JP2013011013A - Pure titanium sheet having excellent balance between press formability and strength and excellent corrosion resistance, and process for manufacturing the same - Google Patents

Pure titanium sheet having excellent balance between press formability and strength and excellent corrosion resistance, and process for manufacturing the same Download PDF

Info

Publication number
JP2013011013A
JP2013011013A JP2012074836A JP2012074836A JP2013011013A JP 2013011013 A JP2013011013 A JP 2013011013A JP 2012074836 A JP2012074836 A JP 2012074836A JP 2012074836 A JP2012074836 A JP 2012074836A JP 2013011013 A JP2013011013 A JP 2013011013A
Authority
JP
Japan
Prior art keywords
pure titanium
titanium plate
strength
rolling
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012074836A
Other languages
Japanese (ja)
Other versions
JP5937865B2 (en
Inventor
Yoshinori Ito
良規 伊藤
Katsushi Matsumoto
克史 松本
Takeshi Kudo
健 工藤
Shogo Murakami
昌吾 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012074836A priority Critical patent/JP5937865B2/en
Priority to EP12793298.6A priority patent/EP2716778A4/en
Priority to PCT/JP2012/063914 priority patent/WO2012165470A1/en
Priority to KR1020137031469A priority patent/KR20140004793A/en
Priority to CN201280025980.XA priority patent/CN103562421A/en
Publication of JP2013011013A publication Critical patent/JP2013011013A/en
Application granted granted Critical
Publication of JP5937865B2 publication Critical patent/JP5937865B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/086Heat exchange elements made from metals or metal alloys from titanium or titanium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations

Abstract

PROBLEM TO BE SOLVED: To provide a pure titanium sheet having characteristics excellent in balance between strength and press formability, and excellent corrosion resistance (crevice corrosion resistance), and to provide a process for manufacturing the pure titanium sheet.SOLUTION: The pure titanium sheet contains 0.02-0.10% of Fe, 0.04-0.20% of O and the balance consisting of titanium and inevitable impurities, the contents of the Fe and O satisfying the following expression (1): [O content (mass%)]+0.12[Fe content (mass%)]≥0.050. In the pure titanium sheet, the area fraction of regions that exhibit Schmid factors of {11-22}<11-23> twin of 0.45 or more is at least 43%, each Schmid factor being determined with the axis set in the direction of rolling at a position corresponding to one-fourth of the sheet thickness. Further, the pure titanium sheet has a volume fraction of β phase of 0.3% or less.

Description

本発明は、室温でのプレス成形性と強度のバランス、及び耐食性に優れた純チタン板、並びにその製造方法に関し、詳細には、室温下でも343MPa以上の強度(引張強度)を有すると共に、優れたプレス成形性と耐隙間腐食性を兼備している純チタン板、並びにその製造方法に関するものである。   The present invention relates to a pure titanium plate excellent in the balance between press formability and strength at room temperature and corrosion resistance, and a method for producing the same, and in particular, has a strength (tensile strength) of 343 MPa or more even at room temperature, and is excellent. The present invention relates to a pure titanium plate having both press formability and crevice corrosion resistance, and a method for producing the same.

チタンは、その優れた耐食性、プレス成形性、比強度、軽量性などを利用して、例えば、航空機部品、化学プラント部材、沿岸部の構造材(特に、海水が接触し腐食が促進するような湾岸構造材)、自動車、建材など幅広い分野、用途で汎用されている。   Titanium uses its excellent corrosion resistance, press formability, specific strength, lightness, etc., for example, aircraft parts, chemical plant members, coastal structural materials (especially, seawater comes into contact and corrosion is accelerated). Widely used in a wide range of fields and applications, such as (Wangan structural materials), automobiles and building materials.

近年、様々な分野において環境負荷低減や省エネルギー化が要求されており、軽くて強いとされるチタンにおいてもさらなる軽量・薄肉化のニーズに応えるため、高強度化が望まれている。またカメラの筐体や家電製品の外装品、輸送用機器向け部材等でも使用されており、成形性の向上が一層求められている。   In recent years, environmental load reduction and energy saving have been demanded in various fields, and in order to meet the needs for further lightening and thinning of titanium, which is light and strong, higher strength is desired. In addition, it is used in camera casings, exterior products for home appliances, members for transportation equipment, and the like, and further improvement in moldability is required.

これらに多用される純チタン板はJIS H4600の規格で規定されており、Fe、Oなどの不純物量や強度などによってJIS1種、2種、3種などの等級がある。その等級が増す程、最低強度が高くなり、用途に応じてそれらの使い分けがなされている。   Pure titanium plates frequently used for these are defined in the JIS H4600 standard, and have grades such as JIS 1, 2 and 3 depending on the amount and strength of impurities such as Fe and O. The higher the grade, the higher the minimum strength and the proper use of them according to the application.

JIS1種のようにFeやOの濃度が低い場合は強度が低いものの延性が高いことから、従来は高い成形性が求められる部材には、JIS1種の純チタン板が用いられていた。   When the concentration of Fe or O is low as in JIS type 1, the strength is low but the ductility is high. Therefore, conventionally, a JIS type 1 pure titanium plate has been used for members that require high formability.

例えば純チタン板の中で最も多く使用されている用途の一つにプレート式熱交換器(PHE:Plate type Heat Exchanger)が挙げられるが、本用途に適用する純チタン板には、熱交換率を向上させる観点から、一般的に熱交換有効面積を拡大すべく、冷間で複雑な波板形状にプレス成形(非等方的な張出成形)を行っており、素材にとって極限的な厳しいプレス環境にさらされている。このような厳しいプレス成形条件に対して利用されている純チタン板には、規格上、最も成形しやすい軟質なJIS1種の純チタンが用いられている。   For example, a plate type heat exchanger (PHE) is one of the most frequently used applications among pure titanium plates. The pure titanium plate used in this application has a heat exchange rate. In general, in order to increase the effective heat exchange area, press molding (anisotropy bulging) into a complex corrugated plate shape is performed cold, which is extremely severe for the material. Exposed to the press environment. As a pure titanium plate used for such severe press molding conditions, soft JIS type 1 pure titanium that is most easily molded according to the standard is used.

しかしながら熱交換器の熱交換率向上は、上記のような熱交換器そのものの形状に依拠したものに限られず、例えば熱媒(又は冷媒)の流量増加などによっても図られ、これらには高い耐圧性が必要とされるため、純チタン板にはより高い強度と優れた成形性が求められている。   However, the improvement of the heat exchange rate of the heat exchanger is not limited to the above-described one that depends on the shape of the heat exchanger itself, and can be achieved, for example, by increasing the flow rate of the heat medium (or refrigerant). Therefore, the pure titanium plate is required to have higher strength and excellent formability.

強度の高い純チタン板としては、Fe、O濃度が高いJIS2種や3種が用いられている。しかしながらFe、O濃度が高くなるほど高強度となるが、成形性が悪くなり、従来の技術では高強度と高成形性の両立ができなかった。また、その製造履歴によっては、使用環境が腐食しやすい高温多湿環境下などにおいて、チタン製品の隙間腐食が問題となることがあった。   As the pure titanium plate having high strength, JIS type 2 or type 3 having high Fe and O concentrations are used. However, the higher the Fe and O concentrations, the higher the strength, but the moldability deteriorates, and the conventional techniques cannot achieve both high strength and high moldability. Further, depending on the manufacturing history, crevice corrosion of titanium products may be a problem in a high temperature and high humidity environment where the usage environment is likely to corrode.

純チタン板のプレス成形性を向上させる手段としては、例えば、チタンの組織を制御したり(特許文献1)、或いはチタンを合金化することが提案されている(特許文献2)。しかし、これら技術が対象としているチタンはJIS1種相当の強度(降伏強度)レベルを有する純チタン板の成形性向上を目的としたものであるが、強度レベルを高めると成形性の向上が見られない。   As means for improving the press formability of a pure titanium plate, for example, it has been proposed to control the structure of titanium (Patent Document 1) or to alloy titanium (Patent Document 2). However, the titanium targeted by these technologies is intended to improve the formability of a pure titanium plate having a strength (yield strength) level equivalent to that of JIS Class 1. However, when the strength level is increased, the formability is improved. Absent.

強度レベルの高い純チタン板のプレス成形性を向上させる手段として、Fe、Oの含有量を調整すると共に、チタンの結晶粒径を制御する技術が提案されている(特許文献3)。しかしFeやO含有量やチタンの結晶粒径を制御するだけでは、プレス成形性と強度のバランスを図ることは困難である。   As a means for improving the press formability of a pure titanium plate having a high strength level, a technique for adjusting the content of Fe and O and controlling the crystal grain size of titanium has been proposed (Patent Document 3). However, it is difficult to achieve a balance between press formability and strength only by controlling the Fe and O contents and the crystal grain size of titanium.

また上記したように近年、純チタン板の適用分野は広範囲に及んでいるが、腐食環境下で使用する場合、耐隙間腐食性の一層の向上が求められていた。   In addition, as described above, in recent years, the application field of pure titanium plates has been widespread, but when used in a corrosive environment, further improvement in crevice corrosion resistance has been demanded.

耐隙間腐食性を向上させたチタン板として特許文献4では、純チタン板表面に白金族元素を付着させることが開示されている。しかしながら白金族元素は高価であり、製造コストが高くなるという問題があり、汎用することは難しい。   As a titanium plate having improved crevice corrosion resistance, Patent Document 4 discloses that a platinum group element is attached to the surface of a pure titanium plate. However, platinum group elements are expensive, and there is a problem that the manufacturing cost is high, and it is difficult to use them in general.

また強度とプレス成形性のバランスを向上させる技術として特許文献5には、Cu、Ni、Moを添加したチタン合金板が開示されている。しかしながら合金成分を添加すると、生産性が低下して工業的規模の生産に不向きである。また耐食性について具体的な開示もない。   As a technique for improving the balance between strength and press formability, Patent Document 5 discloses a titanium alloy plate to which Cu, Ni, and Mo are added. However, when alloy components are added, the productivity is lowered and it is not suitable for industrial scale production. There is no specific disclosure about corrosion resistance.

このように、室温下でのプレス成形性と強度のバランスに優れており、しかも優れた耐隙間腐食性も兼備している純チタン板は未だ提供されていない。   Thus, a pure titanium plate that has an excellent balance between press formability and strength at room temperature and also has excellent crevice corrosion resistance has not yet been provided.

特開2004−285457号公報JP 2004-285457 A 特開2002−317234号公報JP 2002-317234 A 特開2009−228092号公報JP 2009-228092 A 特公昭49−31610号公報Japanese Patent Publication No.49-31610 特開2010−236067号公報JP 2010-236067 A

本発明は、上記従来の問題に鑑みてなされたものであって、その目的はプレス成形性と強度のバランス、及び耐食性(耐隙間腐食性)に優れた特性を有する純チタン板、並びにその製造方法を提供することである。詳細には室温下において343MPa以上の引張強度を有すること、またプレス成形性(非等方的な張出成形、及び等方的な張出成形の延性)に優れていること、更に耐隙間腐食性にも優れた特性を有する純チタン板、並びにその製造方法を提供することである。   The present invention has been made in view of the above-mentioned conventional problems, and its purpose is a pure titanium plate having characteristics excellent in balance between press formability and strength, and corrosion resistance (crevice corrosion resistance), and production thereof. Is to provide a method. Specifically, it has a tensile strength of 343 MPa or more at room temperature, is excellent in press formability (isotropic stretch forming and ductility of isotropic stretch forming), and further is crevice corrosion resistance. It is providing the pure titanium plate which has the characteristic excellent also in the property, and its manufacturing method.

上記課題を解決し得た本発明は、Fe:0.02〜0.10%(「質量%」の意味、化学成分については以下同じ)、O:0.04〜0.20%を含有し、残部がチタン及び不可避的不純物からなり、前記Feと前記Oの含有量が下記式(1)を満足すると共に、板厚1/4位置の圧延方向を軸とした{11−22}<11−23>双晶系のシュミット因子が0.45以上である領域の面積率が43%以上であり、更にβ相の体積率が0.3%以下であることに要旨を有するプレス成形性と強度のバランス、及び耐食性に優れた純チタン板である。
[O含有量(質量%)]+0.12×[Fe含有量(質量%)]≧0.050・・・(1)
The present invention that has solved the above problems contains Fe: 0.02 to 0.10% (meaning “mass%”, the same applies to chemical components), and O: 0.04 to 0.20%. The balance is made of titanium and inevitable impurities, the contents of Fe and O satisfy the following formula (1), and {11-22} <11 with the rolling direction at the 1/4 position of the thickness as the axis. -23> Press formability having a gist in that the area ratio of the region where the twin Schmid factor is 0.45 or more is 43% or more, and the volume ratio of the β phase is 0.3% or less. It is a pure titanium plate with excellent strength balance and corrosion resistance.
[O content (% by mass)] + 0.12 × [Fe content (% by mass)] ≧ 0.050 (1)

上記プレス成形性と強度のバランス、及び耐食性に優れた純チタン板の製造方法としては、熱間圧延、中間焼鈍、冷間圧延、最終焼鈍の工程を経て製造される純チタン板の製造方法において、前記中間焼鈍後に、純チタン板表面のスケール除去処理を行った後、圧下率が70%以上である冷間圧延を行い、その後、下記式(2)で定めるHが正の値となる条件で最終焼鈍を行うことが推奨される。   As a method for producing a pure titanium plate excellent in the balance between press formability and strength, and corrosion resistance, in a method for producing a pure titanium plate produced through hot rolling, intermediate annealing, cold rolling, and final annealing steps. After the intermediate annealing, after performing the scale removal treatment on the surface of the pure titanium plate, cold rolling with a rolling reduction of 70% or more is performed, and then the condition that H defined by the following formula (2) becomes a positive value It is recommended to perform final annealing at

但し、
T:最終焼鈍時の加熱温度(℃)、t:焼鈍時間(秒)
0:チタン中のFe濃度(質量%)
A=891、B=0.428、n=0.135
However,
T: heating temperature during final annealing (° C.), t: annealing time (seconds)
X 0 : Fe concentration in titanium (mass%)
A = 891, B = 0.428, n = 0.135

また上記純チタン板は、熱間圧延、冷間圧延、最終焼鈍の工程を経て製造される純チタン板の製造方法において、前記熱間圧延後に中間焼鈍を行うことなく純チタン板表面のスケール除去処理を行った後、圧下率が20%以上である冷間圧延を行い、その後、下記式(2)で定めるHが正の値となる条件で最終焼鈍を行うことに要旨を有する製造方法によっても得ることができる。   Further, in the method for producing a pure titanium plate manufactured through the steps of hot rolling, cold rolling and final annealing, the pure titanium plate is scale-removed on the surface of the pure titanium plate without performing intermediate annealing after the hot rolling. By performing the cold rolling with a rolling reduction of 20% or more after the treatment, and then performing the final annealing under the condition that H defined by the following formula (2) becomes a positive value, Can also be obtained.

但し、
T:最終焼鈍時の加熱温度(℃)、t:焼鈍時間(秒)
0:チタン中のFe濃度(質量%)
A=891、B=0.428、n=0.135
However,
T: heating temperature during final annealing (° C.), t: annealing time (seconds)
X 0 : Fe concentration in titanium (mass%)
A = 891, B = 0.428, n = 0.135

本発明によれば、化学成分組成を各元素のバランスを考慮した上で厳密に規定すると共に、純チタン板の結晶粒の特定双晶系のシュミット因子とβ相を特定の割合に規定することによって、室温下でも引張強度が高いだけでなく、プレス成形性と耐隙間腐食性にも優れた純チタン板を得ることができる。こうした純チタン板は、携帯電話機、モバイルパソコン、カメラなどのボディ、眼鏡フレーム、プレート式熱交換器の構成材、燃料電池のセパレーター等の幅広い分野で室温下での高い強度が要求される場合において、良好な成形加工性を発揮することが可能であると共に、耐腐食性も一層優れている。   According to the present invention, the chemical component composition is strictly defined in consideration of the balance of each element, and the specific twin system Schmid factor and β phase of the crystal grains of the pure titanium plate are specified to a specific ratio. Thus, it is possible to obtain a pure titanium plate not only having high tensile strength even at room temperature but also excellent in press formability and crevice corrosion resistance. These pure titanium plates are used in a wide range of fields such as mobile phones, mobile PCs, camera bodies, eyeglass frames, plate heat exchanger components, fuel cell separators, etc., when high strength at room temperature is required. In addition to being able to exhibit good moldability, the corrosion resistance is further improved.

また本発明は上記純チタン板を安価に製造するための製造方法を提供するものである。   The present invention also provides a production method for producing the pure titanium plate at a low cost.

プレート式熱交換器(PHE)に用いるチタン板の斜視図である。It is a perspective view of the titanium plate used for a plate type heat exchanger (PHE). 図2(a)はプレス成形性を評価する方法を説明するためのプレス成形金型の平面図であり、図2(b)は図2(a)のF−F間の概略断面図である。FIG. 2A is a plan view of a press mold for explaining a method for evaluating press formability, and FIG. 2B is a schematic cross-sectional view taken along line FF in FIG. 2A. .

純チタン板のプレス成形性については、すべり変形に加えて双晶変形も素材の変形に大きく寄与することから、双晶変形が生じやすい程、プレス成形性に優れることが知られている。純チタンは軟質であるほど双晶変形が生じやすく、プレス成形性が良好であるが、強度レベルが高くなると、双晶変形が生じにくく、プレス成形性に劣ることが知られている。   As for the press formability of a pure titanium plate, it is known that twin deformation is greatly contributed to deformation of a material in addition to slip deformation, so that the twin form deformation is more likely to occur and the press formability is excellent. It is known that pure titanium has a tendency to cause twin deformation as it is softer and has better press formability. However, when the strength level is increased, twin deformation is less likely to occur and the press formability is poor.

本発明者らは、高い強度レベル(引張強度が343MPa以上)を維持したままプレス成形性を改善し、更に耐隙間腐食性にも優れた純チタン板を提供すべく、金属組織について様々な角度から検討し、次のような知見が得られた。   In order to provide a pure titanium plate having improved press formability while maintaining a high strength level (tensile strength of 343 MPa or more) and having excellent crevice corrosion resistance, the present inventors have various angles with respect to the metal structure. The following findings were obtained.

すなわち、一方向に冷間圧延すると純チタン板には強度異方性が生じ、低延性の幅方向よりも高延性の圧延方向の強度が低くなるため、プレス成形を行うと強度が低い圧延方向での変形が優先的に進行する。したがって、プレス成形性を向上させるためには、主たる変形方向である圧延方向への変形に寄与する双晶変形の活性化を促す組織制御が有効であり、引張強度レベルを343MPa以上とした場合においても双晶変形を発生しやすい結晶配向を形成することが重要である。   That is, when a cold rolling is performed in one direction, strength anisotropy occurs in the pure titanium sheet, and the strength in the rolling direction with high ductility is lower than the width direction with low ductility. Deformation at will proceed with priority. Therefore, in order to improve the press formability, the structure control that promotes the activation of twin deformation that contributes to deformation in the rolling direction which is the main deformation direction is effective, and the tensile strength level is set to 343 MPa or more. However, it is important to form a crystal orientation that easily causes twin deformation.

そこで本発明では、双晶変形の起こりやすさに影響を与えるシュミット因子について検討した結果、純チタン板の1/4×板厚の圧延面における圧延方向に引張荷重を加えた場合の双晶変形のシュミット因子の値とその分布割合(面積率)とが特定の範囲にあれば、高い強度レベルを維持しつつ、プレス成形性を向上できることを見出し、本発明に至った。   Therefore, in the present invention, as a result of examining the Schmitt factor that affects the likelihood of twinning deformation, twinning deformation in the case where a tensile load is applied in the rolling direction on a 1/4 × thickness rolled surface of a pure titanium plate. When the Schmid factor value and its distribution ratio (area ratio) are in a specific range, it was found that press formability can be improved while maintaining a high strength level, and the present invention has been achieved.

具体的には、純チタン板の主相の結晶粒は、六方晶結晶構造を有しており、張出成形時に主に活動する双晶系は{11−22}<11−23>である。したがって、主として圧延方向に変形を伴う場合の成形性を向上させるには、圧延方向に負荷が生じた際に{11−22}<11−23>双晶系の活動を活発化させることが効果的である。そのためには{11−22}<11−23>双晶系のシュミット因子を高めることが有効である。   Specifically, the crystal grains of the main phase of the pure titanium plate have a hexagonal crystal structure, and the twin system mainly active during the stretch forming is {11-22} <11-23>. . Therefore, in order to improve the formability mainly when deformation occurs in the rolling direction, it is effective to activate {11-22} <11-23> twinning activities when a load is generated in the rolling direction. Is. For this purpose, it is effective to increase the {11-22} <11-23> twinned Schmid factor.

そして本発明者らが研究を重ねた結果、双晶変形の活動を容易にするためには上述の双晶系のシュミット因子の値は、少なくとも0.45以上である必要がある。   As a result of repeated studies by the present inventors, in order to facilitate the twin deformation activity, it is necessary that the value of the above-mentioned twin-type Schmitt factor is at least 0.45 or more.

もっとも、このような特定の値以上のシュミット因子を有する結晶粒の割合が少なすぎると、たとえ双晶変形の活動が容易に起こり得るとしても、素材全体、すなわち、プレス成形性の向上には大きく寄与しない。そのため上記シュミット因子が0.45以上である領域の面積率は全体の43%以上、好ましくは45%以上必要である。面積率で43%以上存在していれば、343MPa以上の強度レベルを維持しつつ、格段に優れたプレス成形性を有する純チタン板が得られる。この面積率の上限は特に限定されない。   However, if the ratio of the crystal grains having a Schmid factor greater than a specific value is too small, even if the twin deformation activity can easily occur, the overall material, that is, the press formability is greatly improved. Does not contribute. Therefore, the area ratio of the region where the Schmid factor is 0.45 or more needs to be 43% or more, preferably 45% or more of the whole. If the area ratio is 43% or more, a pure titanium plate having remarkably excellent press formability can be obtained while maintaining a strength level of 343 MPa or more. The upper limit of the area ratio is not particularly limited.

なお、結晶面を示すミラー指数では、指数がマイナスになる場合に、数字の上にバーを付す表記法が一般的である。しかし、指数がマイナスになる場合、本明細書では、便宜的にマイナス数で表記する。したがって、上記{11−22}における−2は指数がマイナスであることを示している。   In addition, in the Miller index indicating a crystal plane, a notation method in which a bar is added above a number when the index is negative is common. However, when the index becomes negative, in this specification, it is expressed as a negative number for convenience. Therefore, -2 in the {11-22} indicates that the index is negative.

このように本発明では、プレス成形性を向上させるための指標としてシュミット因子を採用している。一般に特定の結晶面に沿って転位を移動させるのに必要な臨界分解せん断応力(τ)の大きさは結晶面と結晶軸方向によって異なり、[τ=σcosφcosλ](式中、σは引張軸方向の引張応力、φはすべり面法線と引張軸とのなす角、λはすべり方向と引張軸とのなす角を表す)によって与えられることが知られている。   Thus, in this invention, the Schmid factor is employ | adopted as a parameter | index for improving press moldability. In general, the magnitude of critical decomposition shear stress (τ) required to move dislocations along a specific crystal plane depends on the crystal plane and the crystal axis direction, and [τ = σ cos φ cos λ] (where σ is the tensile axis direction). It is known that φ is given by the angle between the normal to the sliding surface and the tensile axis, and λ represents the angle between the sliding direction and the tensile axis.

上記式中の[cosφcosλ]はシュミット因子と呼ばれており、引張軸に掛かる外力のうち、転位を動かすために利用される力の割合を示している。チタン板に外力を加えた場合、シュミット因子の値が高いすべり系/双晶系は、より小さな外力で活動するため、結果的に金属板は塑性変形し易くなる。上記シュミット因子の要件を満足する純チタン板は、圧延方向に引張荷重を加えた場合に双晶変形が促進され、主ひずみ方向が圧延方向であるプレス成形性(特に非等方的な張出成形性)が大幅に向上する。   [Cos φ cos λ] in the above formula is called a Schmitt factor, and indicates the ratio of the force used to move the dislocation out of the external force applied to the tensile axis. When an external force is applied to the titanium plate, the slip system / twin system with a high Schmid factor value operates with a smaller external force, and as a result, the metal plate is easily plastically deformed. A pure titanium plate that satisfies the above Schmid factor requirements has a press formability (especially anisotropic overhanging) in which twin deformation is promoted when a tensile load is applied in the rolling direction and the principal strain direction is the rolling direction. Formability) is greatly improved.

なお、純チタン板は、通常、不純物元素含有量が多いほど高強度であって、双晶変形が起こり難く、そのためプレス成形性が悪いことが知られている。しかしながら本発明では後記するように化学成分組成を厳密に規定すると共に、双晶変形が生じ易いようにシュミット因子を制御しているため、不純物元素含有量が多くて引張強度が高くても、双晶変形を活性化することができ、その結果、プレス成形性が向上する。   In addition, it is known that a pure titanium plate usually has higher strength as the content of impurity elements is larger, and twin deformation is less likely to occur, so that press formability is poor. However, in the present invention, the chemical composition is strictly defined as described later, and the Schmitt factor is controlled so that twin deformation is likely to occur. Therefore, even if the impurity element content is high and the tensile strength is high, Crystal deformation can be activated, and as a result, press formability is improved.

また本発明者らは耐隙間腐食性、特に高温多湿環境下では隙間腐食が発生し易いことから、そのような環境下においても耐隙間腐食性を高めるためには、β相の析出を抑えることが重要であることを見出した。すなわち、本発明のチタンはα相(六方晶)を主体とする金属組織であることが望ましい。β相(体心立方晶)の体積比率が高くなると耐隙間腐食性が悪化するため、β相の体積率の上限は0.3%以下、好ましくは0.2%以下、より好ましくは0%である。   In addition, since the present inventors are prone to crevice corrosion resistance, particularly in high-temperature and high-humidity environments, in order to increase crevice corrosion resistance in such an environment, the precipitation of β phase should be suppressed. Found that is important. That is, it is desirable that the titanium of the present invention has a metal structure mainly composed of an α phase (hexagonal crystal). Since the crevice corrosion resistance deteriorates when the volume ratio of the β phase (body-centered cubic crystal) is increased, the upper limit of the volume ratio of the β phase is 0.3% or less, preferably 0.2% or less, more preferably 0%. It is.

更に本発明の純チタン板においては、プレス成形性と引張強度に影響を及ぼす元素であるFeとOを適切に調整することが重要である。本発明の純チタン板における、これら各成分の範囲設定理由は次の通りである。   Furthermore, in the pure titanium plate of the present invention, it is important to appropriately adjust Fe and O, which are elements that affect press formability and tensile strength. The reasons for setting the ranges of these components in the pure titanium plate of the present invention are as follows.

Fe:0.02〜0.10%
Feは、純チタン板の強度向上に寄与する元素であり、こうした効果を発揮させるためには、Feの含有量は、0.02%以上、好ましくは0.03%以上である。しかしながらFe含有量が多くなりすぎると、焼鈍条件を適正化しても生成するβ相が多くなり、耐隙間腐食性が劣化する。したがって、Fe含有量は0.10%以下、好ましくは0.08%以下、より好ましくは0.07%以下とした。
Fe: 0.02-0.10%
Fe is an element that contributes to improving the strength of the pure titanium plate. In order to exert such effects, the Fe content is 0.02% or more, preferably 0.03% or more. However, if the Fe content is excessively large, the β phase generated increases even if the annealing conditions are optimized, and the crevice corrosion resistance deteriorates. Therefore, the Fe content is 0.10% or less, preferably 0.08% or less, more preferably 0.07% or less.

O:0.04〜0.20%
Oは、純チタン板の強度を確保するのに有効な元素であり、こうした効果を発揮させるためには、Oの含有量は0.04%以上、好ましくは0.045%以上、より好ましくは0.050%以上、更に好ましくは0.07%以上である。しかしながらO含有量が多くなりすぎると、強度が高くなりすぎ、プレス成形性がかえって低下したり、エッジ割れや冷間圧延時に破断することがある。したがってO含有量は0.20%以下、好ましくは0.18%以下、より好ましくは0.15%以下とする。
O: 0.04 to 0.20%
O is an element effective for ensuring the strength of a pure titanium plate, and in order to exert such an effect, the content of O is 0.04% or more, preferably 0.045% or more, more preferably It is 0.050% or more, more preferably 0.07% or more. However, if the O content is too large, the strength becomes too high, and press formability may be deteriorated, or edge cracking or breakage may occur during cold rolling. Therefore, the O content is 0.20% or less, preferably 0.18% or less, more preferably 0.15% or less.

更に本発明ではFeとOの添加によって強度の向上とプレス成形性のバランスを図りながらβ相の析出を抑制して耐隙間腐食性の向上を図る観点から、FeとOの含有量の関係を規定することが重要である。具体的には[O含有量(質量%)]+0.12×[Fe含有量(質量%)]≧0.050(式(1))となるようにFeとOの含有量を上記範囲内で調整することが必要である。上記式(1)から導き出されるFeとOの含有量が0.050未満の場合、強度が不足するおそれがある。上記FeとOの添加効果をより一層高めるためには式(1)の値が好ましくは0.055以上、より好ましくは0.060以上、更に好ましくは0.080以上となるように調整することが望ましい。   Furthermore, in the present invention, from the viewpoint of improving the crevice corrosion resistance by suppressing the precipitation of the β phase while balancing the improvement in strength and press formability by adding Fe and O, the relationship between the contents of Fe and O is described. It is important to specify. Specifically, the content of Fe and O is within the above range so that [O content (% by mass)] + 0.12 × [Fe content (% by mass)] ≧ 0.050 (formula (1)). It is necessary to adjust with. When the contents of Fe and O derived from the above formula (1) are less than 0.050, the strength may be insufficient. In order to further enhance the effect of adding Fe and O, the value of the formula (1) is preferably adjusted to 0.055 or more, more preferably 0.060 or more, and further preferably 0.080 or more. Is desirable.

本発明の純チタン板は、上記成分の他、残部はチタン及び不可避的不純物からなるものである。「不可避的不純物」には、原料のスポンジチタンに不可避的に含まれる不純物元素(代表的には、N、C、H、Si、Cr、Ni等)、或いは製造工程において製品中に取り込まれる可能性のある元素(例えばH等)が含まれる。   The pure titanium plate of the present invention is composed of titanium and inevitable impurities in addition to the above components. “Inevitable impurities” refers to impurity elements (typically N, C, H, Si, Cr, Ni, etc.) that are inevitably contained in the raw sponge titanium, or can be incorporated into products in the manufacturing process. A characteristic element (for example, H) is included.

これら不可避的不純物のうち、例えばNは、純チタン板の強度向上に寄与する元素でもあるが、含有量が多くなるとかえって冷延性を損なうことから、N含有量は好ましくは0.02%以下、より好ましくは0.01%以下とする。一方、N含有量は0%でもよいが、過度な低減はかえってコストアップを招くため、好ましくは0.001%以上、より好ましくは0.002%以上である。   Among these inevitable impurities, for example, N is also an element that contributes to improving the strength of the pure titanium plate. However, if the content is increased, the cold rolling property is impaired. Therefore, the N content is preferably 0.02% or less, More preferably, the content is 0.01% or less. On the other hand, the N content may be 0%, but excessive reduction leads to an increase in cost. Therefore, it is preferably 0.001% or more, more preferably 0.002% or more.

Cは、強度向上に寄与する元素であるが、含有量が多くなるとかえって冷延性を損なうことから、C含有量は好ましくは0.015%未満、より好ましくは0.012%以下とする。一方、C含有量の下限は特に限定されず、0%であってもよいが、過度な低減はかえってコストアップを招くため、好ましくは0.002%以上、より好ましくは0.003%以上である。   C is an element that contributes to strength improvement. However, if the content increases, the cold-rolling property is impaired, so the C content is preferably less than 0.015%, more preferably 0.012% or less. On the other hand, the lower limit of the C content is not particularly limited, and may be 0%. However, excessive reduction causes an increase in cost, so 0.002% or more, more preferably 0.003% or more. is there.

本発明の純チタン板は室温下(25℃)で343MPa以上の引張強度を有するものである。上述したように純チタン板は様々な分野において用いられており、室温下でも高い強度が要求されるからである。本発明の純チタン板の引張強度は、好ましくは370MPa以上である。もっとも、引張強度が高くなりすぎると延性が低下してプレス成形性が悪くなるため、好ましくは600MPa以下とする。   The pure titanium plate of the present invention has a tensile strength of 343 MPa or more at room temperature (25 ° C.). As described above, pure titanium plates are used in various fields, and high strength is required even at room temperature. The tensile strength of the pure titanium plate of the present invention is preferably 370 MPa or more. However, if the tensile strength is too high, the ductility is lowered and the press formability is deteriorated.

上記したように純チタン板の強度と延性は相反する特性であるが、本発明はこれら両特性を満足し得るような純チタン板として、343MPa以上の引張強度と優れたプレス成形性を有し、且つ優れた耐隙間腐食性を有する純チタン板を提供するものである。   As described above, the strength and ductility of the pure titanium plate are contradictory properties, but the present invention has a tensile strength of 343 MPa or more and excellent press formability as a pure titanium plate that can satisfy both of these properties. In addition, the present invention provides a pure titanium plate having excellent crevice corrosion resistance.

次に、上記純チタン板を例にとり製造条件について説明する。例えば純チタン板の場合は、一般に下記工程で製造される。チタンの物性は、用いるチタン素材の化学成分組成や各工程の設定条件により異なるので、一連の製造工程として総合的に条件を選択して決定すべきであり、個々の工程ごとに条件を厳密に設定することは必ずしも適切ではない。   Next, the manufacturing conditions will be described using the pure titanium plate as an example. For example, in the case of a pure titanium plate, it is generally manufactured by the following process. Since the physical properties of titanium vary depending on the chemical composition of the titanium material used and the setting conditions for each process, it should be determined by selecting conditions comprehensively as a series of manufacturing processes. The conditions are strictly determined for each individual process. Setting is not always appropriate.

純チタン板は、一般に特定の成分組成に調整したチタンインゴットを鋳造により得る。その後、[I.分塊鍛造・圧延]→[II.熱間圧延]→[III.中間焼鈍]→[IV.冷間圧延]→[V.最終焼鈍]の各工程を経て製造される。各工程間では必要に応じてブラスト、酸洗処理などを行ってスケール除去処理してもよい。   The pure titanium plate is generally obtained by casting a titanium ingot adjusted to a specific component composition. Thereafter, [I. Partial forging / rolling] → [II. Hot rolling] → [III. Intermediate annealing] → [IV. Cold rolling] → [V. It is manufactured through each step of final annealing. Between each process, you may perform a scale removal process by performing blasting, a pickling process, etc. as needed.

上記[I.分塊鍛造・圧延]は、必要によって行われる工程であって、粗大な鋳造組織を壊すために実施し、例えば、生産性(加工のしやすさ)などから800〜1100℃程度で均熱し鍛造もしくは圧延を開始すればよい。   [I. [Branch forging / rolling] is a process performed as necessary, and is performed to break a coarse cast structure. For example, forging by soaking at about 800 to 1100 ° C. for productivity (ease of processing) and the like. Or rolling may be started.

[II.熱間圧延]は、例えば700〜950℃程度で保持した後、所望の板厚となるように熱間圧延すればよい。   [II. For example, the hot rolling may be performed at a temperature of about 700 to 950 ° C. and then hot rolling so as to obtain a desired plate thickness.

[III.中間焼鈍]は必要に応じて行う工程であって、例えば700〜850℃程度で均熱した後、空冷すればよい。   [III. Intermediate annealing] is a process performed as necessary, and may be air-cooled after soaking at about 700 to 850 ° C., for example.

[中間焼鈍]を行う場合は、中間焼鈍後にスケール除去処理を行ってから、[IV.冷間圧延]を行う。最終焼鈍前に行う[IV.冷間圧延]は70%以上の圧下率、好ましくは80%以上とする。冷間圧延を70%以上の圧下率で行うことによって、その後の[V.最終焼鈍]で純チタン板の引張強度を343MPa以上に維持しつつ、プレス成形性にも優れた特性が得られる。   When [intermediate annealing] is performed, scale removal treatment is performed after the intermediate annealing, and then [IV. Cold rolling] is performed. Performed before final annealing [IV. Cold rolling] is a rolling reduction of 70% or more, preferably 80% or more. By performing cold rolling at a rolling reduction of 70% or more, the subsequent [V. In the final annealing], the tensile strength of the pure titanium plate is maintained at 343 MPa or more, and the properties excellent in press formability can be obtained.

すなわち、本発明の上記純チタン板を製造する上で、中間焼鈍後の[IV.冷間圧延]の圧下率を70%以上とすれば{11−22}<11−23>双晶系のシュミット因子が0.45以上の結晶粒の面積率を43%以上とすることができる。これは中間焼鈍後の[IV.冷間圧延]での圧下率を70%以上とし、その後[V.最終焼鈍]を施すことで上記所望の結晶配向が得られるため、良好なプレス成形性が得られると共に、引張強度も343MPa以上に維持できる。   That is, in manufacturing the pure titanium plate of the present invention, [IV. If the rolling reduction of cold rolling] is 70% or more, the area ratio of crystal grains having a {11-22} <11-23> twin-type Schmid factor of 0.45 or more can be 43% or more. . This is the result of [IV. The rolling reduction in cold rolling] is set to 70% or more, and then [V. By performing the final annealing, the desired crystal orientation can be obtained, so that good press formability can be obtained and the tensile strength can be maintained at 343 MPa or more.

なお、圧下率が高くなるほど、プレス成形性が向上するが、圧下率を高くしすぎると、純チタン板の端部にエッジ割れが生じたり、冷間圧延時に純チタン板が破断することで生産性を阻害するため、圧下率は95%以下とすることが好ましく、より好ましくは90%以下である。   As the rolling reduction increases, press formability improves. However, if the rolling reduction is increased too much, edge cracking occurs at the end of the pure titanium plate, or the pure titanium plate breaks during cold rolling. In order to inhibit the properties, the rolling reduction is preferably 95% or less, more preferably 90% or less.

一方、[III.中間焼鈍]を行わない場合、[II.熱間圧延]後、スケール除去処理を行ってから[IV.冷間圧延]を行う。そしてこの場合、最終焼鈍前に行う[IV.冷間圧延]は20%以上、好ましくは25%以上の圧下率とする。中間焼鈍を省略した場合であっても、適切に冷間圧延及び最終焼鈍を行うことによって純チタン板の引張強度を343MPa以上に高めることができ、またプレス成形性にも優れた特性を有する。中間焼鈍を行わずに冷間圧延した場合は、圧下率が低くても上記優れた特性が得られる理由は、熱間圧延時に素材に形成された変形組織が中間焼鈍で打ち消されずに素材に残っているからである。中間焼鈍を行わずに低い圧下率でもプレス成形性に優れた特性が得られるため、例えば純チタン板の板厚が厚くて高い圧下率を取れない場合や、熱間圧延して純チタン板の板厚が十分に薄くなっている場合にも適用できる。   On the other hand, [III. When not performing [intermediate annealing], [II. [Hot rolling], and after removing the scale, [IV. Cold rolling] is performed. And in this case, it is performed before the final annealing [IV. Cold rolling] is a rolling reduction of 20% or more, preferably 25% or more. Even when the intermediate annealing is omitted, the tensile strength of the pure titanium plate can be increased to 343 MPa or more by appropriately performing cold rolling and final annealing, and also has excellent press formability. When cold rolling without intermediate annealing, the reason why the above excellent characteristics can be obtained even if the rolling reduction is low is that the deformation structure formed in the material during hot rolling remains in the material without being canceled by the intermediate annealing. Because. Since the properties excellent in press formability can be obtained even at a low rolling reduction without performing intermediate annealing, for example, when the thickness of the pure titanium plate is thick and a high rolling reduction cannot be obtained, It can also be applied when the plate thickness is sufficiently thin.

[V.最終焼鈍]は、後記する式(2)を満足する加熱温度と焼鈍時間の条件で焼鈍した後、室温まで空冷すればよく、このような条件とすることによって、耐隙間腐食性に影響を及ぼすβ相の析出を抑制することができる。本発明の純チタン板には上記したように微量のFeを含有させているが、Fe含有量によってβ相が析出する加熱温度や保持時間が決まってくるため、下記式(2)を満足する条件で最終焼鈍を行う。式(2)とは、すなわち、   [V. In the final annealing, after annealing under the conditions of the heating temperature and annealing time satisfying the following formula (2), it is sufficient to air-cool to room temperature. By setting such conditions, crevice corrosion resistance is affected. Precipitation of β phase can be suppressed. The pure titanium plate of the present invention contains a small amount of Fe as described above, but the heating temperature and holding time at which the β phase precipitates are determined depending on the Fe content, and therefore the following formula (2) is satisfied. Final annealing is performed under the conditions. Equation (2) means that

但し、式中、T:最終焼鈍時の加熱温度(℃)、t:焼鈍時間(秒)、X0:チタン中のFe濃度(質量%)、A=891、B=0.428、n=0.135である。 In the formula, T: heating temperature during final annealing (° C.), t: annealing time (seconds), X 0 : Fe concentration (mass%) in titanium, A = 891, B = 0.428, n = 0.135.

なお、式(2)は以下の実験に基づいて得られたものである。すなわち、上記のとおりβ相の析出速度は、チタン中のFe濃度と熱処理時の保持温度に依存しており、Fe濃度が高く、温度が高いほど速くなる。そのため、原子の拡散と濃度分配を元に算出された析出速度式を用いて析出速度の基礎となる関係式(式2)を求め、式(2)中の各係数A、Bは実験データに基づいて決定した。   Equation (2) is obtained based on the following experiment. That is, as described above, the precipitation rate of the β phase depends on the Fe concentration in titanium and the holding temperature during heat treatment, and increases as the Fe concentration increases and the temperature increases. Therefore, using the precipitation rate equation calculated based on the diffusion and concentration distribution of atoms, a relational equation (Equation 2) as a basis of the precipitation rate is obtained, and the coefficients A and B in Equation (2) are obtained from the experimental data. Decided on the basis.

式中、Tは最終焼鈍時の加熱(焼鈍)温度(℃)であって、550℃≦T(℃)≦890℃であることが望ましい。焼鈍温度Tが550℃を下回ると、再結晶が起こらずに延性が著しく劣化することがある。再結晶に必要な下限の温度は保持時間によって変化し、例えば保持時間が短い程、高い温度が必要である。加熱温度Tは好ましくは600℃以上、より好ましくは700℃以上である。またβ変態点以上に加熱して焼鈍を行った場合、冷却後に針状組織となりプレス成形性が阻害されるため、β変態温度以下で最終焼鈍を行うことが好ましい。加熱温度Tは好ましくは870℃以下、より好ましくは850℃以下である。   In the formula, T is a heating (annealing) temperature (° C.) at the time of final annealing, and it is desirable that 550 ° C. ≦ T (° C.) ≦ 890 ° C. When the annealing temperature T is lower than 550 ° C., reductivity does not occur and ductility may be significantly deteriorated. The lower limit temperature required for recrystallization varies depending on the holding time. For example, the shorter the holding time, the higher the temperature is required. The heating temperature T is preferably 600 ° C. or higher, more preferably 700 ° C. or higher. In addition, when annealing is performed by heating to the β transformation point or higher, it becomes a needle-like structure after cooling, and press formability is hindered. Therefore, it is preferable to perform the final annealing at a β transformation temperature or lower. The heating temperature T is preferably 870 ° C. or lower, more preferably 850 ° C. or lower.

なお、冷間圧延や最終焼鈍におけるその他の条件や、その他の工程の条件は、一般的な条件を採用することができる。   In addition, general conditions can be employ | adopted for the other conditions in cold rolling and final annealing, and the conditions of other processes.

また式中、tは焼鈍時間(秒)であって、上記加熱温度T(℃)での保持時間であるが、上記温度域の範囲内であれば、おおむね、加熱温度T(℃)±5℃の範囲内で保持されていればよい意味である。焼鈍時間tが短すぎると、焼鈍工程を制御することが難しく、また焼鈍時間tが長すぎても生産性が悪くなる。そこで焼鈍時間t(秒)は10秒≦t(秒)≦120,000(秒)の範囲内であることが望ましい。   In the formula, t is the annealing time (seconds) and is the holding time at the heating temperature T (° C.). If the temperature is within the above temperature range, the heating temperature T (° C.) ± 5 It means that the temperature may be maintained within a range of ° C. If the annealing time t is too short, it is difficult to control the annealing process, and if the annealing time t is too long, the productivity is deteriorated. Therefore, it is desirable that the annealing time t (second) is in the range of 10 seconds ≦ t (seconds) ≦ 120,000 (seconds).

本発明の純チタン板の厚さについては、必要とされる強度等を考慮して設定すればよく特に限定されない。   The thickness of the pure titanium plate of the present invention is not particularly limited as long as it is set in consideration of the required strength and the like.

本発明に係る純チタン板は、高い強度を有しつつも延性に優れており、しかも高温多湿環境下における耐隙間腐食性にも優れた特性を有しているので、携帯電話機、モバイルパソコン、カメラなどのボディ、眼鏡フレーム、プレート式熱交換器の構成材、燃料電池のセパレーター等の幅広い分野で高度な成形性と機械的強度が要求される用途に広く適用できる。   Since the pure titanium plate according to the present invention has high strength and excellent ductility, and also has excellent crevice corrosion resistance in a high-temperature and high-humidity environment, the mobile phone, mobile personal computer, It can be widely applied to applications that require high formability and mechanical strength in a wide range of fields such as camera bodies, eyeglass frames, plate heat exchanger components, and fuel cell separators.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

表1に「成分」で示されるFe、Oを含有し、残部チタン及び不可避的不純物の原料をCCIM(コールドクルーシブル誘導溶解法)により、チタン鋳塊を鋳造により得た。この鋳塊を幅130mm×厚み45mmのブロック形状に分塊圧延し、更に、750℃に加熱して熱間圧延を施して厚み約4mmの熱延板を得た(No.3〜10)。なお、一部試験材は最終板厚(0.5mm)と表1記載の冷間圧延率を考慮して熱延板の板厚を面削して板厚を適宜調整した。表1記載の一部の熱延板は700℃で5分間の中間焼鈍を行った後、ソルト炉に浸漬し、その後酸洗して脱スケール処理をした。なお、他の一部は中間焼鈍せずに、脱スケール処理をした。脱スケール処理後、面削および酸洗によって板厚を調整し、表1に示す「圧下率」で冷間圧延を行い、その後、表1に示す「最終焼鈍条件」にて最終焼鈍を行った。最終焼鈍後、フッ硝酸溶液に浸漬して脱スケール処理を施して、試験材となる板厚0.5mmの純チタン板を得た。各純チタン板のH値は上記式(2)に基づいて計算し、表1の「式(2)の値 H」欄に記載した。   A titanium ingot was obtained by casting using CCIM (Cold Crucible Induction Melting Method), which contained Fe and O shown in “Components” in Table 1, and the remainder of titanium and inevitable impurities. This ingot was divided and rolled into a block shape having a width of 130 mm and a thickness of 45 mm, and further heated to 750 ° C. and hot-rolled to obtain a hot rolled sheet having a thickness of about 4 mm (No. 3 to 10). In addition, in consideration of the final plate thickness (0.5 mm) and the cold rolling rate shown in Table 1, some of the test materials were subjected to face milling of the plate thickness of the hot-rolled plate and adjusted appropriately. Some hot-rolled sheets shown in Table 1 were subjected to intermediate annealing at 700 ° C. for 5 minutes, then immersed in a salt furnace, and then pickled and descaled. The other part was descaled without intermediate annealing. After descaling, the plate thickness was adjusted by chamfering and pickling, cold rolling was performed at the “reduction ratio” shown in Table 1, and then final annealing was performed under “final annealing conditions” shown in Table 1. . After the final annealing, it was immersed in a hydrofluoric acid solution and descaled to obtain a pure titanium plate having a thickness of 0.5 mm as a test material. The H value of each pure titanium plate was calculated based on the above formula (2) and listed in the “value H of formula (2)” column of Table 1.

得られた各純チタン板に対して次の評価を行った。   The following evaluation was performed with respect to each obtained pure titanium plate.

(シュミット因子の測定方法)
電界放出型走査電子顕微鏡(Field Emission Scanning Electron Microscope:FESEM)(日本電子社製、JSM5410)に後方散乱電子線回折(Electron Backscatter Diffraction Pattern:EBSP)システムを搭載した結晶方位解析法によって任意の箇所の純チタン板表面の集合組織を評価した。
(Measuring method of Schmid factor)
Field orientation scanning electron microscope (FESEM) (manufactured by JEOL Ltd., JSM5410) equipped with a backscattered electron diffraction (Electron Backscatter Diffraction Pattern: EBSP) system for arbitrary orientation analysis The texture on the surface of the pure titanium plate was evaluated.

具体的には純チタン板の圧延面表面を板厚の1/4まで研磨した後、SEM鏡筒内にセットして、電子線を照射してスクリーン上に投影されるEBSPを高感度カメラで撮影して、コンピュータに画像として取り込み、この画像を解析して結晶方位を求めた。この際、引張荷重方向を圧延方向と一致させた場合の{11−22}<11−23>双晶系のシュミット因子を測定点ごとに評価し、方位マッピングのデータを収集した。なお、この測定視野範囲は1mm×1mm、測定ピッチを1μmとした。ここで互いに隣接する測定点の方位差が±15°以内のものは同一の結晶面に属するものとした。   Specifically, after polishing the rolled surface of a pure titanium plate to ¼ of the plate thickness, it is set in an SEM lens barrel, and EBSP projected on a screen by irradiating an electron beam with a high-sensitivity camera. The image was taken and captured as an image into a computer, and the crystal orientation was determined by analyzing the image. At this time, the {11-22} <11-23> twinned Schmid factor when the tensile load direction was made to coincide with the rolling direction was evaluated for each measurement point, and orientation mapping data was collected. In addition, this measurement visual field range was 1 mm x 1 mm, and the measurement pitch was 1 micrometer. Here, the ones whose orientation difference between adjacent measurement points is within ± 15 ° belong to the same crystal plane.

({11−22}<11−23>双晶系のシュミット因子が0.45以上である結晶粒(α相)の面積率)
上記シュミット因子の測定後、シュミット因子が0.45以上の測定点の合計を全測定点の数で除して100を掛けることで、シュミット因子が0.45以上の結晶粒の面積率を求め、表1の「集合組織(%)」欄に記載した。
(Area ratio of crystal grains (α phase) having {11-22} <11-23> twin system Schmid factor of 0.45 or more)
After the measurement of the Schmid factor, the area ratio of the crystal grains having the Schmitt factor of 0.45 or more is obtained by dividing the sum of the measurement points having the Schmitt factor of 0.45 or more by the total number of measurement points and multiplying by 100. In Table 1, “texture (%)” column is shown.

(β相の体積率)
純チタン板の圧延面表面を板厚の1/4位置まで機械研磨し、バフ研磨、化学研磨で鏡面に仕上げた後、反射電子像(BSE)観察を実施した。各サンプルに対して任意の270μm×230μmの領域を倍率10,000倍で観察し、β相の体積率の平均を求め、表1の「β相体積率(%)」欄に記載した。本実施例ではβ相の体積率が0.3%以下であれば合格とした。
(Volume ratio of β phase)
The surface of the rolled surface of the pure titanium plate was mechanically polished to a 1/4 position of the plate thickness, finished to a mirror surface by buffing and chemical polishing, and then reflected electron image (BSE) observation was performed. An arbitrary region of 270 μm × 230 μm was observed for each sample at a magnification of 10,000 times, and the average of the volume fraction of β phase was determined and described in the “β phase volume fraction (%)” column of Table 1. In this example, if the volume fraction of the β phase was 0.3% or less, it was determined to be acceptable.

(引張強度評価)
純チタン板からJISZ2201に規定される13号試験片(圧延方向が荷重軸と一致する方向(L方向))を採取し、室温でJISH4600に基づいて引張試験を実施し、引張強度を測定した。結果を表1の「引張強度」欄に記入した。引張強度が343MPa以上の場合を合格と評価した。
(Tensile strength evaluation)
A No. 13 test piece (direction in which the rolling direction coincides with the load axis (L direction)) defined in JISZ2201 was taken from a pure titanium plate, a tensile test was carried out at room temperature based on JISH4600, and the tensile strength was measured. The results were entered in the “Tensile strength” column of Table 1. The case where the tensile strength was 343 MPa or more was evaluated as acceptable.

(プレス成形性(スコア))
図2(a)(b)はプレス成形性(非等方的な張出成形性)の評価方法の説明図である。上記試験材として作製した純チタン板を用いてプレート式熱交換器の熱交換部分を模擬したプレス金型[大きさ:160mm×160mm(評価部分:100mm×100mm)、ピッチ:10mm、最大高さ:4mm、曲率半径R:0.4,0.6,0.8,1.0,1.4,1.8(mm)の6種の稜線を有するヘリンボーン型で稜線によって山の曲率半径Rが異なる金型]を用いて、80ton油圧プレス機でチタン板のプレス成形性を評価した。プレス条件は、試験片である金型の両面にプレス油(動粘度34mm/s(温度40℃))を塗布し、各試験材の圧延方向が図2(a)の上下方向と一致するように下側の金型の上に配置し、フランジ部を板押さえで拘束した後、プレス速度1mm/秒、押し込み深さ3.4mmの条件で実施した。
(Press formability (score))
FIGS. 2A and 2B are explanatory diagrams of a method for evaluating press formability (anisotropy stretch formability). Press die simulating the heat exchange part of a plate heat exchanger using a pure titanium plate produced as the test material [size: 160 mm × 160 mm (evaluation part: 100 mm × 100 mm), pitch: 10 mm, maximum height : 4 mm, curvature radius R: 0.4, 0.6, 0.8, 1.0, 1.4, 1.8 (mm) herringbone type having 6 types of ridge lines, and curvature radius R of the mountain by the ridge lines Were used, and the press formability of the titanium plate was evaluated with an 80 ton hydraulic press. The pressing conditions are as follows. Press oil (kinematic viscosity: 34 mm 2 / s (temperature: 40 ° C.)) is applied to both surfaces of a mold as a test piece, and the rolling direction of each test material coincides with the vertical direction in FIG. In this way, after placing on the lower mold and restraining the flange portion with a plate press, it was carried out under the conditions of a press speed of 1 mm / second and an indentation depth of 3.4 mm.

試験材の割れ測定位置は、図2[図2(a)は平面図、図2(b)は断面図]、に示すように、稜部と破線(山側5箇所、谷側1箇所)の交点の36箇所である。   As shown in FIG. 2 [FIG. 2 (a) is a plan view, FIG. 2 (b) is a cross-sectional view], the crack measurement position of the test material is a ridge and a broken line (5 places on the mountain side and 1 place on the valley side). There are 36 intersections.

割れの基点となる、Aライン(山側)、Cライン(山側)、C’ライン(谷側)、及びEライン(山側)に関しては、目視にて判断したときに、割れなし(健全)なら2点、ネッキング(一部が細くなり、くびれる現象)傾向があれば1点、ネッキングが生じていれば1点、割れが生じていれば0点とし、Bライン(山側)、Dライン(山側)については、割れなし(健全)なら2点、ネッキングが生じていれば0.5点、割れが生じていれば0点とした。   For the A line (mountain side), C line (peak side), C 'line (valley side), and E line (peak side), which are the base points of cracking, 2 if there is no crack (healthy) when judged visually. Point, if there is a tendency to necking (partially thinned and constricted), 1 point if necking has occurred, 0 point if there is a crack, B line (peak side), D line (peak side) For no cracking (sound), it was 2 points, 0.5 points if necking occurred, and 0 points if cracking occurred.

成形性のスコアは下記式(3)によって算出し、本発明におけるプレス成形性評価の指標とした。具体的には夫々の点数に曲率半径Rの逆数を掛けて割れの状態を数値化し、その合計を求めた。この合計値を、割れ、ネッキングが認められない場合を100として規格化した後、温度(T)、潤滑油粘度(μ)、試験片板厚(t)に依存する関数F(T、μ、t)、ならびに金型の綾線の角度(α)、ピッチ(p)に依存する関数G(α、p)を掛け合わせ、成形性スコアとして算出した。なお、本実施例では温度(T)、潤滑油粘度(μ)、試験片板厚(t)、金型の綾線の角度(α)、およびピッチ(p)を一定としたため、F×Gを便宜的に1としてスコアを算出し、表1の「成形性スコア」欄に記載した。
成形性スコア=(F×G)×[ΣE(ij)/R(j)]/[(ΣA,C,C’,E2/R(j))+(ΣB,D1/R(j))]×100 ・・・(3)
式中、
A、C、C’、Eについては、E(ij)=1.0×(割れなし:2、くびれ:1、割れあり:0)とし、
B、Dについては、E(ij)=0.5×(割れなし:2、くびれ:1、割れあり:0)として算出した。
成形性スコアは、70点以上を成形性に優れると評価した。
The formability score was calculated by the following formula (3) and used as an index for evaluating the press formability in the present invention. Specifically, the number of points was multiplied by the reciprocal of the radius of curvature R to quantify the cracking state, and the total was obtained. After normalizing this total value as 100 when cracking and necking are not recognized, a function F (T, μ, which depends on temperature (T), lubricating oil viscosity (μ), and test piece plate thickness (t) is used. t) and the function G (α, p) depending on the angle (α) and pitch (p) of the twill lines of the mold were multiplied to calculate the formability score. In this example, the temperature (T), the lubricating oil viscosity (μ), the thickness of the test piece plate (t), the angle (α) of the twill line of the mold, and the pitch (p) were constant, so that F × G For convenience, the score was calculated as 1 and listed in the “formability score” column of Table 1.
Formability score = (F × G) × [ΣE (ij) / R (j)] / [(Σ A, C, C ′, E 2 / R (j)) + (Σ B, D 1 / R ( j))] × 100 (3)
Where
For A, C, C ′, E, E (ij) = 1.0 × (no cracking: 2, constriction: 1, cracking: 0),
B and D were calculated as E (ij) = 0.5 × (no cracking: 2, constriction: 1, cracking: 0).
A moldability score of 70 or more was evaluated as being excellent in moldability.

(隙間腐食性試験)
作製した純チタン板から30mm×50mmの試験片を切出し、その中央にφ7mmの穴を開け、その穴を通してテフロン(登録商標)製マルチクレビス(ASTM G16−71)を両面に取り付けたものを隙間腐食性評価用試験片とした。このマルチクレビスは12箇所の隙間部を形成するが、本試験では試験片の両面にマルチクレビスを取り付けたので、隙間部は合計24箇所である。この試験片を沸騰した10%NaCl水溶液中に360時間浸漬し、その後、隙間腐食の発生有無を目視で確認し、隙間腐食の発生箇所数を測定した。隙間腐食の発生箇所数が5箇所以下の場合に、耐隙間腐食性を良好と評価した。結果を表1の「耐食性腐食率」欄に記載した。
(Crevice corrosion test)
A 30 mm x 50 mm test piece was cut out from the manufactured pure titanium plate, a hole of φ7 mm was drilled in the center, and Teflon (registered trademark) multiclevis (ASTM G16-71) was attached to both sides through the hole. It was set as the test piece for property evaluation. This multi-clevis forms 12 gaps, but since the multi-clevis was attached to both sides of the test piece in this test, there are a total of 24 gaps. This test piece was immersed in a boiled 10% NaCl aqueous solution for 360 hours, and then the presence or absence of crevice corrosion was visually confirmed, and the number of occurrences of crevice corrosion was measured. When the number of crevice corrosion occurrences was 5 or less, the crevice corrosion resistance was evaluated as good. The results are shown in the “corrosion resistant corrosion rate” column of Table 1.

(総合評価)
室温での機械的特性として室温での引張強度が343MPa以上、プレス成形性のスコアが70点以上、隙間腐食発生個数が5箇所以下の場合を夫々合格とし、全てを満足する例を強度とプレス成形性のバランスに優れており、また耐隙間腐食性にも優れていると評価した。結果を表1に示す。
(Comprehensive evaluation)
As mechanical properties at room temperature, a case where the tensile strength at room temperature is 343 MPa or more, the score of press formability is 70 points or more, and the number of crevice corrosion occurrences is 5 places or less is passed, respectively. It was evaluated that the balance of formability was excellent and the crevice corrosion resistance was also excellent. The results are shown in Table 1.

表1から次のように考察することができる。即ち、No.2〜6、9、10、12〜16は本発明で規定する要件を満たす純チタン板であり、室温での強度とプレス成形性のバランスに優れるだけでなく、耐隙間腐食性にも優れていることがわかる。   From Table 1, it can be considered as follows. That is, no. 2 to 6, 9, 10, and 12 to 16 are pure titanium plates that satisfy the requirements defined in the present invention, and not only have a good balance between strength at room temperature and press formability, but also have excellent crevice corrosion resistance. I understand that.

これに対し、No.1、7、8、11は本発明で規定する要件を満たしていないため、室温での強度を確保できなかったり、室温でのプレス成形性や耐隙間腐食性に劣るといった不具合が生じた。   In contrast, no. Since 1, 7, 8, and 11 did not satisfy the requirements defined in the present invention, the strength at room temperature could not be secured, and problems such as poor press formability and crevice corrosion resistance at room temperature occurred.

No.1とNo.11は、最終焼鈍前の冷間圧延での圧下率が低い例である。この例ではシュミット因子が0.45以上の値を有する結晶粒の面積率(表中、「集合組織(%)」)が43%を下回ったため、プレス成形性が悪かった。   No. 1 and No. 11 is an example in which the rolling reduction in cold rolling before final annealing is low. In this example, the area ratio of the crystal grains having a Schmid factor of 0.45 or more (in the table, “texture (%)”) was below 43%, and the press formability was poor.

No.7は、純チタン板に含まれるO量が少なく、式(1)の値が本発明の規定を下回る例であり、引張強度が343MPaを下回っていた。   No. No. 7 is an example in which the amount of O contained in the pure titanium plate is small, and the value of the formula (1) is less than that of the present invention, and the tensile strength is less than 343 MPa.

No.8は、式(2)の値が本発明の規定を下回る例(表中、「H」の値が負)である。この例ではシュミット因子が0.45以上の値を有する結晶粒の面積率(表中、「集合組織(%)」)が43%を下回ると共に、β相の体積率が規定を上回ったため、プレス成形性と耐隙間腐食性が悪かった。   No. 8 is an example (the value of “H” is negative in the table) in which the value of the formula (2) is less than that of the present invention. In this example, the area ratio of the grains having a Schmid factor of 0.45 or more (in the table, “texture (%)”) is less than 43%, and the volume ratio of the β phase exceeds the specified value. Formability and crevice corrosion resistance were poor.

Claims (3)

Fe:0.02〜0.10%(「質量%」の意味、化学成分については以下同じ)、
O:0.04〜0.20%
を含有し、残部がチタン及び不可避的不純物からなり、
前記Feと前記Oの含有量が下記式(1)を満足すると共に、
板厚1/4位置の圧延方向を軸とした{11−22}<11−23>双晶系のシュミット因子が0.45以上である領域の面積率が43%以上であり、
更にβ相の体積率が0.3%以下であることを特徴とするプレス成形性と強度のバランス、及び耐食性に優れた純チタン板。
[O含有量(質量%)]+0.12×[Fe含有量(質量%)]≧0.050・・・(1)
Fe: 0.02 to 0.10% (meaning “mass%”, the chemical components are the same hereinafter),
O: 0.04 to 0.20%
And the balance consists of titanium and inevitable impurities,
While the contents of Fe and O satisfy the following formula (1),
The area ratio of the region where the {11-22} <11-23> twinned Schmitt factor is 0.45 or more with the rolling direction at the ¼ thickness position as the axis is 43% or more,
Furthermore, a pure titanium plate excellent in the balance between press formability and strength and corrosion resistance, wherein the volume fraction of β phase is 0.3% or less.
[O content (% by mass)] + 0.12 × [Fe content (% by mass)] ≧ 0.050 (1)
熱間圧延、中間焼鈍、冷間圧延、最終焼鈍の工程を経て製造される純チタン板の製造方法において、前記中間焼鈍後に、純チタン板表面のスケール除去処理を行った後、圧下率が70%以上である冷間圧延を行い、その後、下記式(2)で定めるHが正の値となる条件で最終焼鈍を行うことを特徴とするプレス成形性と強度のバランス、及び耐食性に優れた請求項1に記載の純チタン板の製造方法。
但し、
T:最終焼鈍時の加熱温度(℃)、t:焼鈍時間(秒)
0:チタン中のFe濃度(質量%)
A=891、B=0.428、n=0.135
In the method of manufacturing a pure titanium plate manufactured through the steps of hot rolling, intermediate annealing, cold rolling, and final annealing, after the intermediate annealing, the scale removal treatment is performed on the surface of the pure titanium plate, and then the reduction rate is 70. %, And then the final annealing is performed under the condition that H defined by the following formula (2) is a positive value, and excellent in balance between press formability and strength, and corrosion resistance. The manufacturing method of the pure titanium plate of Claim 1.
However,
T: heating temperature during final annealing (° C.), t: annealing time (seconds)
X 0 : Fe concentration in titanium (mass%)
A = 891, B = 0.428, n = 0.135
熱間圧延、冷間圧延、最終焼鈍の工程を経て製造される純チタン板の製造方法において、前記熱間圧延後に中間焼鈍を行うことなく純チタン板表面のスケール除去処理を行った後、圧下率が20%以上である冷間圧延を行い、その後、下記式(2)で定めるHが正の値となる条件で最終焼鈍を行うことを特徴とするプレス成形性と強度のバランス、及び耐食性に優れた請求項1に記載の純チタン板の製造方法。

但し、
T:最終焼鈍時の加熱温度(℃)、t:焼鈍時間(秒)
0:チタン中のFe濃度(質量%)
A=891、B=0.428、n=0.135
In the manufacturing method of a pure titanium plate manufactured through the steps of hot rolling, cold rolling, and final annealing, after performing the descaling treatment on the surface of the pure titanium plate without performing intermediate annealing after the hot rolling, the rolling down Cold-rolling with a rate of 20% or more, and then performing final annealing under the condition that H defined by the following formula (2) is a positive value, and a balance between press formability and strength, and corrosion resistance The manufacturing method of the pure titanium plate of Claim 1 excellent in.

However,
T: heating temperature during final annealing (° C.), t: annealing time (seconds)
X 0 : Fe concentration in titanium (mass%)
A = 891, B = 0.428, n = 0.135
JP2012074836A 2011-05-30 2012-03-28 Production method of pure titanium plate with excellent balance of press formability and strength, and excellent corrosion resistance Expired - Fee Related JP5937865B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012074836A JP5937865B2 (en) 2011-05-30 2012-03-28 Production method of pure titanium plate with excellent balance of press formability and strength, and excellent corrosion resistance
EP12793298.6A EP2716778A4 (en) 2011-05-30 2012-05-30 Pure titanium sheet having excellent balance between press formability and strength and excellent corrosion resistance, and process for manufacturing same
PCT/JP2012/063914 WO2012165470A1 (en) 2011-05-30 2012-05-30 Pure titanium sheet having excellent balance between press formability and strength and excellent corrosion resistance, and process for manufacturing same
KR1020137031469A KR20140004793A (en) 2011-05-30 2012-05-30 Pure titanium sheet having excellent balance between press formability and strength and excellent corrosion resistance, and process for manufacturing same
CN201280025980.XA CN103562421A (en) 2011-05-30 2012-05-30 Pure titanium sheet having excellent balance between press formability and strength and excellent corrosion resistance, and process for manufacturing same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011120766 2011-05-30
JP2011120766 2011-05-30
JP2012074836A JP5937865B2 (en) 2011-05-30 2012-03-28 Production method of pure titanium plate with excellent balance of press formability and strength, and excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2013011013A true JP2013011013A (en) 2013-01-17
JP5937865B2 JP5937865B2 (en) 2016-06-22

Family

ID=47259322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074836A Expired - Fee Related JP5937865B2 (en) 2011-05-30 2012-03-28 Production method of pure titanium plate with excellent balance of press formability and strength, and excellent corrosion resistance

Country Status (5)

Country Link
EP (1) EP2716778A4 (en)
JP (1) JP5937865B2 (en)
KR (1) KR20140004793A (en)
CN (1) CN103562421A (en)
WO (1) WO2012165470A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6263040B2 (en) * 2013-03-19 2018-01-17 株式会社神戸製鋼所 Titanium plate
JP5973975B2 (en) * 2013-09-24 2016-08-23 株式会社神戸製鋼所 Titanium plate
JP6156597B1 (en) * 2016-06-30 2017-07-05 新日鐵住金株式会社 Titanium sheet and manufacturing method thereof
CN107385277B (en) * 2017-06-29 2019-09-20 西安赛特思迈钛业有限公司 A kind of watch structure part pure titanium rod material and preparation method thereof
WO2019043882A1 (en) * 2017-08-31 2019-03-07 新日鐵住金株式会社 Titanium sheet
CN109930028A (en) * 2019-03-29 2019-06-25 盐城华旭机械制造有限公司 One kind being based on stamping forming metal plate plate and its processing technology
CN111020293B (en) * 2019-12-30 2022-08-16 宝鸡鑫诺新金属材料有限公司 High-performance TA1 rod wire material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591661A (en) * 1982-06-25 1984-01-07 Sumitomo Metal Ind Ltd Manufacture of pure titanium plate with little anisotropy in yield strength
JP2003147462A (en) * 2001-11-06 2003-05-21 Nippon Steel Corp Titanium sheet with excellent impact resistance, and its manufacturing method
JP2004285457A (en) * 2003-01-31 2004-10-14 Kobe Steel Ltd Titanium sheet with excellent formability, and its manufacturing method
JP2009215601A (en) * 2008-03-10 2009-09-24 Kobe Steel Ltd Titanium alloy sheet having high strength and excellent in formability
WO2010126051A1 (en) * 2009-04-28 2010-11-04 株式会社神戸製鋼所 Titanium plate and method for manufacturing titanium plates
JP2011025269A (en) * 2009-07-23 2011-02-10 Kobe Steel Ltd Press forming method for titanium sheet
JP2011026649A (en) * 2009-07-23 2011-02-10 Kobe Steel Ltd Titanium sheet with high yield strength and excellent in press formability

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931610B1 (en) 1970-12-26 1974-08-23
JP5021873B2 (en) 2001-02-16 2012-09-12 株式会社神戸製鋼所 Titanium plate excellent in ductility and manufacturing method thereof
JP4605514B2 (en) * 2008-03-25 2011-01-05 住友金属工業株式会社 Titanium plate and titanium plate manufacturing method
JP2010236067A (en) 2009-03-31 2010-10-21 Kobe Steel Ltd Titanium alloy sheet superior in balance between press formability and strength
EP2615186A4 (en) * 2010-09-08 2017-10-18 Nippon Steel & Sumitomo Metal Corporation Titanium material
JP5427154B2 (en) * 2010-09-29 2014-02-26 株式会社神戸製鋼所 Titanium plate with high strength and excellent formability
JP5444182B2 (en) * 2010-10-08 2014-03-19 株式会社神戸製鋼所 Titanium plate with excellent formability

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591661A (en) * 1982-06-25 1984-01-07 Sumitomo Metal Ind Ltd Manufacture of pure titanium plate with little anisotropy in yield strength
JP2003147462A (en) * 2001-11-06 2003-05-21 Nippon Steel Corp Titanium sheet with excellent impact resistance, and its manufacturing method
JP2004285457A (en) * 2003-01-31 2004-10-14 Kobe Steel Ltd Titanium sheet with excellent formability, and its manufacturing method
JP2009215601A (en) * 2008-03-10 2009-09-24 Kobe Steel Ltd Titanium alloy sheet having high strength and excellent in formability
WO2010126051A1 (en) * 2009-04-28 2010-11-04 株式会社神戸製鋼所 Titanium plate and method for manufacturing titanium plates
JP2010255085A (en) * 2009-04-28 2010-11-11 Kobe Steel Ltd Titanium plate and method for producing titanium plates
JP2011025269A (en) * 2009-07-23 2011-02-10 Kobe Steel Ltd Press forming method for titanium sheet
JP2011026649A (en) * 2009-07-23 2011-02-10 Kobe Steel Ltd Titanium sheet with high yield strength and excellent in press formability

Also Published As

Publication number Publication date
JP5937865B2 (en) 2016-06-22
KR20140004793A (en) 2014-01-13
EP2716778A4 (en) 2014-11-19
WO2012165470A1 (en) 2012-12-06
CN103562421A (en) 2014-02-05
EP2716778A1 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5937865B2 (en) Production method of pure titanium plate with excellent balance of press formability and strength, and excellent corrosion resistance
JP5700650B2 (en) Pure titanium plate with excellent balance between press formability and strength
JP5882380B2 (en) Manufacturing method of aluminum alloy sheet for press forming
JP3558628B2 (en) Magnesium alloy plate and method for producing the same
JP5166921B2 (en) Titanium alloy plate with high strength and excellent formability
KR101943253B1 (en) Titanium plates, plates for heat exchangers and separators for fuel cells
KR101940968B1 (en) METHOD FOR MANUFACTURING MOLDED PRODUCTS
JP5247010B2 (en) Cu-Zn alloy with high strength and excellent bending workability
KR101743380B1 (en) Titanium sheet
JP2010031314A (en) Titanium alloy sheet having high strength and excellent formability, and method for producing the same
JP4974193B2 (en) Copper alloy sheet for electrical and electronic parts
JPWO2016035235A1 (en) Stainless steel for cold rolled steel
JP5988899B2 (en) Titanium plate and method for producing titanium plate
JP2006257475A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN PRESS FORMABILITY, MANUFACTURING METHOD THEREFOR AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET MATERIAL
JP5399759B2 (en) Titanium alloy plate having high strength and excellent bending workability and press formability, and method for producing titanium alloy plate
WO2012137653A1 (en) Titanium sheet with excellent stamping performance
JP5444182B2 (en) Titanium plate with excellent formability
JP2012077319A (en) Aluminum alloy sheet for forming excellent in bending workability and method for producing the same
JP5427154B2 (en) Titanium plate with high strength and excellent formability
JP4718273B2 (en) Reinforced α brass and method for producing the same
JP5192648B2 (en) Hard α brass with excellent moldability and method for producing the same
JP5032011B2 (en) Hard α brass and method for producing the hard α brass
WO2023145050A1 (en) Titanium alloy plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160513

R150 Certificate of patent or registration of utility model

Ref document number: 5937865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees