JP2010255085A - Titanium plate and method for producing titanium plates - Google Patents

Titanium plate and method for producing titanium plates Download PDF

Info

Publication number
JP2010255085A
JP2010255085A JP2009110105A JP2009110105A JP2010255085A JP 2010255085 A JP2010255085 A JP 2010255085A JP 2009110105 A JP2009110105 A JP 2009110105A JP 2009110105 A JP2009110105 A JP 2009110105A JP 2010255085 A JP2010255085 A JP 2010255085A
Authority
JP
Japan
Prior art keywords
titanium plate
titanium
range
pickling
vickers hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009110105A
Other languages
Japanese (ja)
Other versions
JP4584341B2 (en
Inventor
Yoshinori Ito
良規 伊藤
Yasuhiro Hayashida
康宏 林田
Yoshio Henmi
義男 逸見
Shogo Murakami
昌吾 村上
Shoo Katsura
翔生 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009110105A priority Critical patent/JP4584341B2/en
Priority to PCT/JP2010/057482 priority patent/WO2010126051A1/en
Priority to CN201080016195.9A priority patent/CN102387873B/en
Priority to KR1020117025286A priority patent/KR20120005473A/en
Publication of JP2010255085A publication Critical patent/JP2010255085A/en
Application granted granted Critical
Publication of JP4584341B2 publication Critical patent/JP4584341B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium plate which has satisfactory seizure resistance and crack resistance, thus has excellent press formability. <P>SOLUTION: In the titanium plate, the arithmetic mean roughness (Ra) lies in the range of 0.15 to 1.5 μm, the maximum height (Rz) lies in the range of 1.5 to 9.0 μm, skewness (Rsk) lies in the range of -3.0 to -0.5, the Vickers hardness at a measurement load of 0.098 N in the surface is higher than the Vickers hardness at a measurement load of 4.9 N, and a difference therebetween is ≤45. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱交換器用の部材、カメラボディー、厨房機器などの民生品やオートバイ、自動車等の輸送機器部材、家電機器等の外装材などに使用されるチタン板及びチタン板の製造方法に関する。   The present invention relates to a titanium plate used as a heat exchanger member, a consumer product such as a camera body and a kitchen device, a transport device member such as a motorcycle and an automobile, and an exterior material such as a home appliance, and a method of manufacturing the titanium plate.

チタン板は、耐食性に優れていることから、化学、電力及び食品製造プラントなどの熱交換器に使用されている。中でもチタン板を用いたプレート式熱交換器は、プレス成形によりチタン板を波目に加工して表面積を増やすことで熱交換効率を高めている。そのため、深い波目を付けるための成形性が必要である。また、カメラの筐体や家電製品の外装品、輸送用機器向け部材等へ加工するため優れた成形性が求められる。通常、成形性には板材そのものの加工性と潤滑性が要求される。   Titanium plates are excellent in corrosion resistance and are used in heat exchangers such as chemical, electric power and food production plants. In particular, a plate heat exchanger using a titanium plate increases the heat exchange efficiency by processing the titanium plate into a wave by press molding to increase the surface area. Therefore, the moldability for giving a deep corrugation is required. In addition, excellent formability is required for processing into camera casings, exterior products for home appliances, members for transportation equipment, and the like. Usually, the formability requires workability and lubricity of the plate itself.

チタン板は、r値(一軸引張変形時の板厚方向の対数ひずみに対する板幅方向の対数ひずみの比)が高く、板材そのものの絞り成形性が高いにも関わらず、活性な金属であるため成形工程で成形金型と焼付きを発生し、これが成形限界を低くする要因となっている。そのため、絞り加工を重視する成形品については、工具との焼付きを防止すること、すなわち、耐焼付き性を向上させることで成形性を向上させることができると一般的に言われている。   Titanium plate is an active metal despite its high r-value (ratio of logarithmic strain in the plate width direction to logarithmic strain in the plate thickness direction during uniaxial tensile deformation) and high drawability of the plate itself. A molding die and seizure occur in the molding process, which is a factor for lowering the molding limit. For this reason, it is generally said that for molded products that emphasize drawing, it is possible to improve moldability by preventing seizure with a tool, that is, by improving seizure resistance.

例えば、特許文献1には、表面に0.1μm以上、1.0μm以下の厚さの窒化チタン層を有し、その下層に窒素の拡散層を有することを特徴とするチタン薄板が記載されており、特許文献2には、表面に窒素富化層を有し、その厚さが0.5μm以上、5μm以下であることを特徴とする成形加工用チタン薄板が記載されており、特許文献3には、素地チタンの表層にTiC含有層が存在し、且つ該TiC含有層の厚さが300Å以上であることを特徴とするプレス成形性及び表面光沢に優れたチタン板が記載されている。
特許文献1〜3によれば、表面に硬化層を形成させることで耐焼付き性と成形性を改善できる旨が記載されている。
For example, Patent Document 1 describes a titanium thin plate having a titanium nitride layer with a thickness of 0.1 μm or more and 1.0 μm or less on the surface and a nitrogen diffusion layer under the titanium nitride layer. Patent Document 2 describes a titanium thin plate for forming, which has a nitrogen-enriched layer on the surface and has a thickness of 0.5 μm or more and 5 μm or less. Describes a titanium plate excellent in press moldability and surface gloss, characterized in that a TiC-containing layer is present on the surface layer of the base titanium and the thickness of the TiC-containing layer is 300 mm or more.
According to Patent Documents 1 to 3, it is described that seizure resistance and formability can be improved by forming a cured layer on the surface.

また、特許文献4には、チタン薄板の表面にて、荷重50gfのビッカース硬さ;HVS0.05が180〜280、荷重200gfのビッカース硬さ;HVS0.2が170以下であり、JIS Z 2247 B法に準拠したエリクセン値が11.5mm以上であることを特徴とする工業用純チタン薄板が記載されている。
特許文献4によれば、特許文献1〜3のチタン板よりも表面硬さを適度に下げることができる旨が記載されている。
Patent Document 4 discloses that the surface of a titanium thin plate has a Vickers hardness with a load of 50 gf; HVS0.05 is 180 to 280, a Vickers hardness with a load of 200 gf; HVS0.2 is 170 or less, and JIS Z 2247 B An industrial pure titanium thin plate characterized in that the Erichsen value according to the law is 11.5 mm or more is described.
According to Patent Document 4, it is described that the surface hardness can be appropriately reduced as compared with the titanium plates of Patent Documents 1 to 3.

さらに、特許文献5には、圧延方向と平行な方向における表面の算術平均粗さが0.25μm以上2.5μm以下であり、表面における試験荷重4.9Nによるビッカース硬さよりも試験荷重0.098Nによるビッカース硬さの方が20以上高く、かつ、試験荷重4.9Nによるビッカース硬さが180以下であることを特徴とするチタン板が記載されている。
特許文献5によれば、チタン板の表面の粗さをある程度粗くすることによって、プレス成形時におけるチタン板と成形金型の間への潤滑剤の引き込み量を増大させて焼付きを防止し、プレス成形後の焼付き疵を低減することができる旨が記載されている。
Further, in Patent Document 5, the arithmetic average roughness of the surface in the direction parallel to the rolling direction is 0.25 μm or more and 2.5 μm or less, and the test load is 0.098 N rather than the Vickers hardness due to the test load of 4.9 N on the surface. The titanium plate is characterized in that the Vickers hardness by 20 is higher than 20 and the Vickers hardness by test load 4.9N is 180 or less.
According to Patent Document 5, by increasing the roughness of the surface of the titanium plate to some extent, the amount of lubricant drawn between the titanium plate and the molding die during press molding is increased to prevent seizure, It describes that seizure flaws after press molding can be reduced.

また、特許文献6には、重量割合で、Fe、Ni及びCrの含有率が100ppm≦Fe≦700ppm、100ppm≦Ni+Cr≦700ppm、及び200ppm≦Fe+Ni+Cr≦1100ppmを満足し、かつO(酸素)の含有率が900ppm以下で、残部がTi及び不可避不純物からなる純チタン材に、冷間圧延を施し、次いで600〜850℃の温度で焼鈍処理を施して純チタン板の平均結晶粒径を20〜80μmとし、その後2重量%≦弗酸≦7重量%、4重量%≦硝酸≦20重量%、及び1重量%≦硝酸/弗酸≦5重量%を満足する硝弗酸水溶液で酸洗処理を施すことを特徴とする純チタン板の製造方法が記載されている。
特許文献6によれば、プレス等の加工の際に焼付きが生じ難く、プレス等の成形性が良好で、表面が清浄であり、しかも安価な純チタン板を製造することができる旨が記載されている。
In Patent Document 6, the content ratios of Fe, Ni, and Cr are 100 ppm ≦ Fe ≦ 700 ppm, 100 ppm ≦ Ni + Cr ≦ 700 ppm, and 200 ppm ≦ Fe + Ni + Cr ≦ 1100 ppm by weight ratio, and contain O (oxygen) A pure titanium material having a rate of 900 ppm or less and the balance of Ti and inevitable impurities is cold-rolled, and then annealed at a temperature of 600 to 850 ° C., so that the average crystal grain size of the pure titanium plate is 20 to 80 μm. And then pickling with an aqueous nitric hydrofluoric acid solution satisfying 2 wt% ≦ hydrofluoric acid ≦ 7 wt%, 4 wt% ≦ nitric acid ≦ 20 wt%, and 1 wt% ≦ nitric acid / hydrofluoric acid ≦ 5 wt%. A method for producing a pure titanium plate is described.
According to Patent Document 6, it is described that seizure hardly occurs during processing such as pressing, the formability of pressing is good, the surface is clean, and an inexpensive pure titanium plate can be manufactured. Has been.

他方、従来一般的に行われている張出成形評価として、エリクセン試験(JIS B 7729)があり、このエリクセン試験で規定された公知の技術が数多く存在する。このような公知の技術の場合、加工Rが比較的大きい(ポンチφ20)ため表面の割れの問題が顕在化し難く、表面の耐焼付き性を向上させることで成形性を向上させることができる場合があった。   On the other hand, there is an Erichsen test (JIS B 7729) as a stretch forming evaluation that has been generally performed conventionally, and there are many known techniques defined in this Eriksen test. In the case of such a known technique, since the processing R is relatively large (punch φ20), the problem of surface cracking is difficult to manifest, and the formability can be improved by improving the surface seizure resistance. there were.

特開平10−60620号公報Japanese Patent Laid-Open No. 10-60620 特開平10−204609号公報Japanese Patent Laid-Open No. 10-204609 特開2006−291362号公報JP 2006-291362 A 特許第3600792号明細書Japanese Patent No. 3600792 特開2002−3968号公報Japanese Patent Laid-Open No. 2002-3968 特開平10−30160号公報Japanese Patent Laid-Open No. 10-30160

しかし、特許文献1〜3には、表面に硬化層が形成されているので、耐焼付き性を重視する加工を施す製品への適用は好ましいが、張出成形や曲げ成形を重視する成形では逆に表面の割れが発生し易くなり成形性が劣化するという問題があった。   However, in Patent Documents 1 to 3, since a hardened layer is formed on the surface, it is preferable to apply it to products that are subjected to processing that emphasizes seizure resistance. There is a problem that surface cracks easily occur and the moldability deteriorates.

特許文献4には、表面硬度が高く割れが発生し易いと共に、表面形態が適切でなく焼付きが発生し易いという問題があった。つまり、厳しい形状になった場合、割れの発生を抑制できないという問題があった。さらに、焼付き防止のためにチタン板の表面に酸化皮膜を形成した場合、その厚さによっては光の干渉が生じ、意匠性を損なうという問題があった。   Patent Document 4 has a problem that the surface hardness is high and cracks are easily generated, and the surface form is not appropriate and seizure is likely to occur. That is, when it became a severe shape, there existed a problem that generation | occurrence | production of a crack could not be suppressed. Furthermore, when an oxide film is formed on the surface of the titanium plate to prevent seizure, there is a problem that the interference of light occurs depending on the thickness of the titanium plate and the design property is impaired.

特許文献5は、耐焼付き性向上のために表面の硬度を上げることを主眼にしているため、表面の割れが発生し易く、成形性を劣化させる問題があった。また、表面粗さを高くすることでプレス成形時の保油性を向上させているが、表面粗さの管理をRaのみで実施しているために十分な保油性を発揮できない場合があり、焼付きを防止するためには比較的厚い(つまり、割れ易い)酸化皮膜を形成する必要があった。また、この特許文献5では、表面粗さの制御方法としてショットブラストを実施しているが、その後の熱処理でチタン板の反りが発生し易く、その矯正が必要となり生産性が悪いという問題があった。さらに、粗研磨を施した圧延ロールを用いてチタン板に冷間圧延を施すことも実施されているが、この手法でチタン板の表面を粗面に調整した場合には、チタン板の表面に鋭部(凸部)が多く存在することになる。そのため、各鋭部の面圧が上昇するため工具と焼付き易く、また、凹凸が一方向に揃っているため、一度焼付きが発生した場合に焼付きが途切れることなく、不良品を発生し易いという問題があった。   Since Patent Document 5 focuses on increasing the surface hardness in order to improve seizure resistance, there is a problem that surface cracks are likely to occur and the moldability is deteriorated. In addition, oil retention during press molding is improved by increasing the surface roughness. However, since the surface roughness is managed only by Ra, sufficient oil retention may not be achieved. In order to prevent sticking, it was necessary to form a relatively thick (that is, easy to break) oxide film. Further, in Patent Document 5, shot blasting is performed as a method for controlling the surface roughness. However, there is a problem in that the titanium plate is easily warped in the subsequent heat treatment, and the correction is required and productivity is poor. It was. Furthermore, cold rolling is also performed on the titanium plate using a rolling roll subjected to rough polishing, but when the surface of the titanium plate is adjusted to a rough surface by this method, the surface of the titanium plate is There are many sharp parts (convex parts). For this reason, the surface pressure of each sharp part rises, so it is easy to seize with the tool, and because the unevenness is aligned in one direction, once seizure occurs, seizure is not interrupted and defective products are generated. There was a problem that it was easy.

また、特許文献6には、添加した元素が結晶粒の成長を阻害し、所望の粒径を得るには長時間の熱処理が必要になるため生産性を落とすとともに、所望の粒径を得た場合にも成形性そのものが悪いという問題があった。また、粒界に元素を偏析させた後、酸洗工程で粒界部を優先的に溶解させているため、粒界に沿って鋭い切り欠きの様な凹部が多数形成され易い。従って、張出成形や曲げ成形を重視する場合は割れ発生の起点となり易く、成形性を劣化させるという問題があった。   Further, in Patent Document 6, the added element inhibits the growth of crystal grains, and a long heat treatment is required to obtain a desired particle size, so that productivity is lowered and a desired particle size is obtained. In some cases, the moldability itself was poor. In addition, since the grain boundary portion is preferentially dissolved in the pickling process after the elements are segregated at the grain boundary, many concave portions such as sharp notches are easily formed along the grain boundary. Therefore, when emphasis is placed on overhang forming or bending forming, there is a problem that cracking is likely to be the starting point, and formability is deteriorated.

そして、従来公知の技術では、プレート式熱交換器部材のように加工Rが小さく、成形深さが深い形状(深く細い溝形状)に成形する場合、R部で割れが発生し易いことが分かった。これは、耐焼付き性向上のために厚い酸化皮膜や窒化皮膜を形成すると、逆に割れが発生し易くなって成形性を劣化させることによるものであり、厚い酸化皮膜や窒化皮膜の形成が成形限界を決める主要因となることが分かった。   And in the conventionally known technology, it is understood that when the processing R is small and the forming depth is deep (like a deep and thin groove shape) like the plate heat exchanger member, cracking is likely to occur at the R portion. It was. This is because when a thick oxide film or nitride film is formed to improve seizure resistance, cracks tend to occur and the formability deteriorates. It turns out that it becomes the main factor which determines a limit.

本発明はこのような背景のもとになされたものであり、良好な耐焼付き性、耐割れ性を有することで優れたプレス成形性を発揮するチタン板及びチタン板の製造方法を提供することを課題とする。   The present invention was made based on such a background, and provides a titanium plate that exhibits excellent press formability by having good seizure resistance and crack resistance, and a method for producing the titanium plate. Is an issue.

チタン表面を割れ難くするためには酸化皮膜などの硬化層を取り除くことが有効である。しかし、硬化層が取り除かれたチタン表面は一般的に成形金型の表面と焼付き易くなる。焼付きが発生すると、割れの起点となるほか、割れに発展しない場合であっても成形金型にチタンが付着するため成形金型を研磨する必要が生じ、生産性を低下させる問題がある。そのため、硬化層の除去と耐焼付き性の両立が課題であった。   In order to make the titanium surface difficult to break, it is effective to remove a hardened layer such as an oxide film. However, the titanium surface from which the hardened layer has been removed generally tends to seize with the surface of the molding die. When seizure occurs, it becomes a starting point of cracking, and even if it does not develop into cracking, titanium adheres to the molding die, so that it is necessary to polish the molding die and there is a problem that productivity is lowered. Therefore, it has been a problem to achieve both the removal of the cured layer and the seizure resistance.

本発明者らは鋭意研究した結果、表面の凹凸の形態をより適切化することでプレス成形時のプレス油の潤滑効果を最大限に発揮させて耐焼付き性を向上させることによって、表面の割れ防止と、チタン板と成形金型の焼付き防止との両立を図ることができ、これによって前記した課題を解決できることを見出し、本発明を完成させるに至った。   As a result of diligent research, the present inventors have demonstrated that the surface cracks are improved by improving the seizure resistance by maximizing the lubricating effect of the press oil during press molding by optimizing the shape of the surface irregularities. It has been found that it is possible to achieve both the prevention and the seizure prevention of the titanium plate and the molding die, thereby solving the above-mentioned problems, and the present invention has been completed.

(1)前記課題を解決した本発明に係るチタン板は、算術平均粗さ(Ra)が0.15〜1.5μmの範囲であり、最大高さ(Rz)が1.5〜9.0μmの範囲であり、ひずみ度(Rsk)が−3.0〜−0.5の範囲であり、且つ表面における測定荷重0.098Nでのビッカース硬さが、測定荷重4.9Nでのビッカース硬さよりも高く、その差が45以下であることを特徴としている。 (1) The titanium plate according to the present invention that has solved the above problems has an arithmetic average roughness (Ra) in the range of 0.15 to 1.5 μm and a maximum height (Rz) of 1.5 to 9.0 μm. The Vickers hardness at a measurement load of 0.098N on the surface is more than the Vickers hardness at a measurement load of 4.9N, and the degree of strain (Rsk) is in the range of -3.0 to -0.5. The difference is 45 or less.

このように、算術平均粗さ(Ra)及び最大高さ(Rz)をそれぞれ特定の数値範囲とすることによって、保油性を発揮することができるとともに、切欠効果による割れを誘発し難くすることができる。また、ひずみ度(Rsk)を特定の数値範囲とすることによって、平滑部への面圧が上昇することを防止することができるので、局部塑性変形と焼付きを防止することができる。そして、表面における測定荷重0.098Nでのビッカース硬さが、測定荷重4.9Nでのビッカース硬さよりも高く、その差を45以下とすること、つまり、表面に硬化層を形成させないようにすることで、成形時の表面割れを発生し難くしている。   As described above, by setting the arithmetic average roughness (Ra) and the maximum height (Rz) to a specific numerical value range, it is possible to exhibit oil retention and make it difficult to induce cracking due to the notch effect. it can. Moreover, since it can prevent that the surface pressure to a smooth part raises by making distortion degree (Rsk) into a specific numerical value range, local plastic deformation and seizure can be prevented. And, the Vickers hardness at the measurement load of 0.098N on the surface is higher than the Vickers hardness at the measurement load of 4.9N, and the difference is set to 45 or less, that is, no hardened layer is formed on the surface. This makes it difficult for surface cracks to occur during molding.

(2)本発明に係るチタン板は、JIS G 0552に規定の切断法により切断した断面を光学顕微鏡で観察した場合における結晶粒径が、平均切片長さで20〜80μmの範囲であるのが好ましい。
JIS G 0552に規定の切断法により切断した断面を光学顕微鏡で観察した場合における結晶粒径の平均切片長さをこのような特定の数値範囲とすれば、酸洗工程によってチタン板表面の凹凸が適度に粗くなるためより優れた保油性を得ることができる。
(2) The titanium plate according to the present invention has a crystal grain size in the range of 20 to 80 μm in average slice length when a cross section cut by a cutting method defined in JIS G 0552 is observed with an optical microscope. preferable.
If the average section length of the crystal grain size in the case where the cross section cut by the cutting method specified in JIS G 0552 is observed with an optical microscope is in such a specific numerical range, the pickling process causes unevenness on the surface of the titanium plate. Since it becomes moderately rough, more excellent oil retention can be obtained.

(3)本発明に係るチタン板は、板厚が1.0mm以下であるのが好ましい。
このような板厚とすれば、熱交換器用の部材として好適に使用することができるようになる。
(3) The titanium plate according to the present invention preferably has a plate thickness of 1.0 mm or less.
With such a plate thickness, it can be suitably used as a member for a heat exchanger.

(4)本発明に係るチタン板の製造方法は、冷間圧延後のチタン板を結晶粒径が20〜80μmとなるように大気焼鈍を行う大気焼鈍工程と、前記大気焼鈍工程後のチタン板を硝酸/フッ酸比が1以上10以下の酸洗浴中で酸洗する酸洗工程と、前記酸洗工程後のチタン板を圧下率が0.2〜1.0%のスキンパス圧延を行うスキンパス圧延工程とを含むことを特徴としている。 (4) The method for producing a titanium plate according to the present invention includes an atmospheric annealing step in which the titanium plate after cold rolling is subjected to atmospheric annealing so that the crystal grain size is 20 to 80 μm, and the titanium plate after the atmospheric annealing step. Pickling in a pickling bath having a nitric acid / hydrofluoric acid ratio of 1 to 10 and a skin pass rolling the titanium plate after the pickling step with a rolling reduction of 0.2 to 1.0%. A rolling process.

このように、冷間圧延後に行う大気焼鈍工程によって結晶粒径を所望の大きさにすることができる。そして、大気焼鈍工程によって結晶粒径を所望の大きさにしたチタン板に対して行う酸洗工程及びスキンパス圧延工程をそれぞれ特定条件とすることによって、チタン板表面の凹凸を所望の状態、すなわち、所望の算術平均粗さ(Ra)と最大高さ(Rz)とひずみ度(Rsk)とにすることができる。   Thus, the crystal grain size can be made to a desired size by the atmospheric annealing process performed after cold rolling. And, by making each of the pickling step and skin pass rolling step performed on the titanium plate having a crystal grain size a desired size by the atmospheric annealing step as a specific condition, the unevenness of the titanium plate surface is in a desired state, that is, Desired arithmetic average roughness (Ra), maximum height (Rz), and degree of distortion (Rsk) can be obtained.

本発明に係るチタン板によれば、良好な耐焼付き性及び耐割れ性を有することで優れたプレス成形性を発揮することができる。
また、本発明に係るチタン板の製造方法によれば、良好な耐焼付き性及び耐割れ性を有することで優れたプレス成形性を発揮するチタン板を製造することができる。
The titanium plate according to the present invention can exhibit excellent press formability by having good seizure resistance and crack resistance.
Moreover, according to the manufacturing method of the titanium plate which concerns on this invention, the titanium plate which exhibits the outstanding press-formability by having favorable seizure resistance and crack resistance can be manufactured.

本発明に係るチタン板の製造方法のフローを説明するフローチャートである。It is a flowchart explaining the flow of the manufacturing method of the titanium plate which concerns on this invention. (a)は、成形性の評価を行うための成形金型の形状を示す平面図であり、(b)は、(a)のF−F線断面図である。(A) is a top view which shows the shape of the shaping die for performing a moldability evaluation, (b) is the FF sectional view taken on the line of (a). (a)は、試験体No.7の表面のSEM像であり、(b)は、試験体No.7の圧延方向に対して垂直方向に測定した粗さ曲線を示すグラフである。(A) shows specimen No. 7 is a SEM image of the surface of FIG. 7 is a graph showing a roughness curve measured in a direction perpendicular to a rolling direction of 7. (a)は、試験体No.10の表面のSEM像であり、(b)は、試験体No.10の圧延方向に対して垂直方向に測定した粗さ曲線を示すグラフである。(A) shows specimen No. 10 is an SEM image of the surface of No. 10; It is a graph which shows the roughness curve measured to the orthogonal | vertical direction with respect to 10 rolling directions.

本発明の趣旨は、表面の凹凸の形態と硬さの制御に着目し、耐焼付き性と耐割れ性を両立できるチタン板とすることによって優れた成形性を発揮するようにしたことにある。また、本発明の趣旨は、かかるチタン板を製造するチタン板の製造方法としたことにある。
ここで、本発明における成形性とは、板材の加工性の他、プレス工具との潤滑性及び工具に対する耐焼付き性を総称したものをいう。
The gist of the present invention is to provide excellent formability by paying attention to the control of the form and hardness of the surface irregularities and making the titanium plate compatible with seizure resistance and crack resistance. The gist of the present invention is to provide a titanium plate manufacturing method for manufacturing such a titanium plate.
Here, the formability in the present invention refers to a general term for not only the workability of the plate material but also the lubricity with the press tool and the seizure resistance to the tool.

本発明に係るチタン板は、算術平均粗さ(Ra)が0.15〜1.5μmの範囲であり、最大高さ(Rz)が1.5〜9.0μmの範囲であり、ひずみ度(Rsk)が−3.0〜−0.5の範囲であり、且つ表面における測定荷重0.098Nでのビッカース硬さが、測定荷重4.9Nでのビッカース硬さよりも高く、その差が45以下となるようにしている。なお、算術平均粗さ(Ra)、最大高さ(Rz)及びひずみ度(Rsk)は、JIS B 0601:2001に準拠している。   The titanium plate according to the present invention has an arithmetic average roughness (Ra) in the range of 0.15 to 1.5 μm, a maximum height (Rz) in the range of 1.5 to 9.0 μm, and a strain ( Rsk) is in the range of -3.0 to -0.5, and the Vickers hardness at the measurement load of 0.098N on the surface is higher than the Vickers hardness at the measurement load of 4.9N, and the difference is 45 or less. It is trying to become. Arithmetic mean roughness (Ra), maximum height (Rz), and degree of distortion (Rsk) are based on JIS B 0601: 2001.

本発明に係るチタン板は、基本的に表面に硬化層が形成されておらず、表面に対して、X線源をCu−Kαとする入射角1°の薄膜法によるX線回折を行った際に、TiC、TiNのピークが殆ど検出されない。ここで、硬化層とは雰囲気制御条件下での熱処理で意図的に形成した皮膜をいい、例えば、酸化皮膜、窒化物皮膜、炭化物皮膜、並びにこれらを1種以上含む皮膜が該当する。なお、酸洗処理で形成される酸化皮膜や、室温で大気中に放置しておくことにより自然に形成される自然酸化皮膜は不動態皮膜というが、このような不動態皮膜は硬化層とはいわない。硬化層の厚さは、ビッカース硬度で規定する。これについては後記する。   The titanium plate according to the present invention basically has no hardened layer formed on the surface, and the surface was subjected to X-ray diffraction by a thin film method with an incident angle of 1 ° with an X-ray source of Cu-Kα. At this time, the peaks of TiC and TiN are hardly detected. Here, the hardened layer means a film intentionally formed by heat treatment under controlled atmosphere conditions, and examples thereof include an oxide film, a nitride film, a carbide film, and a film containing one or more of these. In addition, an oxide film formed by pickling treatment or a natural oxide film formed naturally by leaving it in the atmosphere at room temperature is called a passive film, but such a passive film is a cured layer. Not say. The thickness of the hardened layer is defined by Vickers hardness. This will be described later.

そして、本発明に係るチタン板では、直径10μm以上の凹部が表面上に不連続に形成されている。凹部は、油溜まりとして働き、保油性を向上させる。また凹部が不連続に形成されているため、仮に、ある凸部や平滑部で焼付きが発生したとしても凹部で焼付きが止まり、大きな焼付きに発展することを防止することができる。また、凹部の深さを凹部の直径よりも小さくしているため、凹部が切り欠きとして作用(切欠効果)しないようにすることもでき、さらに、凹部のサイズ(大きさ、深さ)、頻度を規定するには、一般的に管理指標として用いられている算術平均粗さ(Ra)のみでは不十分であることを解明したため、凹部の深さを規定する最大高さ(Rz)、及び凹部の頻度を規定するひずみ度(Rsk)を管理指標として、これらを特定の数値範囲に規定している。なお、凹部のサイズはSEM(走査型電子顕微鏡)によりチタン板の表面を観察することにより判断することができる。   And in the titanium plate which concerns on this invention, the recessed part 10 micrometers or more in diameter is formed discontinuously on the surface. The recess works as an oil reservoir and improves oil retention. Moreover, since the recessed part is formed discontinuously, even if seizure occurs in a certain convex part or a smooth part, seizure stops at the recessed part, and it can be prevented that the seizure develops into a large seizure. Moreover, since the depth of the recess is smaller than the diameter of the recess, the recess can be prevented from acting as a notch (notch effect), and the size (size, depth) and frequency of the recess. It has been clarified that the arithmetic average roughness (Ra), which is generally used as a management index, is insufficient to define the maximum height (Rz) that defines the depth of the recess, and the recess The degree of distortion (Rsk) that prescribes the frequency is defined as a management index, and these are defined in a specific numerical range. The size of the recess can be determined by observing the surface of the titanium plate with an SEM (scanning electron microscope).

このように、算術平均粗さ(Ra)及び最大高さ(Rz)をそれぞれ特定の数値範囲とすることによって、保油性を発揮することができるとともに、切欠効果による割れを誘発し難くすることができる。また、ひずみ度(Rsk)を特定の数値範囲とすることによって、平滑部への面圧が上昇することを防止することができるので、局部塑性変形と焼付きを防止することができる。そして、表面における測定荷重0.098Nでのビッカース硬さが、測定荷重4.9Nでのビッカース硬さよりも高く、その差を45以下とすること、つまり、表面に硬化層を形成させないようにすることで、成形時の表面割れを発生し難くしている。
以下、これらを規定したことについて詳細に説明する。
As described above, by setting the arithmetic average roughness (Ra) and the maximum height (Rz) to a specific numerical value range, it is possible to exhibit oil retention and make it difficult to induce cracking due to the notch effect. it can. Moreover, since it can prevent that the surface pressure to a smooth part raises by making distortion degree (Rsk) into a specific numerical value range, local plastic deformation and seizure can be prevented. And, the Vickers hardness at the measurement load of 0.098N on the surface is higher than the Vickers hardness at the measurement load of 4.9N, and the difference is set to 45 or less, that is, no hardened layer is formed on the surface. This makes it difficult for surface cracks to occur during molding.
Hereinafter, the definition of these will be described in detail.

(組成)
本発明に係るチタン板は、特定の組成のチタン板に限定されるものではないが、母材の成形性確保の観点から以下の組成範囲であることが好ましい。
Oを1500ppm以下、より好ましくは1000ppm以下に抑制し、Feを1500ppm以下、より好ましくは1000ppm以下に抑制し、Hを130ppm以下に抑制し、Cを800ppm以下に抑制し、Nを300ppmに抑制し、その他残部はTiであるのが好ましい。なお、これらのO、Fe、N、C、Hは純チタンに含まれる一般的な不純物元素(積極的に添加しない元素)、つまり、不可避不純物である。
(composition)
The titanium plate according to the present invention is not limited to a titanium plate having a specific composition, but is preferably in the following composition range from the viewpoint of securing moldability of the base material.
O is suppressed to 1500 ppm or less, more preferably 1000 ppm or less, Fe is suppressed to 1500 ppm or less, more preferably 1000 ppm or less, H is suppressed to 130 ppm or less, C is suppressed to 800 ppm or less, and N is suppressed to 300 ppm. The other balance is preferably Ti. These O, Fe, N, C, and H are general impurity elements (elements that are not actively added) contained in pure titanium, that is, inevitable impurities.

(表面粗さ)
板材表面の平均的な摩擦係数に影響を与えるために算術平均粗さ(Ra)を規定するが、算術平均粗さ(Ra)では凹部の深さを表現することができないため最大高さ(Rz)も併せて規定する。
また、算術平均粗さ(Ra)及び最大高さ(Rz)とも粗さの高さ方向(縦方向)のみの情報を定量化したものであり、横方向(面内)の形状の情報が含まれていない。そのため、表面の凹部の面内の形状及び分布状態を定量化するためにひずみ度(Rsk)を規定する。
(Surface roughness)
In order to influence the average friction coefficient of the plate surface, the arithmetic average roughness (Ra) is defined. However, since the arithmetic average roughness (Ra) cannot express the depth of the recess, the maximum height (Rz ) Is also provided.
The arithmetic average roughness (Ra) and the maximum height (Rz) are quantified information only in the height direction (longitudinal direction) of the roughness, and include information on the shape in the horizontal direction (in-plane). Not. Therefore, the degree of distortion (Rsk) is defined in order to quantify the shape and distribution state of the concave portion on the surface.

(算術平均粗さ(Ra))
算術平均粗さ(Ra)は前記したように、板材表面の平均的な摩擦係数に影響を与えるために規定するものである。
算術平均粗さ(Ra)が0.15μm未満であると、保油性を発揮できない。一方で、算術平均粗さ(Ra)が1.5μmを超えると、切欠効果による割れを誘発し、成形性を劣化させる可能性がある。また、摩擦係数が大きくなるので板材の流動を阻害し、局所変形が起こり易くなるため割れが発生し易くなる。さらに、プレス荷重を増大させるため好ましくない。
従って、算術平均粗さ(Ra)は、0.15〜1.5μmの範囲とする必要がある。なお、算術平均粗さ(Ra)は、0.2〜1.5μmの範囲とするのが好ましく、0.2〜1.0μmの範囲とするのがより好ましい。
(Arithmetic mean roughness (Ra))
As described above, the arithmetic average roughness (Ra) is specified in order to affect the average friction coefficient of the plate material surface.
If the arithmetic average roughness (Ra) is less than 0.15 μm, the oil retaining property cannot be exhibited. On the other hand, if the arithmetic average roughness (Ra) exceeds 1.5 μm, cracking due to a notch effect may be induced and formability may be deteriorated. Further, since the coefficient of friction increases, the flow of the plate material is hindered, and local deformation is likely to occur, so that cracking is likely to occur. Furthermore, it is not preferable because the press load is increased.
Therefore, the arithmetic average roughness (Ra) needs to be in the range of 0.15 to 1.5 μm. The arithmetic average roughness (Ra) is preferably in the range of 0.2 to 1.5 μm, and more preferably in the range of 0.2 to 1.0 μm.

(最大高さ(Rz))
最大高さ(Rz)は前記したように、凹部の深さを規定するものである。
最大高さ(Rz)が1.5μm未満であると、凹部の深さが不十分で良好な保油性を発揮できないため、成形中に焼付きが発生し易くなる。一方で、最大高さ(Rz)が9.0μmを超えると、切欠効果により割れの起点と成り得る。
従って、最大高さ(Rz)は、1.5〜9.0μmの範囲とする必要がある。なお、最大高さ(Rz)は、1.8〜9.0μmの範囲とするのが好ましく、1.8〜6.0μmの範囲とするのがより好ましい。
(Maximum height (Rz))
The maximum height (Rz) defines the depth of the recess as described above.
If the maximum height (Rz) is less than 1.5 μm, the depth of the recesses is insufficient and good oil retention cannot be exhibited, and seizure is likely to occur during molding. On the other hand, if the maximum height (Rz) exceeds 9.0 μm, it can be the starting point of cracking due to the notch effect.
Therefore, the maximum height (Rz) needs to be in the range of 1.5 to 9.0 μm. The maximum height (Rz) is preferably in the range of 1.8 to 9.0 μm, and more preferably in the range of 1.8 to 6.0 μm.

(ひずみ度(Rsk))
ひずみ度(Rsk)は、凹部の頻度・面積率に相当するものである。
ひずみ度(Rsk)が−3.0未満であると、平滑部の面積が減り、平滑部への面圧が上昇するため、局部塑性変形、及び焼付きが発生し易くなる。一方で、ひずみ度(Rsk)が−0.5を超えると、算術平均粗さ(Ra)及び最大高さ(Rz)が規定の範囲であっても凸部若しくは角部が多い表面となる場合が多い。そのため、成形時に成形金型が凸部若しくは角部を摺動するため、凸部への面圧が上昇し、表面の局部塑性変形、焼付きが発生し易くなる。その結果、板材の流入が妨げられ、流入が妨げられる2点間で引張変形が起こり、破断が生じ易くなる。
従って、ひずみ度(Rsk)は、−3.0〜−0.5の範囲とする必要がある。なお、ひずみ度(Rsk)は、−3.0〜−1.0の範囲とするのが好ましい。
(Strain (Rsk))
The degree of distortion (Rsk) corresponds to the frequency / area ratio of the recesses.
If the degree of strain (Rsk) is less than −3.0, the area of the smooth portion decreases and the surface pressure on the smooth portion increases, so that local plastic deformation and seizure are likely to occur. On the other hand, when the degree of distortion (Rsk) exceeds -0.5, even if the arithmetic average roughness (Ra) and the maximum height (Rz) are within a specified range, the surface has many convex portions or corner portions. There are many. For this reason, since the molding die slides on the convex portion or the corner portion at the time of molding, the surface pressure on the convex portion increases, and local plastic deformation and seizure of the surface easily occur. As a result, inflow of the plate material is hindered, tensile deformation occurs between two points where the inflow is hindered, and breakage easily occurs.
Accordingly, the degree of distortion (Rsk) needs to be in the range of -3.0 to -0.5. The degree of distortion (Rsk) is preferably in the range of -3.0 to -1.0.

ここで、ひずみ度(Rsk)とは、振幅分布曲線の中心線に対する対象性パラメータであり、下記式(1)で算出される。   Here, the degree of distortion (Rsk) is a target parameter with respect to the center line of the amplitude distribution curve, and is calculated by the following equation (1).

ひずみ度(Rsk)は、粗さ曲線から求めた確率密度関数が正規分布(上下方向が対象)の場合にRskは0となり、平滑面に凹部が分布している場合に負(−)の値、平滑面に凸部が分布している場合に正(+)の値を取る。   The degree of distortion (Rsk) is 0 when the probability density function obtained from the roughness curve is a normal distribution (targeted in the vertical direction), and is a negative (−) value when the concave portions are distributed on the smooth surface. When a convex portion is distributed on a smooth surface, a positive (+) value is taken.

前記した表面形態を達成するため、チタン板の製造方法において、チタン板の結晶粒径と酸洗条件を制御し、所定範囲の軽圧下率のスキンパス圧延を施すことが必要となる。詳細は後記する。   In order to achieve the surface form described above, in the titanium plate manufacturing method, it is necessary to control the crystal grain size and pickling conditions of the titanium plate, and to perform skin pass rolling with a light rolling reduction in a predetermined range. Details will be described later.

(表面硬さ)
チタン表面に硬化層が形成されると硬さが向上するが、硬さが向上することによって表面の割れを促進させ易くなる。表面の割れ発生を促進させないようにするため、表面における測定荷重0.098Nでのビッカース硬さと、測定荷重4.9Nでのビッカース硬さを測定し、これらの差を所定の閾値以下となるように規定した。
(Surface hardness)
When the hardened layer is formed on the titanium surface, the hardness is improved. However, it is easy to promote surface cracking by improving the hardness. In order not to promote the occurrence of cracks on the surface, the Vickers hardness at the measurement load of 0.098N and the Vickers hardness at the measurement load of 4.9N are measured, and the difference between them is less than a predetermined threshold value. Stipulated.

ここで、測定荷重0.098N(10g)でのビッカース硬さは、最表面の硬さを評価することができ、測定荷重4.9N(200g)でのビッカース硬さは、材質内部の硬さを評価することができる。また、これらの差を取って、硬化層の形成度合いを評価することができる。
つまり、表面に窒化物等の硬化層が形成されると硬さの差が45を超え、成形時に表面の割れが発生し易くなり成形性が劣化する。
従って、これらのビッカース硬さの差は45以下とする必要がある。なお、これらのビッカース硬さの差は36以下とするのが好ましく、35以下とするのがより好ましい。
Here, the Vickers hardness at a measurement load of 0.098 N (10 g) can evaluate the hardness of the outermost surface, and the Vickers hardness at a measurement load of 4.9 N (200 g) is the hardness inside the material. Can be evaluated. Moreover, these differences can be taken and the formation degree of a hardened layer can be evaluated.
That is, when a hardened layer such as a nitride is formed on the surface, the difference in hardness exceeds 45, and surface cracking is likely to occur during molding, resulting in deterioration of moldability.
Therefore, the difference in Vickers hardness needs to be 45 or less. The difference in Vickers hardness is preferably 36 or less, more preferably 35 or less.

なお、ビッカース硬さは一般的に、均質な材料であっても荷重が低いほど高い硬さが得られる傾向がある。例えば、後記する本発明の実施例に係る試験体では、十分な厚さ(片面50μm)の表面部を化学的に除去した板材に対して測定したところ、測定荷重0.098Nでのビッカース硬さの測定値は、測定荷重4.9Nでのビッカース硬さの測定値よりも平均で12高い値を示した。   In general, the Vickers hardness tends to be higher as the load is lower even if the material is homogeneous. For example, in a specimen according to an example of the present invention described later, when measured on a plate material in which a surface portion having a sufficient thickness (one side of 50 μm) is chemically removed, Vickers hardness at a measurement load of 0.098 N is obtained. The measured value of was an average 12 higher than the measured value of Vickers hardness at a measurement load of 4.9 N.

(結晶粒径の範囲)
本発明に係るチタン板は、JIS G 0552に規定の切断法により切断した断面を光学顕微鏡で観察した場合における結晶粒径が、平均切片長さで20〜80μmの範囲とするのが好ましい。
JIS G 0552に規定の切断法により切断した断面を光学顕微鏡で観察した場合における結晶粒径の平均切片長さを20〜80μmの範囲とすれば、酸洗工程によって結晶粒径のサイズを反映して表面の凹凸が形成されるためチタン板表面の凹凸が適度に粗くなり、優れた保油性を得ることができる。
(Crystal grain size range)
The titanium plate according to the present invention preferably has a crystal grain size in the range of 20 to 80 μm in terms of an average slice length when a section cut by a cutting method defined in JIS G 0552 is observed with an optical microscope.
If the average slice length of the crystal grain size in the case of observing the cross section cut by the cutting method prescribed in JIS G 0552 with an optical microscope is in the range of 20 to 80 μm, the size of the crystal grain size is reflected by the pickling process. As a result, irregularities on the surface are formed, so that irregularities on the surface of the titanium plate become moderately rough, and excellent oil retention can be obtained.

JIS G 0552に規定の切断法により切断した断面を光学顕微鏡で観察した場合における結晶粒径の平均切片長さが20μm未満であると、酸洗工程後の表面の凹凸が浅くなってしまい、所望の粗さを得ることができない。
一方で、JIS G 0552に規定の切断法により切断した断面を光学顕微鏡で観察した場合における結晶粒径の平均切片長さが80μmを超えると、酸洗工程を行っても表面に形成される凹凸が浅く、また各凹部の間隔が広くなり過ぎるので所望の粗さを得ることができない。そのため、優れた保油性が得られず焼付きを起こし易くなる。さらに、一度焼付きが生じるとそれが中断され難くなる。
従って、前記したように、JIS G 0552に規定の切断法により切断した断面を光学顕微鏡で観察した場合における結晶粒径の平均切片長さは、20〜80μmの範囲とする必要がある。なお、JIS G 0552に規定の切断法により切断した断面を光学顕微鏡で観察した場合における結晶粒径の平均切片長さは20〜65μmの範囲とするのが好ましく、35〜65μmの範囲とするのがより好ましい。
If the average section length of the crystal grain size is less than 20 μm when the cross section cut by the cutting method specified in JIS G 0552 is observed with an optical microscope, the surface irregularities after the pickling process become shallow, which is desired. The roughness cannot be obtained.
On the other hand, when the average section length of the crystal grain size exceeds 80 μm when the cross section cut by the cutting method prescribed in JIS G 0552 is observed with an optical microscope, the irregularities formed on the surface even if the pickling process is performed. Since the distance between the recesses is too large, the desired roughness cannot be obtained. Therefore, excellent oil retention is not obtained and seizure is likely to occur. Furthermore, once seizure occurs, it becomes difficult to be interrupted.
Therefore, as described above, the average section length of the crystal grain size in the case where the cross section cut by the cutting method specified in JIS G 0552 is observed with an optical microscope needs to be in the range of 20 to 80 μm. In addition, when the cross section cut | disconnected by the prescription | regulation method prescribed | regulated to JISG0552 is observed with an optical microscope, it is preferable to make the average section length of a crystal grain diameter into the range of 20-65 micrometers, and set it as the range of 35-65 micrometers. Is more preferable.

本発明に係るチタン板の厚さは、取り扱い性や、使用用途に応じて適宜決定することができ、特に限定されない。本発明に係るチタン板を熱交換器用の部材、例えば、放熱板として好適に使用する場合は、板厚が1.0mm以下であることが好ましい。   The thickness of the titanium plate according to the present invention can be appropriately determined according to handleability and usage, and is not particularly limited. When the titanium plate according to the present invention is suitably used as a member for a heat exchanger, for example, a heat radiating plate, the plate thickness is preferably 1.0 mm or less.

また、本発明に係るチタン板の使用用途は前記した熱交換器用の部材に限定されるものではなく、例えば、カメラボディー、厨房機器などの民生品やオートバイ、自動車等の輸送機器部材、家電機器等の外装材などにも使用することができる。   In addition, the use of the titanium plate according to the present invention is not limited to the above-mentioned members for heat exchangers. For example, consumer products such as camera bodies and kitchen equipment, transport equipment members such as motorcycles and automobiles, and home appliances. It can also be used for exterior materials such as.

以上、本発明に係るチタン板について詳細に説明した。かかるチタン板によれば、算術平均粗さ(Ra)、最大高さ(Rz)、ひずみ度(Rsk)によって表面の粗さを適切に制御したので優れた保油性を得ることができる。そのため、プレス成形時のプレス油の潤滑効果を最大限に発揮させることができる結果、良好な耐焼付き性を得ることが可能となる。また、このように表面の粗さを適切に制御したので切欠効果を防止することができ、表面の割れの発生を防止することが可能である。さらに、チタン板の表面に硬化層が形成されていないため、成形時の表面割れを発生し難くすることができる。よって、本発明に係るチタン板は、優れたプレス成形性を発揮することができる。なお、本発明に係るチタン板は、耐焼付き性が良好であるので成形金型にチタンが付着し難く、成形金型を研磨する頻度を減らすことが可能である。そのため、生産性を向上させることができる。   The titanium plate according to the present invention has been described in detail above. According to such a titanium plate, the surface roughness is appropriately controlled by the arithmetic average roughness (Ra), the maximum height (Rz), and the degree of distortion (Rsk), so that excellent oil retention can be obtained. Therefore, as a result of maximizing the lubrication effect of the press oil during press molding, it becomes possible to obtain good seizure resistance. In addition, since the surface roughness is appropriately controlled in this way, the notch effect can be prevented and the occurrence of surface cracks can be prevented. Furthermore, since no hardened layer is formed on the surface of the titanium plate, it is possible to make it difficult for surface cracks to occur during molding. Therefore, the titanium plate according to the present invention can exhibit excellent press formability. Since the titanium plate according to the present invention has good seizure resistance, it is difficult for titanium to adhere to the molding die, and the frequency of polishing the molding die can be reduced. Therefore, productivity can be improved.

以上に説明したチタン板は、次に説明する本発明に係るチタン板の製造方法によって好適に製造することができる。
ここで、本発明に係るチタン板の製造方法について具体的に説明する前に、冷間圧延後のチタン板の代表的な製造工程を2つ紹介する。
一つ目は、冷間圧延後に真空焼鈍を行うものであり、二つ目は、冷間圧延後に大気焼鈍を行い、その後に酸洗するものである。
The titanium plate demonstrated above can be suitably manufactured with the manufacturing method of the titanium plate which concerns on this invention demonstrated below.
Here, before specifically explaining the method for producing a titanium plate according to the present invention, two typical production steps for a titanium plate after cold rolling are introduced.
The first is to perform vacuum annealing after cold rolling, and the second is to perform atmospheric annealing after cold rolling and then pickling.

前者の場合、冷間圧延並びにその後の真空焼鈍時に、チタン板の表面に硬化層が形成され易い。真空焼鈍の雰囲気を不活性雰囲気として、酸素、窒素分圧を下げた場合にも冷間圧延時の潤滑油がチタン板表面に残存している場合などは表面に炭化チタンが形成され表面に硬化層が形成される。そのため、プレス形成時に表面の割れが発生し易いチタン板が製造される虞がある。   In the former case, a hardened layer is easily formed on the surface of the titanium plate during cold rolling and subsequent vacuum annealing. Even when the vacuum annealing atmosphere is an inert atmosphere and the oxygen and nitrogen partial pressures are lowered, if the lubricating oil during cold rolling remains on the titanium plate surface, titanium carbide is formed on the surface and hardened on the surface. A layer is formed. For this reason, there is a risk that a titanium plate that is susceptible to surface cracking during press formation may be produced.

後者の場合、酸洗後のチタン板は表面の硬化層が除去されるため、プレス成形性に優れたチタン板を製造するには好適である。しかしながら、従来のチタン板表面の形態並びに製造方法の管理では、成形金型との耐焼付き性が不十分であり、容易に焼付きを起こす虞があった。
本発明では、後者の製造工程をベースにして、潤滑油の保油性を向上させるように表面の凹凸を形成させ、その形態を制御するために結晶粒径と酸洗条件を特定の条件とし、酸洗後に特定の条件のスキンパス圧延を実施することとした。このようにすることによって、硬化層を用いずに耐焼付き性を向上させることができる。
以下に、本発明に係るチタン板の製造方法について具体的に説明する。
In the latter case, since the surface hardened layer is removed from the pickled titanium plate, it is suitable for producing a titanium plate excellent in press formability. However, in the conventional control of the form of the titanium plate surface and the manufacturing method, the seizure resistance with the molding die is insufficient, and there is a possibility that seizure easily occurs.
In the present invention, on the basis of the latter manufacturing process, surface irregularities are formed so as to improve the oil retention of the lubricating oil, and the crystal grain size and pickling conditions are specified conditions to control the form, It was decided to carry out skin pass rolling under specific conditions after pickling. By doing in this way, seizure resistance can be improved without using a hardened layer.
Below, the manufacturing method of the titanium plate which concerns on this invention is demonstrated concretely.

本発明に係るチタン板の製造方法は、図1に示すように、大気焼鈍工程S1と、酸洗工程S2と、スキンパス圧延工程S3とを含み、各工程をこの手順で行うものである。
なお、冷間圧延までの工程は、本発明に係るチタン板の表面の形態に大きな影響を及ぼすものではないので、通常行われる条件で鋳造工程、均熱工程、熱間粗圧延工程、熱間仕上工程、巻上工程、冷間圧延工程等を行えばよい。
以下に、本発明のチタン板の製造方法の各工程について説明する。
As shown in FIG. 1, the manufacturing method of the titanium plate according to the present invention includes an atmospheric annealing step S1, a pickling step S2, and a skin pass rolling step S3, and each step is performed according to this procedure.
In addition, since the process up to the cold rolling does not greatly affect the surface form of the titanium plate according to the present invention, the casting process, the soaking process, the hot rough rolling process, What is necessary is just to perform a finishing process, a winding process, a cold rolling process, etc.
Below, each process of the manufacturing method of the titanium plate of this invention is demonstrated.

(大気焼鈍工程)
大気焼鈍工程S1は、冷間圧延後のチタン板を結晶粒径が20〜80μmとなるように大気焼鈍を行う工程である。大気焼鈍工程S1によって冷間圧延後のチタン板の結晶粒径を20〜80μmとすると、後工程の酸洗工程S2によって表面に適度な大きさ(深さ)及び分布状態をもって凹凸を形成させることができるようになる。なお、表面の凹部の深さは最大高さ(Rz)に影響を与え、凹部の分布状態はひずみ度(Rsk)に影響を与える。
(Atmospheric annealing process)
The atmospheric annealing step S1 is a step of performing atmospheric annealing on the titanium plate after cold rolling so that the crystal grain size is 20 to 80 μm. When the crystal grain size of the titanium plate after cold rolling is set to 20 to 80 μm in the atmospheric annealing step S1, irregularities are formed on the surface with an appropriate size (depth) and distribution state by a subsequent pickling step S2. Will be able to. The depth of the concave portion on the surface affects the maximum height (Rz), and the distribution state of the concave portion affects the degree of distortion (Rsk).

大気焼鈍工程S1は、連続焼鈍(処理時間は30秒から5分程度)を実施する。一般的な大気焼鈍は700〜800℃で実施されるが、本発明においては、結晶粒径を所望の範囲とするために750〜850℃とするのが生産性の点で好ましい。
なお、結晶粒径は、焼鈍温度と焼鈍時間に依存し、再結晶温度以上(600℃以上)の温度であれば750℃未満の温度域でも長時間の大気焼鈍を行うことによって所望の結晶粒径を得ることが可能である。
In the atmospheric annealing step S1, continuous annealing (processing time is about 30 seconds to about 5 minutes) is performed. General atmospheric annealing is performed at 700 to 800 ° C., but in the present invention, in order to make the crystal grain size within a desired range, it is preferably 750 to 850 ° C. in terms of productivity.
The crystal grain size depends on the annealing temperature and the annealing time. If the crystal grain size is higher than the recrystallization temperature (600 ° C. or higher), the desired crystal grain is obtained by performing long-term atmospheric annealing even in a temperature range of less than 750 ° C. It is possible to obtain the diameter.

大気焼鈍工程S1を750℃から850℃の温度域で行う場合、焼鈍時間を一定とすれば焼鈍温度の上昇に伴って結晶粒径を大きくすることができる。一方で、焼鈍温度が850℃を超えると焼鈍中にβ相が析出するため冷却後に結晶粒が微細になり、数分間の処理を行うと20μm以下となる虞がある。そのため大気焼鈍工程S1の焼鈍温度は850℃以下とする必要がある。   When the atmospheric annealing step S1 is performed in the temperature range of 750 ° C. to 850 ° C., the crystal grain size can be increased as the annealing temperature is increased if the annealing time is constant. On the other hand, if the annealing temperature exceeds 850 ° C., the β phase precipitates during annealing, so that the crystal grains become fine after cooling, and if the treatment is performed for several minutes, there is a possibility that it becomes 20 μm or less. Therefore, the annealing temperature in the air annealing step S1 needs to be 850 ° C. or less.

(酸洗工程)
酸洗工程S2は、大気焼鈍工程S1後のチタン板を硝酸/フッ酸比が1以上10以下の酸洗浴中で酸洗する工程である。かかる酸洗工程S2は、前記した組成範囲内の酸洗浴を使用した場合、液温65℃で約60秒の処理で片面約20μm除去を行うことが可能である。このような酸洗を行うことでチタン板の表面に所望の形態で凹凸を形成することができるとともに、表面に形成された硬化層を除去することができる。このようにすれば、表面における測定荷重0.098Nでのビッカース硬さが、測定荷重4.9Nでのビッカース硬さよりも高く、その差を45以下とすることができる。
(Pickling process)
The pickling step S2 is a step of pickling the titanium plate after the atmospheric annealing step S1 in a pickling bath having a nitric acid / hydrofluoric acid ratio of 1 or more and 10 or less. In the pickling step S2, when a pickling bath within the composition range described above is used, it is possible to remove about 20 μm on one side by a treatment for about 60 seconds at a liquid temperature of 65 ° C. By performing such pickling, irregularities can be formed in a desired form on the surface of the titanium plate, and the hardened layer formed on the surface can be removed. If it does in this way, the Vickers hardness in the measurement load 0.098N in the surface is higher than the Vickers hardness in the measurement load 4.9N, and the difference can be 45 or less.

硝酸/フッ酸比が1未満であると、表面の凹凸が細かくなり過ぎてしまい(つまり、小さく、浅い凹凸が沢山形成されてしまい)、保油性効果が得られない。一方で、硝酸/フッ酸比が10を超えると、酸洗速度が遅くなりスケールを除去し難くなると共に、平滑に酸洗される。そのため、酸洗後に形成される凹凸が小さくなったり、凹凸が形成されなかったりするため、優れた保油性を得ることができない。   When the nitric acid / hydrofluoric acid ratio is less than 1, the surface irregularities become too fine (that is, many small and shallow irregularities are formed), and the oil retaining effect cannot be obtained. On the other hand, when the nitric acid / hydrofluoric acid ratio exceeds 10, the pickling speed becomes slow and it becomes difficult to remove the scale, and the pickling is performed smoothly. Therefore, since the unevenness | corrugation formed after pickling becomes small or an unevenness | corrugation is not formed, the outstanding oil retaining property cannot be obtained.

酸洗温度は特に限定されるものではない。温度を変えることにより酸洗速度が変わるので、浴温が室温から70℃までの範囲で、生産ラインの構成から決定される酸洗時間に応じて温度を設定すればよい。   The pickling temperature is not particularly limited. Since the pickling speed is changed by changing the temperature, the temperature may be set according to the pickling time determined from the configuration of the production line in the range of the bath temperature from room temperature to 70 ° C.

酸洗工程S2によるチタン板の表面の除去量は、片面1μm以上が好ましい。除去量の上限は特に限定されるものではないが、生産性と歩留まりの観点から片面20μm以下とするのが好ましい。   The removal amount of the surface of the titanium plate by the pickling step S2 is preferably 1 μm or more on one side. The upper limit of the removal amount is not particularly limited, but is preferably 20 μm or less on one side from the viewpoint of productivity and yield.

(スキンパス圧延工程)
スキンパス圧延工程S3は、酸洗工程S2後のチタン板を圧下率が0.2〜1.0%のスキンパス圧延を行う工程である。スキンパス圧延工程S3は、室温で行うことができ、これにより、表面に形成された凸部を均して適度な平滑部と凹部を具備したチタン板とすることができる。このように、表面に適度な平滑部を具備させることで局所的な面圧を下げることができるとともに、摩擦係数を小さくする効果がある。
かかるスキンパス圧延工程S3を行うことにより、チタン板表面の平均的な摩擦係数を示す算術平均粗さ(Ra)を0.15〜1.5μmの範囲とすることができ、凹部の深さを示す最大高さ(Rz)を1.5〜9.0μmの範囲とすることができ、凹部の分布状態を示すひずみ度(Rsk)を−3.0〜−0.5の範囲とすることができる。
(Skin pass rolling process)
Skin pass rolling step S3 is a step of performing skin pass rolling with a rolling reduction of 0.2 to 1.0% on the titanium plate after pickling step S2. The skin pass rolling step S3 can be performed at room temperature, whereby the convex portions formed on the surface can be leveled to obtain a titanium plate having appropriate smooth portions and concave portions. Thus, by providing an appropriate smooth portion on the surface, the local surface pressure can be lowered, and the friction coefficient can be reduced.
By performing this skin pass rolling step S3, the arithmetic average roughness (Ra) indicating the average friction coefficient of the titanium plate surface can be set in the range of 0.15 to 1.5 μm, and the depth of the concave portion is indicated. The maximum height (Rz) can be in the range of 1.5 to 9.0 μm, and the degree of distortion (Rsk) indicating the distribution state of the recesses can be in the range of −3.0 to −0.5. .

但し、スキンパス圧延自体が塑性変形なので、スキンパス圧延の圧下率が高くなるほど板材の伸びが減少するとともに、表面の凹部の面積が減少するため、ひずみ度(Rsk)が0に近づき、保油性が減少してしまう。一方、あまりにスキンパス圧延の圧下率が低くなり過ぎると表面に適度な平滑部を具備させることができない。
従って、スキンパス圧延工程S3の圧下率は0.2〜1.0%とすることを必要とする。なお、スキンパス圧延工程S3の圧下率は0.3〜0.8%とするのが好ましい。
However, since the skin pass rolling itself is plastically deformed, the higher the reduction rate of the skin pass rolling, the smaller the elongation of the plate material and the smaller the surface recess area, so the degree of strain (Rsk) approaches 0 and the oil retaining property decreases. Resulting in. On the other hand, if the rolling reduction of skin pass rolling becomes too low, an appropriate smooth portion cannot be provided on the surface.
Therefore, the rolling reduction in the skin pass rolling step S3 needs to be 0.2 to 1.0%. In addition, it is preferable that the rolling reduction of skin pass rolling process S3 shall be 0.3-0.8%.

以上に説明した本発明に係るチタン板の製造方法によれば、前述した本発明に係るチタン板を好適に製造することができる。   According to the manufacturing method of the titanium plate concerning the present invention explained above, the titanium plate concerning the present invention mentioned above can be manufactured suitably.

次に、本発明の要件を満たす実施例と本発明の要件を満たさない比較例とを対比して本発明の効果を説明する。   Next, the effect of the present invention will be described by comparing an example that satisfies the requirements of the present invention with a comparative example that does not satisfy the requirements of the present invention.

本発明の効果の検証は、JIS−1種相当のチタン材を用いて行った。本発明の効果はJIS−2種相当のチタン材を始め、他のグレードの純チタン材やチタン合金材を用いたチタン板に対しても同様の効果を発揮することは言うまでもない。   The effect of the present invention was verified using a titanium material corresponding to JIS-1 type. Needless to say, the effect of the present invention is the same as that of a titanium plate using a titanium material equivalent to the JIS-2 type and other grades of pure titanium material or titanium alloy material.

工業用純チタン(JIS−1種)の冷間圧延板を使用した。化学組成はO:450ppm、Fe:250ppm、N:40ppm、その他残部はTiと不可避不純物である。
まず、通常の条件で冷間圧延を施した冷間圧延板を750℃から850℃の温度で大気焼鈍した。結晶粒径は、この大気焼鈍の焼鈍条件で制御した。焼鈍条件を表1に示す。
A cold rolled sheet of industrial pure titanium (JIS-1 type) was used. The chemical composition is O: 450 ppm, Fe: 250 ppm, N: 40 ppm, and the remainder is Ti and inevitable impurities.
First, a cold-rolled sheet that had been cold-rolled under normal conditions was air-annealed at a temperature of 750 to 850 ° C. The crystal grain size was controlled by the annealing conditions of this atmospheric annealing. The annealing conditions are shown in Table 1.

その後、60℃に加熱した、表1に示す濃度のフッ酸硝酸混合液にチタン板を浸し、除去量が片面10μmの酸洗を行うことで表面の凹凸を形成させた試験体1〜18を得た。酸洗速度は、硝酸/フッ酸比によって変わるため、各配合比の溶液における酸洗速度を予備実験で求め、所定の除去量となるように酸洗時間を設定した。   Then, the test bodies 1-18 which formed the unevenness | corrugation of the surface by immersing a titanium plate in the hydrofluoric acid nitric acid liquid mixture of the density | concentration shown in Table 1 heated at 60 degreeC, and performing the pickling whose removal amount is 10 micrometers on one side. Obtained. Since the pickling speed varies depending on the nitric acid / hydrofluoric acid ratio, the pickling speed in the solution of each blending ratio was obtained by preliminary experiments, and the pickling time was set so as to obtain a predetermined removal amount.

また、試験体1〜18の一部に対して表1に示す圧下率のスキンパス圧延を行った。スキンパス圧延は、試験体の両側に引張のテンションを掛け、冷間、潤滑条件で実施した。製造条件を後記する各評価項目の評価結果とともに表1に示す。   Moreover, the skin pass rolling of the rolling reduction shown in Table 1 was performed with respect to a part of test bodies 1-18. Skin pass rolling was performed under cold and lubricated conditions with tensile tension applied to both sides of the specimen. The manufacturing conditions are shown in Table 1 together with the evaluation results of the evaluation items described later.

また比較のため、冷間圧延後に真空焼鈍を行った試験体を作製した。冷間圧延工程までは前述の通りであり、その後、チタン板表面を脱脂洗浄後、真空焼鈍を行った。真空焼鈍として、一旦、チャンバー内の圧力を1.3×10-3Paまで減圧後、650℃まで炉内を加熱し、6.7×10-3Paになるまで酸素ガスを導入し、2時間保持後、冷却を行った。得られた試験体を試験体19とした。 For comparison, a test body that was subjected to vacuum annealing after cold rolling was prepared. The process up to the cold rolling step is as described above, and then the surface of the titanium plate was vacuum-annealed after degreasing and cleaning. As vacuum annealing, after the pressure in the chamber is once reduced to 1.3 × 10 −3 Pa, the inside of the furnace is heated to 650 ° C., and oxygen gas is introduced until 6.7 × 10 −3 Pa is reached. Cooling was performed after holding for a time. The obtained specimen was designated as specimen 19.

(結晶粒径の測定)
結晶粒径の測定は、各試験体をJIS G 0552に規定の切断法により切断し、その断面組織を光学顕微鏡で観察した場合における結晶粒径を測定することで行った。なお、結晶粒は等軸状を呈していた。
(Measurement of crystal grain size)
The crystal grain size was measured by cutting each test specimen by the cutting method specified in JIS G 0552 and measuring the crystal grain size when the cross-sectional structure was observed with an optical microscope. The crystal grains had an equiaxed shape.

(ビッカース硬さの測定)
ビッカース硬さの測定は、測定面を試験体表面とし、JIS Z 2244に準拠した方法で実施した。測定荷重を4.9N(200g)及び0.098N(10g)として各測定荷重について10点測定し、その平均値を測定値として用いた。
測定荷重が4.9Nの測定にはマイクロビッカース硬さ試験機(MATSUZAWA SEIKI DMH−1)を用い、測定荷重0.098Nの測定には超マイクロビッカース硬さ試験機(AKASHI MVK−G3)を用いた。測定荷重4.9Nの測定値と、測定荷重0.098Nと測定荷重4.9Nの差を表1に示した。
(Measurement of Vickers hardness)
The measurement of Vickers hardness was carried out by a method based on JIS Z 2244 with the measurement surface as the surface of the test specimen. The measurement load was 4.9 N (200 g) and 0.098 N (10 g), 10 points were measured for each measurement load, and the average value was used as the measurement value.
A micro Vickers hardness tester (MATSUZAWA SEIKI DMH-1) is used for measurement with a measurement load of 4.9N, and an ultra micro Vickers hardness tester (AKASHI MVK-G3) is used for measurement with a measurement load of 0.098N. It was. Table 1 shows the measurement value of the measurement load of 4.9N and the difference between the measurement load of 0.098N and the measurement load of 4.9N.

(表面粗さの測定)
表面粗さの測定は、表面粗さ形状測定機(東京精密社製サーフコム1400D)を使用し、JIS B 0601:2001に準拠した方法で測定した。この際、測定距離を7mm、測定速度を0.3mm/secとし、圧延方向に平行方向と垂直方向を各5点測定し、その平均値を表面粗さとした。
(Measurement of surface roughness)
The surface roughness was measured using a surface roughness shape measuring machine (Surfcom 1400D manufactured by Tokyo Seimitsu Co., Ltd.) according to a method based on JIS B 0601: 2001. At this time, the measurement distance was 7 mm, the measurement speed was 0.3 mm / sec, 5 points each in parallel and perpendicular to the rolling direction were measured, and the average value was defined as the surface roughness.

(成形性の評価)
成形性の評価は、各試験体に対してプレート式熱交換器の熱交換部分を模擬した成形金型を用いたプレス成形を行い、成形性を評価した。
図2(a)に示すように、成形金型の形状は、成形部が100mm×100mmで、ピッチ10mm、最大高さ4mmの綾線部を6本有し、各綾線部は頂点に、図2(a)の上から下に向かって順にR=0.4、1.8、0.8、1.0、1.4、0.6の6種のR形状を有している。
この成形金型を用いて80ton油圧プレス機によってプレス成形を行った。プレス成形は、各試験体の両面に動粘度34mm2/s(40℃)のプレス油を塗布し、各試験体の圧延方向が図2(a)の上下方向と一致するように下金型上に配置してフランジ部を板押さえで拘束した後、プレス速度1mm/s、押し込み深さ3.8mmの条件で実施した。
成形性の評価は、プレス成形後に各試験体に認められる割れの数で評価した。具体的な評価方法を以下に説明する。
(Evaluation of formability)
The moldability was evaluated by performing press molding using a molding die simulating the heat exchanging portion of the plate heat exchanger for each specimen.
As shown in FIG. 2 (a), the shape of the molding die is such that the molding part is 100 mm × 100 mm, the pitch is 10 mm, the maximum height is 4 mm, and there are six twill lines, each twill line being at the apex, It has six types of R shapes of R = 0.4, 1.8, 0.8, 1.0, 1.4, and 0.6 in order from the top to the bottom of FIG.
Using this molding die, press molding was performed by an 80 ton hydraulic press. In press molding, press oil having a kinematic viscosity of 34 mm 2 / s (40 ° C.) is applied to both surfaces of each test specimen, and the lower mold is set so that the rolling direction of each test specimen coincides with the vertical direction in FIG. After placing on the top and restraining the flange portion with a plate press, the pressing speed was 1 mm / s and the pressing depth was 3.8 mm.
The formability was evaluated by the number of cracks observed in each specimen after press molding. A specific evaluation method will be described below.

図2(a)に示す稜線部と、測定位置A、B、C、C’、D、Eの点線との交点計36箇所について試験体の割れの有無を目視で観察した。なお、測定位置C’は、図2(b)に示すように、隣接する稜線部の間に位置する谷部である。
割れの起点となる測定位置A、C、C’、Eについては、割れもくびれも認められない場合を2点、くびれが認められれば1点、割れが認められれば0点と点数を付け、測定位置B、Dについては、割れもくびれも認められない場合を1点、くびれが認められれば0.5点、割れが認められれば0点と点数を付け、さらに各点数に加工Rの逆数を掛けて割れの状態を数値化し、その合計を求めた。この合計値を完全に割れ、くびれが認められない場合を100として規格化した後、温度(T)、潤滑油粘度(μ)、試験片板厚(t)に依存する関数F(T,μ,t)、ならびに金型の綾線の角度(α)、ピッチ(p)に依存する関数G(α,p)を掛け合わせて、成形性スコアとして算出した。なお、FならびにGは0から1の値を取る。以上の成形性スコア算出方法は下記式(2)によって表される。
The presence or absence of cracks in the specimen was visually observed at 36 intersections between the ridge line portion shown in FIG. 2A and the dotted lines of the measurement positions A, B, C, C ′, D, and E. Note that the measurement position C ′ is a valley portion located between adjacent ridge line portions as shown in FIG.
For the measurement positions A, C, C ′, and E, which are the starting points of cracking, two points are given when no cracking or constriction is observed, one point when constriction is observed, and 0 points when cracking is observed, For measurement positions B and D, 1 point is given when no cracking or constriction is observed, 0.5 point when constriction is observed, 0 point when cracking is observed, and each point is the reciprocal of machining R The number of cracks was quantified and the total was obtained. After normalizing this total value as 100 when a case where no constriction is observed is observed, a function F (T, μ depending on temperature (T), lubricating oil viscosity (μ), and specimen thickness (t) is used. , T) and the function G (α, p) depending on the angle (α) and pitch (p) of the twill lines of the mold were calculated as the moldability score. Note that F and G take values from 0 to 1. The above formability score calculation method is represented by the following formula (2).

成形性スコア=F×G×ΣE(ij)/R(j)/(ΣA, C, C’,E 2/R(j)+ΣB, D 1/R(j))×100
・・・式(2)
ここで、式(2)において、
A、C、C’、Eの場合は、E(ij)=1.0×(割れなし;2、くびれ;1、割れ;0)とし、
B、Dの場合は、E(ij)=0.5×(割れなし;2、くびれ;1、割れ;0)として算出した。
また、本実施例では温度(T)、潤滑油粘度(μ)、試験片板厚(t)、金型の綾線の角度(α)、およびピッチ(p)を一定としたため、F×Gを便宜的に1としてスコアを算出した。
Formability score = F × G × ΣE (ij) / R (j) / (Σ A, C, C ', E 2 / R (j) + Σ B, D 1 / R (j)) × 100
... Formula (2)
Here, in Formula (2),
In the case of A, C, C ′, E, E (ij) = 1.0 × (no cracking; 2, constriction; 1, cracking; 0)
In the case of B and D, calculation was performed as E (ij) = 0.5 × (no cracking; 2, constriction; 1, cracking; 0).
Further, in this example, the temperature (T), the lubricating oil viscosity (μ), the test piece plate thickness (t), the angle (α) of the twill lines of the mold, and the pitch (p) were constant, so that F × G For convenience, the score was calculated as 1.

各試験体の成形性スコアを表1に示す。成形性スコアは、70点以上を成形性が良いとし、70点未満を成形性が悪いとした。   Table 1 shows the moldability score of each specimen. As the moldability score, 70 points or more were regarded as good moldability, and less than 70 points were regarded as poor moldability.

表1に示すように、試験体1〜7は成形性が良かった(実施例)。これは、表面粗さが良好な形態で形成されたため保油性が良くなり、耐焼付き性及び耐割れ性が良好になったためと思われる。   As shown in Table 1, the test bodies 1 to 7 had good moldability (Example). This seems to be because the oil-retaining property was improved because the surface roughness was formed in a good form, and the seizure resistance and crack resistance were improved.

一方で、試験体19は、表面硬度(ビッカース硬さ)が高いので成形時に表面の割れが発生し易くなり、成形後の割れ発生量が多くなった結果、成形性が悪くなったと思われる(比較例)。   On the other hand, since the specimen 19 has a high surface hardness (Vickers hardness), surface cracking is likely to occur during molding, and as a result of an increased amount of cracking after molding, the moldability seems to have deteriorated ( Comparative example).

また、試験体8〜11、15〜17は、表面硬度(ビッカース硬さ)は低かったものの、優れた成形性を示さなかった(比較例)。これは、試験体の表面粗さが良好な形態で形成されなかったため、凹凸が浅くなったこと及び凹部間の間隔が広くなったことのうちの少なくとも一方により、保油性が悪くなったことが原因であると思われる。   Moreover, although the test bodies 8-11 and 15-17 had low surface hardness (Vickers hardness), they did not show the outstanding moldability (comparative example). This is because the surface roughness of the test specimen was not formed in a good form, and the oil retention was deteriorated due to at least one of the unevenness becoming shallow and the interval between the recesses becoming wide. It seems to be the cause.

試験体14は、結晶粒径は本発明の要件を満たしていたが、成形性が悪かった(比較例)。これは、酸洗工程後に行ったスキンパス圧延の圧下率が高過ぎたため、酸洗工程で試験体14の表面に形成された良好な凹凸が壊れて平滑な表面となり、保油性が悪くなったためと思われる。また、成形前に加える塑性変形量が大きいためプレス成形での塑性変形量が減少したため、優れた成形性が得られなかったと思われる。   The test body 14 had a crystal grain size that satisfied the requirements of the present invention, but had poor moldability (Comparative Example). This is because the reduction ratio of the skin pass rolling performed after the pickling process was too high, and the good unevenness formed on the surface of the test body 14 in the pickling process was broken to become a smooth surface, and the oil retention was deteriorated. Seem. In addition, since the amount of plastic deformation applied before forming is large, the amount of plastic deformation in press forming is reduced, so that it seems that excellent formability cannot be obtained.

試験体18は、酸洗条件が適切でなかったため、表面の凹凸が小さくなり保油性が悪くなった結果、成形性が悪くなったと思われる(比較例)。
そして、試験体12、13は、結晶粒径が小さ過ぎるため、酸洗工程で得られる表面の凹凸が浅くなり、保油性が悪くなった結果、成形性が悪くなったと思われる(比較例)。
Since the pickling conditions of the test body 18 were not appropriate, the surface irregularities were reduced and the oil retaining property was deteriorated. As a result, the moldability seems to be deteriorated (Comparative Example).
And since the crystal grains of the test bodies 12 and 13 are too small, the unevenness | corrugation of the surface obtained by a pickling process became shallow, and as a result of having deteriorated oil retention property, it seems that the moldability deteriorated (comparative example). .

ここで、試験体7の表面のSEM像と粗さ曲線を図3に、試験体10の表面のSEM像と粗さ曲線を図4にそれぞれ示している。   Here, the SEM image and roughness curve of the surface of the test body 7 are shown in FIG. 3, and the SEM image and roughness curve of the surface of the test body 10 are shown in FIG.

図3(a)に示すように、試験体7の表面は、平滑部に複数の凹部が分散されていることが分かる。このような凹みが油溜まり部として作用することで保油性に優れ、酸洗したままの表面にも係わらず良好な耐焼付き性及び耐割れ性を得ることができ、成形性に優れる結果になったものと考えられる。
また、図3(b)に示すように、試験体7の表面の任意の位置における3mmの幅において、表面に凹部が適度な分布状態をもって分散して形成されていることと、凸部がほとんど形成されていないことが分かる。
As shown to Fig.3 (a), it turns out that the several recessed part is disperse | distributed to the smooth part on the surface of the test body 7. FIG. Such a dent acts as an oil reservoir, providing excellent oil retention, providing good seizure resistance and crack resistance despite the pickled surface, resulting in excellent moldability. It is thought that.
Moreover, as shown in FIG.3 (b), in the width | variety of 3 mm in the arbitrary positions of the surface of the test body 7, the recessed part is formed in the surface with a moderate distribution state, and a convex part is almost. It turns out that it is not formed.

これに対し、図4(a)に示すように、試験体10の表面は、凹部がほとんど形成されていないことが分かる。そのため、保油性が悪くなって耐焼付き性及び耐割れ性が悪くなった結果、成形性に劣る結果になったと考えられる。
また、図4(b)に示すように、試験体10の表面の任意の位置における3mmの幅において、凹部がほとんど形成されていないこと、及び凸部が多く形成されていることが分かる。
On the other hand, as shown to Fig.4 (a), it turns out that the recessed part is hardly formed in the surface of the test body 10. FIG. Therefore, it is considered that the result of inferior moldability was obtained as a result of poor oil retention and poor seizure resistance and crack resistance.
Moreover, as shown in FIG.4 (b), in the width | variety of 3 mm in the arbitrary positions of the surface of the test body 10, it turns out that the recessed part is hardly formed and many convex parts are formed.

S1 大気焼鈍工程
S2 酸洗工程
S3 スキンパス圧延工程
S1 Atmospheric annealing process S2 Pickling process S3 Skin pass rolling process

Claims (4)

算術平均粗さ(Ra)が0.15〜1.5μmの範囲であり、
最大高さ(Rz)が1.5〜9.0μmの範囲であり、
ひずみ度(Rsk)が−3.0〜−0.5の範囲であり、且つ
表面における測定荷重0.098Nでのビッカース硬さが、測定荷重4.9Nでのビッカース硬さよりも高く、その差が45以下である
ことを特徴とするチタン板。
Arithmetic mean roughness (Ra) is in the range of 0.15 to 1.5 μm,
The maximum height (Rz) is in the range of 1.5 to 9.0 μm,
The degree of strain (Rsk) is in the range of -3.0 to -0.5, and the Vickers hardness at the measurement load of 0.098N on the surface is higher than the Vickers hardness at the measurement load of 4.9N, and the difference Titanium plate characterized in that is 45 or less.
JIS G 0552に規定の切断法により切断した断面を光学顕微鏡で観察した場合における結晶粒径が、平均切片長さで20〜80μmの範囲であることを特徴とする請求項1に記載のチタン板。   2. The titanium plate according to claim 1, wherein the crystal grain size in the case of observing with a light microscope a section cut by a cutting method defined in JIS G 0552 is in the range of 20 to 80 μm in average section length. . 板厚が1.0mm以下であることを特徴とする請求項1又は請求項2に記載のチタン板。   The titanium plate according to claim 1 or 2, wherein a plate thickness is 1.0 mm or less. 冷間圧延後のチタン板を結晶粒径が20〜80μmとなるように大気焼鈍を行う大気焼鈍工程と、
前記大気焼鈍工程後のチタン板を硝酸/フッ酸比が1以上10以下の酸洗浴中で酸洗する酸洗工程と、
前記酸洗工程後のチタン板を圧下率が0.2〜1.0%のスキンパス圧延を行うスキンパス圧延工程と、
を含むことを特徴とするチタン板の製造方法。
An atmospheric annealing step in which the titanium plate after cold rolling is subjected to atmospheric annealing so that the crystal grain size is 20 to 80 μm;
A pickling step of pickling the titanium plate after the atmospheric annealing step in a pickling bath having a nitric acid / hydrofluoric acid ratio of 1 to 10;
A skin pass rolling step in which the titanium plate after the pickling step is subjected to skin pass rolling with a rolling reduction of 0.2 to 1.0%;
The manufacturing method of the titanium plate characterized by the above-mentioned.
JP2009110105A 2009-04-28 2009-04-28 Titanium plate and method for manufacturing titanium plate Expired - Fee Related JP4584341B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009110105A JP4584341B2 (en) 2009-04-28 2009-04-28 Titanium plate and method for manufacturing titanium plate
PCT/JP2010/057482 WO2010126051A1 (en) 2009-04-28 2010-04-27 Titanium plate and method for manufacturing titanium plates
CN201080016195.9A CN102387873B (en) 2009-04-28 2010-04-27 Titanium plate and method for manufacturing titanium plates
KR1020117025286A KR20120005473A (en) 2009-04-28 2010-04-27 Titanium plate and method for manufacturing titanium plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110105A JP4584341B2 (en) 2009-04-28 2009-04-28 Titanium plate and method for manufacturing titanium plate

Publications (2)

Publication Number Publication Date
JP2010255085A true JP2010255085A (en) 2010-11-11
JP4584341B2 JP4584341B2 (en) 2010-11-17

Family

ID=43032195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110105A Expired - Fee Related JP4584341B2 (en) 2009-04-28 2009-04-28 Titanium plate and method for manufacturing titanium plate

Country Status (4)

Country Link
JP (1) JP4584341B2 (en)
KR (1) KR20120005473A (en)
CN (1) CN102387873B (en)
WO (1) WO2010126051A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214860A (en) * 2011-04-01 2012-11-08 Kobe Steel Ltd Titanium sheet having high strength and excellent press formability
JP2013011013A (en) * 2011-05-30 2013-01-17 Kobe Steel Ltd Pure titanium sheet having excellent balance between press formability and strength and excellent corrosion resistance, and process for manufacturing the same
JP2016156054A (en) * 2015-02-24 2016-09-01 新日鐵住金株式会社 Titanium plate and method for producing the same
WO2018008151A1 (en) 2016-07-08 2018-01-11 新日鐵住金株式会社 Titanium sheet and production method therefor
KR20180103995A (en) 2016-01-18 2018-09-19 신닛테츠스미킨 카부시키카이샤 Titanium plate
JP2019118927A (en) * 2017-12-28 2019-07-22 日本製鉄株式会社 Titanium material and apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2700458B1 (en) * 2011-04-22 2018-12-05 Nippon Steel & Sumitomo Metal Corporation Titanium slab for hot rolling and process for producing same
CN103433320B (en) * 2013-08-13 2016-03-02 洛阳双瑞精铸钛业有限公司 A kind of processing method being prepared titanium anode plate by Titanium board base
TWI534278B (en) * 2013-12-26 2016-05-21 China Steel Corp Method for making titanium sheet
CN103846277B (en) * 2014-03-02 2015-08-26 首钢总公司 A kind of production method improving submerged pipeline steel low temperature arrest toughness
CN104226721A (en) * 2014-09-05 2014-12-24 常熟市佳泰金属材料有限公司 Novel production device for pure titanium coils
CN105750853A (en) * 2014-12-15 2016-07-13 无锡市普尔换热器制造有限公司 Cleaning technology for titanium alloy plate finned heat exchanger
US20190226073A1 (en) * 2016-06-30 2019-07-25 Nippon Steel & Sumitomo Metal Corporation Titanium sheet and method for producing the same
CN109751487A (en) * 2017-11-07 2019-05-14 丹阳市日晟工业设备有限公司 A kind of waveform plate stamping parts
CN111054751B (en) * 2019-12-30 2021-05-28 西南铝业(集团)有限责任公司 Aluminum alloy roughened plate with roughness distributed in U shape and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11239805A (en) * 1997-12-24 1999-09-07 Nkk Corp Titanium alloy sheet
JP2002003968A (en) * 2000-06-21 2002-01-09 Sumitomo Metal Ind Ltd Titanium sheet excellent in processability and its production method
JP2003236604A (en) * 2002-02-19 2003-08-26 Sumitomo Metal Ind Ltd Method for manufacturing titanium material, and lubricant
JP2004244671A (en) * 2003-02-13 2004-09-02 Nippon Steel Corp Titanium sheet with excellent formability and lubricity, and its manufacturing method
JP2005298930A (en) * 2004-04-14 2005-10-27 Nippon Steel Corp Titanium material having surface ruggedness and its production method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3228134B2 (en) * 1996-07-18 2001-11-12 住友金属工業株式会社 Method for producing pure titanium plate excellent in formability and seizure resistance
JP4543566B2 (en) * 2001-03-08 2010-09-15 Jfeスチール株式会社 Manufacturing method of hot-dip galvanized steel sheet with excellent press formability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11239805A (en) * 1997-12-24 1999-09-07 Nkk Corp Titanium alloy sheet
JP2002003968A (en) * 2000-06-21 2002-01-09 Sumitomo Metal Ind Ltd Titanium sheet excellent in processability and its production method
JP2003236604A (en) * 2002-02-19 2003-08-26 Sumitomo Metal Ind Ltd Method for manufacturing titanium material, and lubricant
JP2004244671A (en) * 2003-02-13 2004-09-02 Nippon Steel Corp Titanium sheet with excellent formability and lubricity, and its manufacturing method
JP2005298930A (en) * 2004-04-14 2005-10-27 Nippon Steel Corp Titanium material having surface ruggedness and its production method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214860A (en) * 2011-04-01 2012-11-08 Kobe Steel Ltd Titanium sheet having high strength and excellent press formability
JP2013011013A (en) * 2011-05-30 2013-01-17 Kobe Steel Ltd Pure titanium sheet having excellent balance between press formability and strength and excellent corrosion resistance, and process for manufacturing the same
JP2016156054A (en) * 2015-02-24 2016-09-01 新日鐵住金株式会社 Titanium plate and method for producing the same
KR20180103995A (en) 2016-01-18 2018-09-19 신닛테츠스미킨 카부시키카이샤 Titanium plate
US10718043B2 (en) 2016-01-18 2020-07-21 Nippon Steel Corporation Titanium plate
WO2018008151A1 (en) 2016-07-08 2018-01-11 新日鐵住金株式会社 Titanium sheet and production method therefor
KR20190019165A (en) 2016-07-08 2019-02-26 신닛테츠스미킨 카부시키카이샤 Titanium plate and manufacturing method thereof
US10900109B2 (en) 2016-07-08 2021-01-26 Nippon Steel Corporation Titanium sheet and method for manufacturing the same
JP2019118927A (en) * 2017-12-28 2019-07-22 日本製鉄株式会社 Titanium material and apparatus

Also Published As

Publication number Publication date
CN102387873B (en) 2014-09-24
KR20120005473A (en) 2012-01-16
WO2010126051A1 (en) 2010-11-04
JP4584341B2 (en) 2010-11-17
CN102387873A (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4584341B2 (en) Titanium plate and method for manufacturing titanium plate
JP4681663B2 (en) Titanium plate and method for manufacturing titanium plate
TWI388383B (en) Method for manufacturing high-strength cold-rolled steel sheet
EP2481824A1 (en) Pure titanium sheet excellent in balance between stamping formability and strenght
KR101743380B1 (en) Titanium sheet
JP5937865B2 (en) Production method of pure titanium plate with excellent balance of press formability and strength, and excellent corrosion resistance
JP2017137561A (en) Titanium plate, plate for heat exchanger and separator for fuel cell
WO2017126017A1 (en) Titanium plate
JP2016068145A (en) Titanium plate, and its manufacturing method
JP4928584B2 (en) Titanium plate, manufacturing method thereof, and manufacturing method of heat exchange member of plate heat exchanger
JP5615792B2 (en) Titanium plate, method for producing titanium plate, and method for producing heat exchange plate of plate heat exchanger
WO2012137653A1 (en) Titanium sheet with excellent stamping performance
KR20130109368A (en) Titanium steel and manufacturing method of the same
JP2012082457A (en) Titanium-sheet excellent in formability, and method for manufacturing the titanium-sheet
CN109415794B (en) Titanium plate and method for producing same
JP2016169428A (en) Titanium plate and production method therefor
JP2016113656A (en) Titanium plate and manufacturing method therefor
JP6266905B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP2012072444A (en) Titanium sheet having high strength and excellent formability, and method for producing titanium sheet
JP4452753B1 (en) Titanium or titanium alloy plate with excellent balance of press formability and strength
JPH05337560A (en) Thin plate excellent in drawing formability for press

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Ref document number: 4584341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees