present invention that can achieve both hem bendability and plate formability at a high level. It was.
An object of the present invention is to provide an aluminum material that can achieve both a high degree of hem bendability and sheet formability.
Specifically, by controlling the ratio of the three of the Cube orientation, the Brass orientation, and the Copper orientation among the crystal orientations indicated by the crystal grains constituting the aluminum material, the sharp bendability such as hem bending and press molding are controlled. It is an object of the present invention to provide an aluminum material excellent in both properties of plate formability.

通常、圧延板の集合組織は、板材の圧延面と圧延方向((ABC)と<DEF>)の関係で表現する(A,B,C,D,E,Fは整数を表す。)。ここで、板材の結晶集合組織の結晶方位分布とは、ランダムな方位に対する各板材に特有な結晶方位の分布を、結晶方位の比率で表したものである。   Usually, the texture of a rolled sheet is expressed by the relationship between the rolled surface of the sheet and the rolling direction ((ABC) and <DEF>) (A, B, C, D, E, and F represent integers). Here, the crystal orientation distribution of the crystal texture of the plate material represents a distribution of crystal orientations specific to each plate material with respect to a random orientation expressed by a ratio of crystal orientations.

本発明では、Cube方位、Brass方位、Copper方位を対象として評価した。Cube方位とは(100)<001>方位、Brass方位は(011)<211>方位、Copper方位は(112)<111>方位に結晶が配向しているものを表すものとする。なお、実際の板材の方位は、前記Cube方位、Brass方位、Copper方位のそれぞれの理想方位からはずれを生じるために、Cube方位、Brass方位、Copper方位の各結晶の理想方位を基準に、各結晶の理想方位から5度ずれた範囲までの結晶方位もそれぞれCube方位、Brass方位、Copper方位に含まれるものとする。   In the present invention, evaluation was made on the Cube orientation, the Brass orientation, and the Copper orientation. The Cube orientation represents the (100) <001> orientation, the Brass orientation represents the (011) <211> orientation, and the Copper orientation represents the (112) <111> orientation. Since the actual orientation of the plate material deviates from the ideal orientation of each of the Cube orientation, the Brass orientation, and the Copper orientation, each crystal based on the ideal orientation of each crystal of the Cube orientation, the Brass orientation, and the Copper orientation. It is assumed that crystal orientations up to a range shifted by 5 degrees from the ideal orientation are also included in the Cube orientation, the Brass orientation, and the Copper orientation, respectively.

上記課題は以下の技術的手段によって解決された:
(1) 結晶方位の異なる結晶粒で構成されるアルミニウム材料であって、前記結晶粒が、Cube方位結晶粒、Brass方位結晶粒、Copper方位結晶粒、及び残部が他方位結晶粒からなり、Cube方位の結晶粒の占有率が0.3から0.7、Brass方位の結晶粒の占有率が0.1から0.5、Copper方位の結晶粒の占有率が0.2以下、且つこれらの方位の総占有率が0.4から1.0であり、残部がその他の結晶方位の結晶粒であることを特徴とするアルミニウム材料、
The above problem has been solved by the following technical means:
(1) An aluminum material composed of crystal grains having different crystal orientations, wherein the crystal grains are Cube-oriented crystal grains, Brass-oriented crystal grains, Copper-oriented crystal grains, and the balance is the other-order crystal grains. The occupancy ratio of crystal grains in the orientation is 0.3 to 0.7, the occupancy ratio of the crystal grains in the Brass orientation is 0.1 to 0.5, the occupation ratio of the crystal grains in the Copper orientation is 0.2 or less, and these An aluminum material characterized in that the total occupancy of the orientation is 0.4 to 1.0, and the balance is crystal grains of other crystal orientations,

(2) 結晶方位の異なる結晶粒で構成されるアルミニウム材料であって、前記結晶粒が、Cube方位結晶粒、Brass方位結晶粒、Copper方位結晶粒、及び残部が他方位結晶粒からなり、Cube方位の結晶粒の占有率が0.4から0.6、Brass方位の結晶粒の占有率が0.2から0.4、Copper方位の結晶粒の占有率が0.05から0.1、且つこれらの方位の総占有率が0.65から0.9であり、残部がその他の結晶方位の結晶粒であることを特徴とするアルミニウム材料、 (2) An aluminum material composed of crystal grains having different crystal orientations, wherein the crystal grains are Cube-oriented crystal grains, Brass-oriented crystal grains, Copper-oriented crystal grains, and the balance is the other-order crystal grains. The occupancy of crystal grains in the orientation is 0.4 to 0.6, the occupancy of the crystals in the Brass orientation is 0.2 to 0.4, the occupancy of the crystals in the Copper orientation is 0.05 to 0.1, And an aluminum material characterized in that the total occupancy of these orientations is 0.65 to 0.9, and the balance is grains of other crystal orientations,

(3) 結晶方位の異なる結晶粒で構成されるアルミニウム材料であって、前記結晶粒が、Brass方位結晶粒、Copper方位結晶粒、及び残部が他方位結晶粒からなり、Brass方位の結晶粒の占有率が0.2から0.4、Copper方位の結晶粒の占有率が0.05から0.1、且つこれらの方位の総占有率が0.25から0.5であり、残部がその他の結晶方位の結晶粒とで構成され板成形性に優れることを特徴とするアルミニウム材料、 (3) An aluminum material composed of crystal grains having different crystal orientations, wherein the crystal grains are composed of a Brass-oriented crystal grain, a Copper-oriented crystal grain, and the balance is the other-order crystal grain. Occupancy rate is 0.2 to 0.4, Copper orientation crystal grain occupancy rate is 0.05 to 0.1, total occupancy rate of these orientations is 0.25 to 0.5, and the rest is other An aluminum material characterized in that it is composed of crystal grains having a crystal orientation of

(4) 30mmの張出し高さで張出し表面上に割れを生じない板成形性を有し、且つ、ヘム曲げ性における曲げ表面上の割れが生じない範囲が、曲げ半径/板厚の比で0.5以下のヘム曲げ性を有することを特徴とする前記(1)〜(3)のいずれか1項に記載のアルミニウム材料、 (4) The ratio of bending radius / thickness is 0 in the range in which cracking on the bending surface in the hem bendability has no plate cracking property at a protruding height of 30 mm and no cracking occurs on the protruding surface. The aluminum material according to any one of (1) to (3), wherein the aluminum material has a hem bendability of .5 or less,

(5) 50mmの張出し高さで張出し表面上に割れを生じない板成形性を有し、且つ、ヘム曲げ性における曲げ表面上の割れが生じない範囲が、曲げ半径/板厚の比で0.25以下のヘム曲げ性を有することを特徴とする前記(1)〜(3)のいずれか1項に記載のアルミニウム材料、 (5) The ratio of the bending radius / thickness is 0 in the range where there is a plate formability that does not cause cracks on the extended surface at an extended height of 50 mm, and no crack occurs on the bent surface in hem bendability. The aluminum material according to any one of (1) to (3), wherein the aluminum material has a hem bendability of .25 or less,

(6) 前記アルミニウム材料が、Mgを0.25から1.0mass%、Siを0.5から1.3mass%、残部Alと不可避的不純物とからなるアルミニウム合金であることを特徴とする前記(1)〜(5)のいずれか1項に記載のアルミニウム材料、 (6) The aluminum material is an aluminum alloy composed of Mg of 0.25 to 1.0 mass%, Si of 0.5 to 1.3 mass%, the balance Al and inevitable impurities ( The aluminum material according to any one of 1) to (5),

(7) 前記アルミニウム材料が、Mgを0.25から1.0mass%、Siを0.5から1.3mass%、Cu,Zn,Mnを1mass%以下、Feを0.40mass%以下、Ti、Crを0.1mass%以下含み、残部Alと不可避的不純物とからなるアルミニウム合金であることを特徴とする前記(1)〜(5)のいずれか1項に記載のアルミニウム材料、 (7) The aluminum material has Mg of 0.25 to 1.0 mass%, Si of 0.5 to 1.3 mass%, Cu, Zn, Mn of 1 mass% or less, Fe of 0.40 mass% or less, Ti, The aluminum material according to any one of (1) to (5), wherein the aluminum material includes 0.1 mass% or less of Cr, and is an aluminum alloy including the balance Al and unavoidable impurities,

(8) 前記アルミニウム材料が、Mgを0.40から1.0mass%、Siを0.5から1.3mass%、Cu,Mnを1mass%以下、Zn0.3mass%以下、Feを0.20mass%以下、Ti、Crを0.1mass%以下含み、残部Alと不可避的不純物とからなるアルミニウム合金であることを特徴とする前記(1)〜(5)のいずれか1項に記載のアルミニウム材料、 (8) The aluminum material has Mg of 0.40 to 1.0 mass%, Si of 0.5 to 1.3 mass%, Cu and Mn of 1 mass% or less, Zn of 0.3 mass% or less, and Fe of 0.20 mass%. The aluminum material according to any one of the above (1) to (5), which is an aluminum alloy containing Ti and Cr in an amount of 0.1 mass% or less and the balance being Al and inevitable impurities,

(9) 前記アルミニウム材料が、Mgを0.25から1.0mass%、Siを0.5から1.3mass%、Cu,Zn,Mnを1mass%以下、Feを0.40mass%以下、Ti、Crを0.1mass%以下含み、さらにV,Zrを0.20mass%以下含み、残部Alと不可避的不純物とからなるアルミニウム合金であることを特徴とする前記(1)〜(5)のいずれか1項に記載のアルミニウム材料、 (9) The aluminum material has Mg of 0.25 to 1.0 mass%, Si of 0.5 to 1.3 mass%, Cu, Zn, Mn of 1 mass% or less, Fe of 0.40 mass% or less, Ti, Any of (1) to (5) above, characterized in that it is an aluminum alloy containing 0.1 mass% or less of Cr and further containing 0.20 mass% or less of V and Zr, and the balance being Al and inevitable impurities. The aluminum material according to item 1,

(10) 前記アルミニウム材料が、Mgを0.40から1.0mass%、Siを0.5から1.3mass%、Cu,Mnを1mass%以下、Zn0.3mass%以下、Feを0.20mass%以下、Ti、Crを0.1mass%以下含み、さらにV,Zrを0.1mass%以下含み、残部Alと不可避的不純物とからなるアルミニウム合金であることを特徴とする前記(1)〜(5)のいずれか1項に記載のアルミニウム材料、 (10) The aluminum material has Mg of 0.40 to 1.0 mass%, Si of 0.5 to 1.3 mass%, Cu and Mn of 1 mass% or less, Zn of 0.3 mass% or less, and Fe of 0.20 mass%. The above (1) to (5), characterized in that it is an aluminum alloy containing 0.1 mass% or less of Ti and Cr and further containing 0.1 mass% or less of V and Zr, and the balance being Al and inevitable impurities. Aluminum material according to any one of

(11) 前記(4)または(5)項に記載のアルミニウム材料を用いた自動車部材、および
(12) 前記(6)〜(10)のいずれか1項に記載のアルミニウム材料を用いた自動車部材。
(11) An automobile member using the aluminum material according to (4) or (5), and (12) an automobile member using the aluminum material according to any one of (6) to (10). .

上記技術的手段の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。   The above and other features and advantages of the above technical means will become more apparent from the following description, with reference where appropriate to the accompanying drawings.

図1(a)〜図1(c)は、実施例1で行ったヘム曲げ加工性試験方法を模式的に示す図であり、図1(a)は供試材のセッティングを示し、図1(b)はパンチ押し込みを示し、図1(c)は万力による密着曲げ(締付け)を示す。1 (a) to 1 (c) are diagrams schematically showing the hem bending workability test method performed in Example 1, and FIG. 1 (a) shows the setting of the test material. (B) shows punch indentation, and FIG. 1 (c) shows contact bending (tightening) by a vise.

以下に上記技術的手段を詳細に説明する。
上記技術的手段は、アルミニウム材料を構成する結晶粒が示す結晶方位のうち、Cube方位、Brass方位、及び/またはCopper方位の割合を制御して適正化することにより、ヘム曲げのような峻烈な曲げやボディプレス成形のような板成形の両者を高レベルで満足する材料を見出したもので、例えば、Cube方位結晶粒の占有率が0.3〜0.7、Brass方位結晶粒の占有率が0.1〜0.5、Copper方位結晶粒の占有率が0.2以下で、且つCube方位、Brass方位、Copper方位の各結晶方位の総占有率が0.4から1.0であることを満たすアルミニウム材料において、良好な曲げ性及び板成形性を示す。
以下に、アルミニウム材料を構成する結晶粒の各結晶方位の占有率と両特性の関係について述べる。
The technical means will be described in detail below.
The above technical means is capable of controlling the ratio of the Cube orientation, the Brass orientation, and / or the Copper orientation out of the crystal orientations of the crystal grains constituting the aluminum material, thereby optimizing the sharpness such as hem bending. We have found a material that satisfies both high-level bending and plate forming such as body press molding. For example, the occupancy ratio of Cube orientation crystal grains is 0.3 to 0.7, and the occupancy ratio of Brass orientation crystal grains Is 0.1 to 0.5, the occupancy ratio of the Copper orientation crystal grains is 0.2 or less, and the total occupancy ratio of each crystal orientation of the Cube orientation, the Brass orientation, and the Copper orientation is 0.4 to 1.0. An aluminum material that satisfies the above requirements exhibits good bendability and plate formability.
The relationship between the occupancy ratio of each crystal orientation of the crystal grains constituting the aluminum material and both characteristics will be described below.

第一に、Cube方位の結晶粒はその結晶方位密度がヘム曲げに大きく影響していることが知られており、その結晶方位密度がランダム方位結晶粒の結晶方位密度より高まるにつれて、ヘム曲げが良好となることが知られている。上記技術的手段においても、同様にヘム曲げを良好とするために、このCube方位の結晶粒の占有率を高めることが好ましい。しかしながら、Cube方位結晶粒の占有率の増大は、板成形性を大きく損ねてしまう結果となる。   First, it is known that the crystal orientation density of the Cube orientation crystal grains has a great influence on the hem bending, and as the crystal orientation density becomes higher than the crystal orientation density of the random orientation crystal grains, the hem bending is increased. It is known to be good. Also in the above technical means, it is preferable to increase the occupancy ratio of the crystal grains having the Cube orientation in order to improve the hem bending. However, an increase in the occupation ratio of the Cube-oriented crystal grains results in a significant loss of plate formability.

そこで、上記技術的手段では、種々検討の結果、その占有率の範囲は0.3〜0.7が好ましく、より好ましくは0.4〜0.6である。この範囲の下限域においては実用上充分なヘム曲げ性が提供でき、上限域では、ボディシートの自動車外形へのプレス成形を実施するのに充分な板成形性を維持している。   Therefore, in the above technical means, as a result of various studies, the range of the occupation ratio is preferably 0.3 to 0.7, and more preferably 0.4 to 0.6. In the lower limit range of this range, practically sufficient hem bendability can be provided, and in the upper limit range, plate formability sufficient to perform press molding of the body sheet to the automobile outer shape is maintained.

第二に、Brass方位結晶粒の占有率が高いと、前記Cube方位結晶粒の占有率が高い場合とは反対に板成形性を良好にする。しかしながら、Brass方位結晶粒がヘム曲げ性に及ぼす影響については判っておらず、更にその占有率の影響に関しても不明であった。   Second, when the occupancy ratio of the Brass orientation crystal grains is high, the plate formability is improved as opposed to the case where the occupancy ratio of the Cube orientation crystal grains is high. However, the effect of Brass-oriented crystal grains on heme bendability is not known, and the influence of the occupation ratio is also unknown.

そこで、上記技術的手段では、Brass方位結晶粒の占有率のヘム曲げ及び板成形に及ぼす影響を精査した結果、その占有率の範囲を0.1〜0.5、好ましくは0.2〜0.4としたものである。前記Cube方位結晶粒の占有率範囲内において、Brass方位結晶粒の占有率を0.1〜0.5とすることによりヘム曲げ及び板成形の両者を高いレベルで獲得することができるものである。この範囲を外れる材料では、ヘム曲げ或いは板成形のどちらか一方が優れるか、両者ともに低レベルとなってしまう。   Therefore, in the above technical means, as a result of examining the influence of the occupancy ratio of the Brass-oriented crystal grains on the hem bending and plate forming, the occupancy ratio range is 0.1 to 0.5, preferably 0.2 to 0. .4. Within the occupancy range of the Cube orientation crystal grains, by setting the occupancy ratio of the Brass orientation crystal grains to 0.1 to 0.5, both hem bending and plate forming can be obtained at a high level. . If the material is out of this range, either hem bending or plate forming will be excellent, or both will be at a low level.

第三に、Copper方位結晶粒の占有率を0.2以下、好ましくは0.05〜0.15、より好ましくは0.05〜0.1である。このように限定した理由は、Copper方位結晶粒は、板成形に対して、Brass方位結晶粒と同様の働きを示すことが知られているが、上記技術的手段では、もう一つの効果として、このCopper方位結晶粒が、前記占有率の割合で存在することで、ヘム曲げ性及び板成形の両者のレベルを引き上げる効果を示すことを見出したもので、Cube方位結晶粒とBrass方位結晶粒の両者の緩衝材として働くのではないかと予想される。   Third, the occupation ratio of Copper-oriented crystal grains is 0.2 or less, preferably 0.05 to 0.15, and more preferably 0.05 to 0.1. The reason for this limitation is that the Copper-oriented crystal grains are known to exhibit the same function as the Brass-oriented crystal grains for plate forming. However, in the above technical means, as another effect, It has been found that the presence of the Copper-oriented crystal grains in the ratio of the occupation ratio shows an effect of raising both the hem bendability and the plate forming level. The Cube-oriented crystal grains and the Brass-oriented crystal grains It is expected that it will work as a cushioning material for both.

次に、この結晶方位の占有率の算出方法について述べる。
測定に供されるアルミニウム板材、ここでは所定厚み(例えば厚み1mm)のアルミニウム板材を準備し、その表面をアセトンなどの油分清浄材で脱脂後、アルミニウム板材の材質に合った酸化層除去剤(例えば、アルミニウム合金では王水など)を用いて表面の酸化層を除去したアルミニウム板を、電解研磨法により鏡面仕上げとし、アルミニウム板材の表層近傍を供試材として結晶方位の測定に用いた。
次に、この供試材を用いて、結晶粒の結晶方位を電子後方散乱回折像法(Electron Backscatter Diffraction Pattern、以下EBSPと略す)により測定する。
測定は、熱電子放出型走査電子顕微鏡内で行い、単位面積内にある結晶粒の各結晶方位を測定し、単位面積内の全結晶粒の数を1とした場合の、それに対するCube方位、Brass方位、Copper方位の各結晶粒の数の比を求め、その値を占有率とした。例えば、1.0mm四方内にある全結晶粒の数が100の場合、Cube方位、Brass方位、Copper方位の各結晶粒の数の合計が100(つまり、他の結晶方位の結晶粒がない)場合、Cube方位、Brass方位及びCopper方位の各結晶粒の占有率の合計(総占有率)は1である。
Next, a method for calculating the crystal orientation occupancy will be described.
An aluminum plate material to be used for measurement, here an aluminum plate material having a predetermined thickness (for example, 1 mm thickness) is prepared, and after degreasing the surface with an oil cleaning material such as acetone, an oxide layer removing agent (for example, suitable for the material of the aluminum plate material) The aluminum plate from which the oxide layer on the surface was removed using aqua regia or the like for an aluminum alloy was mirror-finished by electrolytic polishing, and the vicinity of the surface layer of the aluminum plate was used as a test material to measure crystal orientation.
Next, using this test material, the crystal orientation of the crystal grains is measured by an electron backscatter diffraction pattern (hereinafter abbreviated as EBSP).
The measurement is performed in a thermionic emission scanning electron microscope, each crystal orientation of the crystal grains in the unit area is measured, and the Cube orientation relative to the number of all crystal grains in the unit area is 1. The ratio of the number of crystal grains in the Brass orientation and Copper orientation was determined, and the value was used as the occupation ratio. For example, when the total number of crystal grains in a 1.0 mm square is 100, the total number of crystal grains in the Cube, Brass, and Copper orientations is 100 (that is, there are no crystal grains in other crystal orientations). In this case, the total occupancy (total occupancy) of each crystal grain in the Cube orientation, the Brass orientation, and the Copper orientation is 1.

上記技術的手段に係るアルミニウム材料は、その結晶構造が面心立方構造であることにより前記結晶方位の占有率割合で、良好な曲げ性及び板成形性を示すものである。面心立方構造をとる材料としては、Al合金、Cu合金、Ni合金、Ag合金、Au合金などがあるが、特にAl合金では顕著な効果を示すものである。   The aluminum material according to the above technical means exhibits good bendability and plate formability at the crystal orientation occupancy ratio because the crystal structure is a face-centered cubic structure. Examples of the material having a face-centered cubic structure include an Al alloy, a Cu alloy, a Ni alloy, an Ag alloy, and an Au alloy, and the Al alloy exhibits a remarkable effect.

前記Al合金としては、Mgを0.25から1.0mass%、Siを0.5から1.3mass%、残部Alと不可避的不純物とからなるAl−Mg−Si合金において、大きな効果を示すので好ましい。
このAl−Mg−Si合金に必須元素として含まれるSi及びMgはMgSi化合物として析出し、強度の向上に寄与するもので、少なすぎるとその効果が充分でなく、Si量が多すぎると自然時効現象が生じて曲げ加工性を大きく低下させる原因となることがある。また、Mg量が多すぎると粗大なMgSi化合物が多量に析出し、その結果、固溶量が大きく減少して曲げ加工性並びにベークハード性の低下を引き起こす場合がある。さらに、例えば、板材の強度を少し高めとするためには、Mgの下限値を0.40%以上にするのが好ましい。
As the Al alloy, an Al—Mg—Si alloy composed of 0.25 to 1.0 mass% of Mg, 0.5 to 1.3 mass% of Si, and the balance Al and inevitable impurities exhibits a great effect. preferable.
Si and Mg contained as essential elements in this Al—Mg—Si alloy are precipitated as Mg 2 Si compounds and contribute to improving the strength. If the amount is too small, the effect is not sufficient, and if the amount of Si is too large. A natural aging phenomenon may occur, causing a significant decrease in bending workability. On the other hand, if the amount of Mg is too large, a large amount of coarse Mg 2 Si compound is precipitated, and as a result, the amount of solid solution is greatly reduced, which may cause a decrease in bending workability and bake hardness. Furthermore, for example, in order to slightly increase the strength of the plate material, it is preferable to set the lower limit value of Mg to 0.40% or more.

前記、Mg及びSiの他に、Cu,Zn、Mn、Cr、Tiなどが添加されても良い。Cuの添加は強度、延性、脱脂性、化成処理性などを高め、Znの添加は、脱脂性や化成処理性を高め、Mn、Ti、Crの添加は結晶粒の微細化を促し、曲げ加工性をよくする働きを示すが、これらの元素を過剰に添加されると耐食性の低下や延性の低下を招く。
Cu,Znの添加は、前記のようにいずれの元素も1mass%以下の範囲であれば実用上問題ないが、強度、延性、脱脂性、化成処理性と耐食性や延性とのバランスを考慮して1mass%以下のレベルにその上限を適宜決定することもできる。特に、板材の耐食性を高めるには、Znの添加を0.3mass%以下とするのが好ましい。
また、結晶粒の微細化を促し、曲げ加工性をよくするMn、Cr,Tiの添加量は、Mnは1mass%以下にする必要があり、TiやCrでは0.1mass%以下にするのが好ましい。
In addition to the Mg and Si, Cu, Zn, Mn, Cr, Ti, etc. may be added. Addition of Cu increases strength, ductility, degreasing, chemical conversion treatment, etc. Addition of Zn improves degreasing and chemical conversion processing, and addition of Mn, Ti, Cr promotes refinement of crystal grains and bending. Although it works to improve the properties, if these elements are added excessively, corrosion resistance and ductility are reduced.
As described above, the addition of Cu and Zn has no practical problem as long as any element is in the range of 1 mass% or less, but considering the balance between strength, ductility, degreasing, chemical conversion treatment, corrosion resistance, and ductility. The upper limit can be appropriately determined to a level of 1 mass% or less. In particular, in order to increase the corrosion resistance of the plate material, it is preferable to add Zn to 0.3 mass% or less.
In addition, the amount of Mn, Cr, and Ti that promotes the refinement of crystal grains and improves the bending workability needs to be 1 mass% or less for Mn, and 0.1 mass% or less for Ti or Cr. preferable.

前記元素の他に、不純物として含まれるFeは、MgSi化合物より硬い晶出物を形成してしまい、周囲に大きなひずみを形成して割れの伝播を助長することから、Fe量は好ましくは0.40mass%以下、さらには0.20mass%以下にすることが好ましい。さらに、結晶粒微細化等の目的で、V、Zrなどを必要に応じて、0.20mass%以下の範囲で含むこともできる。V、Zr添加量は、0.20mass%以下の範囲では、ヘム曲げ性やプレス成形性等の板成形性に影響がないが、耐食性や延性などを考慮すると0.1mass%以下であることが好ましい。 In addition to the above elements, Fe contained as an impurity forms a crystallized material that is harder than the Mg 2 Si compound, and forms a large strain around the element to promote the propagation of cracks. It is preferable to set it to 0.40 mass% or less, more preferably 0.20 mass% or less. Furthermore, V, Zr, etc. can be included in the range of 0.20 mass% or less as needed for the purpose of crystal grain refinement. V and Zr addition amounts do not affect the plate formability such as hem bendability and press formability in the range of 0.20 mass% or less, but may be 0.1 mass% or less in consideration of corrosion resistance and ductility. preferable.

本発明によれば、自動車ボディシート、自動車部品、機械部品などの組立時に要求される高度なヘム曲げ性およびボディ形成や筐体形成時のプレス成形などの板成形性に優れたアルミニウム材料を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the high hem bendability required at the time of assembling an automobile body sheet, an automobile part, a machine part, etc. and an aluminum material excellent in plate formability such as press forming at the time of body formation or housing formation are provided. can do.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these.

(実施例1)
Mgを0.5mass%、Siを0.9mass%、Mnを0.06mass%、Feを0.07mass%、Cuを0.10mass%、Zn、Ti,Crはいずれも0.0.05mass%以下含み、残部AlからなるAl合金を常法により厚み500mmのインゴットに溶解鋳造し、このインゴットを540℃、6時間の均質化処理後、開始温度500℃、終了温度200℃の条件下で熱間圧延して厚み10mmの熱間圧延板を得た。次に、この熱間圧延板を、20%、30%、50%、70%、90%の仕上げ加工率で厚み1mmの仕上げ素板になるような所定厚みに冷間圧延した。なお、仕上げ冷間加工率が90%の試料に関しては、厚み10mmの熱間圧延板から直接厚み1mmの仕上げ素板を得た。
次に、この所定厚みの冷間圧延板を325℃、2時間の条件で焼鈍し、仕上げ冷間圧延を施し、厚み1mmの仕上げ素板を作製した。この仕上げ素板に連続焼鈍炉を用いた500℃の溶体化処理と、100℃、24時間の安定化処理を施して供試材とした。
(Example 1)
0.5 mass% for Mg, 0.9 mass% for Si, 0.06 mass% for Mn, 0.07 mass% for Fe, 0.10 mass% for Cu, and all of Zn, Ti and Cr are equal to or less than 0.05 mass% In addition, an Al alloy composed of the remaining Al is melt-cast into an ingot having a thickness of 500 mm by a conventional method, and the ingot is homogenized at 540 ° C. for 6 hours, and then heated under conditions of a start temperature of 500 ° C. and an end temperature of 200 ° C. A hot rolled plate having a thickness of 10 mm was obtained by rolling. Next, this hot-rolled sheet was cold-rolled to a predetermined thickness such that a finished base sheet having a thickness of 1 mm was obtained at a finishing rate of 20%, 30%, 50%, 70%, and 90%. In addition, about the sample whose finishing cold work rate is 90%, the finishing base plate of thickness 1mm was obtained directly from the hot-rolling board of thickness 10mm.
Next, this cold-rolled sheet having a predetermined thickness was annealed at 325 ° C. for 2 hours and subjected to finish cold-rolling to produce a finished blank having a thickness of 1 mm. The finished base plate was subjected to a solution treatment at 500 ° C. using a continuous annealing furnace and a stabilization treatment at 100 ° C. for 24 hours to obtain a test material.

結晶方位の占有率の測定を前段に述べた方法により測定し、表1に示した。
表1に記載された供試材No.1は仕上げ冷間加工率20%で仕上げ圧延を行なったもので,以下No.2は30%、No.3は50%、No.4は70%、No.5は80%、No.10は10%、No.11は90%の仕上げ冷間加工率で仕上げ冷間圧延を行なった。
なお、各結晶方位の占有率は、Cube方位、Brass方位、Copper方位の各結晶の理想方位を中心に5度離れた結晶方位を含むものとした。
The crystal orientation occupancy was measured by the method described in the preceding paragraph and is shown in Table 1.
Specimen No. listed in Table 1 No. 1 was finish-rolled at a finish cold work rate of 20%. 2 is 30%. 3 is 50%. 4 is 70%. 5 is 80%. 10 is 10%. No. 11 was subjected to finish cold rolling at a finish cold work rate of 90%.
Note that the occupancy of each crystal orientation includes crystal orientations that are 5 degrees apart from the ideal orientation of each crystal of the Cube orientation, the Brass orientation, and the Copper orientation.

作製した供試材を用いて、180℃曲げ加工試験と張出し成形試験を行い、それぞれヘム曲げ加工性及び板成形性を評価した。
先ず、ヘム曲げ加工性に関しては、図1(a)の予歪付与、図1(b)の折り曲げ角170度までのパンチ押し込み、図1(c)に示す万力締め付けを順に行う180℃曲げ加工試験を用い、パンチ1の先端曲率Rを0.25、0.5、0.75、1.0mmと変化させて各先端曲率毎に繰り返し5枚の試験数で試験を行い、全てにおいて肌荒れ及び割れが生じない先端曲率の最小値を表1のヘム曲げ加工性の欄に記した。従って、この試験において、肌荒れと割れが生じない先端曲率が小さければ小さい程ヘム曲げ加工性に優れることになる。
Using the produced test material, a 180 ° C. bending test and a stretch forming test were performed, and hem bending workability and plate formability were evaluated, respectively.
First, regarding the hem bending workability, 180 ° bending is performed in which the pre-strain is applied as shown in FIG. 1 (a), the punch is pushed up to a bending angle of 170 ° in FIG. 1 (b), and the vise clamping shown in FIG. Using the processing test, the tip curvature R of the punch 1 was changed to 0.25, 0.5, 0.75, and 1.0 mm, and the test was repeated for each tip curvature with the number of tests of 5 sheets. The minimum value of the tip curvature at which no crack occurs is shown in the column of hem bending workability in Table 1. Therefore, in this test, the smaller the tip curvature that does not cause rough skin and cracks, the better the hem bending workability.

張出し成形性に関しては、供試材を300mm角に切断し、両面に潤滑油を塗布した後、直径100mmの球頭ポンチを用いて張出し高さ50mmの条件で張出し試験を繰り返し5枚の試験数で試験を行い、張出し成形性を評価した。
全数、割れの発生していない供試材を「○」、1個のみ割れている供試材を「△」、2個以上が割れてしまう供試材を「×」として表1に記した。
Regarding the stretch formability, after cutting the test material into 300 mm squares and applying lubricating oil on both sides, the stretch test was repeated under the condition of a stretch height of 50 mm using a ball head punch with a diameter of 100 mm. The test was conducted to evaluate the stretch formability.
Table 1 shows all specimens with no cracks as "O", specimens with only one crack as "△", and specimens with two or more cracks as "X". .

作製した供試材の強度、伸びは、仕上げ冷間加工率90%の供試材を除いて、強度が230〜240MPa、0.2%耐力が130〜140MPa、伸びが30%以上であった。仕上げ冷間加工率90%の供試材は、強度、0.2%耐力共に他の加工率の供試材と変わらなかったが、伸びが17%と低かった。   The strength and elongation of the prepared specimens were 230 to 240 MPa in strength, 130 to 140 MPa in 0.2% proof stress, and 30% or more in elongation, except for specimens with a finish cold working rate of 90%. . The test material with a finish cold working rate of 90% was the same in strength and 0.2% yield strength as the other test materials, but the elongation was as low as 17%.

Figure 2008144279
表1から明らかなように、各結晶方位が本技術的手段の範囲内の供試材No.1からNo.5では、ヘム曲げ加工性および板成形性共に良好であるのに対して、Cube方位の占有率割合が低く、Brass方位の占有率割合が多い供試材No.10では、両特性共に優れず、殆どの結晶粒がCube方位を示す供試材No.11では、ヘム曲げ加工性には優れるが、反面板成形性が劣っていることがわかる。すなわち、前記(8)項を満足する優れた材料が得られることが判る。
なお、Mgを0.5mass%、Siを0.9mass%のみを添加し、残部がAlと不可避的不純物からなる材料を実施例1と同様の工程で製造したところ、前記(6)項を満足する優れた材料が得られた。また、Fe添加量のみを0.25mass%に変更した材料と、Fe添加量を0.25mass%、Cu添加量を0.15mass%と変更した材料を実施例1と同様の工程で、同様の試作材を製造したところ、両者とも、前記(7)項を満足する優れた結果が得られた。さらに、実施例1の材料に、V,Zrをともに0.15mass%添加した材料と、V,Zrをともに0.08mass%添加した材料を実施例1と同様の工程で、同様の試作材を製造したところ、両者とも、前記(9)または(10)項を満足する優れた結果が得られた。
Figure 2008144279
As can be seen from Table 1, each of the crystal orientations within the scope of the technical means No. 1 to No. No. 5, while the hem bending workability and the plate formability are both good, the test piece No. No. 1 has a low occupancy ratio in the Cube orientation and a large occupancy ratio in the Brass orientation. No. 10, both properties are not excellent, and most of the crystal grains have a Cube orientation. No. 11 is excellent in hem bending workability but is inferior in plate formability. That is, it can be seen that an excellent material satisfying the item (8) can be obtained.
In addition, when only 0.5 mass% of Mg and 0.9 mass% of Si were added, and the balance was made of Al and inevitable impurities in the same process as in Example 1, the above item (6) was satisfied. An excellent material was obtained. In addition, a material in which only the Fe addition amount is changed to 0.25 mass% and a material in which the Fe addition amount is changed to 0.25 mass% and the Cu addition amount is changed to 0.15 mass% are the same as those in the first embodiment. When prototype materials were manufactured, both obtained excellent results satisfying the item (7). Further, the same prototype material was prepared in the same process as in Example 1 except that the material of Example 1 was added with 0.15 mass% of both V and Zr, and the material with both V and Zr added of 0.08 mass%. As a result, both produced excellent results satisfying the item (9) or (10).

本発明のアルミニウム材料はヘム曲げ性および板成形性に優れるので、自動車ボディシート、自動車部品、機械部品等に好適に用いることができる。   Since the aluminum material of the present invention is excellent in hem bendability and plate formability, it can be suitably used for automobile body sheets, automobile parts, machine parts and the like.

本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。   While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.

Claims (10)

結晶方位の異なる結晶粒で構成されるアルミニウム材料であって、前記結晶粒が、Brass方位結晶粒、Copper方位結晶粒、及び残部が他方位結晶粒からなり、Brass方位の結晶粒の占有率が0.2から0.4、Copper方位の結晶粒の占有率が0.05から0.1、且つこれらの方位の総占有率が0.25から0.5であり、残部がその他の結晶方位の結晶粒とで構成される板成形性に優れることを特徴とするアルミニウム材料。   An aluminum material composed of crystal grains having different crystal orientations, wherein the crystal grains are composed of a Brass orientation crystal grain, a Copper orientation crystal grain, and the balance is the other-order crystal grain, and the occupation ratio of the Brass orientation crystal grains is 0.2 to 0.4, the crystal grain occupancy of Copper orientation is 0.05 to 0.1, the total occupancy of these orientations is 0.25 to 0.5, and the balance is other crystal orientations An aluminum material characterized by being excellent in plate formability composed of crystal grains. 30mmの張出し高さで張出し表面上に割れを生じない板成形性を有し、且つ、ヘム曲げ性における曲げ表面上の割れが生じない範囲が、曲げ半径/板厚の比で0.5以下のヘム曲げ性を有することを特徴とする請求項1に記載のアルミニウム材料。   It has a plate formability that does not cause cracks on the overhanging surface at an overhanging height of 30 mm, and the range in which no cracks occur on the bending surface in the hem bendability is 0.5 or less in the ratio of bending radius / plate thickness. The aluminum material according to claim 1, which has a hem bendability of: 50mmの張出し高さで張出し表面上に割れを生じない板成形性を有し、且つ、ヘム曲げ性における曲げ表面上の割れが生じない範囲が、曲げ半径/板厚の比で0.25以下のヘム曲げ性を有することを特徴とする請求項1に記載のアルミニウム材料。   It has a plate formability that does not cause cracks on the extended surface at an extended height of 50 mm, and the range in which no cracks occur on the bent surface in the hem bendability is 0.25 or less in terms of the ratio of bending radius / plate thickness. The aluminum material according to claim 1, which has a hem bendability of: 前記アルミニウム材料が、Mgを0.25から1.0mass%、Siを0.5から1.3mass%、残部Alと不可避的不純物とからなるアルミニウム合金であることを特徴とする請求項1から3のいずれか1項に記載のアルミニウム材料。   The aluminum material is an aluminum alloy composed of 0.25 to 1.0 mass% of Mg, 0.5 to 1.3 mass% of Si, and the balance Al and inevitable impurities. The aluminum material according to any one of the above. 前記アルミニウム材料が、Mgを0.25から1.0mass%、Siを0.5から1.3mass%、Cu,Zn,Mnを1mass%以下、Feを0.40mass%以下、Ti、Crを0.1mass%以下含み、残部Alと不可避的不純物とからなるアルミニウム合金であることを特徴とする請求項1から3のいずれか1項に記載のアルミニウム材料。   The aluminum material has Mg of 0.25 to 1.0 mass%, Si of 0.5 to 1.3 mass%, Cu, Zn, and Mn of 1 mass% or less, Fe of 0.40 mass% or less, and Ti and Cr of 0. The aluminum material according to any one of claims 1 to 3, wherein the aluminum material is an aluminum alloy including a balance of Al and unavoidable impurities. 前記アルミニウム材料が、Mgを0.40から1.0mass%、Siを0.5から1.3mass%、Cu,Mnを1mass%以下、Zn0.3mass%以下、Feを0.20mass%以下、Ti、Crを0.1mass%以下含み、残部Alと不可避的不純物とからなるアルミニウム合金であることを特徴とする請求項1から3のいずれか1項に記載のアルミニウム材料。   The aluminum material is Mg 0.40 to 1.0 mass%, Si 0.5 to 1.3 mass%, Cu and Mn 1 mass% or less, Zn 0.3 mass% or less, Fe 0.20 mass% or less, Ti The aluminum material according to any one of claims 1 to 3, wherein the aluminum material is an aluminum alloy containing 0.1 mass% or less of Cr and the balance being Al and inevitable impurities. 前記アルミニウム材料が、Mgを0.25から1.0mass%、Siを0.5から1.3mass%、Cu,Zn,Mnを1mass%以下、Feを0.40mass%以下、Ti、Crを0.1mass%以下含み、さらにV,Zrを0.20mass%以下含み、残部Alと不可避的不純物とからなるアルミニウム合金であることを特徴とする請求項1から3のいずれか1項に記載のアルミニウム材料。   The aluminum material has Mg of 0.25 to 1.0 mass%, Si of 0.5 to 1.3 mass%, Cu, Zn, and Mn of 1 mass% or less, Fe of 0.40 mass% or less, and Ti and Cr of 0. The aluminum according to any one of claims 1 to 3, which is an aluminum alloy containing 0.1 mass% or less, further containing 0.20 mass% or less of V and Zr, and the balance being Al and inevitable impurities. material. 前記アルミニウム材料が、Mgを0.40から1.0mass%、Siを0.5から1.3mass%、Cu,Mnを1mass%以下、Zn0.3mass%以下、Feを0.20mass%以下、Ti、Crを0.1mass%以下含み、さらにV,Zrを0.1mass%以下含み、残部Alと不可避的不純物とからなるアルミニウム合金であることを特徴とする請求項1から3のいずれか1項に記載のアルミニウム材料。   The aluminum material is Mg 0.40 to 1.0 mass%, Si 0.5 to 1.3 mass%, Cu and Mn 1 mass% or less, Zn 0.3 mass% or less, Fe 0.20 mass% or less, Ti 4. An aluminum alloy containing 0.1 mass% or less of Cr, further containing 0.1 mass% or less of V and Zr, and comprising the balance Al and inevitable impurities. Aluminum material described in 1. 請求項2または請求項3に記載のアルミニウム材料を用いた自動車部材。   The automobile member using the aluminum material of Claim 2 or Claim 3. 請求項4〜8のいずれか1項に記載のアルミニウム材料を用いた自動車部材。   The motor vehicle member using the aluminum material of any one of Claims 4-8.
JP2008022501A 2008-02-01 2008-02-01 Aluminum material having high moldability Pending JP2008144279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008022501A JP2008144279A (en) 2008-02-01 2008-02-01 Aluminum material having high moldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008022501A JP2008144279A (en) 2008-02-01 2008-02-01 Aluminum material having high moldability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007535737A Division JP4158944B2 (en) 2005-04-19 2006-11-29 High formability aluminum material

Publications (2)

Publication Number Publication Date
JP2008144279A true JP2008144279A (en) 2008-06-26
JP2008144279A5 JP2008144279A5 (en) 2009-12-10

Family

ID=39604758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008022501A Pending JP2008144279A (en) 2008-02-01 2008-02-01 Aluminum material having high moldability

Country Status (1)

Country Link
JP (1) JP2008144279A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088906A (en) * 2015-11-02 2017-05-25 株式会社神戸製鋼所 Aluminum alloy sheet for automobile structural member and manufacturing method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111002A1 (en) * 2006-03-29 2007-10-04 The Furukawa Electric Co., Ltd. High-formability aluminum material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111002A1 (en) * 2006-03-29 2007-10-04 The Furukawa Electric Co., Ltd. High-formability aluminum material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088906A (en) * 2015-11-02 2017-05-25 株式会社神戸製鋼所 Aluminum alloy sheet for automobile structural member and manufacturing method therefor

Similar Documents

Publication Publication Date Title
TWI544091B (en) Hot-formed steel sheet member, method for producing the same, and steel sheet for hot-forming
JP4158944B2 (en) High formability aluminum material
JP4495623B2 (en) Aluminum alloy plate excellent in stretch flangeability and bending workability and method for producing the same
WO2014168147A1 (en) Aluminum alloy sheet for press forming, process for manufacturing same, and press-formed product thereof
CN105008563A (en) Aluminium alloy for producing semi-finished products or components for motor vehicles, method for producing an aluminium alloy strip consisting of this aluminium alloy, and an aluminium alloy strip and use for same
CN1791697A (en) A cold-rolled steel sheet having a tensile strength of 780 MPa or more an excellent local formability and a suppressed increase in weld hardness
JP4666271B2 (en) Titanium plate
JP2013011013A (en) Pure titanium sheet having excellent balance between press formability and strength and excellent corrosion resistance, and process for manufacturing the same
JP2017078211A (en) Aluminum alloy sheet having high moldability
JP4200086B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4200082B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4836486B2 (en) Al-Mg-Si alloy sheet having excellent deep drawability and method for producing the same
JP4865174B2 (en) Manufacturing method of aluminum alloy sheet with excellent bending workability and drawability
WO2007111002A1 (en) High-formability aluminum material
JP4867338B2 (en) Ultra-high strength steel sheet and method for manufacturing the same
JP2017210673A (en) Aluminum alloy sheet for press molding small in anisotropy of r value and manufacturing method therefor
JP2008144279A (en) Aluminum material having high moldability
JP4166657B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP5660061B2 (en) Material for cold rolling of heat-resistant titanium alloy having excellent cold-rollability and cold handleability and method for producing the same
JP6585436B2 (en) Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof
JP2019143206A (en) Magnesium alloy and manufacturing method of magnesium alloy
JP4116956B2 (en) Al alloy plate with excellent bending workability
JP2005163139A (en) Ferritic stainless steel sheet having superior deep drawability, and manufacturing method therefor
JP2004315878A (en) Method for manufacturing aluminum alloy sheet to be formed superior in hem bendability and surface quality
KR101664819B1 (en) Cu-Ti-based copper alloy sheet material and method of manufacturing same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091027

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20091027

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525