JP4718273B2 - Reinforced α brass and method for producing the same - Google Patents

Reinforced α brass and method for producing the same Download PDF

Info

Publication number
JP4718273B2
JP4718273B2 JP2005232530A JP2005232530A JP4718273B2 JP 4718273 B2 JP4718273 B2 JP 4718273B2 JP 2005232530 A JP2005232530 A JP 2005232530A JP 2005232530 A JP2005232530 A JP 2005232530A JP 4718273 B2 JP4718273 B2 JP 4718273B2
Authority
JP
Japan
Prior art keywords
brass
annealing
reinforced
rolling
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005232530A
Other languages
Japanese (ja)
Other versions
JP2006241584A (en
Inventor
洋 山口
Original Assignee
三井住友金属鉱山伸銅株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井住友金属鉱山伸銅株式会社 filed Critical 三井住友金属鉱山伸銅株式会社
Priority to JP2005232530A priority Critical patent/JP4718273B2/en
Priority to DE112006000331T priority patent/DE112006000331T5/en
Priority to US11/815,607 priority patent/US20090120544A1/en
Priority to PCT/JP2006/301860 priority patent/WO2006082921A1/en
Publication of JP2006241584A publication Critical patent/JP2006241584A/en
Application granted granted Critical
Publication of JP4718273B2 publication Critical patent/JP4718273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/221Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/008Zinc or its alloys

Description

本件発明は、耐力及び曲げ加工性に優れ且つ耐力及び曲げ加工性のバランスのとれた強化α黄銅材及びその製造方法に関する。   The present invention relates to a reinforced α brass material excellent in yield strength and bending workability and balanced in yield strength and bending workability, and a method for producing the same.

従来から、黄銅材は機械的強度が比較的高く、導電率も比較的良好で、安価であるため端子、コネクターなどの電子部品や、機構部品に多用されている。   Conventionally, brass materials have a relatively high mechanical strength, a relatively good electrical conductivity, and are inexpensive, and thus are frequently used for electronic parts such as terminals and connectors, and mechanical parts.

ところが、従来の黄銅材は、加工率を高くして、より強度の高い材料を得ようとすると曲げ加工性が悪く、靱性に乏しくなるため曲げ加工が困難になるという欠点がある。即ち、コネクターなどに加工する場合には、厳しい曲げ加工が負荷されることが多く、必要とされる程度の曲げ加工で欠陥の出にくいよう、耐力が550MPa未満のものの使用が大勢を占めている。そして、このレベルを超えた高い強度を要する場合には、高価なりん青銅を選択的に使用するのが通常である。また、従来の黄銅材は、応力緩和特性において、顕著に優れたと言える特性を示さないが、特に結晶粒を微細化すると、これが更に劣化して実用上大きな問題となり、微細化による劣化は避けることが要望されてきた。   However, the conventional brass material has a drawback that when it is attempted to obtain a material having higher strength by increasing the processing rate, the bending workability is poor and the toughness becomes poor, so that the bending process becomes difficult. That is, when processing into a connector or the like, severe bending is often applied, and the use of one having a proof stress of less than 550 MPa is dominant so that defects are not easily generated by the required bending. . And when high intensity | strength exceeding this level is required, it is normal to selectively use expensive phosphor bronze. In addition, the conventional brass material does not exhibit the characteristics that can be said to be remarkably excellent in the stress relaxation characteristics, but particularly when the crystal grains are made finer, this further deteriorates and becomes a serious problem in practical use. Has been requested.

一方、α黄銅製板条の加工法は、一般的には鋳造、熱間圧延、面削の後、連続焼鈍工程を通せるまでの厚みに冷間圧延、連続焼鈍酸洗、冷間圧延、連続焼鈍酸洗、冷間圧延の工程を経て切断し板条とする。この工程にあって、厚みにより焼鈍、圧延の繰り返しを行ったり、焼鈍がバッチ方式であったりし、また鈍し上がりが望まれれば最後の圧延を省略したり、種々の製造プロセスが考えられる。このような従来の製造プロセスを、以下単に「一般的製造プロセス」と称する。   On the other hand, the processing method of the sheet made of α brass is generally cold rolling, continuous annealing pickling, cold rolling to a thickness that can be passed through a continuous annealing process after casting, hot rolling, and face cutting. It cut | disconnects through the process of continuous annealing pickling and cold rolling, and is set as a strip. In this step, annealing and rolling may be repeated depending on the thickness, annealing may be performed in a batch manner, and the last rolling may be omitted if dulling is desired, and various manufacturing processes may be considered. Such a conventional manufacturing process is hereinafter simply referred to as “general manufacturing process”.

上記一般的製造プロセスの焼鈍条件は、連続方式の場合には、特許文献1に開示されているように、850〜480℃の範囲内で行われる。また、バッチ方式の場合は非特許文献1にあるように、425℃〜600℃で行われる。更に、最初及び中間の焼鈍は、十分な再結晶組織を得て圧延圧力を下げるため、結晶粒度は20μm〜35μmとされるのが一般的であり、この場合のビッカース硬度は60Hv〜80Hvとなる。そして、最終の焼鈍は、用途に応じて結晶粒径を5μm〜60μmとするのが一般的で、ビッカース硬度は50Hv〜120Hvとなる。先に述べたように、一般的製造プロセスでは最終焼鈍の後に、最終圧延工程を通した後に切断する。そして、以下では、この最終圧延工程を経たものを「一般材」と称する。   In the case of a continuous method, the annealing conditions of the general manufacturing process are performed within a range of 850 to 480 ° C. as disclosed in Patent Document 1. In the case of the batch method, as described in Non-Patent Document 1, it is performed at 425 ° C. to 600 ° C. Furthermore, in order to obtain a sufficient recrystallization structure and lower the rolling pressure in the first and intermediate annealing, the grain size is generally 20 μm to 35 μm. In this case, the Vickers hardness is 60 Hv to 80 Hv. . In the final annealing, the crystal grain size is generally 5 μm to 60 μm depending on the application, and the Vickers hardness is 50 Hv to 120 Hv. As described above, in the general manufacturing process, after the final annealing, it is cut after passing through the final rolling step. In the following, the material that has undergone this final rolling step is referred to as “general material”.

一般的な合金の強化方法を考えるに、α黄銅製板条の強度を向上させようとすると、結晶粒の微細化による強化、合金元素を用いた固溶強化等の強化方法を採用するのが一般的である。   Considering a general alloy strengthening method, when trying to improve the strength of the α brass strip, it is possible to adopt a strengthening method such as strengthening by refining crystal grains or solid solution strengthening using alloy elements. It is common.

合金元素添加による強化を図ろうとしたものとしては、特許文献2に開示されているように、α黄銅の高強度化をSn等の合金元素添加によって行う方法がある。ところが、合金元素を用いるということは、用いる合金成分によってはコストが上昇し、スクラップのリサイクル性に支障を来したり、生産性にも影響を与えるおそれもある。従って、黄銅の合金組成を変えることなく、結晶粒の微細化を試みることが好ましい。   As disclosed in Japanese Patent Application Laid-Open No. 2004-228620, there is a method for increasing the strength of α brass by adding an alloy element such as Sn, as disclosed in Patent Document 2. However, the use of alloy elements increases the cost depending on the alloy components used, which may impede scrap recyclability and may affect productivity. Therefore, it is preferable to try to refine crystal grains without changing the alloy composition of brass.

非特許文献2及び非特許文献3には、組成は変えずに結晶粒微細化によって行うという研究結果が発表されている。そして、ここでは、圧延率が92%、91%、80%、78%といった高い圧延率を採用しており、その後の焼鈍は300℃×1時間、270℃×7時間、230℃×17時間という低温域での長時間焼鈍を行っている。そして、得られる強度は、焼鈍上がりで300℃×1時間の場合の耐力が379MPa、270℃×7時間の場合の耐力が399MPa、230℃×17時間の場合の耐力は534MPaであり、焼鈍上がりとしては比較的高強度であることが報告されている。   Non-Patent Document 2 and Non-Patent Document 3 have published research results of performing crystal grain refinement without changing the composition. In this case, a high rolling rate such as 92%, 91%, 80%, and 78% is adopted, and the subsequent annealing is 300 ° C. × 1 hour, 270 ° C. × 7 hours, 230 ° C. × 17 hours. Annealing for a long time in the low temperature range. The strength obtained is as follows: after annealing, the yield strength at 300 ° C. × 1 hour is 379 MPa, the yield strength at 270 ° C. × 7 hours is 399 MPa, and the yield strength at 230 ° C. × 17 hours is 534 MPa. Has been reported to have a relatively high strength.

また、特許文献3では微細粒を得る方法が述べられ、高い引張強度と良好な曲げ性とが実施例に報告されている。しかし、ここに応力緩和性に関する言及はなく、再結晶焼鈍を連続焼鈍法で行うことが記述されているが、該当実施例では結晶粒径が1.8μmの一例が開示されている。   Patent Document 3 describes a method for obtaining fine particles, and reports high tensile strength and good bendability in Examples. However, there is no mention of stress relaxation properties here, and it is described that recrystallization annealing is performed by a continuous annealing method, but in the corresponding examples, an example of a crystal grain size of 1.8 μm is disclosed.

更に、α+β黄銅に関しては、非特許文献4に、結晶粒微細化による高強度化の研究結果が報告されている。ここでは強加工と比較的低い温度での長時間焼鈍によってα相とβ相との2相混合組織からなる微細結晶粒を得て、更にこれを加工し、低温焼鈍すると高強度且つ曲げ加工性も比較的良好な材料が得られると報告されている。また、応力緩和性が結晶粒微細化に伴って悪化すること、低温焼鈍により若干の改善を見ることが報告されている。   Furthermore, regarding α + β brass, Non-Patent Document 4 reports a study result of increasing strength by refining crystal grains. Here, fine crystals with a two-phase mixed structure of α phase and β phase are obtained by strong processing and long-term annealing at a relatively low temperature, and when this is further processed and annealed at low temperature, high strength and bending workability are obtained. It has been reported that relatively good materials can be obtained. In addition, it has been reported that the stress relaxation property deteriorates with the refinement of crystal grains, and a slight improvement is observed by low temperature annealing.

特開昭53−32819号公報JP-A-53-32819 特開平11−264039号公報Japanese Patent Laid-Open No. 11-264039 特開2004−292875号公報JP 2004-292875 A 日本伸銅協会発行 伸銅品データブック p.19Published by Japan Copper and Brass Association Data book of copper products p. 19 銅と銅合金41、1、29Copper and copper alloy 41, 1, 29 銅と銅合金43、1、21Copper and copper alloys 43, 1, 21 伸銅技術研究会誌39,1,128Journal of copper technology research 39,1,128 日本伸銅協会発行 伸銅品データブック p.226Published by Japan Copper and Brass Association Data book of copper products p. 226

しかしながら、非特許文献2及び非特許文献3に開示の発明において、最も優れた耐力を示した230℃×17時間の焼鈍を行った場合を考えるに、冷間加工によって加工硬化した状態から、十分に焼鈍軟化しきれない状態まで持って行き、そこで焼鈍を止めて曲げ加工性を改善し比較的高い強度を得ている。このときに得られる結晶組織は、不均一な再結晶状態が形成されているため耐力は534MPa程度まで低下し、不十分なものと判断出来る。   However, in the inventions disclosed in Non-Patent Document 2 and Non-Patent Document 3, considering the case of annealing at 230 ° C. × 17 hours that showed the most excellent proof stress, from the state of work hardening by cold work, It is brought to a state where it cannot be fully softened by annealing, and the annealing is stopped to improve the bending workability and obtain a relatively high strength. Since the crystal structure obtained at this time has a non-uniform recrystallized state, the yield strength is reduced to about 534 MPa, and it can be determined that it is insufficient.

一方、特許文献3は、強度と曲げ性とのバランスに優れた黄銅の製造方法の好ましい一例を示唆している。しかし、具体的強度と曲げ性とのバランスを考え得る例示は一例のみで、しかも曲げ性の評価は、曲げに有利な曲げ方向(Good Way)を採用しているように、厳しい曲げ加工性条件(Bad Way)での良好な曲げ加工性を示すものではない。また、応力緩和性については何らの言及もない。   On the other hand, Patent Document 3 suggests a preferable example of a method for producing brass having an excellent balance between strength and bendability. However, there is only one example where the balance between concrete strength and bendability can be considered, and the bendability is evaluated under severe bending workability conditions such as adopting a bend direction (Good Way) advantageous for bending. It does not show good bending workability at (Bad Way). There is no mention of stress relaxation.

また、α+β黄銅の場合、α相とβ相との2相混合組織からなる微細結晶粒をもってしても、リン青銅の持つ耐力と曲げ加工性とのバランスには遙かに及ばないのが実情であり、後述する数5の式には対応出来ない。   In the case of α + β brass, even if it has fine crystal grains consisting of a two-phase mixed structure of α phase and β phase, the balance between the yield strength and bending workability of phosphor bronze is far below. Therefore, it is not possible to correspond to the formula 5 below.

以上のことから、本件発明は、リン青銅に匹敵する耐力と曲げ加工性を持った黄銅材を提供することを目的とする。しかも、本件発明に係る黄銅材は、微細粒組織とすることでりん青銅に匹敵する耐力と良好な曲げ加工性を付与されても、応力緩和特性の劣化が無いという点に特徴を有する。また、本件発明に係る黄銅を提供するために好適な加工焼鈍方法を提供するものである。   In view of the above, an object of the present invention is to provide a brass material having yield strength and bending workability comparable to phosphor bronze. Moreover, the brass material according to the present invention is characterized in that the stress relaxation characteristics are not deteriorated even when a proof stress equal to that of phosphor bronze and good bending workability are imparted by forming a fine grain structure. Moreover, in order to provide the brass which concerns on this invention, the suitable process annealing method is provided.

(本件発明に係るα黄銅)
本件発明に係るα黄銅は、銅、亜鉛以外の添加をせずに、加工方法に工夫を加えることによって、強度及び曲げ加工性に優れた黄銅を提供するものである。
(Α brass according to the present invention)
The α brass according to the present invention provides brass with excellent strength and bending workability by adding ingenuity to the processing method without adding other than copper and zinc.

本件発明に係るα黄銅は、銅82重量%〜62重量%と、残部亜鉛及び不可避不純物とからなる強化α黄銅において、0.2%耐力が540MPa〜800MPaであり、圧延方向を曲げ軸とする直角曲げでクラックの生じない最小曲げ半径(MBR)と、板厚(t)と、0.2%耐力(σ0.2)とが、以下の数3の関係を満たすことを特徴としたものである。但し、MBR/tの値が、0.3以下のときは0.3とみなして取り扱う。 The α brass according to the present invention is a reinforced α brass composed of 82% to 62% by weight of copper and the balance zinc and inevitable impurities, and 0.2% proof stress is 540 MPa to 800 MPa, and the rolling direction is the bending axis. The minimum bending radius (MBR) at which cracks do not occur in right-angle bending, the plate thickness (t), and the 0.2% proof stress (σ 0.2 ) satisfy the following relationship: It is. However, when the value of MBR / t is 0.3 or less, it is regarded as 0.3.

次に、本件発明に係る銅82重量%〜62重量%と、残部亜鉛及び不可避不純物とからなる強化α黄銅において、0.2%耐力が590MPa〜800MPaであり、圧延方向を曲げ軸とする直角曲げでクラックの生じない最小曲げ半径(MBR)と、板厚(t)と、0.2%耐力(σ0.2)とが、以下の数4の関係を満たすことを特徴としたものとすることがより好ましい。 Next, in reinforced α brass composed of 82 wt% to 62 wt% of copper according to the present invention, the balance zinc and inevitable impurities, the 0.2% proof stress is 590 MPa to 800 MPa, and the right angle with the rolling direction as the bending axis. The minimum bending radius (MBR) at which no crack is generated by bending, the plate thickness (t), and the 0.2% proof stress (σ 0.2 ) satisfy the following relationship: More preferably.

また、以上に述べてきた強化α黄銅の結晶組織は、加工歪が強く残っている粒(最多頻度の粒径が1〜2μmの高転位密度粒)と、歪の再編成が起こった組織(最多頻度の粒径が0.2〜1.5μmの再編成転位粒(セル状組織))の混合微細組織をとることを特徴とするものである。   In addition, the crystal structure of the reinforced α brass described above includes grains in which processing strain remains strongly (high dislocation density grains having a most frequent grain size of 1 to 2 μm) and a structure in which strain reorganization occurs ( It is characterized by taking a mixed microstructure of reorganized dislocation grains (cellular structure) having the most frequent particle size of 0.2 to 1.5 μm.

(本件発明に係る強化α黄銅の製造方法)
本件発明に係る強化α黄銅の製造方法は、黄銅板材に対し、最終再結晶焼鈍を370℃〜600℃の条件で行い、その後7%〜55%の最終冷間圧延を加え、更に、バッチ方式で板材の実体温度170℃〜230℃の条件、又は、連続方式で加熱炉の炉温250℃〜450℃の条件で低温焼鈍することを特徴とすることを特徴とする。
(Method for producing reinforced α brass according to the present invention)
The manufacturing method of the reinforced alpha brass according to the present invention is such that the final recrystallization annealing is performed on the brass plate material under the conditions of 370 ° C. to 600 ° C., and then the final cold rolling of 7% to 55% is added, and further , the batch method The substrate material is characterized in that it is annealed at a low temperature under conditions of an actual temperature of 170 to 230 ° C. of the plate material or a furnace temperature of 250 to 450 ° C. in a continuous manner .

また、本件発明に係る強化α黄銅の製造方法として、黄銅板材に対し、最終再結晶焼鈍を255℃〜290℃の条件で行い、その後7%〜55%の最終冷間圧延を加え、更に、バッチ方式で板材の実体温度170℃〜230℃の条件、又は、連続方式で加熱炉の炉温250℃〜450℃の条件で低温焼鈍し結晶組織を混合微細組織とすることを特徴とする製造方法を採用することも好ましい。 Moreover, as a manufacturing method of the reinforced alpha brass according to the present invention, a final recrystallization annealing is performed on the brass plate material under the condition of 255 ° C. to 290 ° C., and then a final cold rolling of 7% to 55% is added . Manufacture characterized in that the crystal structure is made into a mixed microstructure by low-temperature annealing in a batch system at a material temperature of 170 ° C to 230 ° C or in a continuous system at a furnace temperature of 250 ° C to 450 ° C. It is also preferable to adopt the method.

上述の製造方法における再結晶焼鈍後の、ビッカース硬度も140Hv〜160Hvとなるように調整することが好ましい。   It is preferable to adjust the Vickers hardness after recrystallization annealing in the above-described manufacturing method to be 140 Hv to 160 Hv.

上記製造方法において、低温焼鈍は、連続方式で加熱炉の炉温250℃〜450℃の温度範囲を採用して行うことが好ましい。 In the said manufacturing method, it is preferable to perform low-temperature annealing by adopting the temperature range of 250 degreeC-450 degreeC of the furnace temperature of a heating furnace by a continuous system .

本件発明に係る強化α黄銅は、銅82重量%〜62重量%と、残部亜鉛及び不可避不純物とからなる組成をもち、他の合金元素を含んでいない。しかしながら、その結晶組織は緻密且つ均一で、高転位密度粒と再編成粒との混合組織であり、リン青銅並み若しくはリン青銅を超える機械的物性を示し、耐力と曲げ加工性能とのバランスに優れたものであり、しかも応力緩和特性は黄銅従来材より優れたものである。そして、本件発明に係る強化α黄銅の製造方法は、上述の優れた物性を安定的に得ることが可能で、しかも、工業的規模での生産に適したものである。   The reinforced α brass according to the present invention has a composition composed of 82% to 62% by weight of copper, the balance zinc and inevitable impurities, and does not contain other alloy elements. However, its crystal structure is dense and uniform, and is a mixed structure of high dislocation density grains and reorganized grains. It exhibits mechanical properties comparable to or superior to phosphor bronze, and has an excellent balance between yield strength and bending performance. In addition, the stress relaxation characteristics are superior to those of conventional brass materials. And the manufacturing method of the reinforced alpha brass which concerns on this invention can obtain the above-mentioned outstanding physical property stably, and is suitable for production on an industrial scale.

(本件発明に係る強化α黄銅の形態)
本件発明に係るα黄銅は、上述のように銅82重量%〜62重量%と、残部亜鉛及び不可避不純物とからなる強化α黄銅である。ここで、α黄銅と称しているものは、最も銅分の低い丹銅と称されている部分を含むα相単相の銅−亜鉛合金のことである。また、本件発明に係る強化α黄銅の特徴としては、リン青銅並みの曲げ加工性と従来の黄銅材より優れた応力緩和性を発揮することも可能となる。
(Form of reinforced α brass according to the present invention)
The α brass according to the present invention is a reinforced α brass composed of 82% to 62% by weight of copper, the remaining zinc and inevitable impurities as described above. Here, what is referred to as α brass is an α-phase single-phase copper-zinc alloy including a portion referred to as red copper having the lowest copper content. In addition, as a feature of the reinforced α brass according to the present invention, it is possible to exhibit bending workability comparable to that of phosphor bronze and stress relaxation superior to conventional brass materials.

ここで本件発明に係る強化α黄銅の組成を上述のように定めた理由に関して説明する。銅−亜鉛合金において、銅成分量が82重量%を超えると、強度レベルが低くなり無理に強度を上げると曲げ加工性が悪くなる傾向が顕著となる。また、銅成分量が62重量%未満の場合には、β相が出現し、α相の単層組織とすることが出来ない。更に、不可避不純物に関しては、伸銅品一般で言えるようにコストを下げるために使用するスクラップ原料についての考慮が必要である。不純物としてのFeは、再結晶温度に影響を与えるので0.01重量%以下であることが望ましい。不純物としてのSnは、特に悪影響は与えないが、0.1重量%を超えると、強度や耐食性に好影響を与えるので別合金として取り扱うべきものと考える。不純物としてのSは、熱間加工性や最終製品の展伸、切削等の加工性に悪影響を与えるので0.003重量%以下に抑えることが望ましい。   Here, the reason why the composition of the reinforced α brass according to the present invention is determined as described above will be described. In a copper-zinc alloy, when the amount of the copper component exceeds 82% by weight, the strength level is lowered, and when the strength is forcibly increased, the tendency to deteriorate the bending workability becomes remarkable. Moreover, when the amount of copper component is less than 62% by weight, a β phase appears and an α phase monolayer structure cannot be obtained. Furthermore, with regard to inevitable impurities, it is necessary to consider the scrap raw material used to reduce the cost, as can be said with general copper products. Since Fe as an impurity affects the recrystallization temperature, it is desirable that it be 0.01% by weight or less. Sn as an impurity has no particular adverse effect, but if it exceeds 0.1% by weight, it has a positive effect on strength and corrosion resistance, so it should be handled as a separate alloy. S as an impurity has an adverse effect on hot workability, workability of final product expansion, cutting, and the like, so it is desirable to suppress it to 0.003% by weight or less.

そして、本件発明に係るα黄銅では、引張強さではなく、主に設計の基準として利用される0.2%耐力を用いた。従って、耐力を用いて、強度の指標としている。また、本発明で曲げ加工性と称する場合、種々の曲げ試験の内、直角曲げの曲げ軸を圧延方向と平行にして行う所謂Bad way曲げを行い、評価することを前提としている。圧延方向に垂直な方向を曲げ軸(Good way)として曲げ試験を行うと、黄銅の場合には、必ず圧延方向に平行な曲げ軸での曲げと比べ、より良い結果を得られるのが通常であり、製法の選別には不適である。そこで本件明細書ではBad way曲げのみを評価に用いた。   In the α brass according to the present invention, 0.2% proof stress, which is mainly used as a design standard, was used instead of tensile strength. Therefore, strength is used as an index of strength. In the present invention, the term “bending workability” is based on the premise that, among various bending tests, so-called Bad way bending in which the bending axis of right-angle bending is made parallel to the rolling direction is evaluated. When a bending test is performed with the direction perpendicular to the rolling direction as the bending axis (Good way), in the case of brass, it is normal to always obtain better results than bending with a bending axis parallel to the rolling direction. Yes, it is not suitable for selection of manufacturing methods. Therefore, in this specification, only bad way bending was used for evaluation.

ここで、曲げ加工性について述べると、MBR/tが0.3以下であれば、ほぼどのような加工方法を採用しても欠陥を生ぜず問題ない。これに対し、MBR/tが1.0以下であれば、材料設計上許容される場合も多い。更に、MBR/tが3を超えると、曲げ加工がしにくくなり、用途が大幅に制限される。従来の黄銅では、MBR/tが1.0を超るようになる550MPaを超える耐力の製品は少なく、500MPa近辺より耐力が低くなると曲げ加工性に問題は無くなる。   Here, regarding bending workability, as long as MBR / t is 0.3 or less, no problem is caused even if almost any processing method is adopted. On the other hand, if MBR / t is 1.0 or less, it is often acceptable in material design. Furthermore, if MBR / t exceeds 3, bending becomes difficult, and the application is greatly limited. In conventional brass, there are few products with a yield strength exceeding 550 MPa in which MBR / t exceeds 1.0, and when the yield strength becomes lower than around 500 MPa, there is no problem in bending workability.

しかしながら、従来の黄銅であっても、530MPaの耐力を示し、MBR/tが0.3以下をクリアできるものも存在する。このことを考え、本発明に係る強化α黄銅の耐力が、540MPa未満であるとすれば、従来の黄銅でも対応出来る範囲となるので技術的価値は生じないと判断出来る。更に、従来の黄銅であっても、560MPa以上の耐力とすることは可能であるが、係る場合にはMBR/tが一般的な材料設計許容値である1.0を超えるため好ましくない。   However, even conventional brass has a proof stress of 530 MPa and can clear MBR / t of 0.3 or less. Considering this, if the proof strength of the reinforced α brass according to the present invention is less than 540 MPa, it can be determined that no technical value is produced because the conventional brass can be used. Furthermore, even with conventional brass, it is possible to have a proof stress of 560 MPa or more, but in such a case, MBR / t exceeds 1.0 which is a general material design allowable value, which is not preferable.

また(1)式のリン青銅の曲げ加工性が耐力590MPa未満ではMBR/tが0.3以下となるので本発明品のリン青銅に対する有用性が低くなる。また耐力800MPa超ではMBR/tが3を超えることになり実用的でない。   In addition, when the bending workability of the phosphor bronze of the formula (1) is less than 590 MPa, MBR / t is 0.3 or less, so that the usefulness of the product of the present invention for phosphor bronze is lowered. On the other hand, when the yield strength exceeds 800 MPa, MBR / t exceeds 3, which is not practical.

本件明細書において、本件発明に係る強化α黄銅は、その物性と組織の構成を持って規定した。ここでは、本件発明に係る強化α黄銅の物性を、リン青銅のそれと対比しつつ説明する。そこで、リン青銅の曲げ加工性について、本件発明に係る強化α黄銅と対比可能なように、説明を加えておくこととする。本件発明に係る強化α黄銅の曲げ加工性評価に用いたと同じ評価法によるデータを上記非特許文献5で見ると、クラックを生じない最小曲げ半径をMBR、板厚をt、0.2%耐力をσ0.2とするとリン青銅の曲げ加工性は、以下の数5で表せる。 In the present specification, the reinforced α brass according to the present invention is defined in terms of its physical properties and structure. Here, the physical properties of the reinforced α brass according to the present invention will be described in comparison with those of phosphor bronze. Therefore, a description of the bending workability of phosphor bronze will be made so that it can be compared with the reinforced α brass according to the present invention. When the data by the same evaluation method used for the bending workability evaluation of the reinforced α brass according to the present invention is seen in Non-Patent Document 5, the minimum bending radius that does not cause cracking is MBR, the thickness is t, and 0.2% proof stress. When σ is 0.2 , the bending workability of phosphor bronze can be expressed by the following equation (5).

数5を図中に表すと、図1の(1)として示した直線になる。厚さtのリン青銅の場合、最小曲げ半径(MBR)と、0.2%耐力との関係が、ほぼ(1)式に沿ったものとなる。従って、(1)式の近傍にある場合をリン青銅並みの物性を備えると判断する。(1)式のリン青銅の曲げ加工性は、耐力590MPa未満ではMBR/tが0.3以下となるが、耐力800MPa超ではMBR/tが3を超えることになり曲げ加工が困難となり実用的でない。現実にリン青銅を測定してみると、この(1)式に沿わない場合もある、例えば、耐力が低い側また耐力が高い側では、計算式より高いMBR/tとなる傾向が見られる。このことを前提として、以下、本件発明に係る強化α黄銅に関して説明する。   When Expression 5 is represented in the drawing, the straight line shown as (1) in FIG. 1 is obtained. In the case of phosphor bronze having a thickness t, the relationship between the minimum bending radius (MBR) and the 0.2% proof stress is substantially in line with the equation (1). Accordingly, it is determined that the case of being in the vicinity of the expression (1) has the same physical properties as phosphor bronze. The bending workability of the phosphor bronze of the formula (1) is MBR / t of 0.3 or less when the proof stress is less than 590 MPa. However, when the proof stress exceeds 800 MPa, the MBR / t exceeds 3, and the bending work becomes difficult. Not. When phosphor bronze is actually measured, there is a case where this equation (1) may not be satisfied. For example, on the side where the proof stress is low or the proof strength is high, there is a tendency that MBR / t is higher than the calculation formula. Based on this premise, the reinforced α brass according to the present invention will be described below.

第1の強化α黄銅の物性は、0.2%耐力が540MPa〜800MPaであり、圧延方向を曲げ軸とする直角曲げ(Bad way曲げ)でクラックの生じない最小曲げ半径(MBR)と、板厚(t)と、0.2%耐力(σ0.2)とが、以下の数6の関係を満たすことを特徴としたものである。但し、MBR/tの値が、0.3以下のときは0.3とみなして取り扱う。 The physical properties of the first reinforced α brass are a 0.2% proof stress of 540 MPa to 800 MPa, a minimum bending radius (MBR) that does not cause cracks in a right angle bending (Bad way bending) with the rolling direction as a bending axis, and a plate The thickness (t) and the 0.2% proof stress (σ 0.2 ) satisfy the following relationship of Equation 6. However, when the value of MBR / t is 0.3 or less, it is regarded as 0.3.

この数6は、図1の中で言えば、(1)式を基準にすれば、(2)式はY軸方向(Y軸はMBR/t)の+方向に0.3だけシフトした状態となる。従って、数6を満足し、リン青銅の品質にも一定のバラツキが存在することを考慮すると、本件発明に係る強化α黄銅は、リン青銅並みの曲げ加工性を持っていると称することが出来る。MBR/tの値と、σ0.2の値との関係が、数6で示す範囲外であるときは、曲げ加工性が悪くなる。ここで、MBR/tの計算値が0.3以下になる場合には、0.3とみなすとしたのは、リン青銅と同様に耐力が低い側では、計算式より高いMBR/tとなる傾向があること、そして、MBR/tの計算値が0.3以下の場合には曲げ加工性が問題となる事が少なく、更に測定に一定のバラツキが存在することを前提に考えた。 Referring to FIG. 1, Equation 6 is a state in which Equation (2) is shifted by 0.3 in the + direction of the Y-axis direction (Y-axis is MBR / t) based on Equation (1). It becomes. Therefore, considering that Equation 6 is satisfied and that there is a certain variation in the quality of phosphor bronze, it can be said that the reinforced α brass according to the present invention has the same bending workability as phosphor bronze. . When the relationship between the value of MBR / t and the value of σ 0.2 is outside the range shown in Equation 6, bending workability is deteriorated. Here, when the calculated value of MBR / t is 0.3 or less, it is regarded as 0.3 because, like phosphor bronze, MBR / t is higher than the calculation formula on the side where the proof stress is low. It was considered on the premise that there is a tendency, and that when the calculated value of MBR / t is 0.3 or less, bending workability is less likely to be a problem, and that there is a certain variation in measurement.

第2の強化α黄銅の物性は、0.2%耐力が590MPa〜800MPaであり、圧延方向を曲げ軸とする直角曲げ(Bad way曲げ)でクラックの生じない最小曲げ半径(MBR)と、板厚(t)と、0.2%耐力(σ0.2)とが、以下の数7の関係を満たすことを特徴としたものである。 The physical properties of the second reinforced α brass are a 0.2% proof stress of 590 MPa to 800 MPa, a minimum bending radius (MBR) that does not cause cracks in a right-angle bending (Bad way bending) with the rolling direction as the bending axis, and a plate The thickness (t) and the 0.2% proof stress (σ 0.2 ) satisfy the following expression (7).

上記数7を示した図1を見るに、図1の表中で最も下意に位置するものとなる。従って、耐力と曲げ加工性能とに特に優れた品質バランスを持つと言え、リン青銅の持つ曲げ加工性能を超えるものといえる。後述する製造方法を採用することで、耐力590MPa以上で、リン青銅より優れた曲げ加工性が実現され数7が満たされる。最終冷間加工率が低く耐力590MPa未満となった場合は数7は成立しなくなる。   Looking at FIG. 1 showing the above formula 7, it is the most inferior position in the table of FIG. Therefore, it can be said that it has a particularly excellent quality balance between proof stress and bending performance, which exceeds the bending performance of phosphor bronze. By adopting a manufacturing method to be described later, the yield strength is 590 MPa or more, bending workability superior to phosphor bronze is realized, and Equation 7 is satisfied. If the final cold working rate is low and the yield strength is less than 590 MPa, Equation 7 is not satisfied.

ここで、数6または数7を満足する強化α黄銅は、総じて平均結晶粒径が2μm以下の再結晶組織から派生した組織である。すなわち、後述する製造方法で得られる低温焼鈍後の回復組織を備え、且つ、再結晶時の平均結晶粒径が2μm以下の大きさになると、数6または数7に沿った相関性が見られるようになり好ましい。更に、数7を満足する強化α黄銅は、[耐力]/[引張強さ]の値が80%以上でかつ平均結晶粒径が1.5μm以下の再結晶組織から派生した組織である。すなわち、後述する製造方法で得られる低温焼鈍後の回復組織を備え、且つ、再結晶時の[耐力]/[引張強さ]の値が80%以上でかつ平均結晶粒径が1.5μm以下の大きさになると、数7に沿った相関性が見られるようになり好ましい。   Here, the reinforced α brass satisfying Equation 6 or Equation 7 is a structure derived from a recrystallized structure having an average crystal grain size of 2 μm or less as a whole. That is, when a recovery structure after low-temperature annealing obtained by the manufacturing method described later is provided, and the average crystal grain size during recrystallization is 2 μm or less, a correlation along Equation 6 or Equation 7 is observed. This is preferable. Further, the reinforced α brass satisfying Equation 7 is a structure derived from a recrystallized structure having a value of [yield strength] / [tensile strength] of 80% or more and an average crystal grain size of 1.5 μm or less. That is, it has a recovery structure after low-temperature annealing obtained by the production method described later, and the value of [proof strength] / [tensile strength] at the time of recrystallization is 80% or more and the average crystal grain size is 1.5 μm or less. Is preferable because the correlation along Equation 7 can be seen.

以上述べてきた本発明に係る強化α黄銅の結晶組織の構成に関する規定であるが、結晶組織を透過型電子顕微鏡で確認することで明らかとなる。数6または数7を満足する強化α黄銅の結晶組織内に、加工歪が強く残っている粒(最多頻度の粒径が1μm〜2μmの高転位密度粒)と、歪の再編成が起こった組織(最多頻度の粒径が0.2μm〜1.5μmの再編成粒(セル状組織))の混合微細組織である場合に、耐力と曲げ加工性とのバランスが良好な範囲にあり、リン青銅と同等若しくはリン青銅を超える曲げ加工性能を発揮することとが明らかとなってきた。以上に述べた強化α黄銅の結晶組織は、低温焼鈍により歪が開放された粒と開放されていない粒が混合された微細組織であるが、この微細組織は微細2相混合組織と類似しており、不均質すべりを助長し、曲げ加工性を改善していると解される。また、低温焼鈍により応力緩和性が改善されるので、上記組織を有することが良好な曲げ加工性を確保する意味でも、良好な応力緩和性を確保する意味でも必須ということになる。   The provisions relating to the structure of the crystal structure of the reinforced α brass according to the present invention described above are clarified by confirming the crystal structure with a transmission electron microscope. In the crystal structure of the reinforced α brass satisfying Formula 6 or Formula 7, grains with strong processing strain remained (high dislocation density grains with the most frequent grain size of 1 μm to 2 μm) and strain reorganization occurred. In the case of a mixed microstructure of the structure (reorganized grains (cell-like structure) with the most frequent particle size of 0.2 μm to 1.5 μm), the balance between proof stress and bending workability is in a good range, and phosphorus It has become clear that it exhibits bending performance equivalent to or exceeding phosphor bronze. The crystal structure of the reinforced α brass described above is a microstructure in which grains whose strain is released by low-temperature annealing and grains which are not released are mixed. This microstructure is similar to a fine two-phase mixed structure. It is understood that the inhomogeneous sliding is promoted and the bending workability is improved. In addition, since the stress relaxation property is improved by low-temperature annealing, it is essential to have the above-mentioned structure in terms of ensuring good bending workability and ensuring good stress relaxation property.

(強化α黄銅の製造形態)
α黄銅に関しては、結晶粒を微細にすれば焼鈍後の強度が高くなることは広く知られている。また、結晶粒が微細な黄銅を試作するには、高い加工率で圧延した後、比較的低い温度で長時間焼鈍を繰り返しすればよいことも公知である。例えば、特許文献3に開示の製造方法では、高い加工率による加工を複数回組み合わせることが必須要件となっているので、比較的厚い製品の製造を行おうとすると困難な場合もある。更に、この特許文献3では、最終の再結晶焼鈍の前の焼鈍については、数点の焼鈍温度の例示があるのみで、係る焼鈍条件が重要視されていない。
(Manufacturing form of reinforced α brass)
Regarding α brass, it is widely known that the strength after annealing increases if the crystal grains are made finer. It is also known that in order to produce a brass having fine crystal grains, after annealing at a high processing rate, annealing may be repeated for a long time at a relatively low temperature. For example, in the manufacturing method disclosed in Patent Document 3, since it is an essential requirement to combine processing with a high processing rate a plurality of times, it may be difficult to manufacture a relatively thick product. Furthermore, in this patent document 3, about the annealing before the last recrystallization annealing, there are only several examples of annealing temperatures, and the annealing conditions are not regarded as important.

しかしながら、理論的な製造方法に関する種々の提言は行われても、製造条件管理も困難で、工業的に量産可能な製造条件は見い出されていなかった。そこで、本件発明者等の鋭意研究の結果、工業的な生産性に優れ、しかも製品品質のバラツキを少なくすることの出来る微細結晶粒組織を得る条件に想到した。以下に述べる製造方法は、工業的利用の容易なものである。   However, even though various proposals regarding the theoretical production method have been made, production condition management is difficult, and production conditions that can be industrially mass-produced have not been found. Thus, as a result of intensive studies by the present inventors, the inventors have come up with conditions for obtaining a fine grain structure that is excellent in industrial productivity and can reduce variations in product quality. The manufacturing method described below is easy for industrial use.

本件発明に係る強化α黄銅を得るためには、再結晶焼鈍の際、細かく均質な結晶粒を得、それを所望の強度が出るよう圧延し、更に、一部の組織の歪が取れた所望の組織とするための低温焼鈍をするのである。このように細かく均質な結晶粒を得るためには、再結晶焼鈍前の冷間加工率及びその前の結晶粒径についても制御が必要である。   In order to obtain the reinforced α brass according to the present invention, fine and homogeneous crystal grains are obtained during recrystallization annealing, rolled to obtain a desired strength, and further, some desired strains are removed. The low-temperature annealing is performed to make the structure of this. In order to obtain such fine and uniform crystal grains, it is necessary to control the cold working rate before recrystallization annealing and the crystal grain diameter before that.

この製造方法を説明する前に、ここで言う焼鈍温度、焼鈍時間について明記しておくことにする。バッチ焼鈍の場合は、実体温度が測定可能で、温度は実体温度、時間はその温度±5℃での保持時間とする。これに対し、連続焼鈍の場合は実体温度の測定が困難で、所定の温度とした加熱炉中に通板すると徐々に板温は上昇し、加熱炉出口で最高温度となる。出口温度は、本発明の温度条件で言う加熱炉温度より数度から数十度低くなると考えられる。従って、焼鈍温度は加熱炉の温度、焼鈍時間は加熱炉中を通過している時間で表現することが妥当である。連続焼鈍をする炉は本発明では連続方式走間焼鈍炉を前提としている。方式としてはラジアントチューブ式、プレナムチャンバー式、があり、横型のフローティング方式にも静圧方式と噴流式動圧浮上方式などがあるが、いずれの方法を採用しても問題はない。しかし、最も好適には、プレナムチャンバー式の噴流式動圧浮上方式が昇温しやすく制御しやすい。いずれの場合でも焼鈍時間に関しての細かい限定は実際的でなく、装置の特性に合わせて定めるべきものである。   Before explaining this manufacturing method, the annealing temperature and annealing time mentioned here will be specified. In the case of batch annealing, the actual temperature can be measured, the temperature is the actual temperature, and the time is the holding time at the temperature ± 5 ° C. On the other hand, in the case of continuous annealing, it is difficult to measure the actual temperature, and when the plate is passed through a heating furnace having a predetermined temperature, the plate temperature gradually increases and reaches the maximum temperature at the outlet of the heating furnace. The outlet temperature is considered to be several to tens of degrees lower than the heating furnace temperature referred to in the temperature condition of the present invention. Therefore, it is appropriate to express the annealing temperature as the temperature of the heating furnace, and the annealing time as the time passing through the heating furnace. In the present invention, a continuous annealing furnace is assumed to be a continuous annealing furnace. There are a radiant tube type and a plenum chamber type as a method, and a horizontal floating method includes a static pressure method and a jet flow dynamic pressure levitation method, but there is no problem even if either method is adopted. However, most preferably, the plenum chamber type jet-type dynamic pressure levitation method is easy to raise the temperature and easy to control. In any case, a fine limitation on the annealing time is not practical and should be determined according to the characteristics of the apparatus.

第1製造方法; 本件発明に係る強化α黄銅の第1の製造方法は、黄銅板材に対し、最終再結晶焼鈍を370℃〜600℃で行い、その後7%〜55%の最終冷間圧延を加え、更に低温焼鈍することを特徴とするものである。 1st manufacturing method; The 1st manufacturing method of the reinforcement | strengthening alpha brass which concerns on this invention performs final recrystallization annealing with respect to a brass plate material at 370 degreeC-600 degreeC, and 7%-55% of final cold rolling is carried out after that. In addition, it is characterized by further low-temperature annealing.

ここで言う「黄銅板材」とは、黄銅インゴットの状態から1以上の圧延工程、再結晶焼鈍を受け、最終的な最終再結晶焼鈍及び最終冷間圧延処理を受ける前の板状態のものを意味している。そして、この黄銅板材は、(1)平均結晶粒径を1〜2μmに調整した板材を任意の加工率で圧延した後のもの。(2)平均結晶粒径を3〜6μmに調整した焼鈍材を70〜82%の加工率で圧延した後のもの。(3)任意の粒径の焼鈍材を83%以上の加工率で圧延した後のもの。以上のいずれかの状態のものを用いることが好ましい。   “Brass plate material” as used herein means a plate in a state before one or more rolling steps and recrystallization annealing from the state of the brass ingot, and before final final recrystallization annealing and final cold rolling treatment. is doing. And this brass plate material is a thing after rolling the plate material which adjusted (1) average crystal grain diameter to 1-2 micrometers with arbitrary processing rates. (2) After rolling an annealed material with an average crystal grain size adjusted to 3-6 μm at a processing rate of 70-82%. (3) After rolling an annealed material of an arbitrary particle size at a processing rate of 83% or more. It is preferable to use one in any of the above states.

また、最終再結晶処理によって、[耐力]/[引張強さ]の値が80%以上で且つ平均結晶粒径が1.5μm以下である最終再結晶処理材を得て、その後調質加工と低温焼鈍を経て、製品として使用することも可能である。このときの黄銅板材には、平均結晶粒径を3μm〜6μmに連続焼鈍法で調整した焼鈍材を70%〜82%の加工率で圧延した後のもの、又は平均結晶粒径を1μm〜2μmに連続焼鈍法で調整した焼鈍材を50%〜82%の加工率で圧延した後のもの、のいずれかを用いることが好ましい。   Further, by the final recrystallization treatment, a final recrystallization treatment material having a value of [yield strength] / [tensile strength] of 80% or more and an average crystal grain size of 1.5 μm or less is obtained. It can also be used as a product after low-temperature annealing. In this case, the brass plate material was obtained by rolling an annealed material adjusted to an average crystal grain size of 3 μm to 6 μm by a continuous annealing method at a processing rate of 70% to 82%, or an average crystal grain size of 1 μm to 2 μm. It is preferable to use one after rolling an annealed material adjusted by a continuous annealing method at a processing rate of 50% to 82%.

最終冷間圧延前の最終再結晶焼鈍では、再結晶焼鈍を行う前の板材の加工率を高くしたり、その最終再結晶焼鈍の前の焼鈍で結晶粒度を小さくする程、微細な結晶粒が得られることが知られている。しかし、工業的に求められる所望の厚みは、ある程度決まっており、コスト上有利となる加工率は自ずと定まるものであるし、最終再結晶焼鈍の更に前の焼鈍で結晶粒径を小さくする程、その後の冷間圧延での圧延圧力が高く、パス回数が増える等の不具合が生じる。そこで、本件発明に係る強化α黄銅の製造方法では、最終冷間圧延前の最終再結晶焼鈍前に、強圧延加工を行える場合には、結晶粒径の大きなものでも結晶粒の微細化の可能な上記(3)の黄銅板材を用いることができ、中程度の圧延加工を適用出来る場合には上記(2)の黄銅板材、圧延時の圧下率を低めに設定しようとする場合には、上記(1)のような結晶粒径の黄銅板材を用いるのである。また、薄い製品を製造する場合には、(1)または(2)の工程を更に繰り返すことになるが、特性上も好ましいものとなる。   In the final recrystallization annealing before the final cold rolling, as the processing rate of the plate material before the recrystallization annealing is increased or the crystal grain size is reduced by the annealing before the final recrystallization annealing, the fine crystal grains become smaller. It is known to be obtained. However, the desired industrially required thickness is determined to some extent, and the processing rate that is advantageous in terms of cost is naturally determined, and as the crystal grain size is reduced by annealing further before the final recrystallization annealing, Subsequent problems such as high rolling pressure in cold rolling and an increase in the number of passes occur. Therefore, in the method for producing reinforced α brass according to the present invention, if a strong rolling process can be performed before the final recrystallization annealing before the final cold rolling, the crystal grains can be refined even if the crystal grain size is large. The brass plate material of (3) above can be used, and when a moderate rolling process can be applied, the brass plate material of (2) above, when trying to set the rolling reduction rate during rolling, A brass plate material having a crystal grain size as in (1) is used. Further, when manufacturing a thin product, the step (1) or (2) is further repeated, which is preferable in terms of characteristics.

黄銅板材として、(1)平均結晶粒径を1μm〜2μmに調整した板材を任意の加工率で圧延した後のものを用いる場合に関して述べる。結晶粒径が1μm〜2μmの場合は、以下の冷間圧延において20%〜82%の加工率を採用し、低加工率であっても、その後の再結晶焼鈍で微細粒を容易に得ることが出来る。そして、その後の工程を経ても高い耐力と良好な曲げ加工性を得ることが可能となる。なお、工業的に見て、平均結晶粒径が1μm未満の結晶粒の製造は困難である。ここで言う平均結晶粒径のレベルを得るためには、その前の工程で(3)又は(2)の条件を満たしておく必要がある。なお、平均結晶粒径を1μm〜2μmに調整した板材の、その後の圧延時の加工率が50%未満の場合は、再結晶処理を行うと結晶粒径に大きなものが混じる場合があり、数7を満足させようとした場合には好ましくない。   As a brass plate material, (1) a case where a plate material having an average crystal grain size adjusted to 1 μm to 2 μm after being rolled at an arbitrary processing rate will be described. When the crystal grain size is 1 μm to 2 μm, a processing rate of 20% to 82% is adopted in the following cold rolling, and fine grains can be easily obtained by subsequent recrystallization annealing even at a low processing rate. I can do it. And even if it passes through a subsequent process, it becomes possible to obtain a high yield strength and favorable bending workability. From an industrial viewpoint, it is difficult to produce crystal grains having an average crystal grain size of less than 1 μm. In order to obtain the level of the average crystal grain size mentioned here, it is necessary to satisfy the condition (3) or (2) in the previous step. In addition, when the processing rate at the time of subsequent rolling of the plate material whose average crystal grain size is adjusted to 1 μm to 2 μm is less than 50%, a large crystal grain size may be mixed when recrystallization is performed. It is not preferable when 7 is satisfied.

黄銅板材として、(2)平均結晶粒径を3μm〜6μmに調整した焼鈍材を70%〜82%の加工率で圧延した後のものを用いる場合に関して説明する。加工前の結晶粒径が6μmを超えると82%の加工を加えても、十分な結晶粒の微細化が出来ず曲げ加工性が悪くなる。また、結晶粒径が3μm未満の平均結晶粒径の場合、その後の圧延圧力が高くなるので不利である。また、この加工前の平均結晶粒径が3μm〜6μmの場合において、加工率が70%未満の場合には適正な結晶粒の微細化が出来ず、曲げ加工性が悪くなる。   As the brass plate material, (2) a case where an annealed material whose average crystal grain size is adjusted to 3 μm to 6 μm after being rolled at a processing rate of 70% to 82% will be described. If the crystal grain size before processing exceeds 6 μm, even if 82% processing is added, sufficient crystal grains cannot be made fine and bending workability deteriorates. Moreover, when the crystal grain size is an average crystal grain size of less than 3 μm, the subsequent rolling pressure becomes high, which is disadvantageous. Further, in the case where the average crystal grain size before processing is 3 μm to 6 μm, if the processing rate is less than 70%, appropriate crystal grains cannot be refined and bending workability deteriorates.

黄銅板材として、(3)任意の粒径の焼鈍材を83%以上の加工率で圧延した後のものを用いる場合に関して説明する。これは、焼鈍前の加工率を83%以上とした場合には、前の結晶粒度が大きくても、その強加工によって、1μm前後のサブグレイン組織となるので、以後の工程を経ても、本件発明の目的とする良好な耐力と曲げ加工性を得ることが出来るためである。なお、上記任意の粒径の焼鈍材は、熱間圧延上がり材の場合も含む。なお、熱間圧延上がりの板材の結晶組織の粒径は、小型試験用圧延機を用いると100μm〜200μmだが、工業用熱間圧延機の場合は、動的再結晶を起こして25μm程度となる。発明者は、どちらの熱間圧延上がり材からスタートしても、83%以上の加工を加えると、性能上差がなくなることを確認している。   As a brass plate material, (3) a case where an annealed material having an arbitrary particle diameter is rolled at a processing rate of 83% or more will be described. This is because when the processing rate before annealing is 83% or more, even if the previous crystal grain size is large, the strong processing results in a subgrain structure of around 1 μm. This is because good proof stress and bending workability, which are the objects of the invention, can be obtained. In addition, the annealing material of the said arbitrary particle diameter includes the case of a hot-rolled finishing material. Note that the grain size of the crystal structure of the plate after hot rolling is 100 μm to 200 μm when a small test rolling mill is used, but in the case of an industrial hot rolling mill, dynamic recrystallization occurs and becomes about 25 μm. . The inventor has confirmed that there is no difference in performance when adding 83% or more of processing, regardless of which hot rolled material is used.

本件発明に係る強化α黄銅の製造方法では、以上に述べた黄銅板材に対し、最終再結晶焼鈍を370℃〜600℃の温度で行う。この最終冷間圧延前の最終再結晶焼鈍は、連続的に炉を通板させることによって行う場合を主に想定している。このとき、炉温が370℃未満とした場合には、通板速度を落として再結晶を行わせても得られる製品の曲げ加工性が悪くなる。一方、炉温が600℃を超えるようにすると、結晶粒径が2.0μmを超えるほど大きくなり、後述する低温焼鈍を更に加えても曲げ加工性が悪くなる。このときの最終再結晶焼鈍時間は、炉の能力と板厚と所望の強度によって定めるものであるが、通常の工業的設備の場合、10秒〜120秒の範囲となる。現実的に適正な時間を定めようとすれば、簡易的には硬度で管理し、ビッカース硬度が140Hv〜160Hvとなるように定める。ビッカース硬度が、この範囲の中に無ければ、最終製品としての強化α黄銅の曲げ加工性が悪くなる。この最終再結晶焼鈍の終了した段階の板材で、曲げ加工性のみを見ると、曲げ半径が0でも問題なく曲げ加工が可能である。   In the manufacturing method of the reinforced alpha brass according to the present invention, the final recrystallization annealing is performed at a temperature of 370 ° C. to 600 ° C. with respect to the brass plate material described above. The final recrystallization annealing before the final cold rolling is mainly assumed to be performed by continuously passing through a furnace. At this time, when the furnace temperature is lower than 370 ° C., the bending workability of the product obtained is deteriorated even if recrystallization is carried out at a lower plate passing speed. On the other hand, if the furnace temperature exceeds 600 ° C., the crystal grain size increases as it exceeds 2.0 μm, and bending workability deteriorates even if low-temperature annealing described later is further added. The final recrystallization annealing time at this time is determined by the capacity of the furnace, the plate thickness, and the desired strength, but in the case of ordinary industrial equipment, it is in the range of 10 seconds to 120 seconds. If a practically appropriate time is to be determined, it is simply managed by the hardness and determined so that the Vickers hardness is 140Hv to 160Hv. If the Vickers hardness is not within this range, the bending workability of the reinforced α brass as the final product is deteriorated. In the plate material at the stage where the final recrystallization annealing has been completed, when only bending workability is seen, even if the bending radius is 0, bending can be performed without any problem.

以上のように連続的に再結晶焼鈍を行うメリットは、コスト削減と品質安定性の確保が容易となる。バッチ方式では、炉内における位置によっての温度の偏在が起こりやすくなる傾向がある。また、バッチ方式の焼鈍を行うと最終再結晶焼鈍後の[耐力]/[引張強さ]の値が80%未満であるのに対し、連続方式加熱法を採用した場合の最終再結晶焼鈍後の[耐力]/[引張強さ]の値は80%以上と高くなる。従って、バッチ方式の加熱よりも連続方式の加熱の方が、以下の最終冷間加工及び低温焼鈍を経て得られる強化α黄銅の耐力を590MPa以上の範囲とする場合でも、比較的低加工率の加工が可能であり、リン青銅を超える良好な曲げ加工性を得るためには有利と言えるのである。そして、このような効果は、バッチ方式に比べ、連続方式の場合の焼鈍温度は高く、加熱時間が短時間であるため、結晶粒度の分布が狭くなるか、転位の残存形態の差により生じるのではないかと考えられる。   As described above, the advantage of continuous recrystallization annealing is that it is easy to reduce costs and ensure quality stability. In the batch method, the uneven distribution of temperature tends to occur depending on the position in the furnace. In addition, when batch-type annealing is performed, the [yield strength] / [tensile strength] value after final recrystallization annealing is less than 80%, whereas after continuous recrystallization annealing when the continuous heating method is adopted. The value of [yield strength] / [tensile strength] is as high as 80% or more. Therefore, even when the continuous heating method is more effective than the batch heating method in the case where the proof strength of the reinforced α brass obtained through the following final cold working and low temperature annealing is set to a range of 590 MPa or more, the processing rate is relatively low. It can be processed and is advantageous for obtaining good bending workability exceeding phosphor bronze. And, such an effect is caused by the difference in the residual form of dislocation because the annealing temperature in the continuous method is higher and the heating time is shorter than in the batch method, and the grain size distribution becomes narrower. It is thought that.

そして、最終再結晶焼鈍後の最終冷間加工の加工率は、7%〜55%の範囲を採用する。当該加工率が、7%未満の場合には、後述する低温焼鈍を行っても耐力が低くなる。一方、最終冷間加工の加工率が55%を超えるものとすると、加工硬化が進行し耐力の向上は見られても、曲げ加工性がMBR/tで3を超えるようになり、機械的物性バランスの良い強化α黄銅とはいえなくなる。更に、最終冷間加工として30%前後の加工を加えた後の板材を用いて、曲げ試験を実施してみると、最終再結晶焼鈍の条件によってはリン青銅並みの曲げ加工性が得られる場合がある。従って、低温焼鈍を行わずとも、応力緩和性が問題にならない用途では、この段階での強化α黄銅を製品として使用出来る場合が考えられる。   And the processing rate of the last cold working after the last recrystallization annealing employs a range of 7% to 55%. In the case where the processing rate is less than 7%, the yield strength is lowered even if low-temperature annealing described later is performed. On the other hand, if the processing rate of the final cold working exceeds 55%, the bending workability exceeds 3 in MBR / t even though work hardening progresses and the yield strength is improved, and mechanical properties are increased. It cannot be said to be a well-balanced reinforced alpha brass. Furthermore, when a bending test is performed using the plate material after about 30% processing as the final cold working, bending workability similar to phosphor bronze can be obtained depending on the final recrystallization annealing conditions. There is. Therefore, in applications where stress relaxation does not become a problem without performing low-temperature annealing, it may be possible to use reinforced α brass at this stage as a product.

最終的に行う低温焼鈍は、単に低い温度で行う歪み取り焼鈍をさすのではなく、いわゆる低温焼鈍硬化現象を伴う処理を言う。この低温焼鈍は、低温焼鈍硬化が起こる条件として、バッチ方式での焼鈍の場合には、実体温度で170℃〜230℃×0.5時間〜5時間の条件を採用することが好ましい。実体温度が170℃未満の場合には、歪が開放された粒が少なく、曲げ加工性が悪くなる。一方、実体温度が230℃を超える場合は、結晶粒成長が起こり、曲げ加工性が再び悪くなる。この低温焼鈍を行うことで、冷間圧延加工上がりより更に優れた曲げ加工性を得ることができ、リン青銅と同等以上の耐力及び曲げ加工性を備えた強化α黄銅となるのである。   The low-temperature annealing finally performed does not refer to the strain relief annealing performed at a low temperature, but refers to a process involving a so-called low-temperature annealing hardening phenomenon. In this low-temperature annealing, as a condition for low-temperature annealing hardening, in the case of batch-type annealing, it is preferable to adopt a condition of 170 ° C. to 230 ° C. × 0.5 hours to 5 hours at the substantial temperature. When the solid temperature is lower than 170 ° C., there are few grains whose strain is released and bending workability is deteriorated. On the other hand, when the substantial temperature exceeds 230 ° C., crystal grain growth occurs, and the bending workability deteriorates again. By performing this low-temperature annealing, it is possible to obtain bending workability that is even better than that of cold rolling work, and it becomes reinforced α brass having proof stress and bending workability equal to or higher than phosphor bronze.

また、最終的に行う低温焼鈍を連続炉で行う場合は、炉温を250℃〜450℃、通板時間1秒〜60秒で通板する事が好ましい。炉温が250℃未満の場合には、通板速度を落として加熱処理しても歪が開放された粒が少なくなり、曲げ加工性が悪くなる。一方、炉温が450℃を超えるものとしても、速度を上げても粒成長のため曲げ加工性が悪く耐力も低くなる。   Moreover, when performing the low temperature annealing finally performed with a continuous furnace, it is preferable to pass through the furnace at a temperature of 250 ° C. to 450 ° C. and a passing time of 1 second to 60 seconds. When the furnace temperature is lower than 250 ° C., the number of grains whose strain is released is reduced even when the heat treatment is performed at a lower plate passing speed, and the bending workability is deteriorated. On the other hand, even if the furnace temperature exceeds 450 ° C., even if the speed is increased, the bendability is poor due to grain growth and the proof stress is lowered.

以上に述べた低温焼鈍も、バッチ方式よりも連続方式を採用して行うことが好ましい。連続的に低温焼鈍を行うメリットは、コスト削減と品質安定性の確保が容易となる点においては、最終再結晶焼鈍の場合と同様である。加えて、この低温焼鈍は、最終的な焼鈍であり、低温焼鈍の終了後は条の状態となっているのが通常である。バッチ方式の焼鈍では、条の状態のまま加熱炉に入れ、そのまま加熱されることになる。従って、条に巻き癖がついてしまい、製品として使用する前の矯正工程で、圧延による歪以外に、巻き癖まで矯正を要するが、効果的な矯正が困難となる。これに対し、連続方式は、加熱ゾーンを板材が走行しつつ加熱され、低温焼鈍の終了後に条の状態に巻き取られるため、条としての巻き癖がつかず矯正工程を通せば平坦な条材が得られやすくなる   The low-temperature annealing described above is also preferably performed by adopting a continuous method rather than a batch method. The merit of performing low-temperature annealing continuously is the same as that in the case of final recrystallization annealing in that it is easy to reduce costs and secure quality stability. In addition, this low-temperature annealing is final annealing, and is usually in a strip state after the low-temperature annealing is completed. In the batch-type annealing, it is placed in a heating furnace in the state of strips and heated as it is. Therefore, the curl is attached to the strip, and correction is required up to curl in addition to distortion due to rolling in the correction process before use as a product, but effective correction becomes difficult. On the other hand, in the continuous method, the plate material is heated while traveling in the heating zone, and is wound into a strip state after completion of the low-temperature annealing. Is easier to obtain

第2製造方法: 本件発明に係る強化α黄銅の第2の製造方法は、黄銅板材に対し、最終再結晶焼鈍を255℃〜290℃の条件で行い、その後7%〜55%の最終冷間圧延を加え、更に低温焼鈍することを特徴とする製造方法を採用することも好ましい。なお、最終再結晶焼鈍後でビッカース硬度が140Hv〜160Hvとなるように最終再結晶条件を定める。ここでは、上述の本件発明に係る強化α黄銅の第1の製造方法と異なる部分に関してのみ説明する。なお、「黄銅板材」の概念は、上述したと同様である。 Second production method: The second production method of the reinforced α brass according to the present invention is the final recrystallization annealing performed on the brass plate material under the condition of 255 ° C. to 290 ° C., and then the final cold of 7% to 55%. It is also preferable to employ a production method characterized by adding rolling and further annealing at a low temperature. The final recrystallization conditions are determined so that the Vickers hardness becomes 140 Hv to 160 Hv after the final recrystallization annealing. Here, only a different part from the 1st manufacturing method of the reinforced alpha brass which concerns on the above-mentioned this invention is demonstrated. The concept of “brass plate material” is the same as described above.

最終冷間圧延前の最終再結晶焼鈍をバッチ方式で行う場合には、255℃〜290℃の条件を採用する。ここで、炉温が255℃未満の場合には、所望の強度に合致するように再結晶させると、結晶粒の大きさが不揃い(横軸を粒径の対数で軸とした粒度分布図で見ると、2以上のピークの存在する分布)となり、低温焼鈍しても曲げ加工性が極端に悪くなる。一方、炉温が290℃を超えるものとしても、結晶粒の大きさが不揃いで、平均粒径も大きくなり、これを低温焼鈍しても曲げ加工性の悪い製品しか得られない。   When the final recrystallization annealing before the final cold rolling is performed by a batch method, the conditions of 255 ° C. to 290 ° C. are adopted. Here, when the furnace temperature is less than 255 ° C., recrystallization to match the desired strength results in irregular grain sizes (in the grain size distribution diagram with the horizontal axis as the logarithm of the grain size). When viewed, the distribution has two or more peaks), and the bending workability is extremely deteriorated even if the annealing is performed at a low temperature. On the other hand, even if the furnace temperature exceeds 290 ° C., the crystal grains are not uniform in size and the average grain size becomes large. Even if this is annealed at low temperature, only products with poor bending workability can be obtained.

最終再結晶焼鈍時間は、上記実体温度範囲での保持時間が0.5時間未満の場合には、再結晶が不十分となる。一方、当該保持時間が、5時間を越えると結晶粒が大きくなり、低温焼鈍しても曲げ加工性が悪くなる。   As for the final recrystallization annealing time, when the holding time in the above-mentioned actual temperature range is less than 0.5 hours, the recrystallization becomes insufficient. On the other hand, when the holding time exceeds 5 hours, the crystal grains become large, and the bending workability is deteriorated even if the annealing is performed at a low temperature.

そして、最終再結晶焼鈍後の最終冷間加工の加工率は、やはり7%〜55%の範囲を採用する。当該加工率が、7%未満の場合には、後述する低温焼鈍を行っても耐力が低くなる。一方、最終冷間加工の加工率が55%を超えるものとすると、加工硬化が進行し耐力の向上は見られても、曲げ加工性がMBR/tで3を超えるようになり、機械的物性バランスの良い強化α黄銅とはいえなくなる。以下、最終的に行う低温焼鈍は、第1製造方法の場合と同様である。   And the processing rate of the final cold working after the last recrystallization annealing adopts the range of 7% to 55%. In the case where the processing rate is less than 7%, the yield strength is lowered even if low-temperature annealing described later is performed. On the other hand, if the processing rate of the final cold working exceeds 55%, the bending workability exceeds 3 in MBR / t even though work hardening progresses and the yield strength is improved, and mechanical properties are increased. It cannot be said to be a well-balanced reinforced alpha brass. Hereinafter, the low-temperature annealing finally performed is the same as in the case of the first manufacturing method.

以上のように本発明の強化α黄銅を得るためには、最終再結晶焼鈍の際に細かく均質な結晶粒を得て、それを所望の強度が出るよう圧延し、更に、これを一部の組織が歪の取れた所望の結晶組織とする低温焼鈍を行うものと言い表せる。なお、細かく均質な結晶粒を得るためには、最終再結晶焼鈍前の冷間加工率及びその前の結晶粒径についても一定のレベルでの制御が必要である。   As described above, in order to obtain the reinforced α brass of the present invention, fine and homogeneous crystal grains are obtained at the time of final recrystallization annealing, and rolled to obtain a desired strength. It can be said that low-temperature annealing is performed to obtain a desired crystal structure with a strain removed. In order to obtain fine and uniform crystal grains, it is necessary to control the cold working rate before the final recrystallization annealing and the crystal grain diameter before that at a certain level.

以下、実施例を通じて本件発明をより詳細に説明するが、以下の実施例及び比較例で製造し、評価を行った黄銅インゴットの化学組成を表1に示しておくこととする。ここで、インゴット1、インゴット5、インゴット6は、製造現場鋳造工場で半連続鋳造法で得た試料である。インゴット2、インゴット3、インゴット4は、実験室の溶解炉で溶解し、30mm×100mm×200mmに金型で鋳造して得たものである。   Hereinafter, although this invention is demonstrated in detail through an Example, suppose that the chemical composition of the brass ingot manufactured and evaluated by the following Examples and Comparative Examples is shown in Table 1. Here, the ingot 1, the ingot 5, and the ingot 6 are samples obtained by a semi-continuous casting method at a manufacturing site casting factory. The ingot 2, the ingot 3, and the ingot 4 were obtained by melting in a laboratory melting furnace and casting in a mold of 30 mm × 100 mm × 200 mm.

この表1から分かるように、インゴット1〜インゴット6は、いずれも銅82重量%〜62重量%であり、残部亜鉛及び不可避不純物とからなるという条件を満たしている。更に、以下の実施例及び比較例では、上記表1に示したインゴットのいずれかを用いて、強化黄銅とした製造条件を表2に示している。   As can be seen from Table 1, all of the ingots 1 to 6 are 82% to 62% by weight of copper and satisfy the condition that the balance is composed of the remaining zinc and inevitable impurities. Furthermore, in the following Examples and Comparative Examples, Table 2 shows the production conditions for reinforced brass using any of the ingots shown in Table 1 above.

インゴット1を、熱間圧延、面削、冷間圧延を経て結晶粒径が4μmとなる連続焼鈍と78%の冷間加工を行ったものを黄銅板材として用い、更に表2の条件で連続焼鈍酸洗ラインで最終再結晶焼鈍(表2では、単に「再結晶焼鈍」として記載)した。その後、表2の最終冷間圧延率で冷間圧延加工した。試料1〜試料3は、同一鋳造ロットでの最終再結晶焼鈍等の条件により区分けしたコイルであるが、以下のような試料として分別した。試料1及び試料2は、表2に示す最終冷間圧延率で圧延した後、脱脂処理し、バッチ方式の炉で低温焼鈍したものである。試料3は、表2に示す最終冷間圧延率での冷間圧延加工の後、脱脂処理し、連続焼鈍ラインで低温焼鈍したものである。なお、最終再結晶焼鈍の時点の厚みは0.40mmであった。これらの機械的物性、応力緩和性、結晶粒径を評価し、表4に示した。表4の計算値は、数6に示す式の右辺の計算値である。実測MBRは、厚み0.1mm〜1.0mmmのサンプルに関してはルーペ観察で、厚み0.1mm未満のサンプルでは50倍の顕微鏡観察でしたときにクラック発生の無い最低の曲げ半径を意味し、厚みが1.0mm超の場合には、肉眼で幅の広い裂け目がない最低の曲げ半径を意味するものとする。更に、応力緩和値は、日本伸銅協会技術標準JCBA T309に基づき120℃×100時間の条件で求めた応力緩和値である。また、平均結晶粒径は、線分法または写真比較法で求めた。   The ingot 1 was subjected to continuous annealing with a crystal grain size of 4 μm through hot rolling, chamfering, and cold rolling, and 78% cold working as a brass plate, and further subjected to continuous annealing under the conditions shown in Table 2. The final recrystallization annealing was performed on the pickling line (in Table 2, simply described as “recrystallization annealing”). Thereafter, cold rolling was performed at the final cold rolling rate shown in Table 2. Samples 1 to 3 are coils classified according to conditions such as final recrystallization annealing in the same casting lot, but were classified as the following samples. Sample 1 and Sample 2 were rolled at the final cold rolling rate shown in Table 2, then degreased, and low-temperature annealed in a batch type furnace. Sample 3 is obtained by degreasing after cold rolling at the final cold rolling rate shown in Table 2 and low-temperature annealing in a continuous annealing line. The thickness at the time of final recrystallization annealing was 0.40 mm. These mechanical properties, stress relaxation properties, and crystal grain size were evaluated and are shown in Table 4. The calculated values in Table 4 are calculated values on the right side of the equation shown in Equation 6. The measured MBR means the minimum bending radius without cracking when the sample with a thickness of 0.1 mm to 1.0 mm is observed with a magnifying glass and the sample with a thickness of less than 0.1 mm is 50 times the microscope. Is more than 1.0 mm, it means the lowest bend radius without wide cracks with the naked eye. Furthermore, the stress relaxation value is a stress relaxation value obtained under the condition of 120 ° C. × 100 hours based on the Japan Copper and Brass Association Technical Standard JCBA T309. The average crystal grain size was determined by a line segment method or a photographic comparison method.

表4から分かるように、試料1及び試料2でも、上記数7の式を満たす最小曲げ半径(MBR)、板厚(t)、0.2%耐力(σ0.2)の関係が得られており、リン青銅よりも優れた曲げ加工性が得られていると判断出来る。また、応力緩和性も従来材として対比に用いたの参考例1と比べ、より低く優れている。 As can be seen from Table 4, Sample 1 and Sample 2 also have a relationship of the minimum bending radius (MBR), the plate thickness (t), and the 0.2% proof stress (σ 0.2 ) that satisfies the above equation (7). Therefore, it can be judged that bending workability superior to that of phosphor bronze is obtained. In addition, the stress relaxation property is lower and superior as compared with Reference Example 1 used as a contrast material as a conventional material.

更に、試料1及び試料2については、日本伸銅協会技術標準JCBA T309に基づき応力緩和値を120℃×100時間で求め、試料1で48%、試料2で41%、という結果を得た。更に、試料1および試料2については、JCBA T312に基づき曲げたわみ係数を求めた。その結果、試料1で103000、試料2で100000MPaという結果であった。そして、引張試験片の形に試料を作り50MPaの静荷重をかけ、平行部はアンモニア水と水1:1からなる液からの蒸気にさらされるようにして、応力腐食割れ試験を行った。その結果、破断までの時間は試料1で27時間、試料2で22時間であった。バネ限界値は、試料1で547MPa、試料2で648MPaでリン青銅並みであった。更に、試料1に関しては、100万回の両振り疲労限を測定したところ220MPaで一般リン青銅並みであった。   Further, with respect to Sample 1 and Sample 2, the stress relaxation values were determined at 120 ° C. × 100 hours based on Japan Copper and Brass Association Technical Standard JCBA T309, and the results were 48% for Sample 1 and 41% for Sample 2. Further, for sample 1 and sample 2, the bending deflection coefficient was determined based on JCBA T312. As a result, Sample 1 was 103000 and Sample 2 was 100,000 MPa. Then, a sample was prepared in the form of a tensile test piece, a static load of 50 MPa was applied, and the parallel portion was exposed to steam from a liquid composed of ammonia water and water 1: 1, and a stress corrosion cracking test was performed. As a result, the time to break was 27 hours for sample 1 and 22 hours for sample 2. The spring limit values were 547 MPa for sample 1 and 648 MPa for sample 2, which was comparable to phosphor bronze. Furthermore, with respect to Sample 1, when the fatigue fatigue limit of 1,000,000 cycles was measured, it was 220 MPa and was comparable to general phosphor bronze.

次に、試料3は、最終冷間圧延率が低い場合の実施例であるが、耐力と曲げのバランスを考えるに、同じ加工率を採用した実施例(後述する実施例6)に比べ、引張強さと耐力とが格段に高くなっている。これは、最終再結晶焼鈍を連続方式で行った効果もあると考える。耐力と曲げとのバランスを考えるに、本件明細書の中に含まれる実施例の中で言えば、特に優れた曲げ加工性を示してはいない。しかしながら、耐力が低い領域では数6の式より曲げ加工性が多少悪くなる傾向もあるようであるし、表4から明らかなように現実的には問題のない曲げ加工性を示している。この試料3の応力緩和率は、120℃×100時間後に45%であった。低温焼鈍を連続方式で行っているが、バッチ方式に比べて、機械的特性面での差異は見られなかった。ちなみに、低温焼鈍前の試料で応力緩和率を測ると、53%であった。低温焼鈍を連続方式で行う効果は、後述するように条としたときの巻き癖が無いという点が大きな利点となる。   Next, sample 3 is an example in which the final cold rolling reduction is low, but in consideration of the balance between proof stress and bending, it is tensile compared to an example adopting the same processing rate (Example 6 described later). Strength and proof strength are much higher. This is considered to have the effect of performing the final recrystallization annealing in a continuous manner. Considering the balance between proof stress and bending, the examples included in the present specification do not show particularly excellent bending workability. However, it seems that the bending workability tends to be somewhat worse in the region where the proof stress is lower than the formula (6), and as shown in Table 4, it shows bending workability that is practically no problem. The stress relaxation rate of Sample 3 was 45% after 120 ° C. × 100 hours. Although low-temperature annealing is performed by a continuous method, there was no difference in mechanical characteristics as compared with a batch method. Incidentally, when the stress relaxation rate was measured with the sample before low-temperature annealing, it was 53%. The effect of performing the low-temperature annealing in a continuous manner is a great advantage in that there is no curl when it is striped as will be described later.

この実施例では、試料4及び試料5を以下のように調製して得た。試料4は、インゴット6を、熱間圧延、面削、84%の冷間圧延の後、表2に示す最終再結晶焼鈍以降の処理を行って得た。ただし、最終冷間圧延、低温焼鈍は現場連続焼鈍材から取得したサンプルを、実験室で処理した。低温焼鈍は塩浴中で行った。上がり厚みは1.27mmである。評価結果を表4から見ると、試料4は再結晶焼鈍が1回のみのためか、他の試料より特性はやや劣ると判断できる。   In this example, Sample 4 and Sample 5 were prepared as follows. Sample 4 was obtained by subjecting the ingot 6 to the processes after the final recrystallization annealing shown in Table 2 after hot rolling, chamfering, and cold rolling of 84%. However, in the final cold rolling and low temperature annealing, samples obtained from on-site continuous annealing materials were processed in the laboratory. Low temperature annealing was performed in a salt bath. The rising thickness is 1.27 mm. When the evaluation results are seen from Table 4, it can be judged that the characteristics of Sample 4 are slightly inferior to those of other samples, probably because recrystallization annealing is performed only once.

そして、試料5では、試料4の最終再結晶焼鈍材を、更に加工率56%で冷間加工した黄銅板材とした後、表2の処理(最終再結晶焼鈍、低温焼鈍は連続焼鈍炉を使用)の全てを現場ラインを用いて行った。上がり厚みは0.52mmである。評価結果を表4から見ると、耐力と曲げのバランスは数7を満たし優れていると判断できる。そして、応力緩和特性も従来材より優れていると判断できる。   In Sample 5, the final recrystallized annealed material of Sample 4 was made into a brass plate that was further cold worked at a processing rate of 56%, and then the treatment shown in Table 2 (final recrystallized anneal, low temperature anneal uses a continuous annealing furnace. ) Was performed using the on-site line. The rising thickness is 0.52 mm. When the evaluation result is seen from Table 4, it can be judged that the balance between the yield strength and the bending satisfies Equation 7 and is excellent. And it can be judged that the stress relaxation property is also superior to the conventional material.

この実施例では、インゴット6を、熱間圧延、面削、84%の冷間圧延の後、結晶粒径が4μmとなる連続焼鈍、78%の冷間圧延、420℃×12秒の連続焼鈍(得られた結晶粒径は1.4μm)、更に70%の冷間圧延した黄銅板材を得た後、表2に掲載した処理を行った。最終再結晶処理は連続焼鈍、低温焼鈍はバッチ焼鈍である。全工程を現場ラインで行い、最終厚みは0.08mmとした。そして、評価結果を表4からみると、耐力と曲げのバランスは数7を満たし非常に優れていると判断できる。また、応力緩和特性も従来材より優れていると判断できる。   In this example, the ingot 6 was subjected to hot rolling, chamfering, 84% cold rolling, followed by continuous annealing with a crystal grain size of 4 μm, 78% cold rolling, 420 ° C. × 12 seconds continuous annealing. (The obtained crystal grain size was 1.4 μm) Further, after 70% cold-rolled brass plate material was obtained, the treatments listed in Table 2 were performed. The final recrystallization treatment is continuous annealing, and the low temperature annealing is batch annealing. All processes were performed on site and the final thickness was 0.08 mm. When the evaluation results are seen from Table 4, it can be determined that the balance between the yield strength and the bending satisfies Expression 7 and is very excellent. Moreover, it can be judged that the stress relaxation property is also superior to the conventional material.

最後に製品とした条の巻き癖に関して、念のために改めて述べておく。試料1、試料2、試料3、試料5、試料6は、それぞれ現場ラインを用いて低温焼鈍を施したものである。そして、これらの試料に低温焼鈍後テンションレベラーで矯正作業を行った。その結果、試料1及び試料2は、矯正前にある低温焼鈍による巻き癖が圧延歪とともにあり、矯正後にも満足のいく矯正は出来ず歪が板幅方向の片側端部に残った。一方、試料3及び試料5では、低温焼鈍による歪は生じず、矯正により平坦な製品板を得ることが出来た。なお、形状が平坦でない製品は、高速プレスにかけることが出来ず、現実的な意味での使用は出来ない。更に、試料6の場合は、厚みが薄いのでバッチ焼鈍しても巻き癖はつかなかった。   Last but not least, let me reiterate the product rolls. Sample 1, Sample 2, Sample 3, Sample 5, and Sample 6 are each subjected to low-temperature annealing using an on-site line. These samples were subjected to a correction operation with a tension leveler after low-temperature annealing. As a result, in Sample 1 and Sample 2, curl due to low-temperature annealing before correction was accompanied by rolling distortion, and satisfactory correction was not possible after correction, and the distortion remained at one end in the plate width direction. On the other hand, in Sample 3 and Sample 5, distortion due to low-temperature annealing did not occur, and a flat product plate could be obtained by correction. In addition, a product with a non-flat shape cannot be subjected to high-speed pressing and cannot be used in a practical sense. Furthermore, in the case of Sample 6, since the thickness was small, no curl was found even after batch annealing.

インゴット2を用い、実験室で熱間圧延、冷間圧延の後、結晶粒径5μmとなる再結晶焼鈍を行い、78%の冷間圧延をした板材とした。その後、その板材を、表2に示した条件で、270℃での再結晶焼鈍、25%の最終冷間圧延、205℃の温度で低温焼鈍し強化α黄銅試料を作成した。最終厚みは0.3mmである。低温焼鈍は、いずれも実験室のマッフル炉で実体温度を測定しながら行った。機械的物性評価の結果を、以下の表4に示した。   The ingot 2 was used, and after hot rolling and cold rolling in a laboratory, recrystallization annealing was performed to obtain a crystal grain size of 5 μm, and a plate material that had been cold rolled by 78% was obtained. Thereafter, the plate material was subjected to recrystallization annealing at 270 ° C., final cold rolling at 25%, and low temperature annealing at a temperature of 205 ° C. to prepare a reinforced α brass sample under the conditions shown in Table 2. The final thickness is 0.3 mm. Low-temperature annealing was performed while measuring the actual temperature in a laboratory muffle furnace. The results of mechanical property evaluation are shown in Table 4 below.

インゴット3を用い、実験室で熱間圧延、冷間圧延の後、結晶粒径5μmとなる再結晶焼鈍を行い、78%の冷間圧延をした板材とした。その後、その板材を、表2に示した条件で、270℃での再結晶焼鈍、25%の最終冷間圧延、205℃の温度で低温焼鈍し強化α黄銅試料を作成した。最終厚みは0.3mmである。低温焼鈍は、いずれも実験室のマッフル炉で実体温度を測定しながら行った。機械的物性評価の結果を、以下の表4に示した。   The ingot 3 was used, and after hot rolling and cold rolling in a laboratory, recrystallization annealing was performed to obtain a crystal grain size of 5 μm to obtain 78% cold rolled sheet material. Thereafter, the plate material was subjected to recrystallization annealing at 270 ° C., final cold rolling at 25%, and low temperature annealing at a temperature of 205 ° C. to prepare a reinforced α brass sample under the conditions shown in Table 2. The final thickness is 0.3 mm. Low-temperature annealing was performed while measuring the actual temperature in a laboratory muffle furnace. The results of mechanical property evaluation are shown in Table 4 below.

インゴット4を用い、実験室で熱間圧延、冷間圧延の後、結晶粒径5μmとなる再結晶焼鈍を行い、78%の冷間圧延をした黄銅板材とした。その後、その黄銅板材を、表2に示した条件で、270℃での最終再結晶焼鈍、25%の最終冷間圧延率による圧延加工をし、205℃の温度で低温焼鈍し強化α黄銅試料を作成した。低温焼鈍は、いずれも実験室のマッフル炉で実体温度を測定しながら行った。最終厚みは0.3mmである。機械的物性評価の結果を、上記の実施例と共に表4に示した。   Using ingot 4, a brass plate material having 78% cold rolling was obtained by performing recrystallization annealing to a crystal grain size of 5 μm after hot rolling and cold rolling in a laboratory. Thereafter, the brass sheet was subjected to final recrystallization annealing at 270 ° C. under the conditions shown in Table 2, rolling at a final cold rolling rate of 25%, and low temperature annealing at a temperature of 205 ° C. to strengthen α brass sample. It was created. Low-temperature annealing was performed while measuring the actual temperature in a laboratory muffle furnace. The final thickness is 0.3 mm. The results of mechanical property evaluation are shown in Table 4 together with the above examples.

この表4から分かることは、本件発明に係る強化α黄銅の組成の中で銅の成分量を変動させても、大きな差異は生ぜず、リン青銅並みの機械的物性が得られることが分かる。   It can be seen from Table 4 that even if the amount of the copper component is varied in the composition of the reinforced α brass according to the present invention, no significant difference is produced, and mechanical properties similar to phosphor bronze can be obtained.

この実施例では、実施例2の試料4の最終再結晶焼鈍材を、実験室的に加工率が20%の冷間圧延加工を行い黄銅板材とし、この黄銅板材に塩浴による焼鈍440℃×10秒という条件で最終再結晶焼鈍を行い、加工率30%の最終冷間圧延加工と、280℃×10秒の低温焼鈍を加え試料を調製した。このときの平均結晶粒径は2.6μmで、機械的性質は表3に掲載した。そして、この実施例7は、実施例8の結果と併せて、適正な加工率を立証するための実施例である。   In this example, the final recrystallization annealed material of Sample 4 of Example 2 was subjected to a cold rolling process with a processing rate of 20% in the laboratory to obtain a brass plate material, and this brass plate material was annealed at 440 ° C. by a salt bath. Final recrystallization annealing was performed under the condition of 10 seconds, and a final cold rolling process with a processing rate of 30% and low temperature annealing at 280 ° C. × 10 seconds were added to prepare a sample. The average crystal grain size at this time was 2.6 μm, and the mechanical properties are listed in Table 3. And this Example 7 is an Example for verifying an appropriate processing rate together with the result of Example 8.

この実施例では、実施例2の試料4の最終再結晶焼鈍材を、実験室的に加工率が40%の冷間圧延加工を行い黄銅板材とし、この黄銅板材に塩浴による焼鈍420℃×10秒の条件で最終再結晶焼鈍を行い、加工率30%の圧延加工と、280℃×10秒の低温焼鈍を加え試料を調製した。このときの平均結晶粒径は2.3μmで、機械的性質は表3に掲載した。そして、この実施例8は、実施例7の結果と併せて、適正な加工率を立証するための実施例である。   In this example, the final recrystallization annealed material of Sample 4 of Example 2 was subjected to a cold rolling process with a processing rate of 40% in a laboratory to obtain a brass plate material, and this brass plate material was annealed by a salt bath at 420 ° C. × A final recrystallization annealing was performed under the condition of 10 seconds, and a rolling process with a processing rate of 30% and a low temperature annealing of 280 ° C. × 10 seconds were added to prepare a sample. The average crystal grain size at this time was 2.3 μm, and the mechanical properties are listed in Table 3. And this Example 8 is an Example for verifying an appropriate processing rate together with the result of Example 7.

この表3から明らかになるように、平均結晶粒径が1.9μmの板材に加工率20%の圧延加工を加えても、所望の範囲内の特性が得られることが分かる。しかしながら、強度が相対的に低く結晶粒径も大きいままであるので、望ましくは40%以上の加工率を採用することが望ましいと判断できる。   As can be seen from Table 3, it can be seen that characteristics within a desired range can be obtained even if a rolling process with a processing rate of 20% is applied to a plate material having an average crystal grain size of 1.9 μm. However, since the strength is relatively low and the crystal grain size remains large, it can be determined that it is desirable to employ a processing rate of 40% or more.

比較例Comparative example

(比較例1)
比較例1は、試料1の低温焼鈍を省略したものである。低温焼鈍を省略しても、良好な耐力と曲げ加工性とのバランスを確保出来る事が証明出来る。従って、低温焼鈍が不要な用途に生産コストを削減した安価な価格で提供できる可能性がある。このように再結晶焼鈍後、冷間加工を加え、低温焼鈍を無くしてもリン青銅並みの曲げ加工性を示す黄銅の結晶組織は、再結晶焼鈍時の平均結晶粒径が1.0〜1.5μで、結晶粒の大きさがそろっている場合であり、このような組織を安定的に得るには、連続方式による焼鈍が適する。なお、表4の実施例1の試料1と比較例1とを対比すれば明らかとなるが、比較例1は低温焼鈍が省略されているため、強度が低く耐力と曲げ加工性とのバランスが、試料1より悪くなっている。
(Comparative Example 1)
In Comparative Example 1, the low temperature annealing of Sample 1 is omitted. Even if low-temperature annealing is omitted, it can be proved that a balance between good yield strength and bending workability can be secured. Therefore, there is a possibility that it can be provided at an inexpensive price with reduced production costs for uses that do not require low-temperature annealing. Thus, after recrystallization annealing, cold working is applied, and the brass crystal structure that exhibits bending workability similar to phosphor bronze even without low temperature annealing has an average crystal grain size of 1.0-1 during recrystallization annealing. In this case, the size of the crystal grains is uniform, and in order to obtain such a structure stably, annealing by a continuous method is suitable. In addition, although it becomes clear if the sample 1 of Example 1 of Table 4 and the comparative example 1 are contrasted, since the low temperature annealing is abbreviate | omitted in the comparative example 1, intensity | strength is low and the balance of proof stress and bending workability is. , Worse than sample 1.

(比較例2)
実施例4の試料を作成する際、低温焼鈍をする前に採取した試料である。従って、最終再結晶焼鈍をバッチ方式で行い、低温焼鈍の無い試料である。この比較例2の試料の加工条件は表2に、機械的物性評価結果は表4に他の実施例及び比較例と共に掲載している。最終再結晶焼鈍がバッチ方式であり結晶組織のバラツキ(粒度分布のブロード化)が生じたと考えられ、その結果、耐力及び硬さに問題はないが、製品の曲げ加工性が悪いという結果が出ている。
(Comparative Example 2)
When preparing the sample of Example 4, it is the sample extract | collected before low-temperature annealing. Therefore, the final recrystallization annealing is performed by a batch method, and the sample has no low temperature annealing. The processing conditions of the sample of Comparative Example 2 are listed in Table 2, and the mechanical property evaluation results are listed in Table 4 together with other Examples and Comparative Examples. The final recrystallization annealing is a batch method, and it is considered that the crystal structure varies (broadening of the particle size distribution). As a result, there is no problem in yield strength and hardness, but the product has poor bending workability. ing.

(比較例3)
インゴット2を用い、実験室において、従来工程に似せて実施例4と同等の耐力を備える試料を作ろうとした。即ち、ここでの試料は、熱間圧延、冷間圧延の後、結晶粒径が35μmになるように焼鈍後、53%の加工率で冷間加工した。その後、当該試料を、表2の条件で処理した。なお、再結晶焼鈍は、従来工程の連続焼鈍に似せられるように、塩浴を用いて行った。最終再結晶焼鈍後の結晶粒径は15μmとなった。そして、加工率65%の最終圧延後の結果を表4に示した。この表4から分かるように、最終圧延率を高くして耐力を上げると曲げ加工性が大きく劣化すると言える。なお、最終厚みは0.3mmである。
(Comparative Example 3)
Using the ingot 2, a sample having a proof stress equivalent to that of Example 4 was made in the laboratory to resemble the conventional process. That is, the sample here was subjected to cold working at a working rate of 53% after hot rolling and cold rolling, after annealing to a crystal grain size of 35 μm. Thereafter, the sample was processed under the conditions shown in Table 2. In addition, recrystallization annealing was performed using the salt bath so that it might resemble the continuous annealing of a conventional process. The crystal grain size after final recrystallization annealing was 15 μm. The results after final rolling with a processing rate of 65% are shown in Table 4. As can be seen from Table 4, it can be said that when the final rolling rate is increased to increase the yield strength, the bending workability is greatly deteriorated. The final thickness is 0.3 mm.

(比較例4)
インゴット3を用い、実験室において、従来工程に似せて実施例5の試料と同等の耐力を備える試料を作ろうと試みた。ここでの試料は、熱間圧延、冷間圧延の後、結晶粒径が、45μmになるように焼鈍後、53%の加工率で冷間加工した。その後、表2の条件で最終再結晶焼鈍及び最終冷間圧延を行った。このときの最終再結晶焼鈍は、従来工程の連続焼鈍に似せられるよう、塩浴を用いて行った。再結晶焼鈍後の結晶粒径は25μmとなった。そして、加工率65%の最終冷間圧延後の機械的物性の評価結果を表4に示した。この表4から分かるように、最終冷間圧延率を高くして耐力を上げると曲げ加工性が大きく劣化すると言える。なお、最終厚みは0.3mmである。
(Comparative Example 4)
An attempt was made to make a sample having the same proof strength as the sample of Example 5 in the laboratory using the ingot 3 to resemble the conventional process. The sample here was subjected to cold working at a working rate of 53% after hot rolling and cold rolling, after annealing so that the crystal grain size was 45 μm. Thereafter, final recrystallization annealing and final cold rolling were performed under the conditions shown in Table 2. The final recrystallization annealing at this time was performed using a salt bath so as to resemble the continuous annealing of the conventional process. The crystal grain size after recrystallization annealing was 25 μm. Table 4 shows the evaluation results of mechanical properties after the final cold rolling with a processing rate of 65%. As can be seen from Table 4, it can be said that when the final cold rolling rate is increased to increase the yield strength, the bending workability is greatly deteriorated. The final thickness is 0.3 mm.

(比較例5)
インゴット4を用い、実験室において、従来工程に似せて実施例6の試料と同等の耐力を備える試料を作ろうと試みた。ここでの試料は、熱間圧延、冷間圧延の後、結晶粒径が、45μmになるように焼鈍後、53%の加工率で冷間加工した。その後、表2の条件で最終再結晶焼鈍及び最終冷間圧延を行った。このときの最終再結晶焼鈍は、従来工程の連続焼鈍に似せられるよう、塩浴を用いて行った。最終再結晶焼鈍後の結晶粒径は20μmとなった。そして、加工率65%の最終冷間圧延後の機械的物性の評価結果を表4に示した。この表4から分かるように、最終冷間圧延率を高くして耐力を上げると曲げ加工性が大きく劣化すると言える。なお、最終厚みは0.3mmである。
(Comparative Example 5)
Attempts were made to use the ingot 4 in the laboratory to make a sample having the same strength as the sample of Example 6 in a manner similar to the conventional process. The sample here was subjected to cold working at a working rate of 53% after hot rolling and cold rolling, after annealing so that the crystal grain size was 45 μm. Thereafter, final recrystallization annealing and final cold rolling were performed under the conditions shown in Table 2. The final recrystallization annealing at this time was performed using a salt bath so as to resemble the continuous annealing of the conventional process. The crystal grain size after final recrystallization annealing was 20 μm. Table 4 shows the evaluation results of mechanical properties after the final cold rolling with a processing rate of 65%. As can be seen from Table 4, it can be said that bending workability is greatly deteriorated when the final cold rolling rate is increased to increase the yield strength. The final thickness is 0.3 mm.

(比較例6)
試料1の結晶粒径が4μmとなる焼鈍が終わった段階で試料を採取し、78%の冷間加工の後、表2に示す低温条件で最終再結晶焼鈍し、さらに冷間加工した。最終再結晶焼鈍は、実験室マッフル炉で実施例5と同等の耐力となるように行った。この試料の機械的物性の評価結果を表4に示す。実施例5と比較して、このように最終再結晶温度が低すぎると、耐力と硬さに問題はないが、曲げ加工性に悪影響を与えると言える。なお、最終厚みは0.26mmである。
(Comparative Example 6)
A sample was collected at the stage when the annealing of the sample 1 to a crystal grain size of 4 μm was completed, and after 78% cold working, final recrystallization annealing was performed under the low temperature conditions shown in Table 2, and further cold working was performed. The final recrystallization annealing was performed in a laboratory muffle furnace so as to have a yield strength equivalent to that of Example 5. The evaluation results of the mechanical properties of this sample are shown in Table 4. When the final recrystallization temperature is thus too low as compared with Example 5, it can be said that there is no problem with the yield strength and hardness, but the bending workability is adversely affected. The final thickness is 0.26 mm.

(比較例7)
試料1の結晶粒径が4μmとなる焼鈍が終わった段階で試料を採取し、78%の冷間加工の後、表2の高温条件で最終再結晶焼鈍し、さらに最終冷間圧延加工した。焼鈍は実験室マッフル炉で実施例5と同等の耐力となるように行った。この試料の機械的物性の評価結果を表4に示す。表4から分かるように、実施例5と比較して最終再結晶温度が高すぎる場合には、耐力と硬さに問題はないが、曲げ加工性が悪くなると言える。なお、最終厚みは0.26mmである。
(Comparative Example 7)
A sample was collected at the stage when the annealing of sample 1 to a crystal grain size of 4 μm was completed. After cold working of 78%, final recrystallization annealing was performed under the high temperature conditions shown in Table 2, and further, final cold rolling was performed. Annealing was performed in a laboratory muffle furnace so as to have the same yield strength as in Example 5. The evaluation results of the mechanical properties of this sample are shown in Table 4. As can be seen from Table 4, when the final recrystallization temperature is too high as compared with Example 5, there is no problem in yield strength and hardness, but it can be said that bending workability deteriorates. The final thickness is 0.26 mm.

(参考例)
インゴット5から生産ラインで製造された製品から試料を採取した。この試料の結晶粒径は5μmだった。この試料の機械的物性の評価結果は表4に、他の実施例及び比較例と同時に掲載した。この試料を用いて、実施例1と同様に応力緩和試験、曲げたわみ係数測定、応力腐食試験、疲労限の測定を行った。結果は応力緩和は52%、曲げたわみ係数102000MPa、応力腐食割れ破断時間4時間、疲労限160MPaであった。試料1及び試料2は、参考例1に対し、応力緩和率、耐応力腐食割れ性、疲労限において優れ、強度的に高いのにもかかわらず、曲げたわみ係数も同等となっていることが分かる。
(Reference example)
A sample was taken from the product manufactured from the ingot 5 on the production line. The crystal grain size of this sample was 5 μm. The evaluation results of the mechanical properties of this sample are shown in Table 4 together with other examples and comparative examples. Using this sample, the stress relaxation test, the bending deflection coefficient measurement, the stress corrosion test, and the fatigue limit measurement were performed in the same manner as in Example 1. As a result, the stress relaxation was 52%, the bending deflection coefficient was 102000 MPa, the stress corrosion cracking rupture time was 4 hours, and the fatigue limit was 160 MPa. Sample 1 and Sample 2 are superior to Reference Example 1 in terms of stress relaxation rate, stress corrosion cracking resistance, fatigue limit, and high bending strength even though they are high in strength. .

<実施例と比較例との対比>
表4で単に「MBR/t」として示した「MBR/t(実測値)」と、「MBR/t(計算値)」として示した「MBR/t」とに着目してみると、実施例の場合には全て、「MBR/t(実測値)」≦「MBR/t(計算値)」という関係が成立している。これに対し、比較例は、比較例1(応力緩和性が悪い例)を除き、「MBR/t(実測値)」>「MBR/t(計算値)」という関係が成立している。従って、上記実施例の強化α黄銅は、計算値以上に良好な曲げ加工性を備え、大部分の比較例と比べて曲げ加工性に優れていると言える。
<Contrast between Example and Comparative Example>
Focusing on “MBR / t (measured value)” indicated simply as “MBR / t” in Table 4 and “MBR / t” indicated as “MBR / t (calculated value)”, Example In all cases, the relationship “MBR / t (actual value)” ≦ “MBR / t (calculated value)” is established. In contrast, in the comparative example, except for the comparative example 1 (example in which the stress relaxation property is poor), the relationship “MBR / t (actual value)”> “MBR / t (calculated value)” is established. Therefore, it can be said that the reinforced α brass of the above example has better bending workability than the calculated value and is superior to most comparative examples in bending workability.

次に0.2%耐力に着目すると、実施例の強化α黄銅は、556MPa〜743MPaの値を示している。これに対して、比較例の黄銅の0.2%耐力は576MPa〜610MPaであり、上限値において大きな差が見られ、本件発明に係る強化α黄銅の方が耐力的に見ても優れていることが分かる。   Next, paying attention to 0.2% proof stress, the reinforced α brass of the example shows a value of 556 MPa to 743 MPa. On the other hand, the 0.2% proof stress of the brass of the comparative example is 576 MPa to 610 MPa, a large difference is observed in the upper limit value, and the reinforced α brass according to the present invention is superior in terms of proof stress. I understand that.

また、硬度(ビッカース硬度)に着目すると、実施例の強化α黄銅は、190Hv〜214Hvの範囲の硬度を示している。これに対して、比較例の黄銅の硬度は、184Hv〜197Hvの範囲である。この硬度の分布も、本件発明に係る強化α黄銅が優れた機械的強度を備え、耐摩耗性も向上させる硬度を備えること示唆している。   When attention is paid to the hardness (Vickers hardness), the reinforced α brass of the example shows a hardness in the range of 190 Hv to 214 Hv. On the other hand, the hardness of the brass of the comparative example is in the range of 184Hv to 197Hv. This distribution of hardness also suggests that the reinforced α brass according to the present invention has excellent mechanical strength and hardness that improves wear resistance.

更に、引張強さを見るに、実施例の強化α黄銅は、606MPa〜776MPaの値を示している。これに対し、比較例の黄銅は、633MPa〜700MPaの値を示している。従って、上限値において大きな差が見られ、本件発明に係る強化α黄銅の方が高い引張り強さを得られることが分かる。   Further, looking at the tensile strength, the reinforced α brass of the example shows a value of 606 MPa to 776 MPa. On the other hand, the brass of the comparative example shows a value of 633 MPa to 700 MPa. Therefore, a large difference is observed in the upper limit value, and it can be seen that the reinforced α brass according to the present invention can obtain a higher tensile strength.

なお、表4には、参考的に最終再結晶焼鈍後の特性を掲載しているが、各実施例の試料の耐力は、比較例の試料の耐力よりも総じて高くなっている。そして、引張り強さにおいても、同様の傾向を示している。更に、最終再結晶焼鈍後の特性として、[耐力]/[引張強さ]の値を見ると、実施例では74%〜83%の範囲を示し、80%以上の値も得ている。これに対し、比較例では、実施例1の試料1に施した低温焼鈍を省略した比較例1を除き、35%〜76%である。従って、本件発明に係る強化α黄銅の機械的物性を高くし、曲げ加工性を向上させるためには、再結晶焼鈍により形成される組織特性が重要であることが理解出来る。   In Table 4, the characteristics after the final recrystallization annealing are listed for reference, but the yield strength of the samples of each example is generally higher than the yield strength of the samples of the comparative examples. And the same tendency is shown also in tensile strength. Furthermore, when the value of [proof stress] / [tensile strength] is seen as a characteristic after the final recrystallization annealing, the example shows a range of 74% to 83%, and a value of 80% or more is also obtained. On the other hand, in a comparative example, it is 35%-76% except the comparative example 1 which abbreviate | omitted the low temperature annealing performed to the sample 1 of Example 1. FIG. Therefore, it can be understood that the structural properties formed by recrystallization annealing are important in order to increase the mechanical properties of the reinforced α brass according to the present invention and to improve the bending workability.

以上のように最終再結晶焼鈍後の機械的物性が重要と考えたのは、以下の理由による。強化α黄銅の曲げ加工性を改善するためには、曲げ方向(Bad Way、Good Way)による曲げ加工性が持つ異方性を少なくすることが必要と考えられる。そして、このような異方性は、圧延による強加工が行われるほど、顕著になる傾向にある。そこで、最終再結晶焼鈍後の加工率を低くすることが必要と考えた。従って、当該最終再結晶焼鈍後の加工率が低くとも、最終製品の強化α黄銅の段階で良好な強度と曲げ加工性を同時に達成するためには、再結晶焼鈍上がりでの強度が既に高い状態にあることが必要となると考えるからである。   As described above, the mechanical properties after the final recrystallization annealing are considered important for the following reasons. In order to improve the bending workability of the reinforced α brass, it is considered necessary to reduce the anisotropy of the bending workability depending on the bending direction (Bad Way, Good Way). Such anisotropy tends to become more prominent as strong processing by rolling is performed. Therefore, it was considered necessary to lower the processing rate after the final recrystallization annealing. Therefore, even if the processing rate after the final recrystallization annealing is low, in order to achieve good strength and bending workability at the same time in the reinforced α brass stage of the final product, the strength after recrystallization annealing is already high. This is because it is necessary to be in

更に、応力緩和性について実施例と比較例と参考例とを比較すると、上記実施例に係る強化α黄銅の応力緩和性は、最終冷間圧延加工の直後では、従来工程を経た結晶粒径5μmレベルの市販黄銅の52%と同等かやや劣るものとなる。しかし、低温焼鈍を施すことにより市販黄銅(従来材、参考例)より優れた40〜48%という応力緩和性を示すものとなる。   Further, when the examples, comparative examples and reference examples are compared with respect to the stress relaxation properties, the stress relaxation properties of the reinforced α brass according to the above examples are as follows. It is equivalent to or slightly inferior to 52% of the level commercial brass. However, by applying low temperature annealing, the stress relaxation property of 40 to 48%, which is superior to commercially available brass (conventional material, reference example), is exhibited.

以上、強度と曲げ加工性とについて実施例と比較例とを対比してきたが、コネクターなどの電子部品に用いる場合、この他に耐応力腐食割れ性、疲労特性、バネ限界値等に優れていることが要求されることが多い。上記実施例に係る強化α黄銅の耐応力腐食割れ性は、市販黄銅より優れた耐応力腐食割れ性を示す。更に、疲労特性は、従来の市販黄銅より優れ、一般リン青銅並みとなる。また、バネ限界値も、低温焼鈍を施すことによりリン青銅と同等になる。   As described above, the examples and comparative examples have been compared with respect to strength and bending workability, but when used for electronic parts such as connectors, they are also excellent in stress corrosion cracking resistance, fatigue characteristics, spring limit values, etc. Is often required. The stress corrosion cracking resistance of the reinforced α brass according to the above example is superior to that of commercially available brass. Furthermore, the fatigue properties are superior to conventional commercial brass and are comparable to general phosphor bronze. Also, the spring limit value becomes equivalent to that of phosphor bronze by performing low temperature annealing.

図2として、実施例2で得た試料5(低温焼鈍上がり品)の、透過型電子顕微鏡写真を示す。また、図3には、図2において認められる低温焼鈍により発生した再編成転位粒の確認位置(図面中にハッチングで示した領域)を概略的に図示している。従って、図2と図3とを重ね合わせて見ることにより、透過型電子顕微鏡での再編成転位粒の状態が把握できる。この再編成転位粒は、セル組織とも呼ばれ、転位が再編成されてネット状に観察できる。そして、ネットワークが形成されていない部分は、加工により転位が絡み合ったままであり、黒く観察される。このように、本発明に係る製造方法のように、低温焼鈍を採用して得られた組織は混合組織から構成されている。更に、図2の右下にある1000nmスケールを参照することで理解できるように、この混合組織は、加工歪が強く残っている粒の最多頻度の粒径が1〜2μmの高転位密度粒であり、歪の再編成が起こった組織の最多頻度の粒径が0.2〜1.5μmの再編成転位粒であることが分かる。   FIG. 2 shows a transmission electron micrograph of Sample 5 (low-temperature annealed product) obtained in Example 2. FIG. 3 schematically shows the confirmation positions (represented by hatching in the drawing) of the reorganized dislocation grains generated by the low temperature annealing observed in FIG. Therefore, the state of the rearranged dislocation grains in the transmission electron microscope can be grasped by superimposing FIG. 2 and FIG. This reorganized dislocation grain is also called a cell structure, and the dislocation is reorganized and can be observed in a net shape. And the part in which the network is not formed has dislocations entangled by processing, and is observed in black. Thus, as in the manufacturing method according to the present invention, the structure obtained by employing the low temperature annealing is composed of a mixed structure. Furthermore, as can be understood by referring to the 1000 nm scale in the lower right of FIG. 2, this mixed structure is a high dislocation density grain with a most frequent grain size of 1-2 μm that remains with strong processing strain. In other words, it can be seen that the most frequent grain size of the structure in which strain reorganization occurs is a reorganized dislocation grain having a size of 0.2 to 1.5 μm.

本件発明に係る強化α黄銅は、組成的に見れば一般のα黄銅組成を備える。しかしながら、適正な圧延プロセス及び熱処理を施すことで、従来のα黄銅には無かったリン青銅と同等若しくはリン青銅を超える強度と曲げ加工性のバランスを示すものとなる。このような強化α黄銅は、コネクター等の電子部品や機構部品に好適で、且つ、安価な材料としての供給が可能となる。   The reinforced α brass according to the present invention has a general α brass composition in terms of composition. However, by applying an appropriate rolling process and heat treatment, the balance between strength and bending workability equivalent to or exceeding phosphor bronze, which was not found in conventional α brass, is exhibited. Such reinforced α brass is suitable for electronic parts such as connectors and mechanical parts, and can be supplied as an inexpensive material.

また、本件発明に係る強化α黄銅の製造方法は、従来から使用している圧延製造ラインに何ら改良を加えることなく、そのまま使用することが可能であり、特段の設備投資を要さないため、工業的生産規模での高品質の強化α黄銅の効率の良い生産を可能とする。   In addition, the manufacturing method of the reinforced α brass according to the present invention can be used as it is without adding any improvement to the rolling production line that has been used conventionally, and does not require special capital investment, Enables efficient production of high-quality reinforced alpha brass on an industrial production scale.

最小曲げ半径(MBR/t)と耐力との相関関係を示した概念図である。It is the conceptual diagram which showed correlation with the minimum bending radius (MBR / t) and yield strength. 実施例2で調製した試料5の透過型電子顕微鏡観察像である。2 is a transmission electron microscope observation image of Sample 5 prepared in Example 2. FIG. 図2の透過型電子顕微鏡観察像における再編成転位粒の分布領域を示した図である。It is the figure which showed the distribution area | region of the rearrangement dislocation grain in the transmission electron microscope observation image of FIG.

Claims (8)

銅82重量%〜62重量%と、残部亜鉛及び不可避不純物とからなる強化α黄銅において、
0.2%耐力が540MPa〜800MPaであり、
圧延方向を曲げ軸とする直角曲げでクラックの生じない最小曲げ半径(MBR)と、板厚(t)と、0.2%耐力(σ0.2)とが数1の関係を満たし、
且つ、結晶組織を構成する結晶粒が、加工歪の強く残っている粒(最多頻度の粒径が1〜2μmの高転位密度粒)と、歪の再編成が起こった組織(最多頻度の粒径が0.2〜1.5μmの再編成転位粒)の混合微細組織であることを特徴とした強化α黄銅。
In reinforced α brass composed of 82% to 62% by weight of copper and the balance zinc and inevitable impurities,
0.2% proof stress is 540 MPa to 800 MPa,
The minimum bending radius (MBR) at which cracks do not occur in right-angle bending with the rolling direction as the bending axis, the plate thickness (t), and the 0.2% proof stress (σ 0.2 ) satisfy the relationship of Equation 1,
In addition, the crystal grains constituting the crystal structure are grains that remain with strong processing strain (high dislocation density grains with the most frequent grain size of 1 to 2 μm) and structures with strain reorganization (the most frequent grains). Reinforced α brass having a mixed microstructure of reorganized dislocation grains having a diameter of 0.2 to 1.5 μm.
銅82重量%〜62重量%と、残部亜鉛及び不可避不純物とからなる強化α黄銅において、
0.2%耐力が590MPa〜800MPaであり、
圧延方向を曲げ軸とする直角曲げでクラックの生じない最小曲げ半径(MBR)と、板厚(t)と、0.2%耐力(σ0.2)とが数2の関係を満たし、
且つ、結晶組織を構成する結晶粒が、加工歪の強く残っている粒(最多頻度の粒径が1〜2μmの高転位密度粒)と、歪の再編成が起こった組織(最多頻度の粒径が0.2〜1.5μmの再編成転位粒)の混合微細組織であることを特徴とした強化α黄銅。
In reinforced α brass composed of 82% to 62% by weight of copper and the balance zinc and inevitable impurities,
0.2% proof stress is 590 MPa to 800 MPa,
The minimum bending radius (MBR) at which cracks do not occur in right-angle bending with the rolling direction as the bending axis, the plate thickness (t), and the 0.2% proof stress (σ 0.2 ) satisfy the relationship of Equation 2,
In addition, the crystal grains constituting the crystal structure are grains that remain with strong processing strain (high dislocation density grains with the most frequent grain size of 1 to 2 μm) and structures with strain reorganization (the most frequent grains). Reinforced α brass having a mixed microstructure of reorganized dislocation grains having a diameter of 0.2 to 1.5 μm.
銅82重量%〜62重量%と、残部亜鉛及び不可避不純物とからなる強化α黄銅の製造方法であって、
黄銅板材に対し、最終再結晶焼鈍を370℃〜600℃の条件で行い、その後7%〜55%の最終冷間圧延を加え、更に、バッチ方式で板材の実体温度170℃〜230℃の条件、又は、連続方式で加熱炉の炉温250℃〜450℃の条件で低温焼鈍することを特徴とする強化α黄銅の製造方法。
A method for producing reinforced alpha brass comprising copper 82 wt% to 62 wt%, the remainder zinc and inevitable impurities,
The brass sheet is subjected to final recrystallization annealing at 370 ° C. to 600 ° C., then 7% to 55% of final cold rolling is added, and further the batch material is used at a material temperature of 170 ° C. to 230 ° C. Or the manufacturing method of the reinforced alpha brass characterized by performing low temperature annealing on the conditions of the furnace temperature of 250 to 450 degreeC of a heating furnace by a continuous system .
銅82重量%〜62重量%と、残部亜鉛及び不可避不純物とからなるα黄銅の製造方法であって、
黄銅板材に対し、最終再結晶焼鈍を255℃〜290℃の条件で行い、その後7%〜55%の最終冷間圧延を加え、更に、バッチ方式で板材の実体温度170℃〜230℃の条件、又は、連続方式で加熱炉の炉温250℃〜450℃の条件で低温焼鈍し結晶組織を混合微細組織とすることを特徴とする強化α黄銅の製造方法。
A method for producing α brass comprising copper 82 wt% to 62 wt%, the remainder zinc and inevitable impurities,
The final recrystallization annealing is performed on the brass plate material under the condition of 255 ° C. to 290 ° C., and then the final cold rolling of 7% to 55% is added. Furthermore , the material temperature of the plate material is 170 ° C. to 230 ° C. in a batch system. Or the manufacturing method of the reinforced alpha brass characterized by low-temperature annealing on the conditions of the furnace temperature of 250 to 450 degreeC of a heating furnace by a continuous system, and making a crystal structure into a mixed fine structure.
再結晶焼鈍後の、ビッカース硬度が140Hv〜160Hvとなるように調整した請求項3又は請求項4に記載の強化α黄銅の製造方法。 The manufacturing method of the reinforced alpha brass of Claim 3 or Claim 4 adjusted so that the Vickers hardness after recrystallization annealing might be set to 140Hv-160Hv. 最終冷間圧延前の板材は、平均結晶粒径を1〜2μmに調整した板材を、20〜82%の加工率で圧延した後のものである請求項3〜請求項5のいずれかに記載の強化α黄銅の製造方法。 The plate material before the final cold rolling is obtained by rolling a plate material having an average crystal grain size adjusted to 1 to 2 µm at a processing rate of 20 to 82%. The manufacturing method of reinforced alpha brass. 最終冷間圧延前の板材は、平均結晶粒径を3〜6μmに調整した板材を、70〜82%の加工率で圧延した後のものである請求項3〜請求項5のいずれかに記載の強化α黄銅の製造方法。 The plate material before the final cold rolling is obtained by rolling a plate material having an average crystal grain size adjusted to 3 to 6 µm at a processing rate of 70 to 82%. The manufacturing method of reinforced alpha brass. 最終冷間圧延前の板材は、平均結晶粒径が任意の板材を、83%以上の加工率で圧延した後のものである請求項3〜請求項5のいずれかに記載の強化α黄銅の製造方法。 The plate material before final cold rolling is obtained by rolling a plate material having an arbitrary average grain size at a processing rate of 83% or more. Production method.
JP2005232530A 2005-02-04 2005-08-10 Reinforced α brass and method for producing the same Active JP4718273B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005232530A JP4718273B2 (en) 2005-02-04 2005-08-10 Reinforced α brass and method for producing the same
DE112006000331T DE112006000331T5 (en) 2005-02-04 2006-02-03 Solidified α-brass and process for its preparation
US11/815,607 US20090120544A1 (en) 2005-02-04 2006-02-03 Strengthened Alpha Brass and Method for Manufacturing the Same
PCT/JP2006/301860 WO2006082921A1 (en) 2005-02-04 2006-02-03 REINFORCED α-BRASS AND PROCESS FOR PRODUCING THE SAME

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005028484 2005-02-04
JP2005028484 2005-02-04
JP2005232530A JP4718273B2 (en) 2005-02-04 2005-08-10 Reinforced α brass and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006241584A JP2006241584A (en) 2006-09-14
JP4718273B2 true JP4718273B2 (en) 2011-07-06

Family

ID=36777303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005232530A Active JP4718273B2 (en) 2005-02-04 2005-08-10 Reinforced α brass and method for producing the same

Country Status (4)

Country Link
US (1) US20090120544A1 (en)
JP (1) JP4718273B2 (en)
DE (1) DE112006000331T5 (en)
WO (1) WO2006082921A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502246B1 (en) * 2010-07-05 2015-03-12 와이케이케이 가부시끼가이샤 Fastener element and process for producing fastener element
JP5889698B2 (en) * 2012-03-30 2016-03-22 株式会社神戸製鋼所 Cu-Zn alloy plate excellent in stress relaxation resistance and method for producing the same
CN104593706B (en) * 2013-10-31 2017-01-18 宁波金田铜业(集团)股份有限公司 Cold continuous rolling method of brass wires

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2742008C2 (en) * 1977-09-17 1983-12-29 Diehl GmbH & Co, 8500 Nürnberg Process for the production of a brass material with a microduplex structure
JPH11189856A (en) * 1997-10-24 1999-07-13 Toto Ltd Brass material, brass pipe material and its production
JP4012845B2 (en) * 2003-03-26 2007-11-21 住友金属鉱山伸銅株式会社 70/30 brass with refined crystal grains and method for producing the same
US20050039827A1 (en) * 2003-08-20 2005-02-24 Yoshinori Yamagishi Copper alloy having excellent corrosion cracking resistance and dezincing resistance, and method for producing same

Also Published As

Publication number Publication date
DE112006000331T5 (en) 2008-03-06
WO2006082921A1 (en) 2006-08-10
US20090120544A1 (en) 2009-05-14
JP2006241584A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
US10174406B2 (en) Copper alloy plate and method for producing same
TWI502086B (en) Copper alloy sheet and method for producing same
KR101419149B1 (en) Copper alloy sheet
US10294554B2 (en) Copper alloy sheet material, connector, and method of producing a copper alloy sheet material
WO2011068121A1 (en) Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
KR102306527B1 (en) Copper-alloy production method, and copper alloy
JP5247010B2 (en) Cu-Zn alloy with high strength and excellent bending workability
JP2008106356A (en) Copper alloy sheet and its manufacturing method
KR20180137040A (en) Copper alloy wire material and manufacturing method thereof
JP2011508081A (en) Copper-nickel-silicon alloy
JP2012158776A (en) Pure titanium sheet excellent in balance between stamping formability and strength
JP5937865B2 (en) Production method of pure titanium plate with excellent balance of press formability and strength, and excellent corrosion resistance
WO2012043170A1 (en) Cu-Co-Si-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING SAME
JP2007056365A (en) Copper-zinc-tin alloy and manufacturing method therefor
EP2706125A1 (en) Copper alloy sheet material and process for producing same
KR101715532B1 (en) Copper alloy and production method thereof
WO2020066371A1 (en) Cu-ni-al-based copper alloy sheet, method for producing same, and conductive spring member
KR102346254B1 (en) Copper alloy sheet material, connector, and production method for copper alloy sheet material
JP4012845B2 (en) 70/30 brass with refined crystal grains and method for producing the same
JP4642119B2 (en) Copper alloy and method for producing the same
JP4718273B2 (en) Reinforced α brass and method for producing the same
JP7195054B2 (en) Copper alloy sheet material and manufacturing method thereof
WO2011152104A1 (en) Cu-co-si-based alloy sheet, and process for production thereof
WO2017175569A1 (en) Titanium plate, heat exchanger plate, and fuel cell separator
JP2012167298A (en) Ferritic stainless steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100929

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110331

R150 Certificate of patent or registration of utility model

Ref document number: 4718273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250