JP2016156054A - Titanium plate and method for producing the same - Google Patents

Titanium plate and method for producing the same Download PDF

Info

Publication number
JP2016156054A
JP2016156054A JP2015034430A JP2015034430A JP2016156054A JP 2016156054 A JP2016156054 A JP 2016156054A JP 2015034430 A JP2015034430 A JP 2015034430A JP 2015034430 A JP2015034430 A JP 2015034430A JP 2016156054 A JP2016156054 A JP 2016156054A
Authority
JP
Japan
Prior art keywords
less
titanium
content
plate
titanium plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015034430A
Other languages
Japanese (ja)
Other versions
JP6536076B2 (en
Inventor
英人 瀬戸
Hideto Seto
英人 瀬戸
一浩 ▲高▼橋
一浩 ▲高▼橋
Kazuhiro Takahashi
想祐 西脇
Sosuke Nishiwaki
想祐 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015034430A priority Critical patent/JP6536076B2/en
Publication of JP2016156054A publication Critical patent/JP2016156054A/en
Application granted granted Critical
Publication of JP6536076B2 publication Critical patent/JP6536076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To produce a titanate plate excellent in strength and moldability.SOLUTION: The titanium plate has, by mass%, an iron content of 0.01 to 0.1%, an oxygen content of 0.02 to 0.15%, a carbon content of 0.015% or less, a nitrogen content of 0.015% or less, a hydrogen content of 0.015% or less and the balance titanium with inevitable impurities. In the titanium plate, the arithmetic average roughness (Ra) in the L direction is 0.2 to 0.8 μm; the arithmetic average roughness in the T direction is not less than 1.1 times to not more than 2 times that in the L direction; deformation twins are present in a range of 0.05 t to 0.2 t from a surface layer when a plate thickness is t; the Vickers hardness at a measurement load of 0.25 N in the surface is 170 or more; the Vickers hardness at a measurement load of 9.8 N in the surface is 90 to 180; and the Vickers hardness at a measurement load of 0.25 N is not less than 1.5 times the Vickers hardness at a measurement load of 9.8 N.SELECTED DRAWING: Figure 5

Description

本発明は、より高強度化が要求されている分野に広く使用される成形性に優れたチタン板に関する。   The present invention relates to a titanium plate having excellent formability and widely used in fields where higher strength is required.

純チタンやチタン合金は、鉄やその合金などの鉄系金属材料に比べて、軽量で強度が高いことからスポーツ・レジャー用具、医療器具、各種プラント用部材、航空・宇宙関係機器などに広く用いられている。また、優れた耐食性を有するため、例えばプレート式熱交換器のプレート材や、自動二輪車用マフラー部材などにも用いられたりしている。   Pure titanium and titanium alloys are lighter and stronger than ferrous metal materials such as iron and its alloys, so they are widely used in sports and leisure equipment, medical equipment, various plant components, aerospace equipment, etc. It has been. In addition, since it has excellent corrosion resistance, it is used, for example, as a plate material for a plate heat exchanger, a muffler member for a motorcycle, and the like.

このような製品を製造する場合には、曲げ加工、絞り加工、プレス加工などといった塑性変形を伴う種々の加工が施される。したがって、このような各種の用途に供すべく、チタン板には、絞り加工などの加工時における成形性に優れたものが求められる。   When manufacturing such a product, various processes accompanied by plastic deformation such as bending, drawing, and pressing are performed. Therefore, in order to provide such various uses, the titanium plate is required to have excellent formability during processing such as drawing.

しかし、最近では、チタン材の所要量を低減するため薄肉化が要求され、現状より高強度化が求められている。つまり、成形性と強度というトレードオフの関係にある材料特性を同時に満足させるチタン板の開発が必要となる。   However, recently, in order to reduce the required amount of titanium material, thinning is required, and higher strength is required from the present situation. In other words, it is necessary to develop a titanium plate that simultaneously satisfies the material properties that have a trade-off relationship between formability and strength.

純チタンに関してJISにおいては、チタン以外の鉄(Fe)や酸素(O)の含有量により、JIS1種、JIS2種、JIS3種、JIS4種などが規定されている。この純チタンの材料特性としては、Feなどの含有量が少ないJIS1種が最も低強度で成形性に優れ、JIS2種、JIS3種となるにしたがって高強度となることが知られている。しかし一方で、JIS2種、JIS3種、となるほどに成形性が低下し、これらを用いて絞り加工などを実施させることは容易ではない。   Regarding pure titanium, JIS type 1, JIS type 2, JIS type 3, JIS type 4 and the like are defined according to the content of iron (Fe) and oxygen (O) other than titanium. As for the material characteristics of this pure titanium, it is known that JIS type 1 having a low content of Fe or the like has the lowest strength and excellent moldability, and the strength becomes higher as it becomes JIS type 2 or JIS type 3. However, on the other hand, the moldability decreases as JIS type 2 and JIS type 3, and it is not easy to perform drawing processing using these.

従来では、チタン材の強度を増加させる手法としてFeやOなどを添加する固溶強化、結晶粒微細化強化が行なわれてきた。しかしながら前述のように、これでは強度の増加とともに延性が損なわれ、それに伴い成形性が劣化する。   Conventionally, as a method for increasing the strength of a titanium material, solid solution strengthening by adding Fe, O, etc., and crystal grain refinement strengthening have been performed. However, as described above, this deteriorates ductility as the strength increases, and the moldability deteriorates accordingly.

特許文献1、2、3及び4では、Fe含有量が0.1%を超える、またはFeと同様のβ相安定化元素であるNi含有量が多いため、α相結晶粒が小さくなる恐れがあり十分な成形性が得られない可能性がある。   In Patent Documents 1, 2, 3 and 4, since the Fe content exceeds 0.1% or the Ni content which is a β-phase stabilizing element similar to Fe is large, the α-phase crystal grains may be small. There is a possibility that sufficient formability cannot be obtained.

特許文献5では、Fe:1.0質量%以下とされているが、実施例ではα相粒径は20μmに至っておらず、結晶粒径が小さいため十分な成形性が得られない。   In Patent Document 5, Fe: 1.0 mass% or less is used, but in the examples, the α phase particle size does not reach 20 μm, and the crystal grain size is small, so that sufficient formability cannot be obtained.

さらに、特許文献6、7では、実施例での記載にて結晶粒径が30μmに満たない場合があり、結晶粒径が30μmよりも小さいと成形性が低下するおそれがある。また、酸素含有量が0.05質量%未満の場合、十分な強度が得られない。   Further, in Patent Documents 6 and 7, the crystal grain size may be less than 30 μm in the description in the examples, and if the crystal grain size is smaller than 30 μm, the moldability may be lowered. In addition, when the oxygen content is less than 0.05% by mass, sufficient strength cannot be obtained.

特許文献8では、焼鈍後に仕上げ冷間加工を3.4〜5.8%行い、r値の異方性を低減している。しかしながら、冷間加工量が多いため、成形性が低下するおそれがある。   In patent document 8, finishing cold work is performed 3.4 to 5.8% after annealing, and the anisotropy of r value is reduced. However, since there is much cold work amount, there exists a possibility that a moldability may fall.

特許文献9では、β相の面積率を3〜20%とすることで張出し性が高度に維持され高強度のチタン合金板材が製造されると記述されているが、β相の面積率が3%を超えると塑性変形時にボイドが発生しやすくなり、これに起因して成形性が低下するおそれがある。   Patent Document 9 describes that a high-strength titanium alloy sheet is manufactured by maintaining the stretchability at a high level by setting the area ratio of the β phase to 3 to 20%. However, the area ratio of the β phase is 3 If it exceeds 50%, voids are likely to occur during plastic deformation, and this may lead to a decrease in formability.

一方、特許文献10では、表層の窒素濃度と表面粗さを制御した成形性と潤滑性に優れたチタン板が提案されているが、表面に非常に硬質なチタン化合物が形成されているため、大きなひずみが付与されるプレス成形などにおいては割れの起点となるおそれがある。   On the other hand, in Patent Document 10, a titanium plate excellent in formability and lubricity in which the nitrogen concentration and surface roughness of the surface layer are controlled is proposed, but because a very hard titanium compound is formed on the surface, In press molding or the like to which a large strain is applied, there is a risk of becoming a starting point of cracking.

特許文献11では酸化皮膜が3〜15nmを形成させて極表層のみ硬化させ、さらに表面硬度をコントロールし、プレス成形加工などで優れた成形性を発揮するとしている。また、表面の粗さ(算術平均粗さ(Ra))を0.25μm以下とすることで洗浄性を高めている。   In Patent Document 11, the oxide film is formed to have a thickness of 3 to 15 nm, only the extreme surface layer is cured, the surface hardness is controlled, and excellent moldability is exhibited by press molding or the like. Moreover, the cleaning property is enhanced by setting the surface roughness (arithmetic mean roughness (Ra)) to 0.25 μm or less.

純チタンは、熱間加工、焼鈍などの熱処理によって、表面に緻密な酸化スケールが形成される。純チタン薄板を大気中で焼鈍した後は、一般に、NaOHを主成分としたソルトに浸漬(ソルト処理)することによって、難水溶性の酸化スケールを水溶性のNaTiOに改質し、硝酸とふっ酸の混合液(硝ふっ酸)で酸洗して脱スケールし、次いで、水洗し、乾燥する。この酸洗方法についてさまざまな方法が提案されている。 Pure titanium forms a dense oxide scale on the surface by heat treatment such as hot working or annealing. After annealing a pure titanium thin plate in the atmosphere, generally, a slightly water-soluble oxide scale is modified to water-soluble Na 2 TiO 3 by immersing (salt treatment) in a salt mainly composed of NaOH, Pickle with a mixed solution of nitric acid and hydrofluoric acid (nitric hydrofluoric acid), descal, then wash with water and dry. Various methods have been proposed for this pickling method.

特許文献12では、酸洗速度を向上させる目的で硝酸やふっ酸の濃度などの酸洗条件が種々検討されている。   In Patent Document 12, various pickling conditions such as concentrations of nitric acid and hydrofluoric acid are studied for the purpose of improving the pickling speed.

特許文献13では、ソルト浴での脱スケール中にスパークの発生を防止するため、チタン材を溶融アルカリ塩浴に浸漬した後、電解質水溶液中で陽極電解と交番電解の一方又は双方の電解を行い、さらに硝ふっ酸酸洗液に浸漬する方法が提案されている。   In Patent Document 13, in order to prevent the occurrence of spark during descaling in a salt bath, after immersing a titanium material in a molten alkali salt bath, anodic electrolysis and / or alternating electrolysis is performed in an aqueous electrolyte solution. Furthermore, a method of immersing in a nitric hydrofluoric acid pickling solution has been proposed.

特許文献14では、ステンレス熱延鋼帯において、ショットブラストによる微小な凹部の発生を防止するため、回転ブラシで熱延スケールを研削し、酸洗する方法が提案されている。   In patent document 14, in order to prevent generation | occurrence | production of the micro recessed part by shot blasting in a stainless hot-rolled steel strip, the method of grinding a hot-rolling scale with a rotating brush and pickling is proposed.

特許第1696795号公報Japanese Patent No. 1696795 特許第1593477号公報Japanese Patent No. 1593477 特開2004−285457号公報JP 2004-285457 A 特開2007−162070号公報JP 2007-162070 A 特開2009−215601号公報JP 2009-215601 A 特開2011−25269号公報JP 2011-25269 A 特開2011−26649号公報JP 2011-26649 A 特開平9−216004号公報JP 9-216044 A 特開2008−127633号公報JP 2008-127633 A 特開2004−244671号公報JP 2004-244671 A 特開2011−020135号公報JP 2011-020135 A 特開2009−256736号公報JP 2009-256736 A 特開平11−200078号公報Japanese Patent Laid-Open No. 11-200078 特開平7−051728号公報Japanese Patent Application Laid-Open No. 7-051728

特許文献1〜9に記載されたチタン板は添加元素や金属組織をコントロールして強度と成形性の両立が試みられているが、強度と成形性はトレードオフの関係にあり、強度を増加させると十分な成形性が得られないという問題があった。   The titanium plates described in Patent Documents 1 to 9 have attempted to achieve both strength and formability by controlling additive elements and metal structures, but the strength and formability are in a trade-off relationship and increase the strength. There was a problem that sufficient moldability could not be obtained.

このため、成形性を向上させる目的で特許文献10、11のように表面性状に着目した発明も見られる。特許文献10では表面硬度を増大させる目的で表面に化合物が形成されている。これは、耐焼つき、潤滑性向上には有利であるが、過酷なプレス成形など行なうと脆い化合物が割れの起点となるおそれがある。   For this reason, the invention which paid attention to surface property like patent documents 10 and 11 for the purpose of improving moldability is also seen. In Patent Document 10, a compound is formed on the surface for the purpose of increasing the surface hardness. This is advantageous for improving seizure resistance and lubricity, but if harsh press molding is performed, a brittle compound may become a starting point of cracking.

特許文献11では、化合物は極薄くコントロールされているが表面粗さが小さく、この場合は十分な量の潤滑剤を塗布することができず、プレス成形に不利である。   In Patent Document 11, the compound is controlled to be extremely thin, but the surface roughness is small. In this case, a sufficient amount of lubricant cannot be applied, which is disadvantageous for press molding.

高強度と高成形性を両立させるには、元素添加や金属組織および表面特性のコントロールが必要となる。特に、成形性に大きな影響を与える表面特性の因子である表面硬度と表面粗さのコントロールが重要である。このため、本発明者らは、従来の製造方法にとらわれず、化合物を形成させずに表面硬度を増大させる製造方法、潤滑剤が最も有効に作用する表面粗さとなる製造方法を検討する必要があると考えた。   In order to achieve both high strength and high formability, it is necessary to add elements and control the metal structure and surface characteristics. In particular, it is important to control surface hardness and surface roughness, which are factors of surface characteristics that greatly affect moldability. For this reason, the present inventors need to study a manufacturing method for increasing the surface hardness without forming a compound and a manufacturing method for achieving a surface roughness on which the lubricant acts most effectively, without being bound by conventional manufacturing methods. I thought it was.

本発明は、上記の事情に鑑み、成形性を低下させず強度を増加させた、強度と成形性に優れるチタン薄板を提供することを課題とする。   This invention makes it a subject to provide the titanium thin plate which was excellent in the intensity | strength and a moldability which increased the intensity | strength without reducing a moldability in view of said situation.

本発明者らは、前記課題を解決するために、化合物を形成させずに表面硬度を増大させる製造方法、潤滑剤が有効に作用する表面粗さについて鋭意研究を重ねた。   In order to solve the above-mentioned problems, the present inventors have made extensive studies on a production method for increasing surface hardness without forming a compound and a surface roughness on which a lubricant acts effectively.

その結果、チタン板を大気焼鈍して生成した酸化スケールをソルト浸漬で完全に改質した後、ブラシによりこの改質層を除去できる程度の研削能力で研磨することにより、表面粗さを所定の値とし、チタン板の表層のみを変形双晶によって加工硬化させることで、強度と成形性のバランスが大きく向上することを見出し、本発明を完成した。その要旨は以下のとおりである。   As a result, after the oxide scale generated by atmospheric annealing of the titanium plate is completely modified by salt dipping, the surface roughness is set to a predetermined level by polishing with a brush capable of removing this modified layer with a brush. As a result, it was found that the balance between strength and formability was greatly improved by working and hardening only the surface layer of the titanium plate by deformation twinning, and the present invention was completed. The summary is as follows.

(1)質量%で、鉄の含有量が0.01〜0.1%、酸素の含有量が0.02〜0.15%、炭素の含有量が0.015%以下、窒素の含有量が0.015%以下、水素の含有量が0.015%以下であり、残部がチタン及び不可避不純物であり、L方向の算術平均粗さ(Ra)が0.2〜0.8μmであり、T方向の算術平均粗さがL方向の1.1倍以上2倍以下であり、板厚をtとするとき、表層0.05t〜0.2tの範囲に変形双晶が存在し、表面における測定荷重0.25Nでのビッカース硬さが170以上、表面における測定荷重9.8Nでのビッカース硬さが90〜180であり、上記測定荷重0.25Nでのビッカース硬さが、上記測定荷重9.8Nでのビッカース硬さよりも1.5倍以上高いことを特徴とするチタン板。   (1) In mass%, the iron content is 0.01 to 0.1%, the oxygen content is 0.02 to 0.15%, the carbon content is 0.015% or less, and the nitrogen content Is 0.015% or less, the hydrogen content is 0.015% or less, the balance is titanium and inevitable impurities, and the arithmetic average roughness (Ra) in the L direction is 0.2 to 0.8 μm, When the arithmetic average roughness in the T direction is 1.1 to 2 times that in the L direction and the plate thickness is t, deformation twins exist in the surface layer range of 0.05 t to 0.2 t, and The Vickers hardness is 170 or more at a measurement load of 0.25 N, the Vickers hardness at a measurement load of 9.8 N on the surface is 90 to 180, and the Vickers hardness at the measurement load of 0.25 N is the measurement load of 9 A titanium plate characterized by being 1.5 times higher than the Vickers hardness at 8N.

(2)前記(1)のチタン板の製造方法であって、チタン材を冷間圧延し、冷間圧延されたチタン板を大気中で焼鈍し、焼鈍後のチタン板を質量%でNaOHが75〜95%、520〜550℃のソルト浴に15〜60s浸漬し、研削ブラシで上記浸漬後のチタン板の表層1〜3μmを除去することを特徴とするチタン板の製造方法。   (2) The method for producing a titanium plate according to (1), wherein the titanium material is cold-rolled, the cold-rolled titanium plate is annealed in the atmosphere, and the annealed titanium plate is NaOH in mass%. A method for producing a titanium plate, comprising immersing in a salt bath at 75 to 95%, 520 to 550 ° C. for 15 to 60 seconds, and removing a surface layer of 1 to 3 μm of the titanium plate after the immersion with a grinding brush.

ここで、L方向とは最終圧延方向、T方向とはL方向に直交する方向のことである。   Here, the L direction is the final rolling direction, and the T direction is a direction orthogonal to the L direction.

本発明では、元素を過剰に添加しないため成形性を低下させず、ブラシ研磨で酸洗を代替するため歩留の低下を大きく抑制することができ、ブラシ研磨による表層の加工硬化により、強度を増加させることができ、強度と成形性に優れるチタン薄板が得られる。   In the present invention, since the element is not added excessively, the formability is not lowered, and the pickling is replaced by brush polishing, so that a decrease in yield can be greatly suppressed. A titanium thin plate that can be increased and is excellent in strength and formability is obtained.

本発明のチタン板の表面の双晶を示す図である。It is a figure which shows the twin of the surface of the titanium plate of this invention. 実施例において、球頭張出し試験に用いた試験片の形状を示す図である。In an Example, it is a figure which shows the shape of the test piece used for the ball head protrusion test. 大気焼鈍、ソルト処理をして酸洗処理をしたチタン板の表層を示す図である。It is a figure which shows the surface layer of the titanium plate which carried out the air annealing and salt process and performed the pickling process. 大気焼鈍、ソルト処理をしてブラシ研磨をしたチタン板の表層を示す図である。It is a figure which shows the surface layer of the titanium plate which carried out air annealing and salt processing and brush-polished. 本発明材の強度延性バランスを示す図である。It is a figure which shows the strength ductility balance of this invention material.

本発明のチタン板は、質量%で、0.01〜0.1%の鉄を含有する。鉄の含有量を0.01%未満とするには、鉄の含有量の少ない高価なスポンジチタンしか使えない。また、形成されるチタン板に十分な強度を付与することができない。鉄の含有量は、好ましくは0.015%以上であり、より好ましくは0.02%以上である。   The titanium plate of the present invention contains 0.01 to 0.1% iron by mass%. In order to make the iron content less than 0.01%, only expensive sponge titanium with a low iron content can be used. Moreover, sufficient strength cannot be imparted to the formed titanium plate. The iron content is preferably 0.015% or more, and more preferably 0.02% or more.

一方、鉄の含有量が0.1%を越えると、結晶粒径が小さくなりすぎ、チタン材料中の酸素含有量を所定の値としても延性の低下が生じ、チタン板の成形性が低下する。また、熱延や熱処理工程を経ると水素吸収が容易なβ相が多く生成するため、耐食性の低下も懸念される。したがって、鉄含有量は、0.1%以下とする。より好ましくは0.09%以下である。   On the other hand, if the iron content exceeds 0.1%, the crystal grain size becomes too small, and even if the oxygen content in the titanium material is set to a predetermined value, the ductility is lowered and the formability of the titanium plate is lowered. . Moreover, since many β phases that easily absorb hydrogen are generated after hot rolling and heat treatment steps, there is a concern that the corrosion resistance may be lowered. Therefore, the iron content is 0.1% or less. More preferably, it is 0.09% or less.

本発明のチタン板は、質量%で0.02〜0.15%の酸素を含有する。酸素の含有量が0.02%未満とするには、高純度なスポンジチタンが必要となるため、一般的な原料の使用が困難となるだけでなく、チタン材の強度が著しく低下する。酸素の含有量は、好ましくは0.03%以上である。   The titanium plate of the present invention contains 0.02 to 0.15% oxygen by mass%. In order to make the oxygen content less than 0.02%, high-purity sponge titanium is required, so that not only the use of general raw materials becomes difficult, but also the strength of the titanium material is significantly reduced. The oxygen content is preferably 0.03% or more.

酸素の含有量が0.15%を超えると、強度が大きくなりすぎ、成形性が芳しくないチタン板となる。酸素の含有量は、好ましくは0.14%以下である。   If the oxygen content exceeds 0.15%, the strength becomes too high and the titanium plate has poor formability. The oxygen content is preferably 0.14% or less.

また、炭素、窒素、水素は、成形加工における良好なる成形性を確保する目的からJIS2種に相当する含有量以下とする必要がある。より具体的には、炭素、窒素、水素の含有量は、それぞれ、質量%で0.015%以下とする必要がある。   In addition, carbon, nitrogen, and hydrogen need to be contained in amounts equal to or less than those of JIS class 2 for the purpose of ensuring good moldability in the molding process. More specifically, the contents of carbon, nitrogen, and hydrogen must each be 0.015% or less by mass.

好ましくは、炭素の含有量を0.01%以下、窒素の含有量を0.01%以下、水素の含有量を0.01%以下とする。   Preferably, the carbon content is 0.01% or less, the nitrogen content is 0.01% or less, and the hydrogen content is 0.01% or less.

チタン板の成形性の観点からは、上記炭素、窒素、水素の含有量に下限を定めるものではないが、これらの含有量を極端に低下させようとするとチタン板の製造コストを大幅に増大させるおそれがある。このコストアップ抑制の観点からは、炭素を0.0005%以上、窒素を0.0005%以上、水素を0.0005%以上とすることが好ましい。   From the viewpoint of formability of the titanium plate, there is no lower limit to the content of the carbon, nitrogen, and hydrogen. However, if these contents are extremely reduced, the production cost of the titanium plate is greatly increased. There is a fear. From the viewpoint of suppressing the cost increase, it is preferable that carbon is 0.0005% or more, nitrogen is 0.0005% or more, and hydrogen is 0.0005% or more.

プレス加工で金型との潤滑性を向上させる目的で、表面を硬くするためにTiC、TiN、酸化皮膜TiOなどの化合物層を表面に形成する手法が採られることがある。しかしながら、これら化合物層は硬く変形能が低いためプレス加工時に割れが生じやすいという問題がある。そのため、本発明のチタン板では、表面に化合物を存在させせず(自然に生成する不動態皮膜は除く)、チタン材そのものの表層を板中心部より硬くさせるため、表層0.05t〜0.2t(tは板厚)に変形双晶を分布させる。本発明のチタン板の模式図を図1に示す。 In order to improve the lubricity with the mold by press working, a method of forming a compound layer such as TiC, TiN, oxide film TiO 2 or the like on the surface in order to harden the surface may be employed. However, since these compound layers are hard and have low deformability, there is a problem that cracking is likely to occur during press working. For this reason, in the titanium plate of the present invention, the surface layer of 0.05 t to 0 .0 is not formed on the surface (except for a passive film that is naturally generated), and the surface layer of the titanium material itself is harder than the center of the plate. The deformation twins are distributed over 2t (t is the plate thickness). A schematic diagram of the titanium plate of the present invention is shown in FIG.

表層にのみ変形双晶を分布させる方法として、本発明ではブラシ研磨を行なう。これによって、表層にのみ双晶が導入され、表層の硬度のみを高め、成形性を向上さることができる。双晶層が表層0.05tより小さいと、加工硬化している表層領域が少なすぎるため、成形時に表層にもひずみが導入され、表層の加工硬化が進み、割れの起点となるため、成形性は低下する。双晶層が表層0.2tより大きいと、表層と板内部の硬度差が小さく、成形時に表層にもひずみが導入され、表層の加工硬化が進み、割れの起点となるため、成形性は低下する。   In the present invention, brush polishing is performed as a method for distributing deformation twins only on the surface layer. Thereby, twins are introduced only into the surface layer, and only the hardness of the surface layer can be increased and the moldability can be improved. If the twin layer is smaller than the surface layer of 0.05 t, the surface layer region that has been work hardened is too small, so strain is introduced into the surface layer during molding, the work hardening of the surface layer proceeds, and the starting point of cracking. Will decline. If the twin layer is larger than the surface layer 0.2t, the difference in hardness between the surface layer and the inside of the plate is small, strain is introduced into the surface layer at the time of molding, work hardening of the surface layer progresses, and it becomes the starting point of cracking, so the moldability is reduced. To do.

表面粗さもプレス成形などに大きな影響を与える因子である。表面粗さが小さすぎると潤滑剤が十分に塗布できず、成形時に潤滑剤が不足する問題がある。表面粗さが大きすぎると潤滑剤は多く塗布できるが、凹部の奥に入り込んだ潤滑剤は成形加工時に金型と接触せず潤滑剤が供給されない可能性がある。   Surface roughness is also a factor that greatly affects press molding. If the surface roughness is too small, the lubricant cannot be applied sufficiently, and there is a problem that the lubricant is insufficient during molding. If the surface roughness is too large, a large amount of lubricant can be applied, but the lubricant that has entered the back of the recess does not come into contact with the mold during molding and may not be supplied.

チタン材料の薄板は、変形時に幅縮みする単純引張とは異なる幅縮みせずに変形する成形加工では、T方向のほうが変形能は高い。例えば2軸方向に引張変形するエリクセン試験において、破断時にはL方向へ伸びる方向に割れる。つまり、成形加工ではL方向のほうが変形能は劣るということを意味する。したがって、L方向に優先的に潤滑剤が供給されれば、全体的に変形能が増加するということになる。しかしながら、これまで、表面粗さの大きさ自体に着目した発明は見られたが、表面粗さの異方性に着目することは試みられなかった。   A thin plate of titanium material has a higher deformability in the T direction in a forming process in which the thin plate is deformed without being contracted in width than the simple tension that is contracted in deformation. For example, in an Erichsen test in which tensile deformation is performed in the biaxial direction, it breaks in the direction extending in the L direction at the time of fracture. That is, in the molding process, the L direction is inferior in deformability. Accordingly, if the lubricant is preferentially supplied in the L direction, the deformability is increased as a whole. However, until now, there have been inventions focusing on the surface roughness itself, but no attempt has been made to focus on the anisotropy of the surface roughness.

本発明者らは鋭意研究を重ね、潤滑剤を十分塗布することができ、成形加工時に潤滑剤が十分供給される表面粗さの条件を見出した。それが、ソルト処理後のブラシ研磨であり、それによる表面粗さは、L方向の算術平均粗さ(Ra)が0.2〜0.8μmであり、T方向のRaはL方向の1.1倍以上2倍以下である。   The present inventors have intensively studied and found a condition of surface roughness that allows sufficient application of the lubricant and sufficient supply of the lubricant during the molding process. That is brush polishing after the salt treatment, and the surface roughness due thereto is an arithmetic average roughness (Ra) in the L direction of 0.2 to 0.8 μm, and Ra in the T direction is 1. 1 to 2 times.

L方向の算術平均粗さ(Ra)が0.2μm以下では潤滑剤が十分塗布できない。好ましくは0.3μm以上である。0.8μmを超えると凹凸が大きすぎて、成形時には凹部の奥に入り込んだ潤滑剤が供給されず、十分な成形性が得られない。好ましくは0.7μm以下である。   When the arithmetic average roughness (Ra) in the L direction is 0.2 μm or less, the lubricant cannot be sufficiently applied. Preferably it is 0.3 micrometer or more. If it exceeds 0.8 μm, the unevenness is too large, and the lubricant that has entered the back of the recess is not supplied during molding, and sufficient moldability cannot be obtained. Preferably it is 0.7 micrometer or less.

T方向のRaがL方向の1.1倍より小さい場合は、L方向に伸びるほうに潤滑剤が供給されず、十分な成形性が得られない。T方向のRaは、好ましくはL方向の1.2倍以上である。T方向のRaがL方向の2倍を越えるとT方向に潤滑剤が供給されにくくなり十分な成形性が得られない。T方向にL方向の1.1倍以上2倍以下の凹凸があることでT方向よりL方向への潤滑剤の供給が優先され、L方向の変形能が向上することによって、優れた成形性が得られる。   When Ra in the T direction is less than 1.1 times that in the L direction, the lubricant is not supplied in the direction extending in the L direction, and sufficient moldability cannot be obtained. Ra in the T direction is preferably 1.2 times or more in the L direction. If Ra in the T direction exceeds twice that in the L direction, it is difficult to supply the lubricant in the T direction, and sufficient moldability cannot be obtained. Due to the unevenness of 1.1 times to 2 times of the L direction in the T direction, priority is given to the supply of the lubricant in the L direction over the T direction, and the deformability in the L direction is improved, resulting in excellent moldability. Is obtained.

本発明では、ブラシ研磨後の表面における測定荷重0.25Nでのビッカース硬さが170以上、測定荷重9.8Nでのビッカース硬さが90〜180であり、測定荷重0.25Nでのビッカース硬さが測定荷重9.8Nでのビッカース硬さよりも1.5倍以上高い。この場合、表層が板内部より十分硬いため、成形時には潤滑性の向上により、軟質な内部に優先的にひずみが均一に導入される。また、表面は、化合物とは異なり、塑性変形が可能なチタン材のため、割れが生じにくくなる。以上から、表面の塑性変形可能な高硬度化により、割れが生じにくい潤滑性の向上によるひずみの均一性により成形性が向上する。   In the present invention, the surface after brush polishing has a Vickers hardness of 170 or more at a measurement load of 0.25 N, a Vickers hardness of 90 to 180 at a measurement load of 9.8 N, and a Vickers hardness at a measurement load of 0.25 N. Is 1.5 times higher than the Vickers hardness at a measurement load of 9.8 N. In this case, since the surface layer is sufficiently harder than the inside of the plate, the strain is uniformly introduced preferentially into the soft inside due to the improvement in lubricity during molding. In addition, unlike the compound, the surface is a titanium material that can be plastically deformed, so that cracks are less likely to occur. From the above, by increasing the hardness of the surface that can be plastically deformed, the formability is improved by the uniformity of strain due to the improved lubricity that is less likely to crack.

測定荷重0.25Nでのビッカース硬さが170に満たない場合、成形時に表層にもひずみが導入され、表層の加工硬化が進み割れの起点となるため、成形性は低下する。   When the Vickers hardness at a measurement load of 0.25 N is less than 170, strain is also introduced into the surface layer at the time of molding, and the work hardening of the surface layer proceeds and becomes the starting point of cracking, so the moldability is lowered.

測定荷重9.8Nでのビッカース硬さが90より小さいと強度が不十分となる。好ましくは100以上である。180を超えると強度が高すぎて成形性が劣化する。好ましくは170以下、より好ましくは160以下である。   If the Vickers hardness at a measurement load of 9.8 N is less than 90, the strength is insufficient. Preferably it is 100 or more. If it exceeds 180, the strength is too high and the moldability deteriorates. Preferably it is 170 or less, More preferably, it is 160 or less.

測定荷重0.25Nでのビッカース硬さが、測定荷重9.8Nでのビッカース硬さの1.5倍に満たない場合、表層と板内部の硬度差が小さく、成形時に表層にもひずみが導入されてしまい、表層の加工硬化が進み割れの起点となるため、成形性は低下する。   When the Vickers hardness at a measurement load of 0.25N is less than 1.5 times the Vickers hardness at a measurement load of 9.8N, the difference in hardness between the surface layer and the plate is small, and strain is introduced into the surface layer during molding. As a result, the work hardening of the surface layer proceeds and becomes the starting point of cracking, so the moldability is lowered.

表層の硬度分布を形成させるブラシ研磨で使用するブラシについては、特に限定しないが、ソルト改質層が除去できる研磨能力は必要である。一方、研磨能力が高すぎると、表面に疵が発生するので、過剰な研磨能力を有するブラシでの研磨は避けるべきである。前述のように、表層1/5t(tは板厚)に変形双晶が存在するように研磨すればよい。   Although it does not specifically limit about the brush used by the brush grinding | polishing which forms the hardness distribution of a surface layer, The grinding | polishing capability which a salt modification layer can remove is required. On the other hand, if the polishing ability is too high, wrinkles are generated on the surface, and polishing with a brush having an excessive polishing ability should be avoided. As described above, polishing may be performed so that deformation twins exist on the surface layer 1 / 5t (t is the plate thickness).

ブラシでの研磨量については、特に限定しないが、冷延板の焼鈍で生成する酸化スケールの厚さは一般的に2μm以下であるため、片面3μm程度研磨すれば、ソルト処理による改質層は除去される。   The amount of polishing with the brush is not particularly limited, but the thickness of the oxide scale generated by annealing of the cold-rolled sheet is generally 2 μm or less. Removed.

本発明のチタン板の製造方法では、冷間圧延した後の大気中での焼鈍後、質量%でNaOHが75%以上95%以下、520℃以上550℃以下のソルトに15s以上浸漬し、研削ブラシで、表層1μm以上3μm以下を除去する。   In the method for producing a titanium plate of the present invention, after annealing in the air after cold rolling, NaOH is immersed in a salt of 75% or more and 95% or less and 520 ° C or more and 550 ° C or less by mass% for 15s or more and then ground. The surface layer of 1 μm or more and 3 μm or less is removed with a brush.

このとき重要なのは、表面に疵などの欠陥が生じないよう、かつスケールを完全に除去できるよう、ソルトで完全改質し、ブラシ研磨を適正に行なうことである。ソルト処理後に行なう理由を以下に記載する。   What is important at this time is that the surface is completely modified with a salt so that defects such as wrinkles do not occur on the surface and the scale can be completely removed, and brush polishing is appropriately performed. The reason for performing after the salt treatment will be described below.

酸洗後に、ブラシ研磨すると、表面が軟質なため、内部深くまでひずみが掛かり加工硬化し、本発明で規定する硬度分布が得られず、成形性が劣化する。また、チタンの新生面が露出するため、活性なチタンの表面が焼きつくおそれがある。そもそも、酸洗を行なうと、チタン母材も溶解するため、歩留が大きく低下する。   When the surface is softened after pickling, the surface is soft and strain is applied deeply into the inside, so that the hardness distribution defined in the present invention cannot be obtained and the moldability deteriorates. Moreover, since the new surface of titanium is exposed, the surface of active titanium may be burned. In the first place, when pickling, the titanium base material also dissolves, so the yield is greatly reduced.

一方、焼鈍によって生成したスケールが付着したままブラシ研磨した場合では、スケールを除去するために研磨能力の高いブラシの使用や大きな圧下量が必要となり、チタン表面に大きな負荷が掛かるため研磨疵が残り、プレス成形での割れの起点となるおそれがある。また、スケールは難水溶性で容易に除去できないため、完全除去には時間がかかる。このため、スケールが残らないようソルト浴に浸漬してスケールを水溶性のソルト改質層に完全に改質することが必須となる。   On the other hand, when brush polishing is performed with the scale generated by annealing attached, it is necessary to use a brush with high polishing ability and a large amount of rolling to remove the scale, and a large load is applied to the titanium surface, so that polishing wrinkles remain. There is a possibility that it becomes a starting point of cracks in press molding. Further, since the scale is hardly water-soluble and cannot be easily removed, it takes time for complete removal. For this reason, it is essential to completely modify the scale into a water-soluble salt-modified layer by dipping in a salt bath so that no scale remains.

冷延、焼鈍後に行なわれるソルトでのスケール改質において、ソルト浴に含まれるNaOHは質量%で75%以上95%以下である。   In scale modification with salt performed after cold rolling and annealing, NaOH contained in the salt bath is 75% to 95% by mass.

NaOHが75%未満の場合、スケールを完全に改質することが困難で、改質に長時間を要する。連続ラインでは長時間浸漬することは難しいため、ブラシ研磨でスケールが残存する可能性がある。このスケールを除去しようとブラシ研磨能力を増大させると、表面疵が生じるおそれがある。このような観点からソルト浴に含まれるNaOHは75%以上とする必要がある。好ましくは80%以上である。   When NaOH is less than 75%, it is difficult to completely modify the scale, and it takes a long time for the modification. Since it is difficult to immerse in a continuous line for a long time, the scale may remain by brush polishing. Increasing the brush polishing ability to remove this scale may cause surface flaws. From such a viewpoint, NaOH contained in the salt bath needs to be 75% or more. Preferably it is 80% or more.

NaOHが95%を超えると、ソルトに含有されるNaNOの濃度が低くなり、ソルトの粘性が低下し、ソルト持出し量が多くなってソルトの減りが速くなり、経済的に芳しくない。ソルト浴に含まれるNaOHは、より好ましくは90%以下である。 When NaOH exceeds 95%, the concentration of NaNO 3 contained in the salt is lowered, the viscosity of the salt is lowered, the amount of salt taken out is increased, the reduction of the salt is accelerated, and this is not economically favorable. The NaOH contained in the salt bath is more preferably 90% or less.

ソルト浴の温度は520℃以上550℃である。520℃未満では、スケールの改質が不十分となり、ブラシ研磨でスケールが残存する可能性がある。550℃以上では、ソルトと過剰に反応して表面に軟質なチタン母材が露出する。その結果、表層のみならず板内部まで過剰にひずみが導入され、表層と板内部の硬度差が小さくなり、成形時に表層にもひずみが導入され、表層の加工硬化が進み割れの起点となり、成形性が低下する。また、露出した母材がロールと接触することによって電位差が生じ、スパークが発生して欠陥となる。さらに、チタンとソルトとの反応により水素が発生し、水素化物の生成により脆化し、成形性が低下する。   The temperature of the salt bath is 520 ° C. or higher and 550 ° C. If it is less than 520 ° C., the scale is not sufficiently modified, and the scale may remain after brush polishing. Above 550 ° C., it reacts excessively with the salt to expose a soft titanium base material on the surface. As a result, excessive strain is introduced not only to the surface layer but also to the inside of the plate, the difference in hardness between the surface layer and the inside of the plate is reduced, strain is also introduced to the surface layer during molding, work hardening of the surface layer proceeds, and cracks start, Sex is reduced. Further, when the exposed base material comes into contact with the roll, a potential difference is generated, and a spark is generated, resulting in a defect. Furthermore, hydrogen is generated by the reaction between titanium and salt, and embrittlement occurs due to the formation of hydride, resulting in a decrease in moldability.

ソルト処理時間は15s以上60s以下である。15s未満では、スケールの改質が不十分で、ブラシ研磨でスケールが残存する可能性がある。60s超では、ソルトとスケールが過剰に反応し、表面に軟質なチタン母材が露出し、上記の理由で成形性が低下する。   The salt processing time is 15 seconds or more and 60 seconds or less. If it is less than 15 s, the scale is not sufficiently modified, and the scale may remain after brush polishing. If it exceeds 60 s, the salt and scale react excessively, the soft titanium base material is exposed on the surface, and the formability deteriorates for the above reason.

さらに、より強度と成形性のバランスを高める方法として、焼鈍温度、時間を調整することができる。   Furthermore, as a method for further improving the balance between strength and formability, the annealing temperature and time can be adjusted.

焼鈍温度は750℃以上820℃以下とするのがよい。焼鈍温度が750℃未満では、結晶粒が成長しにくく、成形性が低下することがある。820℃を超える温度にすると、β相が生成し結晶粒成長を抑制するため、双晶変形が活発となる結晶粒径である数十μm以上とするのに長時間を要する。   The annealing temperature is preferably 750 ° C. or higher and 820 ° C. or lower. If the annealing temperature is less than 750 ° C., the crystal grains are difficult to grow and the formability may be lowered. When the temperature exceeds 820 ° C., a β phase is generated and crystal grain growth is suppressed, so that it takes a long time to achieve a crystal grain size of several tens μm or more, at which twin deformation becomes active.

焼鈍時間は60s以上600s以下とするのがよい。焼鈍時間が60s未満では結晶粒が十分に成長しないことがある。焼鈍時間が600sを超えて焼鈍を実施すると、酸化スケールが厚くなりすぎ、ソルトで改質してもスケール残りが生じることがある。   The annealing time is preferably 60 seconds or more and 600 seconds or less. If the annealing time is less than 60 seconds, the crystal grains may not grow sufficiently. When annealing is performed for an annealing time exceeding 600 s, the oxide scale becomes too thick, and a scale residue may occur even if it is modified with salt.

次に実施例を挙げて本発明をさらに詳しく説明する。以下に示す実施例は、本発明の実施態様の一例であり、本発明はこれに限定されるものではない。   EXAMPLES Next, an Example is given and this invention is demonstrated in more detail. The following examples are examples of embodiments of the present invention, and the present invention is not limited thereto.

(試験片作製)
アーク溶解により鉄量、酸素量を調整したチタン鋳塊を作製し、該鋳塊を1150℃に加熱後、鍛造してスラブを作製した。
(Test piece preparation)
A titanium ingot having an adjusted amount of iron and oxygen was prepared by arc melting, and the ingot was heated to 1150 ° C. and then forged to produce a slab.

作製したスラブを850℃で厚さ4mmまで熱延した後、ショットブラスト、硝ふっ酸酸洗にて表面のスケールを除去した。さらに冷延して厚さ0.5mmのチタン薄板を作製した。   The produced slab was hot rolled at 850 ° C. to a thickness of 4 mm, and then the surface scale was removed by shot blasting and nitric hydrofluoric acid pickling. Furthermore, it cold-rolled and produced the titanium thin plate of thickness 0.5mm.

冷延後のチタン薄板に対して、700〜850℃の温度で、30〜1000sの焼鈍を大気中で行った。   The titanium thin plate after cold rolling was annealed in the air at a temperature of 700 to 850 ° C. for 30 to 1000 s.

焼鈍後のチタン薄板に対して、NaOHが60〜95%のソルトを480〜560℃の温度とし、10s〜90sソルト処理(浸漬)し、スケールの改質を行なった。   The titanium thin plate after annealing was subjected to a salt treatment (immersion) for 10 s to 90 s at a temperature of 480 to 560 ° C. with NaOH of 60 to 95% to modify the scale.

ソルト処理後のチタン薄板に対して、ナイロン製の研削ブラシを用い、60℃の温水を噴きつけながら研磨することで、ソルト改質層の除去を行なった。このとき、疵が入らないよう表面を研磨した。   The salt-modified layer was removed by polishing the titanium thin plate after the salt treatment while spraying hot water at 60 ° C. using a nylon grinding brush. At this time, the surface was polished to prevent wrinkles.

また、ブラシ研磨で得られるチタン薄板の特性と比較するため、40℃にした10質量%の硝酸と3質量%ふっ酸の混合液にソルト改質した後のチタン薄板を浸漬し、脱スケールを行なった。   Moreover, in order to compare with the characteristic of the titanium thin plate obtained by brush polishing, the titanium thin plate after salt modification was immersed in a mixed solution of 10% by mass nitric acid and 3% by mass hydrofluoric acid at 40 ° C., and descaling was performed. I did it.

また、表面のスケールを除去した試料の鉄含有量をJIS H 1614に準じて測定し、酸素含有量をJIS H 1620に準じて測定した。表1に、鉄及び酸素含有量、ソルト処理条件、脱スケール方法を記載する。   Moreover, the iron content of the sample from which the surface scale was removed was measured according to JIS H1614, and the oxygen content was measured according to JIS H1620. Table 1 describes the iron and oxygen content, the salt treatment conditions, and the descaling method.

(引張試験)
平行部6.25×32mm、標点間25mm、チャック部15mm幅、全長100mmの引張試験片を作製し、0.2%耐力測定までは標点間0.5%/minで、耐力測定後は20%/minの引張速度で引張試験を行った。ここでは、圧延幅方向(T方向)の引張強度を評価した。
(Tensile test)
Tensile test pieces with a parallel part of 6.25 x 32 mm, gauge points of 25 mm, a chuck part of 15 mm width, and a total length of 100 mm are prepared, and after 0.2% yield strength measurement, the yield strength is 0.5% / min. Was subjected to a tensile test at a tensile rate of 20% / min. Here, the tensile strength in the rolling width direction (T direction) was evaluated.

(球頭張出し試験)
深絞り試験機にてφ40の球頭ポンチを用いて、若干幅拡がりする平面歪変形(不等二軸変形)となるように、図2の形状に調整し張出し成形を行った。張出し成形は、日本工作油(株)製高粘性油(#660)を塗布し、ポンチ上昇速度を8mm/minで行った。このときの試験片の張出し高さを比較評価した。この張出し高さの合格基準は、過酷な成形加工が可能である18mmとした。
(Ball head overhang test)
Using a φ40 spherical head punch in a deep drawing tester, the shape was adjusted to the shape shown in FIG. The stretch forming was performed by applying a high viscosity oil (# 660) manufactured by Nippon Tool Oil Co., Ltd., and the punch raising speed was 8 mm / min. The overhang height of the test piece at this time was comparatively evaluated. The acceptance criterion for the overhang height was 18 mm, which enables severe molding.

(表面における硬度測定)
20mm角の試験片を作製し、マイクロビッカース硬度計を用いて、測定荷重0.25Nおよび9.8Nでの表面における硬度測定を行なった。
(Hardness measurement on the surface)
A 20 mm square test piece was prepared, and the hardness was measured on the surface with measurement loads of 0.25 N and 9.8 N using a micro Vickers hardness tester.

(表面粗さ)
JIS B 0601に準じて、算術平均粗さRa(μm)を測定した。表2に、各製造方法で製造したチタン板の特性を示す。表1と表2の実施例Noはお互いに対応している。
(Surface roughness)
According to JIS B 0601, the arithmetic average roughness Ra (μm) was measured. Table 2 shows the characteristics of the titanium plate manufactured by each manufacturing method. The example numbers in Table 1 and Table 2 correspond to each other.

大気焼鈍、ソルト処理、酸洗した後のチタン板の表層付近のミクロ組織を図3に、待機焼鈍、ソルト処理、ブラシ研磨した後のチタン板の表層付近のミクロ組織を図4に示す。図4では、ブラシ研磨により変形双晶が導入されたことがわかる。   FIG. 3 shows the microstructure near the surface of the titanium plate after atmospheric annealing, salt treatment, and pickling, and FIG. 4 shows the microstructure near the surface of the titanium plate after standby annealing, salt treatment, and brush polishing. In FIG. 4, it can be seen that deformation twins were introduced by brush polishing.

発明例のNo.2、4、6〜8、10、12、13、17〜20、22、23、25は、請求項1、2、3で定めた鉄含有量と酸素含有量、ソルト処理温度、ソルト処理時間、NaOH濃度、ブラシ研磨量、表面硬度を満足しており、強度と成形性のバランスに優れたチタン板である。   Invention Example No. 2, 4, 6-8, 10, 12, 13, 17-20, 22, 23, 25 are the iron content and oxygen content, salt treatment temperature, salt treatment time as defined in claims 1, 2, and 3. It is a titanium plate that satisfies the NaOH concentration, brush polishing amount, and surface hardness, and has an excellent balance between strength and formability.

比較例のNo.1は、発明例No.2、4と鉄含有量、酸素含有量が同一であるが、ソルト温度が低く、完全に改質されず、ブラシ研磨してもスケールが残っているため、張出し高さが合格基準の18mmに満たない。   Comparative Example No. No. 1 is Invention Example No. 2, 4 and iron content and oxygen content are the same, but the salt temperature is low, it is not completely modified, and the scale remains even after brush polishing, so the overhang height is 18 mm of the acceptance standard Less than.

比較例のNo.3は、発明例No.2、4と鉄含有量、酸素含有量が同一であるが、ブラシ研磨していないため、表面硬度が低く、ブラシ研磨ほどの強度が得られない。   Comparative Example No. 3 is Invention Example No. 2 and 4 have the same iron content and oxygen content, but since they are not brush-polished, the surface hardness is low and strength as high as brush polishing cannot be obtained.

比較例のNo.5は、発明例No.6〜8と鉄含有量、酸素含有量が同一であるが、ソルト処理時間が短く、完全に改質されず、ブラシ研磨してもスケールが残っているため、張出し高さが合格基準の18mmに満たない。   Comparative Example No. No. 5 is Invention Example No. Although the iron content and oxygen content are the same as 6-8, the salt treatment time is short, it is not completely modified, and the scale remains even after brush polishing, so the overhang height is 18 mm, which is the acceptance standard. Less than.

比較例のNo.9は、発明例No.6〜8と鉄含有量、酸素含有量が同一であるが、ブラシ研磨していないため、表面硬度が低く、ブラシ研磨ほどの強度が得られない。   Comparative Example No. 9 is Invention Example No. Although iron content and oxygen content are the same as 6-8, since it is not brush-polished, the surface hardness is low and strength as high as brush polishing cannot be obtained.

比較例のNo.11は、発明例No.10、12、13と鉄含有量、酸素含有量が同一であるが、ブラシ研磨していないため、表面硬度が低く、ブラシ研磨ほどの強度が得られない。   Comparative Example No. 11 is Invention Example No. 10, 12 and 13 have the same iron content and oxygen content, but are not brush-polished, so the surface hardness is low and strength as high as brush polishing cannot be obtained.

比較例のNo.14は、発明例No.17〜20と鉄含有量、酸素含有量が同一であるが、ソルト温度が低く、完全に改質されず、ブラシ研磨してもスケールが残っているため、張出し高さが合格基準の18mmに満たない。   Comparative Example No. 14 is Invention Example No. The iron content and oxygen content are the same as 17-20, but the salt temperature is low, it is not completely reformed, and the scale remains even after brush polishing, so the overhang height is 18 mm of the acceptance standard Less than.

比較例のNo.15は、発明例No.17〜20と鉄含有量、酸素含有量が同一であるが、ソルト温度が低く、完全に改質されず、ブラシ研磨してもスケールが残っているため、張出し高さが合格基準の18mmに満たない。   Comparative Example No. 15 is Invention Example No. The iron content and oxygen content are the same as 17-20, but the salt temperature is low, it is not completely reformed, and the scale remains even after brush polishing, so the overhang height is 18 mm of the acceptance standard Less than.

比較例のNo.16は、発明例No.17〜20と鉄含有量、酸素含有量が同一であるが、ソルト処理時間が短く、完全に改質されず、ブラシ研磨してもスケールが残っているため、張出し高さが合格基準の18mmに満たない。   Comparative Example No. 16 is Invention Example No. The iron content and oxygen content are the same as 17-20, but the salt treatment time is short, it is not completely modified, and the scale remains even after brush polishing. Less than.

比較例のNo.21は、発明例No.22及び23と鉄含有量、酸素含有量が同一であるが、ソルト処理時間が短く、完全に改質されず、ブラシ研磨してもスケールが残っているため、張出し高さが合格基準の18mmに満たない。   Comparative Example No. 21 is Invention Example No. 22 and 23 have the same iron content and oxygen content, but the salt treatment time is short, they are not completely modified, and the scale remains even after brush polishing. Less than.

比較例のNo.24は、発明例No.25と鉄含有量、酸素含有量が同一であるが、ソルト処理時間が短く、完全に改質されず、ブラシ研磨してもスケールが残っているため、張出し高さが合格基準の18mmに満たない。   Comparative Example No. 24, Invention Example No. 25, iron content and oxygen content are the same, but the salt treatment time is short, it is not completely modified, and the scale remains even after brush polishing, so the overhang height satisfies the acceptance standard of 18 mm. Absent.

比較例のNo.26は、発明例No.25と鉄含有量、酸素含有量が同一であるが、ソルト処理時間が長く、表面に金属チタンが露出したため、ブラシ研磨すると板内部までひずみが導入され、表層と板内部の硬度差が小さくなり、張出し高さが合格基準の18mmに満たない。   Comparative Example No. 26, Invention Example No. 25, the iron content and oxygen content are the same, but the salt treatment time is long and the titanium metal is exposed on the surface, so when brush polishing, strain is introduced to the inside of the plate, and the difference in hardness between the surface layer and the inside of the plate is reduced. The overhang height is less than the acceptance standard of 18 mm.

比較例のNo.27は、発明例No.25と鉄含有量、酸素含有量が同一であるが   Comparative Example No. 27, Invention Example No. 25 has the same iron content and oxygen content.

表層がチタン地金の状態でブラシ研磨しているため、板内部までひずみが導入され、表層と板内部の硬度差が小さくなり、張出し高さが合格基準の18mmに満たない。   Since the surface layer is brush-polished in the state of titanium ingot, strain is introduced to the inside of the plate, the difference in hardness between the surface layer and the inside of the plate is reduced, and the overhang height is less than the acceptance standard of 18 mm.

比較例のNo.28は、発明例No.25と鉄含有量、酸素含有量が同一であるが、T方向のRaがL方向の1.1倍に満たないため、潤滑性が劣り、張出し高さが合格基準の18mmに満たない。   Comparative Example No. 28, Invention Example No. 25, the iron content and the oxygen content are the same, but since the Ra in the T direction is less than 1.1 times that in the L direction, the lubricity is inferior and the overhang height is less than the acceptance standard of 18 mm.

比較例のNo.29は、発明例No.25と鉄含有量、酸素含有量が同一であるが、Raが0.8μmより大きいため、潤滑剤の供給が困難となり、張出し高さが合格基準の18mmに満たない。   Comparative Example No. No. 29 is Invention Example No. 25, the iron content and the oxygen content are the same, but since Ra is larger than 0.8 μm, it is difficult to supply the lubricant, and the overhang height is less than the acceptance standard of 18 mm.

比較例のNo.30は、酸素含有量が多いため、張出し高さが合格基準の18mmに満たない。   Comparative Example No. Since No. 30 has a large oxygen content, the overhang height is less than the acceptance standard of 18 mm.

比較例のNo.31は、鉄含有量が多いため、張出し高さが合格基準の18mmに満たない。   Comparative Example No. No. 31 has a large iron content, so the overhang height is less than the acceptance standard of 18 mm.

比較例のNo.32は、ソルト処理せずブラシ研削しているため、スケールが残留し、張出し高さが合格基準の18mmに満たない。   Comparative Example No. Since No. 32 is subjected to brush grinding without salt treatment, the scale remains and the overhang height is less than the acceptance standard of 18 mm.

発明例と比較例の引張強度と張出し高さのバランスを図5に示す。発明例は比較例より該バランスに優れることが分かる。   FIG. 5 shows the balance between the tensile strength and the overhang height of the inventive example and the comparative example. It can be seen that the inventive example is superior in balance to the comparative example.

Claims (2)

質量%で、鉄の含有量が0.01〜0.1%、酸素の含有量が0.02〜0.15%、炭素の含有量が0.015%以下、窒素の含有量が0.015%以下、水素の含有量が0.015%以下であり、残部がチタン及び不可避不純物であり、
L方向の算術平均粗さ(Ra)が0.2〜0.8μmであり、
T方向の算術平均粗さがL方向の1.1倍以上2倍以下であり、
板厚をtとするとき、表層0.05t〜0.2tの範囲に変形双晶が存在し、
表面における測定荷重0.25Nでのビッカース硬さが170以上、
表面における測定荷重9.8Nでのビッカース硬さが90〜180であり、
上記測定荷重0.25Nでのビッカース硬さが、上記測定荷重9.8Nでのビッカース硬さよりも1.5倍以上高い
ことを特徴とするチタン板。
In mass%, the iron content is 0.01 to 0.1%, the oxygen content is 0.02 to 0.15%, the carbon content is 0.015% or less, and the nitrogen content is 0.00. 015% or less, the hydrogen content is 0.015% or less, the balance is titanium and inevitable impurities,
The arithmetic average roughness (Ra) in the L direction is 0.2 to 0.8 μm,
The arithmetic average roughness in the T direction is 1.1 to 2 times that in the L direction,
When the plate thickness is t, deformation twins exist in the range of the surface layer 0.05t to 0.2t,
A Vickers hardness of 170 or more at a measurement load of 0.25 N on the surface,
Vickers hardness at a measurement load of 9.8 N on the surface is 90 to 180,
A titanium plate, wherein the Vickers hardness at the measurement load of 0.25N is 1.5 times higher than the Vickers hardness at the measurement load of 9.8N.
請求項1に記載のチタン板の製造方法であって、
チタン材を冷間圧延し、
冷間圧延されたチタン板を大気中で焼鈍し、
焼鈍後のチタン板を質量%でNaOHが75〜95%、520〜550℃のソルト浴に15〜60s浸漬し、
研削ブラシで上記浸漬後のチタン板の表層1〜3μmを除去する
ことを特徴とするチタン板の製造方法。
It is a manufacturing method of the titanium plate according to claim 1,
Cold rolled titanium material,
Annealing the cold-rolled titanium plate in the atmosphere,
Immerse the titanium plate after annealing in a salt bath at a mass% of NaOH of 75 to 95% and 520 to 550 ° C. for 15 to 60 seconds,
A method for producing a titanium plate, comprising removing 1 to 3 μm of the surface layer of the titanium plate after the immersion with a grinding brush.
JP2015034430A 2015-02-24 2015-02-24 Titanium plate and method of manufacturing the same Active JP6536076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015034430A JP6536076B2 (en) 2015-02-24 2015-02-24 Titanium plate and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015034430A JP6536076B2 (en) 2015-02-24 2015-02-24 Titanium plate and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2016156054A true JP2016156054A (en) 2016-09-01
JP6536076B2 JP6536076B2 (en) 2019-07-03

Family

ID=56825205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034430A Active JP6536076B2 (en) 2015-02-24 2015-02-24 Titanium plate and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6536076B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216667A (en) * 2022-07-18 2022-10-21 西安秦钛智造科技有限公司 Titanium plate for metal diaphragm and processing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003968A (en) * 2000-06-21 2002-01-09 Sumitomo Metal Ind Ltd Titanium sheet excellent in processability and its production method
JP2010255085A (en) * 2009-04-28 2010-11-11 Kobe Steel Ltd Titanium plate and method for producing titanium plates
JP2013010115A (en) * 2011-06-29 2013-01-17 Nippon Steel & Sumitomo Metal Corp Titanium sheet and method for manufacturing the same
WO2014025059A1 (en) * 2012-08-10 2014-02-13 新日鐵住金株式会社 Titanium alloy material
WO2014027657A1 (en) * 2012-08-14 2014-02-20 新日鐵住金株式会社 Thin titanium sheet
JP2016113656A (en) * 2014-12-12 2016-06-23 新日鐵住金株式会社 Titanium plate and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003968A (en) * 2000-06-21 2002-01-09 Sumitomo Metal Ind Ltd Titanium sheet excellent in processability and its production method
JP2010255085A (en) * 2009-04-28 2010-11-11 Kobe Steel Ltd Titanium plate and method for producing titanium plates
JP2013010115A (en) * 2011-06-29 2013-01-17 Nippon Steel & Sumitomo Metal Corp Titanium sheet and method for manufacturing the same
WO2014025059A1 (en) * 2012-08-10 2014-02-13 新日鐵住金株式会社 Titanium alloy material
WO2014027657A1 (en) * 2012-08-14 2014-02-20 新日鐵住金株式会社 Thin titanium sheet
JP2016113656A (en) * 2014-12-12 2016-06-23 新日鐵住金株式会社 Titanium plate and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216667A (en) * 2022-07-18 2022-10-21 西安秦钛智造科技有限公司 Titanium plate for metal diaphragm and processing method thereof

Also Published As

Publication number Publication date
JP6536076B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
TWI390052B (en) High tensile strength steel sheet for can and its production method
TWI658151B (en) Steel plate and manufacturing method thereof
MX2013010601A (en) Steel sheet for hot-stamped member and process for producing same.
JP5299140B2 (en) MATERIAL OF SHOT PEENING PROJECTION MATERIAL AND METHOD FOR PRODUCING SHOT PEENING PROJECTION MATERIAL
JP6057501B2 (en) Titanium plate for barrel polishing and manufacturing method thereof
JP2008240046A (en) High-strength steel sheet having excellent scale adhesion upon hot pressing, and method for producing the same
EP3318649B1 (en) Material for cold-rolled stainless steel sheets and manufacturing method therefor
JP4901799B2 (en) Manufacturing method of hot-rolled steel sheet with excellent surface treatment
JP5862846B2 (en) Ferritic stainless steel and manufacturing method thereof
TWI639714B (en) Steel plate
JP2007046118A (en) Method for producing austenitic stainless steel sheet having excellent surface quality
JP6172408B1 (en) Titanium plate
JP2016156054A (en) Titanium plate and method for producing the same
JP6432330B2 (en) Titanium plate and manufacturing method thereof
CN108431286B (en) Hot press molded article with suppressed microcrack and process for producing the same
JP2010174307A (en) Steel sheet for die quenching
JP6361437B2 (en) Production method of pure titanium plate
JP4651837B2 (en) Tableware and manufacturing method thereof
JP2006257528A (en) Method for manufacturing thin sheet of pure molybdenum or molybdenum alloy superior in deep drawability
JP2009046721A (en) Steel sheet for heat treatment
JP7448859B2 (en) titanium material
JP2017226858A (en) Titanium sheet excellent in proof stress and ductility, and manufacturing method therefor
JP6543981B2 (en) β-type titanium alloy sheet
JP3951564B2 (en) Hot rolled titanium plate for surface member of electrolytic deposition drum and method for producing the same
JP2010174301A (en) Steel sheet for die quenching

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R151 Written notification of patent or utility model registration

Ref document number: 6536076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151