JP5889698B2 - Cu-Zn alloy plate excellent in stress relaxation resistance and method for producing the same - Google Patents

Cu-Zn alloy plate excellent in stress relaxation resistance and method for producing the same Download PDF

Info

Publication number
JP5889698B2
JP5889698B2 JP2012078506A JP2012078506A JP5889698B2 JP 5889698 B2 JP5889698 B2 JP 5889698B2 JP 2012078506 A JP2012078506 A JP 2012078506A JP 2012078506 A JP2012078506 A JP 2012078506A JP 5889698 B2 JP5889698 B2 JP 5889698B2
Authority
JP
Japan
Prior art keywords
mass
less
content
rolling
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012078506A
Other languages
Japanese (ja)
Other versions
JP2013209676A (en
Inventor
大輔 橋本
大輔 橋本
章 畚野
章 畚野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012078506A priority Critical patent/JP5889698B2/en
Publication of JP2013209676A publication Critical patent/JP2013209676A/en
Application granted granted Critical
Publication of JP5889698B2 publication Critical patent/JP5889698B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えばスプリングリーフ形状の接点を持つ小型メス端子用として適する、耐応力緩和特性に優れるCu−Zn合金板及びその製造方法に関する。 The present invention relates to a Cu—Zn alloy plate excellent in stress relaxation resistance and suitable for a small female terminal having, for example, a spring leaf-shaped contact, and a method for producing the same .

嵌合型端子に用いられるCu−Zn合金(黄銅)板は、強度と曲げ加工性を重視して、平均結晶粒径を5μm前後としたものが多用されている。しかし、使用温度が高くなると、黄銅端子は応力緩和により接圧力が低下し、電気的信頼性が保てなくなる。このため、黄銅端子の使用環境は通常120℃以下に制限されてきた。
一方、電子部品の小型化に伴い、部品を構成する端子も小型化が進んでいる。この動きに合わせ、端子材も薄肉高強度のものが必要になっている。また、嵌合型端子の接点部形状は多用されてきたファストン型から、可動ばね片をもつリーフスプリング型が増加し、耐応力緩和特性が一層必要とされるようになっている。しかし、Cu−Zn合金板は耐応力緩和特性が低いことが問題となり、小型端子形状への適用がなされてこなかった。
A Cu—Zn alloy (brass) plate used for the fitting type terminal is often used with an average crystal grain size of around 5 μm in consideration of strength and bending workability. However, when the operating temperature increases, the contact pressure of the brass terminal decreases due to stress relaxation, and electrical reliability cannot be maintained. For this reason, the use environment of a brass terminal has been normally limited to 120 ° C. or less.
On the other hand, with the miniaturization of electronic components, the terminals constituting the components are also miniaturized. Along with this movement, the terminal material is required to be thin and high in strength. Further, the shape of the contact portion of the fitting type terminal is increased from the faston type which has been frequently used, and the leaf spring type having a movable spring piece is increased, and the stress relaxation resistance is further required. However, Cu-Zn alloy plates have a problem of low stress relaxation resistance, and have not been applied to small terminal shapes.

特許文献1には、耐応力腐食性及び耐応力緩和特性に優れるとされる端子用の黄銅が提案されている。しかし、この黄銅には、応力緩和率を改善するためMgが添加されているため、溶解時にMgが酸化して鋳塊に巻き込まれ、銅合金板に疵が入ったり、端子成形時に曲げ割れが発生する原因となる。また、耐応力緩和特性の測定条件が、現在の厳しい要求に対応していない。
特許文献2には、強度、導電率、曲げ加工性、耐応力緩和特性及び耐応力腐食割れ性等に優れるとされるリードフレームや端子用のCu−Zn合金が提案されている。しかし、このCu−Zn合金には、目的とする特性を得るため、比較的多くのSn,Fe,Pが添加されており、導電率は低くなっていると考えられる。
Patent Document 1 proposes a brass for terminals which is excellent in stress corrosion resistance and stress relaxation resistance. However, since this brass is added with Mg to improve the stress relaxation rate, Mg is oxidized and melted into the ingot at the time of melting, so that the copper alloy plate has wrinkles, and bending cracks occur during terminal molding. Cause it to occur. In addition, the measurement conditions for stress relaxation resistance do not meet current strict requirements.
Patent Document 2 proposes a lead frame and a Cu—Zn alloy for terminals that are excellent in strength, electrical conductivity, bending workability, stress relaxation resistance, and stress corrosion cracking resistance. However, a relatively large amount of Sn, Fe, P is added to this Cu—Zn alloy in order to obtain the desired characteristics, and it is considered that the conductivity is low.

特許文献3には、高強度で曲げ加工性に優れるとされる端子用の黄銅が提案され、特許文献4には、強度、導電率、曲げ加工性、耐応力緩和特性に優れるとされる端子用等のCu−Zn合金が提案されている。しかし、特許文献3,4では、熱間圧延の最終段階が600℃以下の低い温度で行われるため、熱間圧延後のCu−Zn合金の組織が混粒となりやすい。その後冷間圧延、熱処理を繰り返してもこの影響が残り、最終製品の組織が混粒となりやすく、そのため、特許文献3,4に記載されたCu−Zn合金は、安定した曲げ加工性及び耐応力緩和特性を得るのが難しいと考えられる。   Patent Document 3 proposes a brass for a terminal that has high strength and excellent bending workability, and Patent Document 4 discloses a terminal that has excellent strength, electrical conductivity, bending workability, and stress relaxation resistance. Cu-Zn alloys for use have been proposed. However, in Patent Documents 3 and 4, since the final stage of hot rolling is performed at a low temperature of 600 ° C. or less, the structure of the Cu—Zn alloy after hot rolling tends to be mixed grains. Thereafter, even if cold rolling and heat treatment are repeated, this effect remains, and the structure of the final product tends to be mixed grains. Therefore, the Cu-Zn alloy described in Patent Documents 3 and 4 has stable bending workability and stress resistance. It is considered difficult to obtain relaxation characteristics.

特開平06−041659号公報Japanese Patent Application Laid-Open No. 06-041659 特開2000−178670号公報JP 2000-178670 A 特開2006−188722号公報JP 2006-188722 A 特開2009−185341号公報JP 2009-185341 A

本発明は、従来のCu−Zn合金(黄銅)の上記問題点に鑑みてなされたもので、結晶組織を適正化することにより、高強度で曲げ加工性に優れ、同時に応力緩和特性に優れたCu−Zn合金を得ることを目的とする。   The present invention was made in view of the above-mentioned problems of the conventional Cu-Zn alloy (brass). By optimizing the crystal structure, the present invention has high strength and excellent bending workability, and at the same time excellent stress relaxation characteristics. It aims at obtaining a Cu-Zn alloy.

一般に、Cu−Zn合金(黄銅)の耐応力緩和特性は結晶粒径が大きいほうが改善できるとされる。一方、結晶粒径が大きくなりすぎると曲げ加工性が低下する。これに対し、本発明者らは、Cu−Zn合金の耐応力緩和特性及び曲げ加工性と結晶組織との関係を調査し、平均結晶粒径、結晶粒径の標準偏差及びアスペクト比を適正に制御することにより、耐応力緩和特性を向上させ、同時に曲げ加工性と強度特性を確保できることを見出した。   Generally, the stress relaxation resistance of a Cu—Zn alloy (brass) can be improved as the crystal grain size is larger. On the other hand, if the crystal grain size becomes too large, the bending workability is lowered. In contrast, the present inventors investigated the relationship between the stress relaxation resistance and bending workability of Cu-Zn alloy and the crystal structure, and appropriately set the average crystal grain size, standard deviation of crystal grain size, and aspect ratio. It has been found that by controlling, the stress relaxation resistance can be improved, and at the same time, bending workability and strength characteristics can be secured.

すなわち、本発明に係るCu−Zn合金板は、Zn:15〜37質量%を含有し、残部がCuと不可避不純物からなり、板面に垂直かつ圧延方向に平行な断面において、圧延方向に平行方向の平均結晶粒径が7〜15μm、圧延方向に平行方向及び垂直方向の結晶粒径の標準偏差が共に1.5μm以下であり、同断面において圧延方向に平行方向の平均結晶粒径をa、圧延方向に垂直方向の平均結晶粒径をbとしたときのアスペクト比a/bが1.6≦a/b≦2.6であることを特徴とする。なお、本発明において板という用語は条を含む意味で用いられる。
上記Cu−Zn合金板は、再結晶焼鈍後仕上げ冷間圧延した冷間圧延上がり材、又はこれをさらに低温焼鈍した調質材である。
That is, the Cu-Zn alloy plate according to the present invention contains Zn: 15 to 37% by mass, the balance is made of Cu and inevitable impurities, and is parallel to the rolling direction in a cross section perpendicular to the plate surface and parallel to the rolling direction. The average crystal grain size in the direction is 7 to 15 μm, the standard deviations of the crystal grain sizes in the direction parallel to and perpendicular to the rolling direction are both 1.5 μm or less, and the average crystal grain size in the direction parallel to the rolling direction is The aspect ratio a / b is 1.6 ≦ a / b ≦ 2.6, where b is the average crystal grain size in the direction perpendicular to the rolling direction. In the present invention, the term “plate” is used to include a strip.
The Cu—Zn alloy sheet is a cold-rolled material obtained by finish cold rolling after recrystallization annealing, or a tempered material obtained by further low-temperature annealing.

本発明によれば、JIS規格範囲の組成のCu−Zn合金(黄銅)において、高い耐応力緩和特性と同時に、優れた曲げ加工性及び高強度を確保できる。これにより、本発明に係るCu−Zn合金は、スプリングリーフ形状の接点を持つメス端子のほか、上記特性を必要とする主として小型の嵌合型端子の製造に適している。   According to the present invention, in a Cu-Zn alloy (brass) having a composition within the JIS standard range, excellent bending workability and high strength can be ensured simultaneously with high stress relaxation resistance. As a result, the Cu—Zn alloy according to the present invention is suitable for manufacturing mainly small-sized fitting-type terminals that require the above characteristics, in addition to female terminals having spring-leaf shaped contacts.

応力緩和現象は、加工により導入された材料内部の欠陥(転位・空孔)が、弾性の範囲内の応力負荷にもかかわらず、運動することにより、応力の負荷方向に塑性変形する現象である。この挙動は高温環境下ほど促進される。本発明では、高温環境下での使用を前提に、後述する応力緩和率測定試験において55%以下の応力緩和率を得ることを目標とした。
なお、端子はCu−Zn合金板(条)の長手方向に連なるようにプレス加工される。このため、例えばスプリングリーフ型の接点を持つメス端子のバネ(リーフスプリング)は、長手方向がT.D.方向(圧延方向に垂直な方向)となる。従って、メス端子のバネに必要な機械的特性は主としてT.D.方向の特性であり、耐応力緩和特性もT.D.方向に優れることが要求される。
The stress relaxation phenomenon is a phenomenon in which defects (dislocations and vacancies) inside the material introduced by processing move plastically in the direction of the stress load even though the stress load is within the elastic range. . This behavior is promoted at higher temperatures. In the present invention, on the premise of use in a high temperature environment, the objective was to obtain a stress relaxation rate of 55% or less in a stress relaxation rate measurement test described later.
The terminal is pressed so as to be continuous with the longitudinal direction of the Cu—Zn alloy plate (strip). For this reason, for example, a spring (leaf spring) of a female terminal having a spring leaf type contact has a longitudinal direction of T.P. D. Direction (direction perpendicular to the rolling direction). Therefore, the mechanical characteristics required for the spring of the female terminal are mainly T.P. D. The stress relaxation resistance is also a characteristic of T.W. D. It is required to be excellent in direction.

材料の曲げ加工性は、一般に板厚tと曲げ加工時に割れが発生しない最小曲げ半径Rとの関係で示され、R/tが小さいほど曲げ加工性に優れる。Cu−Zn合金板を実際にメス端子に加工する際に、最も厳しい曲げは箱形形状を形成する90°曲げであり、この場合、G.W.曲げ(曲げ軸は圧延方向に垂直)が重要となる。この箱形曲げに耐えうるために必要な材料の曲げ加工性として、後述する曲げ加工試験において、G.W.曲げのR/tが0.5以下となることを目標とした。
Cu−Zn合金の強度は、薄肉高強度のものが必要になっている現状に鑑み、T.D.方向(圧延方向に垂直な方向)及びL.D.方向(圧延方向に平行な方向)共に、引張強さが500N/mm以上、0.2%耐力が450N/mm以上を目標とした。
The bending workability of a material is generally shown by the relationship between the plate thickness t and the minimum bending radius R at which no cracking occurs during bending, and the smaller the R / t, the better the bending workability. When a Cu—Zn alloy plate is actually processed into a female terminal, the most severe bending is a 90 ° bending that forms a box shape. W. Bending (bending axis is perpendicular to the rolling direction) is important. As a bending workability of a material necessary to withstand this box-shaped bending, G.G. W. The aim was to have a bending R / t of 0.5 or less.
In view of the present situation that the strength of the Cu-Zn alloy is required to be thin and high strength, T.W. D. Direction (direction perpendicular to the rolling direction) and L. D. Direction (parallel to the rolling direction direction) together, a tensile strength of 500 N / mm 2 or more, a 0.2% proof stress was targeted 450 N / mm 2 or more.

本発明では、以上の機械的特性が得られるように、Cu−Sn合金板の結晶組織及び合金組成を規定した。以下、本発明に係るCu−Sn合金板の結晶組織及び合金組成、並びに製造方法について、具体的に説明する。
[結晶組織]
(圧延方向に平行方向の平均結晶粒径;7〜15μm)
板面に垂直かつかつ圧延方向に平行な断面において、圧延方向に平行方向の平均結晶粒径が7μm未満では、耐応力緩和特性が低下する。一方、平均結晶粒径が15μmを越えると、優れた曲げ加工性が確保できなくなる。上記断面において、平均結晶粒径が7〜15μmのとき、優れた耐応力緩和特性と曲げ加工性が両立し得る。従って、この平均結晶粒径は7〜15μmとし、望ましくは8〜13μmとする。なお、本発明では双晶界面を結晶粒界とみなす。
In the present invention, the crystal structure and alloy composition of the Cu-Sn alloy plate are defined so that the above mechanical characteristics can be obtained. Hereinafter, the crystal structure and alloy composition of the Cu—Sn alloy plate according to the present invention and the production method will be specifically described.
[Crystal structure]
(Average grain size in the direction parallel to the rolling direction; 7 to 15 μm)
In the cross section perpendicular to the plate surface and parallel to the rolling direction, if the average crystal grain size in the direction parallel to the rolling direction is less than 7 μm, the stress relaxation resistance decreases. On the other hand, if the average crystal grain size exceeds 15 μm, excellent bending workability cannot be secured. In the cross section, when the average crystal grain size is 7 to 15 μm, both excellent stress relaxation resistance and bending workability can be achieved. Therefore, the average crystal grain size is 7 to 15 μm, preferably 8 to 13 μm. In the present invention, the twin interface is regarded as a grain boundary.

(結晶粒径の標準偏差;1.5μm以下)
Cu−Sn合金板の結晶粒径が不均一でその標準偏差が大きいと、曲げ加工時に材料に導入される歪みが不均一となり、曲げ表面に荒れや割れが入りやすく、曲げ加工性が低下する。また、弾性変形の範囲内の応力が付加されたときも、材料内部の歪み分布が不均一になり、耐応力緩和特性が低下する。このため、結晶粒径の標準偏差はなるべく小さいほうが望ましく、本発明では、板面に垂直かつ圧延方向に平行な断面において、圧延方向に平行方向及び垂直方向の結晶粒径の標準偏差を共に1.5μm以下とする。望ましくは共に1.4μm以下とする。
(Standard deviation of crystal grain size: 1.5 μm or less)
If the crystal grain size of the Cu-Sn alloy plate is non-uniform and the standard deviation is large, the strain introduced into the material at the time of bending becomes non-uniform, the surface of the bending tends to be rough and cracked, and the bending workability decreases. . Further, even when a stress within the range of elastic deformation is applied, the strain distribution inside the material becomes non-uniform and the stress relaxation resistance is reduced. For this reason, it is desirable that the standard deviation of the crystal grain size is as small as possible. In the present invention, in the cross section perpendicular to the plate surface and parallel to the rolling direction, the standard deviation of the crystal grain size in both the parallel direction and the perpendicular direction to the rolling direction is 1 .5 μm or less. Preferably both are 1.4 μm or less.

(アスペクト比a/b;1.6〜2.6)
本発明に係るCu−Zn合金板は、再結晶焼鈍後仕上げ冷間圧延した冷間圧延上がり材、又はこの冷間圧延上がり材をさらに低温焼鈍した調質材である。Cu−Zn合金板の再結晶焼鈍後の再結晶粒は全体が等軸晶であり、これを冷間圧延すると、再結晶粒は圧延方向に伸張し、板厚方向に縮んで、アスペクト比a/b(板面に垂直かつ圧延方向に平行な断面において、圧延方向に平行方向の平均結晶粒径をa、圧延方向に垂直方向の平均結晶粒径をbとする)が1より大きくなる。このアスペクト比は低温焼鈍では変化しない。
アスペクト比a/bは、冷間圧延の加工率が増加するに従って増加し、それに伴いCu−Zn合金板の強度が向上する。従って、アスペクト比a/bは再結晶焼鈍後の冷間圧延の加工率と連動するパラメータということもできる。
アスペクト比a/bが1.6未満では冷間圧延の加工率が低く、Cu−Zn合金板の強度が不足し、一方、2.6を超えると曲げ加工性及び耐応力緩和特性が低下する。従って、アスペクト比a/bは、1.6〜2.6とする。このアスペクト比a/bの値は、ほぼ冷間圧延の加工率30%超〜60%に相当する。アスペクト比a/bの値は2.0〜2.5が好ましい。
(Aspect ratio a / b; 1.6 to 2.6)
The Cu—Zn alloy plate according to the present invention is a cold rolled finished material obtained by cold rolling after finishing recrystallization annealing or a tempered material obtained by further low-temperature annealing the cold rolled finished material. The recrystallized grains after the recrystallization annealing of the Cu—Zn alloy plate are entirely equiaxed crystals. When this is cold-rolled, the recrystallized grains expand in the rolling direction and shrink in the thickness direction, and the aspect ratio a / B (in a cross section perpendicular to the plate surface and parallel to the rolling direction, the average crystal grain size in the direction parallel to the rolling direction is a and the average crystal grain size in the direction perpendicular to the rolling direction is b) is greater than 1. This aspect ratio does not change with low temperature annealing.
The aspect ratio a / b increases as the cold rolling processing rate increases, and the strength of the Cu—Zn alloy sheet is improved accordingly. Therefore, the aspect ratio a / b can also be said to be a parameter linked to the cold rolling processing rate after recrystallization annealing.
If the aspect ratio a / b is less than 1.6, the cold rolling ratio is low and the strength of the Cu—Zn alloy sheet is insufficient. On the other hand, if the aspect ratio a / b exceeds 2.6, bending workability and stress relaxation resistance are deteriorated. . Therefore, the aspect ratio a / b is set to 1.6 to 2.6. The value of the aspect ratio a / b is substantially equivalent to a cold rolling ratio of more than 30% to 60%. The value of aspect ratio a / b is preferably 2.0 to 2.5.

[合金組成]
(Zn含有量;15〜37質量%)
Zn含有量が37質量%を越えるとβ層が存在するようになるため、硬さが急激に高くなり伸びが低下し、導電率の低下も大きくなる。また、耐応力腐食割れ性が低下し、脱Zn腐食が生じやすくなる。一方、Zn含有量が15質量%未満では強度が不足し、曲げ加工性や応力緩和特性が低下する。従って、Zn含有量は15〜37質量%とする。望ましくは25〜35質量%、さらに望ましくは28〜32質量%である。
[Alloy composition]
(Zn content; 15 to 37% by mass)
When the Zn content exceeds 37% by mass, the β layer comes to exist, so that the hardness increases rapidly, the elongation decreases, and the conductivity decreases greatly. In addition, the stress corrosion cracking resistance is reduced, and the Zn-free corrosion is likely to occur. On the other hand, when the Zn content is less than 15% by mass, the strength is insufficient, and bending workability and stress relaxation characteristics are deteriorated. Therefore, Zn content shall be 15-37 mass%. The amount is desirably 25 to 35% by mass, and more desirably 28 to 32% by mass.

本発明に係るCu−Zn合金には、下記のとおり、S,Ni,Sn,Fe,P,Al,Mgなど、Zn以外の元素が不可避不純物として含まれ、又は必要に応じて添加される。
(S;40質量ppm以下)
S濃度が高くなると、曲げ加工時に割れの起点となるSとZnの化合物の個数が増加し、特に含有量が40質量ppmを越えると急激に曲げ加工性が劣化する。従って、S含有量は40ppm以下に規制する。望ましくは30ppm以下である。
In the Cu—Zn alloy according to the present invention, elements other than Zn such as S, Ni, Sn, Fe, P, Al, and Mg are included as inevitable impurities as described below, or added as necessary.
(S; 40 mass ppm or less)
When the S concentration increases, the number of S and Zn compounds that become the starting point of cracking during bending increases, and particularly when the content exceeds 40 mass ppm, bending workability deteriorates rapidly. Therefore, the S content is restricted to 40 ppm or less. Desirably, it is 30 ppm or less.

(Ni;0.1質量%以下)
NiはCu−Zn合金中に固溶して耐応力緩和特性と強度を向上させる作用を有し、必要に応じて添加される。しかし、Niは導電率を低下させ、また、回復・再結晶を遅らせ、焼鈍時の結晶粒成長を抑制し、再結晶焼鈍後に前述の再結晶組織が得られにくくなる。そのため、含有量は0.1質量%以下とする。添加する場合は0.01〜0.1質量%の範囲とし、望ましくは0.01〜0.05%の範囲とする。
(Sn;0.1質量%以下)
SnはCu−Zn合金中に固溶し、Cuと比較して原子半径が大きいことから、サイズ効果により耐熱性を向上させ、耐応力緩和特性を向上させ、また圧延加工することにより、加工硬化により強度を向上させる作用を有するため必要に応じて添加される。しかし、Snは導電率を低下させるため含有量は0.1質量%以下とする。添加する場合は0.01〜0.1質量%の範囲とし、望ましくは0.01〜0.05質量%の範囲とする。
(Ni; 0.1 mass% or less)
Ni has a function of improving the stress relaxation resistance and strength by dissolving in a Cu-Zn alloy, and is added as necessary. However, Ni lowers the electrical conductivity, delays recovery and recrystallization, suppresses crystal grain growth during annealing, and makes it difficult to obtain the above-mentioned recrystallized structure after recrystallization annealing. Therefore, the content is 0.1% by mass or less. When added, the content is in the range of 0.01 to 0.1% by mass, preferably in the range of 0.01 to 0.05%.
(Sn; 0.1 mass% or less)
Sn is dissolved in Cu-Zn alloy and has a larger atomic radius than Cu. Therefore, heat resistance is improved by size effect, stress relaxation resistance is improved, and work hardening is achieved by rolling. Since it has the effect | action which improves intensity | strength, it is added as needed. However, Sn decreases the conductivity, so the content is 0.1% by mass or less. When added, the content is in the range of 0.01 to 0.1% by mass, desirably in the range of 0.01 to 0.05% by mass.

(Fe;0.05質量%以下)
FeはCu−Zn合金中に固溶又は析出し、軟化温度を上昇させる作用を有し、耐熱性が必要な場合には必要に応じて添加される。しかし、Feは導電率を低下させ、また、回復・再結晶を遅らせ、焼鈍時の結晶粒成長を抑制し、再結晶焼鈍後に前述の再結晶組織が得られにくくなる。そのため、Fe含有量は0.05質量%以下とする。添加する場合は0.001〜0.05質量%の範囲とし、望ましくは0.001〜0.02質量%の範囲とする。
(Fe; 0.05 mass% or less)
Fe dissolves or precipitates in the Cu—Zn alloy, has the effect of increasing the softening temperature, and is added as necessary when heat resistance is required. However, Fe lowers the electrical conductivity, delays recovery and recrystallization, suppresses crystal grain growth during annealing, and makes it difficult to obtain the above-mentioned recrystallized structure after recrystallization annealing. Therefore, the Fe content is 0.05% by mass or less. When adding, it is set as the range of 0.001-0.05 mass%, It is desirably set as the range of 0.001-0.02 mass%.

(P;0.01質量%以下)
PはCu−Zn合金中に固溶又はNi−P,Fe−Pとして析出し、耐熱性を向上させる作用があり、必要に応じて添加される。しかし、Pは導電率を低下させ、また、応力緩和特性を低下させるため、含有量は0.01質量%以下とする。添加する場合は0.001〜0.01質量%の範囲とし、望ましくは0.001〜0.005%の範囲とする。
(Al;0.1質量%以下)
AlはCu−Zn合金中に固溶し加工硬化により強度を向上させる作用を有し、必要に応じて添加されるが、導電率を低下させるため含有量は0.1質量%以下とする。添加する場合は0.01〜0.1質量%の範囲とし、望ましくは0.01〜0.02%の範囲とする。
(P; 0.01% by mass or less)
P is dissolved in the Cu—Zn alloy or precipitated as Ni—P, Fe—P, and has an effect of improving heat resistance, and is added as necessary. However, P lowers the electrical conductivity and lowers the stress relaxation characteristics, so the content is made 0.01% by mass or less. When added, the content is in the range of 0.001 to 0.01% by mass, preferably in the range of 0.001 to 0.005%.
(Al; 0.1 mass% or less)
Al dissolves in the Cu-Zn alloy and has the effect of improving the strength by work hardening. It is added as necessary, but its content is 0.1% by mass or less in order to reduce the electrical conductivity. When added, the content is in the range of 0.01 to 0.1% by mass, preferably in the range of 0.01 to 0.02%.

(Mg;0.01質量%以下)
Mgは耐応力緩和特性を改善する効果の大きい元素である。また、Cuマトリックス中に固溶することにより、Cu−Zn合金板の強度を向上させる。しかし、Mgは溶解時に酸化し、酸化したMgが鋳塊に巻き込まれやすく、それによる板の疵、曲げ成形時の割れ等の問題を発生させる。このため、Mgを添加する場合は0.01質量%以下とする。
(Mg; 0.01% by mass or less)
Mg is an element having a large effect of improving the stress relaxation resistance. Moreover, the strength of the Cu—Zn alloy plate is improved by dissolving in the Cu matrix. However, Mg is oxidized at the time of dissolution, and the oxidized Mg is easily caught in the ingot, thereby causing problems such as plate wrinkling and cracking during bending. For this reason, when adding Mg, it is 0.01 mass% or less.

[Cu−Zn合金板の製造方法]
本発明に係るCu−Zn合金板は、所定の合金組成を有する鋳塊を、通常の条件で均質化処理、熱間圧延、熱間圧延後の急冷及び両面の面削を行った後、粗冷間圧延、再結晶焼鈍、及び仕上げ冷間圧延を行い、さらに必要に応じて低温焼鈍を行うことで製造することができる。以下、粗冷間圧延、再結晶焼鈍、仕上げ冷間圧延、及び低温焼鈍についてより具体的に説明する。
[Method for producing Cu-Zn alloy sheet]
The Cu-Zn alloy plate according to the present invention is obtained by subjecting an ingot having a predetermined alloy composition to a roughing condition after performing homogenization treatment, hot rolling, rapid cooling after hot rolling, and both face chamfering under normal conditions. It can manufacture by performing cold rolling, recrystallization annealing, and finish cold rolling, and also performing low temperature annealing as needed. Hereinafter, rough cold rolling, recrystallization annealing, finish cold rolling, and low temperature annealing will be described more specifically.

(粗冷間圧延)
粗冷間圧延は、続く再結晶焼鈍において標準偏差が小さく等軸の再結晶粒を得るため、高い加工率で行う必要がある。具体的には、80%以上の加工率であれば、粗冷間圧延前の材料の結晶粒径や歪み状態に関わらず、転位を材料内部に高密度でかつ均等に分布させることができ、再結晶焼鈍時に一部の再結晶粒のみが粗大化するのを防止して、標準偏差が小さく等軸の再結晶粒を得ることができる。
(Rough cold rolling)
Rough cold rolling needs to be performed at a high processing rate in order to obtain equiaxed recrystallized grains with a small standard deviation in the subsequent recrystallization annealing. Specifically, if the processing rate is 80% or more, the dislocations can be distributed at high density and evenly within the material regardless of the crystal grain size and strain state of the material before the rough cold rolling, It is possible to prevent only some of the recrystallized grains from becoming coarse during recrystallization annealing, and to obtain equiaxed recrystallized grains with a small standard deviation.

(再結晶焼鈍)
再結晶焼鈍は、材料の再結晶を確実に完了させ、かつ再結晶焼鈍材の結晶粒径を全体にやや大きめ(仕上げ冷間圧延後の平均結晶粒径が7〜15μm)とするため、従来の再結晶焼鈍温度(450〜550℃)より高温の条件で行う。具体的には、連続焼鈍を想定した場合、到達温度を570〜700℃、望ましくは590〜650℃、さらに望ましくは600〜625℃とする。保持時間は10〜60秒程度の範囲内で選択すればよい。
再結晶焼鈍において再結晶が未完であったり、2次再結晶で一部の再結晶粒のみが粗大化すると、再結晶焼鈍材の結晶組織は不均一で、結晶粒のアスペクト比が大きく、又は/及び結晶粒径の標準偏差が大きくなる。その不均一な結晶組織は仕上げ冷間圧延後の結晶組織にも引き継がれ、結果的に、所定のアスペクト比及び標準偏差の結晶組織を有する製品(本発明に係るCu−Zn合金板)を得ることができない。従って、再結晶焼鈍材の結晶組織は、例えばアスペクト比が0.9〜1.2の等軸晶で、結晶粒径の標準偏差が1.5μm以下、さらに1.2μm以下の均一な組織とするのが望ましい。この結晶組織は、前記粗冷間圧延の加工率及び再結晶焼鈍条件で達成できる。
(Recrystallization annealing)
In the recrystallization annealing, since the recrystallization of the material is surely completed and the crystal grain size of the recrystallization annealing material is slightly larger as a whole (the average crystal grain size after finish cold rolling is 7 to 15 μm), The recrystallization annealing temperature (450 to 550 ° C.) is higher than that. Specifically, when continuous annealing is assumed, the ultimate temperature is 570 to 700 ° C., desirably 590 to 650 ° C., and more desirably 600 to 625 ° C. The holding time may be selected within a range of about 10 to 60 seconds.
If recrystallization is incomplete in recrystallization annealing, or if only some of the recrystallized grains are coarsened by secondary recrystallization, the crystal structure of the recrystallized annealing material is non-uniform and the aspect ratio of the grains is large, or / And the standard deviation of the crystal grain size increases. The non-uniform crystal structure is inherited by the crystal structure after finish cold rolling, and as a result, a product (Cu-Zn alloy plate according to the present invention) having a crystal structure with a predetermined aspect ratio and standard deviation is obtained. I can't. Therefore, the crystal structure of the recrystallized annealing material is, for example, an equiaxed crystal having an aspect ratio of 0.9 to 1.2, a standard deviation of crystal grain size of 1.5 μm or less, and a uniform structure of 1.2 μm or less. It is desirable to do. This crystal structure can be achieved under the rough cold rolling processing rate and recrystallization annealing conditions.

(仕上げ冷間圧延)
仕上げ冷間圧延の加工率が大きいほど、Cu−Zn合金板の強度が向上し、逆に曲げ加工性が低下する。また、加工率が大きいと材料内の可動転位密度が上昇し、これは応力緩和率の増大につながる。従って、仕上げ冷間圧延の加工率は、先に説明した目標強度、曲げ加工性、及び耐応力緩和特性が得られる範囲内で選択され、その数値は概ね30%超〜60%であり、望ましくは35〜55%である。
仕上げ冷間圧延の加工率が上記範囲内で大きいほど、板厚方向に垂直かつ圧延方向に平行な断面における圧延平行方向の平均結晶粒径及びアスペクト比(a/b)が増大する。なお、仕上げ冷間圧延の加工率が大きい領域では、再結晶焼鈍材に比べて結晶粒径の標準偏差もやや拡大する傾向がある。
(Finish cold rolling)
As the processing rate of finish cold rolling increases, the strength of the Cu—Zn alloy plate improves, and conversely, the bending workability decreases. Moreover, if the processing rate is large, the movable dislocation density in the material increases, which leads to an increase in the stress relaxation rate. Therefore, the processing rate of finish cold rolling is selected within the range in which the above-described target strength, bending workability, and stress relaxation resistance can be obtained, and its numerical value is preferably more than 30% to 60%, which is desirable. Is 35-55%.
As the processing rate of finish cold rolling is larger within the above range, the average crystal grain size and aspect ratio (a / b) in the rolling parallel direction in the cross section perpendicular to the sheet thickness direction and parallel to the rolling direction increase. Note that, in the region where the processing rate of finish cold rolling is large, the standard deviation of the crystal grain size tends to be slightly larger than that of the recrystallized annealing material.

(低温焼鈍)
仕上げ冷間圧延後低温焼鈍を施すことにより、仕上げ冷間圧延により導入された転位が再配列し、耐応力緩和特性を改善することができる。しかし、低温焼鈍の温度が低すぎると転位の再配列は起こらず歪み異常がおこり、耐応力緩和特性が改善しない。また、焼鈍温度が高すぎると転移密度が減少し軟化してしまう。強度を維持しつつ応力緩和特性を改善するため、連続焼鈍を想定した場合、硝石炉にて300〜400℃×10〜60秒が適当である。また、バッチ焼鈍の場合、150〜300℃×0.5〜2時間とするのが適当である。
(Low temperature annealing)
By performing low temperature annealing after finish cold rolling, the dislocations introduced by finish cold rolling can be rearranged to improve the stress relaxation resistance. However, if the temperature of the low-temperature annealing is too low, dislocation rearrangement does not occur, strain abnormality occurs, and the stress relaxation resistance does not improve. On the other hand, if the annealing temperature is too high, the transition density decreases and softens. In order to improve the stress relaxation characteristics while maintaining the strength, when continuous annealing is assumed, 300 to 400 ° C. × 10 to 60 seconds is appropriate in a glass stone furnace. In the case of batch annealing, it is appropriate that the temperature is 150 to 300 ° C. × 0.5 to 2 hours.

表1に示す組成のCu−Zn合金を溶解し、厚さ45mmの鋳塊を作成し、850℃ ×3時間の均熱処理後、熱間圧延を行って厚さ15mmとした。熱間圧延は600℃を超える温度で終了し、直ちに焼き入れた。ただし、No.22は厚さ約16mmまで圧延した時点で850℃に30分間加熱し、厚さ3.25mmまで熱間圧延した。終了温度は600℃を超えており、熱間圧延終了後、直ちに焼き入れた。
この熱間圧延材の表面を片側1mmずつ面削して、表面の酸化スケール及び傷を除去した後、粗冷間圧延を行い、厚さ0.31〜0.83mmとした。
続いてNo.1〜20,22は570〜650℃×20秒の再結晶焼鈍、No.21は500℃×20秒の再結晶焼鈍を行った後、種々の加工率で仕上げ冷間圧延を行って厚さ0.25mmのCu−Zn合金板を得た。No.4についてはさらに340℃×20秒の低温焼鈍を行った。表1に仕上げ冷間圧延の加工率を示す。
A Cu—Zn alloy having a composition shown in Table 1 was melted to prepare an ingot having a thickness of 45 mm. After soaking at 850 ° C. for 3 hours, hot rolling was performed to obtain a thickness of 15 mm. The hot rolling was finished at a temperature exceeding 600 ° C. and immediately quenched. However, no. When No. 22 was rolled to a thickness of about 16 mm, it was heated to 850 ° C. for 30 minutes and hot-rolled to a thickness of 3.25 mm. The end temperature exceeded 600 ° C., and was quenched immediately after the end of hot rolling.
The surface of this hot-rolled material was chamfered 1 mm on each side to remove the oxide scale and scratches on the surface, and then subjected to rough cold rolling to a thickness of 0.31 to 0.83 mm.
Subsequently, no. Nos. 1 to 20 and 22 are crystallization annealing at 570 to 650 ° C. × 20 seconds, No. 21 was subjected to recrystallization annealing at 500 ° C. for 20 seconds, followed by finish cold rolling at various processing rates to obtain a Cu—Zn alloy plate having a thickness of 0.25 mm. No. No. 4 was further subjected to low-temperature annealing at 340 ° C. for 20 seconds. Table 1 shows the processing rate of finish cold rolling.

Figure 0005889698
Figure 0005889698

得られたCu−Zn合金板を供試材とし、下記要領で結晶組織を観察し、機械的特性(引張特性、ばね限界値)、ビッカース硬さ、曲げ加工性、応力緩和特性、及び導電率の測定を行った。その結果を表2に示す。
(結晶組織)
板面に垂直かつ圧延方向に平行な断面を観察し、切断法により圧延方向に平行方向の平均結晶粒径a、圧延方向に垂直方向の平均結晶粒径bを求め、さらに結晶粒のアスペクト比a/bを計算した。また、圧延方向に平行方向の線分により完全に切られる各結晶粒の切断長さから、圧延方向に平行方向の結晶粒径の標準偏差(σa)を求め、圧延方向に垂直方向の線分により完全に切られる各結晶粒の切断長さから、圧延方向に垂直方向の結晶粒径の標準偏差(σb)を求めた。平均結晶粒径a,b及び結晶粒径の標準偏差(σa,σb)の測定に当たり、線分の長さは各供試材において一定とした。線分により完全に切られる結晶粒の数は10〜30個であった。また、双晶界面は結晶粒界とみなした。
Using the obtained Cu-Zn alloy plate as a test material, observe the crystal structure as follows, mechanical properties (tensile properties, spring limit values), Vickers hardness, bending workability, stress relaxation properties, and electrical conductivity Was measured. The results are shown in Table 2.
(Crystal structure)
Observe a cross-section perpendicular to the plate surface and parallel to the rolling direction, and obtain an average crystal grain size a parallel to the rolling direction and an average crystal grain size b perpendicular to the rolling direction by a cutting method. a / b was calculated. Further, the standard deviation (σa) of the crystal grain size parallel to the rolling direction is obtained from the cutting length of each crystal grain completely cut by the line parallel to the rolling direction, and the line segment perpendicular to the rolling direction is obtained. The standard deviation (σb) of the crystal grain size in the direction perpendicular to the rolling direction was determined from the cutting length of each crystal grain completely cut by the above. In measuring the average crystal grain size a, b and the standard deviation (σa, σb) of the crystal grain size, the length of the line segment was constant in each test material. The number of crystal grains completely cut by the line segment was 10-30. The twin interface was regarded as a grain boundary.

(引張特性)
各供試材から長手方向が圧延方向(L.D.)及び垂直方向(T.D.)となるようにJIS5号引張り試験片を採取し、JIS−Z2241に準拠して引張り試験を実施して、引張強度、0.2%耐力を測定した。
(ばね限界値)
各供試材から長手方向が圧延方向(L.D.)及び垂直方向(T.D.)となるように幅10mm×長さ200mmの試験片を採取し、JIS−H3130の繰り返したわみ式試験に準拠して、測定した。
(ビッカース硬さ)
JIS−Z2244に準拠し、試験力を0.49Nとしてビッカース硬さを測定した。
(Tensile properties)
JIS No. 5 tensile test specimens were collected from each specimen so that the longitudinal direction was the rolling direction (LD) and the vertical direction (TD), and a tensile test was performed in accordance with JIS-Z2241. The tensile strength and 0.2% proof stress were measured.
(Spring limit value)
A test piece having a width of 10 mm and a length of 200 mm was taken from each specimen so that the longitudinal direction was the rolling direction (LD) and the vertical direction (TD), and the JIS-H3130 repeated deflection test was performed. Measured according to
(Vickers hardness)
Based on JIS-Z2244, the test force was set to 0.49N and the Vickers hardness was measured.

(曲げ加工性)
各供試材から、幅10mm×長さ30mmのL.D.曲げ試験片(長手方向が圧延方向に平行方向)を採取し、伸銅協会標準JBMA−T307に規定されるW曲げ試験方法に従って、G.W.曲げ(曲げ軸が圧延方向に垂直となる曲げ加工)を行った。曲げ加工部の表面を100倍の光学顕微鏡により目視観察し、割れが発生しない最小曲げ半径Rを求め、この最小曲げ半径Rを板厚t(t=0.25mm)で除した値R/tを計算し、これを曲げ加工性の指標とした。
(Bending workability)
From each of the test materials, L.P. 10 mm wide × 30 mm long. D. A bending test piece (longitudinal direction parallel to the rolling direction) was collected and G.B. W. Bending (bending process in which the bending axis is perpendicular to the rolling direction) was performed. The surface of the bent portion is visually observed with a 100 × optical microscope to obtain a minimum bending radius R at which no crack is generated, and a value obtained by dividing the minimum bending radius R by a plate thickness t (t = 0.25 mm) R / t Was used as an index of bending workability.

(耐応力緩和特性)
各供試材から、幅10mmの短冊状T.D.試験片(長さ方向が圧延方向に垂直方向)を採取し、応力緩和率を片持ち梁方式で測定した。試験片の一端を剛体試験台に固定し、耐力の80%に相当する表面応力が固定端に負荷されるよう固定端からの評点間距離を算出し、その部分に10mmのたわみ量dを与えた。この状態の試験片を180℃のオーブン中に30時間保持した後に取り出し、たわみ量dを取り去ったときの永久歪みδを測定し、SRR=(δ/d)×100で応力緩和率SRRを計算した。なお、180℃×30hrの保持は、ラーソン・ミラーパラメーターで計算すると、ほぼ150℃×1000hrの保持に相当する。
(導電率)
導電率は、JIS−H0505に規定されている非鉄金属材料導電率測定法に準拠し、ダブルブリッジを用いた四端子法で測定した。
(Stress relaxation characteristics)
From each sample material, a strip-shaped T.P. D. A specimen (length direction is perpendicular to the rolling direction) was taken, and the stress relaxation rate was measured by a cantilever method. One end of the test piece is fixed to a rigid test stand, the distance between the ratings from the fixed end is calculated so that surface stress equivalent to 80% of the proof stress is applied to the fixed end, and a deflection amount d of 10 mm is given to that portion. It was. The test piece in this state is taken out after being held in an oven at 180 ° C. for 30 hours, and the permanent strain δ when the deflection amount d is removed is measured, and the stress relaxation rate SRR is calculated by SRR = (δ / d) × 100. did. Note that the holding at 180 ° C. × 30 hr corresponds to the holding at about 150 ° C. × 1000 hr when calculated with the Larson-Miller parameter.
(conductivity)
The conductivity was measured by a four-terminal method using a double bridge in accordance with a nonferrous metal material conductivity measurement method defined in JIS-H0505.

Figure 0005889698
Figure 0005889698

表2に示すように、本発明に規定する組成及び結晶組織を満たすNo.1〜10は、L.D.方向及びT.D.方向とも、引張強さが500N/mm以上、0.2%耐力が450N/mm以上の高い強度を有し、R/tが0.5以下で曲げ加工性に優れ、応力緩和率が55%以下で耐応力緩和特性に優れ、さらに高いT.D.方向のばね限界値と比較的高い導電率を有する。
一方、本発明に規定する組成及び結晶組織のどちらか一方又は双方を満たさないNo.11〜22は、強度、曲げ加工性、耐応力緩和特性及び導電率のいずれかの特性が劣る。
As shown in Table 2, No. 1 satisfying the composition and crystal structure defined in the present invention. 1-10 are L. D. Direction and T. D. Both direction, a tensile strength of 500 N / mm 2 or more, 0.2% proof stress has a 450 N / mm 2 or more high strength, R / t is excellent in bending workability in 0.5 or less, the stress relaxation ratio Less than 55%, excellent stress relaxation resistance and higher T.I. D. Has directional spring limit and relatively high conductivity.
On the other hand, no. 11 to 22 are inferior in any of strength, bending workability, stress relaxation resistance, and electrical conductivity.

個々にみると、No.11は平均結晶粒径が大きく、曲げ加工性を劣る。
No.12はアスペクト比a/bが小さく、強度が低い。
No.13はアスペクト比a/bが大きく、曲げ加工性及び耐応力緩和特性が劣り、仕上げ冷間加工率が高いため、導電率も低下している。
No.14は、Zn含有量が少なく、強度が低い。また、曲げ加工性及び耐応力緩和特性も劣る。
No.15は、Ni含有量が多いため再結晶粒の成長が抑制され、圧延方向に平行方向の平均結晶粒径aが小さく、アスペクト比a/bが小さく、結晶粒径の標準偏差σaが大きく、耐応力緩和特性が劣り、導電率も低下した。
No.16は、Sn含有量が多いため導電率が低下した。
No.17は、Fe含有量が多いため再結晶粒の成長が抑制され、圧延方向に平行方向の平均結晶粒径aが小さく、アスペクト比a/bが小さく、結晶粒径の標準偏差σaが大きく、曲げ加工性が低下し、耐応力緩和特性が劣り、導電率も低下した。
No.18は、P含有量が多いため導電率が低下し、応力緩和特性も劣る。
No.19は、Al含有量が多いため導電率が低下した。
No.20は、S含有量が多いため曲げ加工性が劣る。
No.21は、再結晶焼鈍を従来の条件で行ったもので、圧延方向に平行方向の平均結晶粒径aが小さく、耐応力緩和特性が劣る。
No.22は、粗冷間圧延を60%で行ったもので、冷間加工率が低く、材料に蓄積された転位の密度が不十分であったため、結晶粒径の標準偏差がσaが大きく、曲げ加工性が劣る。
Looking individually, no. No. 11 has a large average crystal grain size and is inferior in bending workability.
No. No. 12 has a small aspect ratio a / b and a low strength.
No. No. 13 has a large aspect ratio a / b, inferior bending workability and stress relaxation resistance, and a high finish cold work rate, so that the conductivity is also lowered.
No. No. 14 has low Zn content and low strength. Also, bending workability and stress relaxation resistance are inferior.
No. No. 15, since the Ni content is large, the growth of recrystallized grains is suppressed, the average crystal grain size a in the direction parallel to the rolling direction is small, the aspect ratio a / b is small, and the standard deviation σa of the crystal grain size is large, The stress relaxation resistance was inferior and the conductivity was also lowered.
No. Since No. 16 had much Sn content, electrical conductivity fell.
No. No. 17, since the Fe content is large, the growth of recrystallized grains is suppressed, the average crystal grain size a in the direction parallel to the rolling direction is small, the aspect ratio a / b is small, and the standard deviation σa of the crystal grain size is large, Bending workability was lowered, the stress relaxation resistance was inferior, and the conductivity was also lowered.
No. No. 18 has a high P content, resulting in a decrease in electrical conductivity and poor stress relaxation characteristics.
No. No. 19 had a low Al conductivity because of its high Al content.
No. No. 20 is inferior in bending workability because of its large S content.
No. No. 21 is obtained by performing recrystallization annealing under the conventional conditions, the average crystal grain size a in the direction parallel to the rolling direction is small, and the stress relaxation resistance is inferior.
No. No. 22 was obtained by rough cold rolling at 60%, the cold working rate was low, and the density of dislocations accumulated in the material was insufficient. Workability is inferior.

Claims (6)

Zn:15〜37質量%を含有し、残部がCuと不可避不純物からなり、不可避不純物のうちS含有量が40質量ppm以下で、板面に垂直かつ圧延方向に平行な断面において、圧延方向に平行方向の平均結晶粒径が7〜15μm、圧延方向に平行方向及び垂直方向の結晶粒径の標準偏差が共に1.5μm以下であり、同断面において圧延方向に平行方向の平均結晶粒径をa、圧延方向に垂直方向の平均結晶粒径をbとしたときのアスペクト比a/bが1.6≦a/b≦2.6であることを特徴とする耐応力緩和特性に優れるCu−Zn合金板。 Zn: 15 to 37% by mass, the balance is made of Cu and inevitable impurities, S content of the inevitable impurities is 40 ppm by mass or less, and in the cross section perpendicular to the plate surface and parallel to the rolling direction. The average crystal grain size in the parallel direction is 7 to 15 μm, the standard deviations of the crystal grain sizes in the parallel direction and the vertical direction in the rolling direction are both 1.5 μm or less. Cu, an aspect ratio a / b where the average crystal grain size in the direction perpendicular to the rolling direction is b is 1.6 ≦ a / b ≦ 2.6. Zn alloy plate. Ni含有量が0.1質量%以下、Sn含有量が0.1質量%以下、Fe含有量が0.05質量%以下、P含有量が0.01質量%以下、Al含有量が0.1質量%以下、Mg含有量が0.01質量%以下に制限されていることを特徴とする請求項1に記載された耐応力緩和特性に優れるCu−Zn合金板。 Ni content is 0.1 mass% or less, Sn content is 0.1 mass% or less, Fe content is 0.05 mass% or less, P content is 0.01 mass% or less, and Al content is 0.00. The Cu-Zn alloy plate having excellent stress relaxation resistance according to claim 1, wherein the Cu-Zn alloy sheet is limited to 1 mass% or less and the Mg content is limited to 0.01 mass% or less. 請求項1又は2に記載されたCu−Zn合金板からなり、スプリングリーフ形状の接点を持つメス端子。 A female terminal made of the Cu-Zn alloy plate according to claim 1 and having a spring leaf-shaped contact. Zn:15〜37質量%を含有し、残部がCuと不可避不純物からなり、不可避不純物のうちS含有量が40質量ppm以下のCu−Zn合金の鋳塊に対し、均質化処理、熱間圧延、熱間圧延後の急冷及び両面の面削、粗冷間圧延、再結晶焼鈍及び仕上げ圧延を行い、その際に前記粗冷間圧延は80%以上の加工率で行い、前記再結晶焼鈍は連続焼鈍で行い到達温度を570〜700℃、保持時間を10〜60秒の範囲内とし、前記仕上げ圧延は30%超〜60%の加工率で行い、板面に垂直かつ圧延方向に平行な断面において、圧延方向に平行方向の平均結晶粒径が7〜15μm、圧延方向に平行方向及び垂直方向の結晶粒径の標準偏差が共に1.5μm以下であり、同断面において圧延方向に平行方向の平均結晶粒径をa、圧延方向に垂直方向の平均結晶粒径をbとしたときのアスペクト比a/bが1.6≦a/b≦2.6であるCu−Zn合金板を製造することを特徴とする耐応力緩和特性に優れるCu−Zn合金板の製造方法。 Zn: 15 to 37% by mass, with the balance being Cu and unavoidable impurities, and ingot of Cu-Zn alloy with an S content of 40 mass ppm or less among the unavoidable impurities, homogenization treatment, hot rolling In addition, rapid cooling after hot rolling and both face milling, rough cold rolling, recrystallization annealing and finish rolling are performed . At that time, the rough cold rolling is performed at a processing rate of 80% or more, and the recrystallization annealing is performed. Continuous annealing is performed, the ultimate temperature is 570 to 700 ° C., the holding time is within the range of 10 to 60 seconds, and the finish rolling is performed at a processing rate of more than 30% to 60%, which is perpendicular to the plate surface and parallel to the rolling direction. In the cross section, the average crystal grain size in the direction parallel to the rolling direction is 7 to 15 μm, and the standard deviations of the crystal grain sizes in the parallel direction and the perpendicular direction to the rolling direction are both 1.5 μm or less. The average grain size of a is perpendicular to the rolling direction Excellent stress relaxation characteristics characterized by producing a Cu—Zn alloy plate having an aspect ratio a / b of 1.6 ≦ a / b ≦ 2.6 when the average crystal grain size in the direction is b A method for producing a Cu-Zn alloy plate. 仕上げ圧延後さらに低温度焼鈍を行うことを特徴とする請求項4に記載された耐応力緩和特性に優れるCu−Zn合金板の製造方法。5. The method for producing a Cu—Zn alloy sheet having excellent stress relaxation resistance according to claim 4, further comprising annealing at a low temperature after finish rolling. 前記Cu−Zn合金において、Ni含有量が0.1質量%以下、Sn含有量が0.1質量%以下、Fe含有量が0.05質量%以下、P含有量が0.01質量%以下、Al含有量が0.1質量%以下、Mg含有量が0.01質量%以下に制限されていることを特徴とする請求項4又は5に記載された耐応力緩和特性に優れるCu−Zn合金板の製造方法 In the Cu-Zn alloy, the Ni content is 0.1 mass% or less, the Sn content is 0.1 mass% or less, the Fe content is 0.05 mass% or less, and the P content is 0.01 mass% or less. Cu-Zn excellent in stress relaxation resistance according to claim 4 or 5, characterized in that the Al content is limited to 0.1 mass% or less and the Mg content is limited to 0.01 mass% or less. Manufacturing method of alloy plate .
JP2012078506A 2012-03-30 2012-03-30 Cu-Zn alloy plate excellent in stress relaxation resistance and method for producing the same Expired - Fee Related JP5889698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012078506A JP5889698B2 (en) 2012-03-30 2012-03-30 Cu-Zn alloy plate excellent in stress relaxation resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012078506A JP5889698B2 (en) 2012-03-30 2012-03-30 Cu-Zn alloy plate excellent in stress relaxation resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013209676A JP2013209676A (en) 2013-10-10
JP5889698B2 true JP5889698B2 (en) 2016-03-22

Family

ID=49527773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012078506A Expired - Fee Related JP5889698B2 (en) 2012-03-30 2012-03-30 Cu-Zn alloy plate excellent in stress relaxation resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5889698B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3892745A4 (en) * 2018-12-03 2021-11-24 JX Nippon Mining & Metals Corporation Corrosion-resistant cuzn alloy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4718273B2 (en) * 2005-02-04 2011-07-06 三井住友金属鉱山伸銅株式会社 Reinforced α brass and method for producing the same
JP5032011B2 (en) * 2005-08-09 2012-09-26 三井住友金属鉱山伸銅株式会社 Hard α brass and method for producing the hard α brass
JP5192648B2 (en) * 2006-02-03 2013-05-08 三井住友金属鉱山伸銅株式会社 Hard α brass with excellent moldability and method for producing the same
JP5247010B2 (en) * 2006-06-30 2013-07-24 Jx日鉱日石金属株式会社 Cu-Zn alloy with high strength and excellent bending workability
JP5109073B2 (en) * 2008-02-07 2012-12-26 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
JP2010222643A (en) * 2009-03-24 2010-10-07 Kobe Steel Ltd Copper alloy sheet having excellent bending workability

Also Published As

Publication number Publication date
JP2013209676A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
TWI577810B (en) Cu-ti based copper alloy plate, manufacture method thereof and conductive component
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP4566020B2 (en) Copper alloy sheet for electrical and electronic parts with low anisotropy
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
EP2957646B1 (en) High-strength cu-ni-co-si base copper alloy sheet, process for producing same, and current-carrying component
KR101554833B1 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment
JP5773929B2 (en) Copper alloy sheet for electrical and electronic parts with excellent bending workability and stress relaxation resistance
JP5840310B1 (en) Copper alloy sheet, connector, and method for producing copper alloy sheet
US10128019B2 (en) Copper alloy for electronic/electrical device, plastically-worked copper alloy material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP6196435B2 (en) Titanium copper and method for producing the same
JP2011508081A (en) Copper-nickel-silicon alloy
JP5039862B1 (en) Corson alloy and manufacturing method thereof
JPWO2010016428A1 (en) Copper alloy material for electrical and electronic parts
KR20160102989A (en) Copper alloy sheet material, connector, and production method for copper alloy sheet material
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
JP4350049B2 (en) Method for producing copper alloy sheet with excellent stress relaxation resistance
JP6080822B2 (en) Titanium copper for electronic parts and manufacturing method thereof
JP6155407B1 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts, terminals, and bus bars
JP6228725B2 (en) Cu-Co-Si alloy and method for producing the same
JP5889698B2 (en) Cu-Zn alloy plate excellent in stress relaxation resistance and method for producing the same
JP7213086B2 (en) Copper alloy sheet material and manufacturing method thereof
JP2017020115A (en) Titanium copper and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151103

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160217

R150 Certificate of patent or registration of utility model

Ref document number: 5889698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees