WO2022138837A1 - Titanium material - Google Patents

Titanium material Download PDF

Info

Publication number
WO2022138837A1
WO2022138837A1 PCT/JP2021/047921 JP2021047921W WO2022138837A1 WO 2022138837 A1 WO2022138837 A1 WO 2022138837A1 JP 2021047921 W JP2021047921 W JP 2021047921W WO 2022138837 A1 WO2022138837 A1 WO 2022138837A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium material
rolling
titanium
roughness
less
Prior art date
Application number
PCT/JP2021/047921
Other languages
French (fr)
Japanese (ja)
Inventor
遼太郎 三好
想祐 西脇
洋二 八並
清則 徳野
賢 阿部
一浩 ▲高▼橋
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202180049199.5A priority Critical patent/CN115812109B/en
Priority to JP2022571629A priority patent/JP7448859B2/en
Publication of WO2022138837A1 publication Critical patent/WO2022138837A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Definitions

  • Patent Document 1 describes the residual stress concentrated in the shearing direction having a surface roughness in which the value of the center line average inclination (R ⁇ a) of the adhered surface is 0.035 or more.
  • Patent Document 2 describes a base plate material which is made of a titanium flat plate material having fine irregularities formed on its surface and becomes a heat exchange plate after the flat plate material is pressed as a post-treatment.
  • the original plate material is such that the shape parameter defined by the height of the convex portion ( ⁇ m) ⁇ the width of the concave portion ( ⁇ m) / the pitch of the adjacent convex portions ( ⁇ m) is 85 ⁇ m or less.
  • the original plate material of the heat exchange plate which is characterized in that the unevenness of the surface of the above-mentioned plate is set, is disclosed.
  • Patent Document 3 describes a step of forming an uneven pattern on one or both sides of a titanium plate by rolling using a work roll having an uneven pattern on the surface, a step of baking and / or pickling the titanium plate, and the above.
  • a method for producing a titanium plate having a concavo-convex pattern on one side or both sides is disclosed, which includes a step of straightening a titanium plate with an average elongation rate of 0.1% or more and 1.3% or less by a tension leveler.
  • the titanium plate obtained by the method for manufacturing a titanium plate disclosed in Patent Document 3 has an average convex portion maximum height of 15.0 ⁇ m or more in the uneven pattern.
  • the arithmetic mean roughness Ra of the roughness curve obtained by applying the values is 0.20 to 7.0 ⁇ m, and the difference between the ten-point average roughness R ZJIS of the roughness curve and the average height R c of the contour curve element.
  • R ⁇ q square root inclination
  • the Teflon sheet is often torn by one molding, and when the titanium material provided with the Teflon sheet is deep-drawn multiple times, the Teflon sheet needs to be reattached each time, which makes processing complicated. Become.
  • the solid lubricant can be continuously applied, pressed, and washed and removed, but in a severe sliding environment such as deep drawing, a part of the solid lubricant may peel off and the friction coefficient may increase.
  • the gist of the present invention completed based on the above findings is as follows.
  • the root mean square slope R ⁇ q (rad.) Has the following formula (1).
  • the root mean square slope R ⁇ q (rad.) Satisfies the following equation (2).
  • FIG. 1 It is a figure for demonstrating the difference in the adhesion of a solid lubricant depending on the surface texture of a titanium material. It is a figure which shows an example of the roughness curve on the surface of a titanium material which concerns on one Embodiment of this invention. It is a figure for demonstrating the deep drawing test in Example 1 and Example 2. FIG. It is a graph which shows the evaluation result of the deep drawing formability in Example 1.
  • the root mean square slope R ⁇ q represents the degree of inclination of the unevenness of the surface, and the larger the mean square root mean square R ⁇ q is, the steeper the slope of the unevenness is (the unevenness is sharper), and the mean square root mean square R ⁇ q is smaller. It shows that the slope of the unevenness is gentler.
  • FIG. 1C schematically shows the surface texture of the titanium material and the solid lubricant formed on the surface of the titanium material when the root mean square slope R ⁇ q is small and the average length RSm of the roughness curve element is small.
  • FIG. 1 (D) schematically shows the surface texture of the titanium material and the solid lubricant formed on the surface of the titanium material when the root mean square slope R ⁇ q is small and the average length RSm of the roughness curve element is large. Is shown.
  • the surface of the titanium material is a surface with gentle irregularities. Since the unevenness is gentle, it is considered that a sufficient anchor effect cannot be obtained and the adhesion of the solid lubricant is lowered.
  • the average length RSm of the roughness curve element is less than 8 ⁇ m. Then, the unevenness becomes too fine and it becomes difficult to obtain the anchor effect, and the adhesion of the solid lubricant is lowered. As a result, the coefficient of friction during deep drawing molding becomes large, and the deep drawing formability deteriorates. Therefore, the average length RSm of the roughness curve element is more than 8 ⁇ m.
  • the anchor effect and the filling of the recess with the solid lubricant can be used. , Deep draw formability is improved. Even if the average length RSm of the roughness curve element is more than 8 ⁇ m and 300 ⁇ m or less, if the root mean square slope R ⁇ q does not satisfy the above equation (1), the anchor effect due to unevenness cannot be sufficiently obtained, and the solid lubricant Adhesion is reduced and deep drawability is reduced. Therefore, in the titanium material according to the present embodiment, when the average length RSm of the roughness curve element is more than 8 ⁇ m and 300 ⁇ m or less, the root mean square slope R ⁇ q (rad.) Satisfies the above equation (1).
  • the root mean square slope R ⁇ q satisfies the above equation (2). If the average length RSm of the roughness curve element is more than 300 ⁇ m and the root mean square slope R ⁇ q does not satisfy the above equation (2), the anchor effect due to unevenness cannot be sufficiently obtained, and the adhesion of the solid lubricant is poor. It is lowered and the deep drawability is lowered. Therefore, in the titanium material according to the present embodiment, the root mean square slope R ⁇ q (rad.) When the average length RSm of the roughness curve element exceeds 300 ⁇ m satisfies the above equation (2).
  • the average length RSm of the roughness curve element is 400 ⁇ m or less, and the root mean square slope R ⁇ q is 0.190 rad.
  • the following is more preferable.
  • the first spherical head deep-drawing is strained over the entire spherical portion of the titanium material. Is introduced, strain is concentrated in the partial recess, and the solid lubricant may crack and peel off.
  • the roughness curves at two locations are obtained by a method based on JIS B 0601: 2013, and the average of the values calculated from each roughness curve is obtained. Use the value.
  • the roughness curve is measured for the titanium material according to the present embodiment by a method according to JIS B 0601: 2013, for example, the roughness curve as shown in FIG. 2 can be obtained.
  • the roughness curve which is the basis for calculating the average length RSm and the squared average square root slope R ⁇ q of the roughness curve elements, is the surface of the titanium material measured in the rolling width direction, the evaluation length of 15 mm, and the measurement speed of 0.15 mm / s.
  • the average length RSm of the contour curve element is calculated from the following equation (3).
  • m is the number of measurement points
  • Xsi is the length of the contour curve element at the reference length.
  • the root mean square slope R ⁇ q of the roughness curve element is calculated from the following equation (4).
  • N is the number of measurement points.
  • (DZj / dXj) is a local inclination at the jth measurement point in the roughness curve, and is defined by the following equation (5).
  • Z j + 3 is the height from the average line of the surface at the j + 3rd measurement point.
  • Z j + 2 , Z j + 1 , Z j-1 , Z j-2 , and Z j-3 are j + 2, j + 1, j-1, and j-2, respectively.
  • ⁇ X is the measurement interval. In the present embodiment, the measurement interval ⁇ X may be determined as follows.
  • the measurement interval ⁇ X is a value set by the surface roughness shape measuring machine, and when numerical data is acquired at N points when the measurement length L is measured, ⁇ X is L / (on average at the measurement interval. It becomes N-1). For example, when a measurement length of 5 mm is measured and 25601 points of numerical data are acquired, ⁇ X is 5 mm / 25600 points, which is about 0.1905 ⁇ m on average.
  • the Vickers hardness with a load of 50 gf which indicates the hardness closer to the surface of the titanium material, is 30 HV or more larger than the Vickers hardness with a load of 1000 gf. If the inside of the titanium material is too hard to the same extent as the surface, the molding itself becomes difficult even if the slidability is good, and it may crack during deep drawing. On the other hand, if the surface of the titanium material is too hard, deep drawing may be difficult. From the viewpoint of sliding, there is no upper limit to the hardness, but if the Vickers hardness exceeds 800 HV when the load is 50 gf, for example, the hardened layer is too thick and there is a concern that the bending workability may be deteriorated.
  • the Vickers hardness when the load is 50 gf is preferably 800 HV or less.
  • the Vickers hardness with a load of 1000 gf is preferably 105 HV or more, and more preferably 110 HV or more, from the viewpoint of the strength after molding.
  • the Vickers hardness with a load of 1000 gf is preferably 300 HV or less, and more preferably 250 HV or less, from the viewpoint of moldability.
  • the average value of the values measured at 5 points each by a method according to JIS Z 2244: 2009 is used.
  • titanium alloy examples include ⁇ -type titanium alloy, ⁇ + ⁇ -type titanium alloy, and ⁇ -type titanium alloy.
  • the ⁇ -type titanium alloy is defined by, for example, a highly corrosion-resistant alloy (JIS standard 11 to 13, 17, 19 to 22 and ASTM standard Grade 7, 11, 13, 14, 17, 30, 31). Titanium alloy and titanium alloy containing a small amount of various elements), Ti-0.5Cu, Ti-1.0Cu, Ti-1.0Cu-0.5Nb, Ti-1.0Cu-1.0Sn-0 .3Si-0.25Nb, etc.
  • Examples of the ⁇ -type titanium alloy include Ti-11.5Mo-6Zr-4.5Sn, Ti-8V-3Al-6Cr-4Mo-4Zr, Ti-13V-11Cr-3Al, Ti-15V-3Al-3Cr-3Sn. , Ti-20V-4Al-1Sn, Ti-22V-4Al and the like.
  • the plate thickness of the titanium material according to this embodiment is, for example, 0.3 mm or more and 4.5 mm or less.
  • the plate thickness of the titanium material may be 0.4 mm or more, or 0.5 mm or more. Further, the plate thickness of the titanium material may be 4.3 mm or less, or 4.0 mm or less.
  • the titanium material according to the present embodiment has excellent deep drawability when it is applied to at least one surface in a liquid state and then dried to form a solid film by deep drawing using a solid lubricant. Be done. Up to this point, the titanium material according to the present embodiment has been described.
  • the method for producing the titanium material according to the present embodiment is not particularly limited.
  • a titanium material satisfying the above requirements is regarded as a titanium material according to the present embodiment regardless of the manufacturing method thereof.
  • the manufacturing method described below is only a suitable example, and does not limit the titanium material according to the present embodiment.
  • unevenness forming step unevenness is formed on at least one surface of the titanium material.
  • cold skin pass rolling using dull roll is performed at least twice.
  • the surface of the dull roll is dull-processed, but the method of dull-processing the surface of the roll is not particularly limited, and for example, dull processing using a shot or grit may be used.
  • the shot or grit for example, one conforming to JIS G 5903: 2018 can be used.
  • a steel grit called SG-50, SG-100, SG-140, SG-170, or SG-200, or a steel shot called SS-200 or SS-240 may be used. ..
  • the surface roughness Ra of the dull roll used for the first skin pass rolling is 7.0 ⁇ m or more and less than 8.0 ⁇ m.
  • the surface roughness Ra of the dull roll used for the second skin pass rolling is set to 6.0 ⁇ m or more and 8.5 ⁇ m or less.
  • the diameter of the projection material when manufacturing the dull roll used for the second skin pass rolling is equal to or larger than the diameter of the projection material when manufacturing the dull roll used for the first skin pass rolling.
  • the surface roughness Ra of the dull roll used for the first skin pass rolling is the surface roughness Ra of the dull roll used for the second skin pass rolling. It is preferably smaller than Ra.
  • the third time under appropriate conditions. Skin path rolling may be carried out.
  • the surface texture of dull roll is influenced by, for example, the method of dull processing and the type of projection material used for dull processing. For example, when the particle size of the projecting material is changed and dull processing is performed under the same conditions, a dull roll having a smaller surface roughness Ra is produced when the particle size of the projecting material is smaller.
  • the above formula (1) and the above formula (2) may not be satisfied with the dull roll having a significantly small surface roughness Ra. Therefore, in this step, when the surface roughness Ra of the dull roll used for the first skin pass rolling and the second skin pass rolling is small, it is preferable to perform the third skin pass rolling.
  • the surface roughness Ra of the dull roll used for the third skin pass rolling may be, for example, 2.9 ⁇ m or more and 8.5 ⁇ m or less. However, the surface roughness of the dull roll used for the third skin pass rolling is preferably at least one of the surface roughness of the dull roll used for the first or second skin pass rolling. If the surface roughness of the dull roll used for the third skin pass rolling is at least one of the surface roughness of the dull roll used for the first or second skin pass rolling, the surface of the titanium material has finer pitch and sharp unevenness. Is formed.
  • the third skin pass Rolling is performed using, for example, a dull roll having a surface roughness Ra of 2.9 ⁇ m or more and 8.5 ⁇ m or less.
  • a dull roll having a surface roughness Ra of 4.0 ⁇ m or less is used.
  • the balance between the root mean square slope R ⁇ q and the average length RSm of the roughness curve element is appropriate.
  • the surface roughness Ra of the dull roll in the case of three skin pass rollings using the same dull roll is preferably 2.9 ⁇ m or more.
  • the surface roughness Ra of the bright roll used for normal cold rolling is 0.2 ⁇ m or less, which is different from the dull roll used in the skin pass rolling in the unevenness forming step in terms of the surface roughness Ra.
  • the titanium material is annealed in at least one of a vacuum atmosphere, an oxidizing atmosphere, and a nitrided atmosphere.
  • the vacuum atmosphere refers to an atmosphere in which the degree of vacuum includes 1 Pa and the pressure is lower than that.
  • the oxidizing atmosphere is an atmosphere containing 5% by volume or more of oxygen, and is, for example, an atmospheric atmosphere.
  • the nitriding atmosphere is an atmosphere containing 99% by volume or more of nitrogen.
  • the annealing temperature is preferably 500 ° C. or higher, more preferably 550 ° C. or higher, from the viewpoint of removing distortion of the material and improving cold workability.
  • the annealing temperature is preferably 800 ° C. or lower from the viewpoint of removing the strain of crystals and improving the cold workability.
  • the annealing time is, for example, 2 minutes or more and 24 hours or less.
  • the annealing temperature is 550 in order to remove the distortion of the crystal grains, improve the cold workability, and prevent the film thickness from becoming too thin.
  • the temperature is preferably °C or higher, and more preferably 600 °C or higher.
  • the annealing temperature is 800 ° C. or lower from the viewpoint of removing distortion of crystal grains to improve cold workability and suppressing the formation of an excessively thick film. It is preferably 770 ° C. or lower, and more preferably 770 ° C. or lower.
  • the annealing time is, for example, 2 minutes or more and 24 hours or less.
  • the annealing atmosphere is preferably an oxidizing atmosphere or a nitriding atmosphere.
  • the annealing atmosphere is an oxidizing atmosphere or a nitrided atmosphere, an oxide film or a nitrided film is formed, and the Vickers hardness when the load is 50 gf can be increased by 30 HV or more from the Vickers hardness when the load is 1000 gf.
  • the annealing step may be carried out before the unevenness forming step, or the unevenness forming step may be carried out before the annealing step.
  • a titanium material manufactured by a known method may be used as the titanium material to be subjected to the annealing step.
  • a titanium material manufactured by a known method may be used as the titanium material to be subjected to the annealing step.
  • pure having the above components by various melting methods such as a vacuum arc melting method, an electron beam melting method, or a hearth melting method such as a plasma melting method. Titanium or titanium alloy ingots are made.
  • the obtained ingot is lumped and hot forged as necessary to form a slab.
  • the slab is subjected to hot rolling and cold rolling in order to obtain a cold-rolled coil of pure titanium or a titanium alloy having the above composition.
  • This cold-rolled coil may be annealed.
  • the slab may be subjected to pretreatment such as polishing and cutting, if necessary.
  • the ingot is formed into a rectangular shape that can be hot-rolled by a melting method, it may be subjected to hot rolling without lumping or hot forging.
  • the titanium material used for the unevenness forming step when the unevenness forming step is carried out before the annealing step may be manufactured by a known method, and is a hot-rolled coil obtained by hot-rolling the slab or the said slab.
  • a cold-rolled coil obtained by cold-rolling the hot-rolled coil may be subjected to the unevenness forming step.
  • the titanium material to be subjected to the annealing step is manufactured by hot rolling and cold rolling, and in the cold rolling, the average reduction rate per pass is preferably 12% or more. ..
  • the reduction rate is high, a compound of C and Ti (tribo film) is formed on the surface of the titanium material, and the compound is carburized and hardened by the annealing step. As a result, the surface of the titanium material becomes hard.
  • the average reduction rate per pass is 12% or more, the Vickers hardness of the final product titanium material when the load is 50 gf and the Vickers hardness of the final product titanium material when the load is 1000 gf. On the other hand, it increases by 30 HV or more.
  • the upper limit of the average reduction rate per pass in cold rolling is, for example, 25% from the viewpoint of appearance after cold rolling.
  • the rolling reduction rate of the skin pass rolling in the unevenness forming step may be, for example, 0.3% or more.
  • the upper limit of the rolling reduction rate of skin pass rolling in the unevenness forming step is not particularly limited, but if the rolling reduction rate is too large, the strain introduced into the titanium material deteriorates the formability. In some cases. Therefore, when the unevenness forming step is carried out after the annealing step, the rolling reduction rate of the skin pass rolling in the unevenness forming step is preferably 2.0% or less.
  • the rolling reduction rate of the skin pass rolling in the unevenness forming step may be, for example, 0.5% or more.
  • the upper limit of the rolling reduction rate of the skin pass rolling in the uneven forming step is not particularly limited. If an attempt is made to increase the rate, the load applied to the rolling mill becomes too large, and it may not be possible to reduce the rolling force at a desired reduction rate. Therefore, when the unevenness forming step is carried out before the annealing step, the rolling reduction rate of the skin pass rolling in the unevenness forming step is, for example, 7.0% or less.
  • the unevenness forming step when the unevenness forming step is carried out after the annealing step, in the unevenness forming step, unevenness may be formed on at least one surface of the titanium material by blasting instead of skin pass rolling.
  • the blasting method is as follows: when the average length RSm of the roughness curve element is more than 8 ⁇ m and 300 ⁇ m or less for the titanium material of the final product, the root mean square slope R ⁇ q (rad).
  • the root mean square slope R ⁇ q (rad.) Satisfies the above equation (2).
  • examples of the blasting treatment include bead blasting and wet blasting.
  • the titanium material after the unevenness forming step is further annealed in at least one of a vacuum atmosphere, an oxidizing atmosphere, and a nitrided atmosphere.
  • a processed layer (a surface layer in which the strain is significantly introduced by the unevenness formation) is formed on the surface layer of the titanium material. This processed layer may have reduced ductility, in which case it may break during deep drawing.
  • the titanium material after the unevenness forming step is further annealed in at least one of a vacuum atmosphere, an oxidizing atmosphere, and a nitriding atmosphere.
  • the annealing conditions after the unevenness forming step may be the same as those in the above-mentioned annealing step.
  • the titanium material that has undergone the unevenness forming step and the annealing step may be subjected to temper rolling for adjusting the mechanical properties or tensile straightening for correcting the shape, if necessary.
  • the method for producing the titanium material according to the present embodiment has been described above.
  • Example 1 a pure titanium slab corresponding to JIS 1 to JIS 3 types, a titanium alloy slab corresponding to JIS 12 types, JIS 17 types, and JIS 21 types, according to JIS H 4600: 2012 having the components shown in Table 1.
  • Ti-1.0Cu alloy slab represented by Ti-1.0Cu Ti-1.0Cu-1.0Sn- represented by Ti-1.0Cu-1.0Sn-0.3Si-0.25Nb.
  • a slab of a 0.3Si-0.25Nb alloy was hot-rolled and then scale-removed to obtain a hot-rolled plate having a plate thickness of 4 mm.
  • "-" In Table 1 indicates that it was not intentionally added.
  • the hot-rolled plate was cold-rolled at the rolling reduction ratio shown in Table 2 to produce a cold-rolled plate having a plate thickness of 1.5 mm, and the annealing step was performed under the conditions shown in Table 2.
  • annealing was performed in an air atmosphere, a titanium material from which the oxide film had been removed by melting and a titanium material having an oxide film left were produced.
  • An unevenness forming step was carried out on the titanium material after the annealing step.
  • the dull roll rolling A to W and the dull roll rolling a to c in Table 2 correspond to the dull rolling (skin pass rolling) conditions shown in Table 3.
  • the projection material shown in Table 3 shows the projection material used for dull processing.
  • Ra shown in Table 3 shows the surface roughness Ra of the roll (dull roll) surface after dull processing.
  • Comparative Example 1 as the unevenness forming step, one skin pass rolling was performed using a dull roll having a surface roughness Ra of 2.1 ⁇ m of the dull roll processed by using a steel grit (SG-50) (dull roll rolling O). ..
  • Comparative Example 2 as the unevenness forming step, skin pass rolling was performed twice using a dull roll having a surface roughness Ra of 8.3 ⁇ m of the dull roll processed using a steel grit (SG-200) (dull roll rolling P). ..
  • Comparative Example 3 as the unevenness forming step, one skin pass rolling was performed using a dull roll having a surface roughness Ra of 7.3 ⁇ m of the dull roll processed by using a steel grit (SG-140) (dull roll rolling Q).
  • Comparative Example 12 the surface of the cold-rolled plate was mirror-polished without performing the unevenness forming step.
  • Comparative Example 13 the unevenness forming step was not performed, and the surface state of the cold rolled plate after the annealing step was maintained.
  • Comparative Example 15 as the unevenness forming step, skin pass rolling was performed twice using a dull roll having a surface roughness Ra of 3.1 ⁇ m of the dull roll processed using a steel grit (SG-100) (dull roll rolling b). ..
  • Comparative Example 16 as the unevenness forming step, skin pass rolling was performed three times using a dull roll having a surface roughness Ra of 4.4 ⁇ m of the dull roll processed by using a steel grit (SG-170) (dull roll rolling c).
  • the bead blasting shown in the item of the unevenness forming step in Table 2 indicates that the bead blasting was performed using the zirconia beads F40 under the conditions of a pressure of 0.3 MPa, a projection distance of 200 mm, a projection time of 1 min, and wet.
  • the blasting shows that a slurry having a grid volume ratio of 15 vol% using alumina grit F230 was wet-blasted under the conditions of a flow rate of 15 m / s and a line speed of 0.2 m / s.
  • the titanium material after the unevenness forming step was further annealed under the conditions shown in Table 2.
  • the average length RSm and the root mean square slope R ⁇ q of the roughness curve element of the produced titanium material were measured according to JIS B 0601: 2013 under the following conditions.
  • Equipment Equipment Surface roughness shape measuring machine (SURFCOM480B-12 manufactured by Tokyo Seimitsu Co., Ltd., Analysis software: SURFCOM480B Ver.7.06) Stylus: Tokyo Seimitsu Co., Ltd.
  • Shape stylus (model: DT43801) Parameter calculation standard: JIS-01 standard Measurement type: Roughness measurement Cutoff type: Gaussian measurement interval ⁇ x: 0.4 ⁇ m Tilt correction: Both ends evaluation length: 15.0 mm Measurement speed: 0.15 mm / sec Measurement range: 400 ⁇ m Cutoff wavelength ⁇ c: 0.8 mm ⁇ s cutoff wavelength: 25 ⁇ m
  • the average value of the values calculated for the two locations under the above conditions was defined as the average length RSm of the roughness curve element and the root mean square slope R ⁇ q.
  • the thickness of the oxide film and the nitrided film was measured by glow discharge spectroscopy.
  • O, C, N and Ti were analyzed from the surface of the titanium material by glow discharge spectroscopy, and the thickness of the oxide film was determined by the measured O concentration and the thickness of the nitride film was determined by the N concentration.
  • the distance in the depth direction to the position where the O concentration is halved with respect to the O concentration on the outermost surface is defined as the thickness of the oxide film, and the depth to the position where the N concentration is halved with respect to the N concentration on the outermost surface.
  • the distance in the vertical direction was taken as the thickness of the nitrided film.
  • FIG. 3 is a diagram for explaining a deep drawing test in an example.
  • FIG. 3 shows a deep drawing test using a cylindrical punch.
  • a circular blank with a diameter of 120 mm was cut out from the obtained titanium material.
  • Mill Bond registered trademark manufactured by NOF CORPORATION as a solid lubricant and water were mixed at a volume ratio of 3: 1 and applied to the surface of the cut out blank with a bar coater.
  • the blank coated with the solid lubricant was dried at 60 ° C. for 2 hours.
  • the thickness of the solid lubricant was 3-5 ⁇ m.
  • the blank formed by the solid lubricant was held by the lower die and the upper die.
  • the end of the upper die on the blank side is a curve having a radius of curvature of 5 mm.
  • the clearance between the lower die and the upper die in the extending direction of the blank was 2 to 4 mm. Then, a load was applied to the held blank from the lower die side.
  • a spherical head punch with a diameter of 60 mm was used, and a load was applied until the drawing depth reached 40 mm.
  • three deep drawings were performed. For the first deep aperture, use a ⁇ 60 mm ball head punch to apply a load until the aperture depth becomes 40 mm, and for the second deep aperture, use a ⁇ 50 mm ball head punch to make the aperture depth 50 mm.
  • a cylindrical punch with a diameter of 45 mm was used for the third deep drawing, and the load was applied until the drawing depth reached 65 mm.
  • the radius of curvature of the punch shoulder of the cylindrical punch was 5 mm.
  • the deep drawing speed was 100 mm / min.
  • the plate thickness reduction rate was calculated by the following formula (6).
  • FIG. 4 shows the relationship between the evaluation result of deep drawing formability, the average length RSm of the roughness curve element, and the root mean square slope R ⁇ q.
  • ⁇ in FIG. 4 is a condition that the appearance after deep drawing is more than acceptable in both the one-step deep drawing test and the multi-step deep drawing test, and ⁇ is the deep drawing only in the one-step deep drawing test. It is a condition that the appearance after molding is more than acceptable, and x is a condition that the deep drawing formability is poor or the blank is broken in both the one-step deep drawing test and the multi-step deep drawing test.
  • Example 2 In this embodiment, a pure titanium slab having the components shown in Table 1 and corresponding to JIS class 1 conforming to JIS H 4600: 2012 is hot-rolled, scale-removed, and a hot-rolled plate having a plate thickness of 4 mm. And said.
  • a cold rolled plate having a plate thickness of 1.5 mm was produced by cold rolling with an average rolling reduction of 10%, and skin pass rolling was performed under the conditions shown in Table 6 to form irregularities.
  • the titanium material on which the unevenness was formed was annealed under the conditions shown in Table 6. When annealing was performed in an air atmosphere, a titanium material from which the oxide film had been removed by melting and a titanium material having an oxide film left were produced. An unevenness forming step was carried out on the titanium material after the annealing step.
  • the dull roll rolling A, E, and F of the unevenness forming item shown in Table 6 are the dull roll rolling A, E, and F shown in Table 3, respectively.
  • the average length RSm and the root mean square slope R ⁇ q of the roughness curve element were measured, the thicknesses of the oxide film and the nitrided film were measured, and the Vickers hardness was measured in the same manner as in Example 1.
  • the measurement of the hardness, the one-step deep drawing test, the multi-step deep drawing test, the visual inspection and the evaluation of the deep drawing formability were performed. The evaluation results are shown in Table 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

This titanium material is such that, on at least one surface, the root-mean-square inclination RΔq (rad.) satisfies the following relationship (1) if the average length RSm of a roughness curve element is greater than 8 μm and equal to or less than 300 μm, and the root-mean-square inclination RΔq (rad.) satisfies the following relationship (2) if the average length RSm of the roughness curve element is greater than 300 μm. Relationship (1): RΔq≥0.060 Relationship (2): RΔq≥2×RSm/10,000

Description

チタン材Titanium material
 本発明は、チタン材に関する。本願は、2020年12月24日に、日本に出願された特願2020-214647号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a titanium material. This application claims priority based on Japanese Patent Application No. 2020-214647 filed in Japan on December 24, 2020, the contents of which are incorporated herein by reference.
 チタン材は高延性を有しており、プレス成形により様々な形状の製品に加工される。プレス成形性、とりわけ深絞り成形性は、摩擦係数と密接な関係があり、深絞り成形性の改善には摩擦係数の低減が極めて有効である。これは、深絞り成形では、チタン材が金型の一部に強く擦りつけられて加工されるためである。他方、チタンは非常に活性でもある。そのため、チタン材が容易に金型と凝着することを一因として摩擦係数が高くなる。そのため、チタン材の表面性状を制御することが重要である。 Titanium material has high ductility and is processed into products of various shapes by press molding. Press formability, especially deep draw formability, is closely related to the friction coefficient, and reduction of the friction coefficient is extremely effective for improving deep draw formability. This is because in deep drawing molding, the titanium material is strongly rubbed against a part of the mold and processed. On the other hand, titanium is also very active. Therefore, the coefficient of friction becomes high, partly because the titanium material easily adheres to the mold. Therefore, it is important to control the surface texture of the titanium material.
 表面性状に着目した技術として、例えば、特許文献1には、被接着面の中心線平均傾斜(Rθa)の値が0.035以上である表面粗さを有する、剪断方向に集中する残留応力の方向を分散させ解放することを特徴とする、接着剤との接着性に優れた非油面接着用の金属板が開示されている。 As a technique focusing on the surface texture, for example, Patent Document 1 describes the residual stress concentrated in the shearing direction having a surface roughness in which the value of the center line average inclination (Rθa) of the adhered surface is 0.035 or more. A metal plate for non-oil surface adhesion having excellent adhesiveness to an adhesive, which is characterized by dispersing and releasing the direction, is disclosed.
 特許文献2には、表面に微細な凹凸が形成されたチタン製の平板材で構成され、後処理として当該平板材に対してプレス加工が施された後に熱交換用プレートとなる元板材であって、前記凹凸に関し、凸部の高さ(μm)×[凹部の幅(μm)/隣り合う凸部のピッチ(μm)]で定義される形状パラメータが85μm以下となるように、前記元板材の表面の凹凸が設定されていることを特徴とする熱交換用プレートの元板材が開示されている。 Patent Document 2 describes a base plate material which is made of a titanium flat plate material having fine irregularities formed on its surface and becomes a heat exchange plate after the flat plate material is pressed as a post-treatment. The original plate material is such that the shape parameter defined by the height of the convex portion (μm) × the width of the concave portion (μm) / the pitch of the adjacent convex portions (μm) is 85 μm or less. The original plate material of the heat exchange plate, which is characterized in that the unevenness of the surface of the above-mentioned plate is set, is disclosed.
 特許文献3には、表面に凹凸パターンを有するワークロールを用いた圧延により、チタン板の片面又は両面に凹凸パターンを形成する工程と、上記チタン板を焼鈍及び/又は酸洗する工程と、上記チタン板をテンションレベラーにより0.1%以上1.3%以下の平均伸び率で矯正する工程とを含む片面又は両面に凹凸パターンを有するチタン板の製造方法が開示されている。特許文献3に開示されたチタン板の製造方法により得られるチタン板は、上記凹凸パターンにおける平均凸部最大高さが15.0μm以上である。 Patent Document 3 describes a step of forming an uneven pattern on one or both sides of a titanium plate by rolling using a work roll having an uneven pattern on the surface, a step of baking and / or pickling the titanium plate, and the above. A method for producing a titanium plate having a concavo-convex pattern on one side or both sides is disclosed, which includes a step of straightening a titanium plate with an average elongation rate of 0.1% or more and 1.3% or less by a tension leveler. The titanium plate obtained by the method for manufacturing a titanium plate disclosed in Patent Document 3 has an average convex portion maximum height of 15.0 μm or more in the uneven pattern.
 特許文献4には、圧延方向と平行な方向における表面の算術平均粗さが0.25μm以上2.5μm以下であり、表面における試験荷重4.9Nによるビッカース硬さよりも試験荷重0.098Nによるビッカース硬さの方が20以上高く、かつ、試験荷重4.9Nによるビッカース硬さが180以下であることを特徴とするチタン板が開示されている。 In Patent Document 4, the arithmetic average roughness of the surface in the direction parallel to the rolling direction is 0.25 μm or more and 2.5 μm or less, and the Vickers hardness with a test load of 0.098 N is higher than the Vickers hardness with a test load of 4.9 N on the surface. A titanium plate characterized in that the hardness is 20 or more higher and the Vickers hardness under a test load of 4.9 N is 180 or less is disclosed.
 特許文献5には、表面に、厚さ0.10μm以上のルチル型TiOからなる酸化皮膜を有し、前記酸化皮膜の表面性状が、λs=2.5μm及びλc=0.08mmのカットオフ値を適用して得た粗さ曲線の算術平均粗さRaが0.20~7.0μm、前記粗さ曲線の十点平均粗さRZJISと輪郭曲線要素の平均高さRとの差(RZJIS-R)が0.5μm以上、前記粗さ曲線の最大山高さRpの0.8倍以上を満足する領域に対して、λs=0μm及びλc=0mmの条件で測定した二乗平均平方根傾斜RΔqが20°以下、を満足することを特徴とするチタン板が開示されている。 Patent Document 5 has an oxide film made of rutile-type TiO 2 having a thickness of 0.10 μm or more on the surface, and the surface properties of the oxide film are cutoffs of λs = 2.5 μm and λc = 0.08 mm. The arithmetic mean roughness Ra of the roughness curve obtained by applying the values is 0.20 to 7.0 μm, and the difference between the ten-point average roughness R ZJIS of the roughness curve and the average height R c of the contour curve element. The root mean square measured under the conditions of λs = 0 μm and λc = 0 mm for a region where (R ZJIS −R c ) satisfies 0.5 μm or more and 0.8 times or more of the maximum mountain height Rp of the roughness curve. A titanium plate characterized in that the square root inclination RΔq is 20 ° or less is disclosed.
日本国特開2001-198603号公報Japanese Patent Application Laid-Open No. 2001-198603 日本国特開2013-76548号公報Japanese Patent Application Laid-Open No. 2013-76548 日本国特開2014-589号公報Japanese Patent Application Laid-Open No. 2014-589 日本国特開2002-3968号公報Japanese Patent Application Laid-Open No. 2002-3968 日本国特開2020-183551号公報Japanese Patent Application Laid-Open No. 2020-183551
 チタン材の成形では、チタン材と金型との接触を抑制して摩擦係数を低減する潤滑手法が選択され、この潤滑手法がチタン材のプレス成形に極めて重要となる。例えば、摩擦係数を低減するために、チタン材の表面に潤滑剤を設ける潤滑手法がある。潤滑剤としては、例えば、テフロン(登録商標)シートや固体(皮膜型)潤滑剤が適用される。テフロンシートは非常に潤滑性に優れる反面、チタン材への貼付けや除去の工数が大きく、コストが増大する。また、テフロンシートは、一度の成形で破れることが多く、テフロンシートが設けられたチタン材に対して複数回の深絞りを行う場合、都度テフロンシートの貼り直しが必要であり、加工が複雑となる。一方、固体潤滑剤は、塗布、プレス、洗浄除去が連続的に行える反面、深絞りのような厳しい摺動環境では一部が剥離し摩擦係数が増加することがある。 In the molding of titanium material, a lubrication method that suppresses contact between the titanium material and the mold to reduce the coefficient of friction is selected, and this lubrication method is extremely important for press molding of titanium material. For example, there is a lubrication method in which a lubricant is provided on the surface of a titanium material in order to reduce the coefficient of friction. As the lubricant, for example, a Teflon (registered trademark) sheet or a solid (film type) lubricant is applied. Although the Teflon sheet has excellent lubricity, the man-hours for attaching and removing it to the titanium material are large, and the cost increases. In addition, the Teflon sheet is often torn by one molding, and when the titanium material provided with the Teflon sheet is deep-drawn multiple times, the Teflon sheet needs to be reattached each time, which makes processing complicated. Become. On the other hand, the solid lubricant can be continuously applied, pressed, and washed and removed, but in a severe sliding environment such as deep drawing, a part of the solid lubricant may peel off and the friction coefficient may increase.
 特許文献1~4に開示された技術では、チタン材表面に固体潤滑剤を形成させた場合、固体潤滑剤の密着性が十分でなく、深絞り成形を行った際に固体潤滑剤が剥離し、摩擦係数が増大することがある。その結果、深絞り成形性が低下し、外観不良や深絞り成形時のチタン材の破断が生じる可能性がある。 In the techniques disclosed in Patent Documents 1 to 4, when the solid lubricant is formed on the surface of the titanium material, the adhesion of the solid lubricant is not sufficient, and the solid lubricant is peeled off when deep drawing is performed. , The coefficient of friction may increase. As a result, the deep drawability is deteriorated, and there is a possibility that the appearance is poor and the titanium material is broken during deep draw molding.
 また、特許文献5に開示された技術は、固体潤滑剤を用いない技術であり、固体潤滑剤を使用した場合のチタン材と固体潤滑剤との密着性は不明である。 Further, the technique disclosed in Patent Document 5 is a technique that does not use a solid lubricant, and the adhesion between the titanium material and the solid lubricant when the solid lubricant is used is unknown.
 本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、固体潤滑剤が表面に塗布されたチタン材の深絞り成形において、深絞り成形性に優れるチタン材を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a titanium material having excellent deep drawability in deep drawing molding of a titanium material coated with a solid lubricant on the surface. To provide.
 本発明者らは、チタン材の表面性状と固体潤滑剤の密着性との関係について詳細に検討し、チタン材の表面性状を制御することで固体潤滑剤の密着性が向上することを見出した。さらに、本発明者らは、チタン材の固体潤滑剤の密着性にはチタン材の表面の粗さ曲線要素の平均長さRSm及び二乗平均平方根傾斜RΔqが極めて重要であることを見出した。そして、本発明者らは、上記知見に基づき、このようなチタン材を製造する方法を見出し、本発明に至った。 The present inventors have studied in detail the relationship between the surface texture of the titanium material and the adhesion of the solid lubricant, and have found that the adhesion of the solid lubricant is improved by controlling the surface texture of the titanium material. .. Furthermore, the present inventors have found that the average length RSm and the root mean square slope RΔq of the surface roughness curve element of the titanium material are extremely important for the adhesion of the solid lubricant of the titanium material. Then, the present inventors have found a method for producing such a titanium material based on the above findings, and have reached the present invention.
 上記知見に基づき完成された本発明の要旨は、以下の通りである。
[1]本発明のチタン材は、少なくとも一方の表面において、粗さ曲線要素の平均長さRSmが8μm超300μm以下である場合、二乗平均平方根傾斜RΔq(rad.)が下記式(1)を満足し、上記粗さ曲線要素の平均長さRSmが300μm超である場合、上記二乗平均平方根傾斜RΔq(rad.)が下記式(2)を満足する。
  RΔq≧0.060          ・・・式(1)
  RΔq≧2×RSm/10000   ・・・式(2)
[2]上記[1]に記載のチタン材は、上記粗さ曲線要素の平均長さRSmが400μm以下であり、かつ、二乗平均平方根傾斜RΔqが0.190rad.以下であってもよい。
[3]上記[1]又は[2]に記載のチタン材は、荷重を50gfとしたときのビッカース硬さが荷重を1000gfとしたときのビッカース硬さに対して30HV以上大きくてもよい。
[4]上記[1]~[3]のいずれかに記載のチタン材は、酸化皮膜又は窒化皮膜を備えていてもよい。
[5]上記[4]に記載のチタン材は、上記酸化皮膜又は上記窒化皮膜の厚さが1.00μm未満であってもよい。
The gist of the present invention completed based on the above findings is as follows.
[1] In the titanium material of the present invention, when the average length RSm of the roughness curve element is more than 8 μm and 300 μm or less on at least one surface, the root mean square slope RΔq (rad.) Has the following formula (1). When the average length RSm of the roughness curve element is more than 300 μm, the root mean square slope RΔq (rad.) Satisfies the following equation (2).
RΔq ≧ 0.060 ・ ・ ・ Equation (1)
RΔq ≧ 2 × RSm / 10000 ・ ・ ・ Equation (2)
[2] In the titanium material according to the above [1], the average length RSm of the roughness curve element is 400 μm or less, and the root mean square slope RΔq is 0.190 rad. It may be as follows.
[3] The titanium material according to the above [1] or [2] may have a Vickers hardness of 30 HV or more when the load is 50 gf, which is larger than the Vickers hardness when the load is 1000 gf.
[4] The titanium material according to any one of the above [1] to [3] may have an oxide film or a nitride film.
[5] The titanium material according to the above [4] may have a thickness of the oxide film or the nitrided film of less than 1.00 μm.
 以上説明したように、本発明によれば、固体潤滑剤が表面に塗布されたチタン材の深絞り成形において、深絞り成形性に優れるチタン材を提供することが可能となる。 As described above, according to the present invention, it is possible to provide a titanium material having excellent deep drawing formability in deep drawing forming of a titanium material coated with a solid lubricant on the surface.
チタン材の表面性状による固体潤滑剤の密着性の違いを説明するための図である。It is a figure for demonstrating the difference in the adhesion of a solid lubricant depending on the surface texture of a titanium material. 本発明の一実施形態に係るチタン材表面における粗さ曲線の一例を示す図である。It is a figure which shows an example of the roughness curve on the surface of a titanium material which concerns on one Embodiment of this invention. 実施例1及び実施例2における深絞り試験を説明するための図である。It is a figure for demonstrating the deep drawing test in Example 1 and Example 2. FIG. 実施例1における深絞り成形性の評価結果を示すグラフである。It is a graph which shows the evaluation result of the deep drawing formability in Example 1. FIG.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。 A preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings below.
<チタン材>
[チタン材の表面性状]
 本実施形態に係るチタン材は、少なくとも一方の表面において、粗さ曲線要素の平均長さRSmが8μm超300μm以下である場合、二乗平均平方根傾斜RΔq(rad.)が下記式(1)を満足し、前記粗さ曲線要素の平均長さRSmが300μm超である場合、前記二乗平均平方根傾斜RΔq(rad.)が下記式(2)を満足する。
  RΔq≧0.060          ・・・式(1)
  RΔq≧2×RSm/10000   ・・・式(2)
以下に、本実施形態に係るチタン材について詳細に説明する。
<Titanium material>
[Surface texture of titanium material]
In the titanium material according to the present embodiment, when the average length RSm of the roughness curve element is more than 8 μm and 300 μm or less on at least one surface, the root mean square slope RΔq (rad.) Satisfies the following equation (1). When the average length RSm of the roughness curve element is more than 300 μm, the root mean square slope RΔq (rad.) Satisfies the following equation (2).
RΔq ≧ 0.060 ・ ・ ・ Equation (1)
RΔq ≧ 2 × RSm / 10000 ・ ・ ・ Equation (2)
The titanium material according to this embodiment will be described in detail below.
 図1を参照して、本発明者らの検討により得られた二乗平均平方根傾斜RΔq及び粗さ曲線要素の平均長さRSmによる固体潤滑剤の密着性の違いを説明する。図1は、チタン材の表面性状による固体潤滑剤の密着性の違いを説明するための図である。 With reference to FIG. 1, the difference in the adhesion of the solid lubricant depending on the root mean square slope RΔq obtained by the study by the present inventors and the average length RSm of the roughness curve element will be described. FIG. 1 is a diagram for explaining the difference in the adhesion of the solid lubricant depending on the surface texture of the titanium material.
 二乗平均平方根傾斜RΔqは、表面の凹凸の傾斜の程度を表しており、二乗平均平方根傾斜RΔqが大きいほど凹凸の傾斜が急である(凹凸が鋭い)ことを示し、二乗平均平方根傾斜RΔqが小さいほど凹凸の傾斜が緩やかであることを示す。 The root mean square slope RΔq represents the degree of inclination of the unevenness of the surface, and the larger the mean square root mean square RΔq is, the steeper the slope of the unevenness is (the unevenness is sharper), and the mean square root mean square RΔq is smaller. It shows that the slope of the unevenness is gentler.
 粗さ曲線要素の平均長さRSmは、表面の凹凸の間隔を表しており、粗さ曲線要素の平均長さRSmが大きいほど凹凸の間隔が大きいことを示し、粗さ曲線要素の平均長さRSmが小さいほど凹凸の間隔が小さいことを示す。 The average length RSm of the roughness curve element represents the interval between the irregularities on the surface, and the larger the average length RSm of the roughness curve element, the larger the interval between the irregularities, and the average length of the roughness curve element. The smaller the RSm, the smaller the spacing between the irregularities.
 例えば、図1(A)は、二乗平均平方根傾斜RΔqが大きくかつ、粗さ曲線要素の平均長さRSmが小さい場合のチタン材の表面性状と当該チタン材表面に形成した固体潤滑剤を模式的に示している。この場合、チタン材の表面は、図1(A)に図示したように、凹凸が鋭く、凹凸の間隔が小さい表面であり、固体潤滑剤がチタン材表面の凹凸の凹部にも充填されやすい。二乗平均平方根傾斜RΔqが大きく、かつ、粗さ曲線要素の平均長さRSmが小さい場合、鋭い凹凸により固体潤滑剤を固定するアンカー効果及び凹部への固体潤滑剤の充填により、固体潤滑剤の密着性が向上すると考えられる。 For example, FIG. 1A schematically shows the surface texture of a titanium material and the solid lubricant formed on the surface of the titanium material when the root mean square slope RΔq is large and the average length RSm of the roughness curve element is small. It is shown in. In this case, as shown in FIG. 1A, the surface of the titanium material has sharp irregularities and the intervals between the irregularities are small, and the solid lubricant is likely to be filled in the concave portions of the irregularities on the surface of the titanium material. When the root mean square slope RΔq is large and the average length RSm of the roughness curve element is small, the solid lubricant adheres due to the anchor effect of fixing the solid lubricant by sharp unevenness and the filling of the recess with the solid lubricant. It is thought that the sex will improve.
 図1(B)は、二乗平均平方根傾斜RΔqが大きく、かつ、粗さ曲線要素の平均長さRSmが大きい場合のチタン材の表面性状と当該チタン材表面に形成した固体潤滑剤を模式的に示している。この場合、チタン材の表面は、図1(B)に図示したように、凹凸が鋭く、凹凸の間隔が大きい表面である。二乗平均平方根傾斜RΔqが大きく、かつ、粗さ曲線要素の平均長さRSmが大きい場合、凹部に固体潤滑剤が充填されない部分が生じ、固体潤滑剤の密着性が低下すると考えられる。 FIG. 1B schematically shows the surface texture of the titanium material and the solid lubricant formed on the surface of the titanium material when the root mean square slope RΔq is large and the average length RSm of the roughness curve element is large. Shows. In this case, as shown in FIG. 1 (B), the surface of the titanium material is a surface having sharp irregularities and a large interval between irregularities. When the root mean square slope RΔq is large and the average length RSm of the roughness curve element is large, it is considered that the recesses are not filled with the solid lubricant and the adhesion of the solid lubricant is lowered.
 図1(C)は、二乗平均平方根傾斜RΔqが小さく、かつ、粗さ曲線要素の平均長さRSmが小さい場合のチタン材の表面性状と当該チタン材表面に形成した固体潤滑剤を模式的に示している。また、図1(D)は、二乗平均平方根傾斜RΔqが小さく、かつ、粗さ曲線要素の平均長さRSmが大きい場合のチタン材の表面性状と当該チタン材表面に形成した固体潤滑剤を模式的に示している。これらの場合、図1(C)及び図1(D)に図示したように、チタン材の表面は、凹凸が緩やかな表面である。凹凸が緩やかであるため、十分なアンカー効果が得られず、固体潤滑剤の密着性が低下すると考えられる。 FIG. 1C schematically shows the surface texture of the titanium material and the solid lubricant formed on the surface of the titanium material when the root mean square slope RΔq is small and the average length RSm of the roughness curve element is small. Shows. Further, FIG. 1 (D) schematically shows the surface texture of the titanium material and the solid lubricant formed on the surface of the titanium material when the root mean square slope RΔq is small and the average length RSm of the roughness curve element is large. Is shown. In these cases, as shown in FIGS. 1 (C) and 1 (D), the surface of the titanium material is a surface with gentle irregularities. Since the unevenness is gentle, it is considered that a sufficient anchor effect cannot be obtained and the adhesion of the solid lubricant is lowered.
 本実施形態に係るチタン材では、粗さ曲線要素の平均長さRSmが8μm超300μm以下の場合、二乗平均平方根傾斜RΔq(rad.)が上記式(1)を満足する。 In the titanium material according to the present embodiment, when the average length RSm of the roughness curve element is more than 8 μm and 300 μm or less, the root mean square slope RΔq (rad.) Satisfies the above equation (1).
 上述したとおり、粗さ曲線要素の平均長さRSmが小さいと、表面の凹凸の間隔が小さく、凹部に固体潤滑剤が充填されやすいが、粗さ曲線要素の平均長さRSmが8μm未満であると、凹凸が細かすぎてアンカー効果が得られにくくなり固体潤滑剤の密着性が低下する。その結果、深絞り成形時の摩擦係数が大きくなり、深絞り成形性が低下する。よって、粗さ曲線要素の平均長さRSmは8μm超である。 As described above, when the average length RSm of the roughness curve element is small, the spacing between the irregularities on the surface is small and the recesses are easily filled with the solid lubricant, but the average length RSm of the roughness curve element is less than 8 μm. Then, the unevenness becomes too fine and it becomes difficult to obtain the anchor effect, and the adhesion of the solid lubricant is lowered. As a result, the coefficient of friction during deep drawing molding becomes large, and the deep drawing formability deteriorates. Therefore, the average length RSm of the roughness curve element is more than 8 μm.
 粗さ曲線要素の平均長さRSmが8μm超300μm以下であり、かつ、二乗平均平方根傾斜RΔq(rad.)が式(1)を満足すれば、アンカー効果及び凹部への固体潤滑剤の充填により、深絞り成形性が向上する。粗さ曲線要素の平均長さRSmが8μm超300μm以下であっても、二乗平均平方根傾斜RΔqが上記式(1)を満足しない場合、凹凸によるアンカー効果が十分に得られず、固体潤滑剤の密着性が低下し、深絞り成形性が低下する。よって、本実施形態に係るチタン材は、粗さ曲線要素の平均長さRSmが8μm超300μm以下の場合、二乗平均平方根傾斜RΔq(rad.)が上記式(1)を満足する。 If the average length RSm of the roughness curve element is more than 8 μm and 300 μm or less, and the root mean square slope RΔq (rad.) Satisfies the equation (1), the anchor effect and the filling of the recess with the solid lubricant can be used. , Deep draw formability is improved. Even if the average length RSm of the roughness curve element is more than 8 μm and 300 μm or less, if the root mean square slope RΔq does not satisfy the above equation (1), the anchor effect due to unevenness cannot be sufficiently obtained, and the solid lubricant Adhesion is reduced and deep drawability is reduced. Therefore, in the titanium material according to the present embodiment, when the average length RSm of the roughness curve element is more than 8 μm and 300 μm or less, the root mean square slope RΔq (rad.) Satisfies the above equation (1).
 粗さ曲線要素の平均長さRSmが300μm超では、二乗平均平方根傾斜RΔqが上記式(2)を満足すれば、アンカー効果及び凹部への固体潤滑剤の充填により、深絞り成形性が向上する。粗さ曲線要素の平均長さRSmが300μm超であって、二乗平均平方根傾斜RΔqが上記式(2)を満足しない場合、凹凸によるアンカー効果が十分に得られず、固体潤滑剤の密着性が低下し、深絞り成形性が低下する。よって、本実施形態に係るチタン材は、粗さ曲線要素の平均長さRSmが300μm超における二乗平均平方根傾斜RΔq(rad.)が上記式(2)を満足する。 When the average length RSm of the roughness curve element exceeds 300 μm, if the root mean square slope RΔq satisfies the above equation (2), the deep draw formability is improved by the anchor effect and the filling of the recess with the solid lubricant. .. If the average length RSm of the roughness curve element is more than 300 μm and the root mean square slope RΔq does not satisfy the above equation (2), the anchor effect due to unevenness cannot be sufficiently obtained, and the adhesion of the solid lubricant is poor. It is lowered and the deep drawability is lowered. Therefore, in the titanium material according to the present embodiment, the root mean square slope RΔq (rad.) When the average length RSm of the roughness curve element exceeds 300 μm satisfies the above equation (2).
 加えて、粗さ曲線要素の平均長さRsm、二乗平均平方根傾斜R△qが大きくなりすぎると金型との接触でチタン材の表面の凸部が押しつぶされ、凸部の変形に追従できない固体潤滑剤が割れて剥離する場合がある。この場合、一段目の深絞り加工で摩擦係数が増加し深絞り成形性が悪くなることがある。よって、粗さ曲線要素の平均長さRsmは、好ましくは、500μm以下であり、二乗平均平方根傾斜RΔqは、好ましくは、0.25rad.以下である。 In addition, if the average length Rsm of the roughness curve element and the root mean square slope RΔq become too large, the convex portion on the surface of the titanium material is crushed by contact with the mold, and the solid cannot follow the deformation of the convex portion. The lubricant may crack and peel off. In this case, the coefficient of friction may increase in the first-stage deep drawing process, and the deep drawing formability may deteriorate. Therefore, the average length Rsm of the roughness curve element is preferably 500 μm or less, and the root mean square slope RΔq is preferably 0.25 rad. It is as follows.
 本実施形態に係るチタン材は、上記条件を満足した上で、粗さ曲線要素の平均長さRSmが400μm以下、かつ、二乗平均平方根傾斜RΔqが0.190rad.以下であることがより好ましい。例えば、チタン材に対して球頭ポンチで深絞りを行い、その後円筒ポンチで深絞りを行う多段深絞り成形をした場合、最初の球頭深絞り成形でチタン材の球状となる部分全体にひずみが導入され、当該部分凹部にひずみが集中し固体潤滑剤が割れて剥離する場合がある。固体潤滑剤が割れて剥離した状態で、次工程の円筒深絞り成形をすると摩擦係数が増加し深絞り成形性が低下する場合がある。粗さ曲線要素の平均長さRSmが400μm以下、かつ、二乗平均平方根傾斜RΔqが0.190rad.以下であれば、固体潤滑剤の剥離を抑制することができ、多段深絞りにおける成形性が良好となる。 In the titanium material according to the present embodiment, after satisfying the above conditions, the average length RSm of the roughness curve element is 400 μm or less, and the root mean square slope RΔq is 0.190 rad. The following is more preferable. For example, in the case of multi-stage deep drawing, in which the titanium material is deep-drawn with a spherical head punch and then deep-drawn with a cylindrical punch, the first spherical head deep-drawing is strained over the entire spherical portion of the titanium material. Is introduced, strain is concentrated in the partial recess, and the solid lubricant may crack and peel off. If the solid lubricant is cracked and peeled off and the cylinder deep drawing is performed in the next step, the friction coefficient may increase and the deep drawing formability may decrease. The average length RSm of the roughness curve element is 400 μm or less, and the root mean square slope RΔq is 0.190 rad. If it is as follows, peeling of the solid lubricant can be suppressed, and the moldability in the multi-stage deep drawing becomes good.
 粗さ曲線要素の平均長さRSm、及び二乗平均平方根傾斜RΔqは、JIS B 0601:2013に準拠した方法で2箇所における粗さ曲線を取得し、それぞれの粗さ曲線から算出された値の平均値を用いる。本実施形態に係るチタン材に対してJIS B 0601:2013に準拠した方法で粗さ曲線を測定すると、例えば、図2に示すような粗さ曲線が得られる。なお、粗さ曲線要素の平均長さRSm及び二乗平均平方根傾斜RΔqの算出の基礎となる粗さ曲線は、圧延幅方向、評価長さ15mm、測定速度0.15mm/sで測定したチタン材表面の測定断面曲線にカットオフ波長λc=0.8mmの低域フィルタを適用して断面曲線を取得し、更にこの断面曲線に、カットオフ波長λs=25μmの高域フィルタを適用することによって得られた粗さ曲線とする。λcは、粗さ成分とうねり成分との境界を定義するフィルタである。λsは、粗さ成分とそれより短い波長成分との境界を定義するフィルタである。 For the average length RSm of the roughness curve element and the root mean square slope RΔq, the roughness curves at two locations are obtained by a method based on JIS B 0601: 2013, and the average of the values calculated from each roughness curve is obtained. Use the value. When the roughness curve is measured for the titanium material according to the present embodiment by a method according to JIS B 0601: 2013, for example, the roughness curve as shown in FIG. 2 can be obtained. The roughness curve, which is the basis for calculating the average length RSm and the squared average square root slope RΔq of the roughness curve elements, is the surface of the titanium material measured in the rolling width direction, the evaluation length of 15 mm, and the measurement speed of 0.15 mm / s. It is obtained by applying a low frequency filter with a cutoff wavelength λc = 0.8 mm to the measurement cross-sectional curve of the above to obtain a cross-sectional curve, and further applying a high frequency filter with a cutoff wavelength λs = 25 μm to this cross-sectional curve. The roughness curve is used. λc is a filter that defines the boundary between the roughness component and the waviness component. λs is a filter that defines the boundary between the roughness component and the shorter wavelength component.
 輪郭曲線要素の平均長さRSmは、下記式(3)より算出される。 The average length RSm of the contour curve element is calculated from the following equation (3).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式(3)中、mは、測定点数であり、Xsiは、基準長さにおける輪郭曲線要素の長さである。 In the above equation (3), m is the number of measurement points, and Xsi is the length of the contour curve element at the reference length.
 粗さ曲線要素の二乗平均平方根傾斜RΔqは、下記式(4)より算出される。 The root mean square slope RΔq of the roughness curve element is calculated from the following equation (4).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記式(4)中、Nは測定点数である。(dZj/dXj)は、粗さ曲線においてj番目の測定点における局部傾斜であり、下記式(5)によって定義される。 In the above formula (4), N is the number of measurement points. (DZj / dXj) is a local inclination at the jth measurement point in the roughness curve, and is defined by the following equation (5).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記式(5)中、Zj+3は、j+3番目の測定点における表面の平均線からの高さである。上記同様に、式(5)中、Zj+2、Zj+1、Zj-1、Zj-2、及びZj-3、は、それぞれ、j+2番目、j+1番目、j-1番目、j-2番目、j―3番目の測定点における表面の平均面からの高さである。式(5)中、ΔXは測定間隔である。本実施形態において、測定間隔ΔXは、以下のようにして定めればよい。すなわち、測定間隔ΔXは、表面粗さ形状測定機によって設定される値であり、その測定長さLを測定したとき数値データがN点取得された場合、測定間隔でΔXは平均でL/(N-1)となる。例えば、測定長さ5mmを測定したとき、数値データが25601点取得された場合、ΔXは5mm/25600点となり平均で約0.1905μmとなる。 In the above equation (5), Z j + 3 is the height from the average line of the surface at the j + 3rd measurement point. Similarly, in the formula (5), Z j + 2 , Z j + 1 , Z j-1 , Z j-2 , and Z j-3 are j + 2, j + 1, j-1, and j-2, respectively. The height from the average plane of the surface at the third and j-3rd measurement points. In equation (5), ΔX is the measurement interval. In the present embodiment, the measurement interval ΔX may be determined as follows. That is, the measurement interval ΔX is a value set by the surface roughness shape measuring machine, and when numerical data is acquired at N points when the measurement length L is measured, ΔX is L / (on average at the measurement interval. It becomes N-1). For example, when a measurement length of 5 mm is measured and 25601 points of numerical data are acquired, ΔX is 5 mm / 25600 points, which is about 0.1905 μm on average.
[荷重を50gfとしたときのビッカース硬さが荷重を1000gfとしたときのビッカース硬さに対して30HV以上大きい]
 本実施形態に係るチタン材は、荷重を50gfとしたときのビッカース硬さが荷重を1000gfとしたときのビッカース硬さに対して30HV以上大きいことが好ましい。チタン材の表面が柔らかいと、深絞り成形中に表面が変形して金型との接触面積が大きくなり、摺動抵抗が大きくなりやすい。摺動抵抗が大きくなると、固体潤滑剤が剥離しやすくなる。よって、チタン材のより表面近傍の硬さを示す荷重50gfのビッカース硬さは、荷重1000gfのビッカース硬さに対して30HV以上大きいことが好ましい。チタン材の内側が表面と同程度に硬すぎる場合、摺動性は良くても成形そのものが困難になり、深絞り時に割れてしまうことがある。一方、チタン材の表面が硬すぎると、深絞り成形が困難になる場合がある。摺動の観点からは、硬さに上限はないが、例えば荷重を50gfとしたときのビッカース硬さが800HVを超える場合、硬化層が厚すぎて曲げ加工性の低下が懸念される。そのため、実使用においては荷重を50gfとしたときのビッカース硬さが800HV以下となるのが好ましい。
 荷重1000gfのビッカース硬さは、成形後の強度の観点から、105HV以上であることが好ましく、110HV以上であることがより好ましい。一方、荷重1000gfのビッカース硬さは、成形性の観点から、300HV以下であることが好ましく、250HV以下であることがより好ましい。
 ビッカース硬さには、JIS Z 2244:2009に準拠した方法で5点ずつ測定された値の平均値を用いる。
[The Vickers hardness when the load is 50 gf is 30 HV or more larger than the Vickers hardness when the load is 1000 gf]
The titanium material according to the present embodiment preferably has a Vickers hardness of 30 HV or more when the load is 50 gf and is larger than the Vickers hardness when the load is 1000 gf. If the surface of the titanium material is soft, the surface is deformed during deep drawing and the contact area with the mold becomes large, and the sliding resistance tends to increase. As the sliding resistance increases, the solid lubricant tends to peel off. Therefore, it is preferable that the Vickers hardness with a load of 50 gf, which indicates the hardness closer to the surface of the titanium material, is 30 HV or more larger than the Vickers hardness with a load of 1000 gf. If the inside of the titanium material is too hard to the same extent as the surface, the molding itself becomes difficult even if the slidability is good, and it may crack during deep drawing. On the other hand, if the surface of the titanium material is too hard, deep drawing may be difficult. From the viewpoint of sliding, there is no upper limit to the hardness, but if the Vickers hardness exceeds 800 HV when the load is 50 gf, for example, the hardened layer is too thick and there is a concern that the bending workability may be deteriorated. Therefore, in actual use, the Vickers hardness when the load is 50 gf is preferably 800 HV or less.
The Vickers hardness with a load of 1000 gf is preferably 105 HV or more, and more preferably 110 HV or more, from the viewpoint of the strength after molding. On the other hand, the Vickers hardness with a load of 1000 gf is preferably 300 HV or less, and more preferably 250 HV or less, from the viewpoint of moldability.
For the Vickers hardness, the average value of the values measured at 5 points each by a method according to JIS Z 2244: 2009 is used.
 上記観点から、本実施形態に係るチタン材は、酸化皮膜又は窒化皮膜を備えていることが好ましい。酸化皮膜又は窒化皮膜の厚さは、1.00μm以下であることが好ましい。酸化皮膜及び窒化皮膜は延性が低いため深絞り成形時に割れる可能性があるが、これらの厚さが1.00μm未満であればこれらの皮膜の割れを防止することができる。酸化皮膜又は窒化皮膜の厚さは、0.50μm以下であってもよい。
 一方、酸化皮膜又は窒化皮膜の厚さの下限は特段制限されない。酸化皮膜又は窒化皮膜の厚さは、例えば、0.02μm以上であってもよいし、0.06μm以上であってもよい。
From the above viewpoint, the titanium material according to the present embodiment preferably has an oxide film or a nitrided film. The thickness of the oxide film or the nitrided film is preferably 1.00 μm or less. Since the oxide film and the nitrided film have low ductility, they may be cracked during deep drawing, but if their thickness is less than 1.00 μm, cracking of these films can be prevented. The thickness of the oxide film or the nitrided film may be 0.50 μm or less.
On the other hand, the lower limit of the thickness of the oxide film or the nitrided film is not particularly limited. The thickness of the oxide film or the nitrided film may be, for example, 0.02 μm or more, or may be 0.06 μm or more.
 酸化皮膜又は窒化皮膜の厚さは、グロー放電分光分析法(GDS:Glow discharge spectroscopy)により得た深さ方向の酸素及び窒素の分布より求めることができる。具体的には、最表面のO濃度に対してO濃度が半減した位置までの深さ方向の距離を酸化皮膜の厚みとし、最表面のN濃度に対してN濃度が半減した位置までの深さ方向の距離を窒化皮膜の厚みとする。 The thickness of the oxide film or the nitrided film can be determined from the distribution of oxygen and nitrogen in the depth direction obtained by glow discharge spectroscopy (GDS: Glow discharge spectroscopy). Specifically, the distance in the depth direction to the position where the O concentration is halved with respect to the O concentration on the outermost surface is defined as the thickness of the oxide film, and the depth to the position where the N concentration is halved with respect to the N concentration on the outermost surface. The distance in the vertical direction is defined as the thickness of the nitrided film.
 本実施形態のチタン材は、特段制限されず、純チタン又はチタン合金であってよい。チタン材は、例えば、Ti含有量が70質量%以上の純チタン又はチタン合金である。 The titanium material of the present embodiment is not particularly limited and may be pure titanium or a titanium alloy. The titanium material is, for example, pure titanium or a titanium alloy having a Ti content of 70% by mass or more.
 純チタンには、例えば、JIS規格の1種~4種、及びこれらに対応するASTM規格のGrade1~4で規定される工業用純チタンを含む。すなわち、本実施形態で対象とする工業用純チタンは、質量%で、C:0.1%以下、H:0.015%以下、O:0.4%以下、N:0.07%以下、Fe:0.5%以下、残部がTi及び不純物からなる。 Pure titanium includes, for example, 1 to 4 types of JIS standard and industrial pure titanium specified by Grade 1 to 4 of ASTM standard corresponding to these. That is, the target industrial pure titanium in this embodiment is C: 0.1% or less, H: 0.015% or less, O: 0.4% or less, N: 0.07% or less in mass%. , Fe: 0.5% or less, the balance is made of Ti and impurities.
 チタン合金としては、α型チタン合金、α+β型チタン合金又はβ型チタン合金が挙げられる。 Examples of the titanium alloy include α-type titanium alloy, α + β-type titanium alloy, and β-type titanium alloy.
 α型チタン合金としては、例えば高耐食性合金(JIS規格の11種~13種、17種、19種~22種、及びASTM規格のGrade7、11、13、14、17、30、31で規定されるチタン合金やさらに種々の元素を少量含有させたチタン合金)、Ti-0.5Cu、Ti-1.0Cu、Ti-1.0Cu-0.5Nb、Ti-1.0Cu-1.0Sn-0.3Si-0.25Nb、などがある。 The α-type titanium alloy is defined by, for example, a highly corrosion-resistant alloy (JIS standard 11 to 13, 17, 19 to 22 and ASTM standard Grade 7, 11, 13, 14, 17, 30, 31). Titanium alloy and titanium alloy containing a small amount of various elements), Ti-0.5Cu, Ti-1.0Cu, Ti-1.0Cu-0.5Nb, Ti-1.0Cu-1.0Sn-0 .3Si-0.25Nb, etc.
 α+β型チタン合金としては、例えば、Ti-3Al-2.5V、Ti-5Al-1Fe、Ti-6Al-4Vなどがある。 Examples of the α + β type titanium alloy include Ti-3Al-2.5V, Ti-5Al-1Fe, Ti-6Al-4V and the like.
 β型チタン合金としては、例えば、Ti-11.5Mo-6Zr-4.5Sn、Ti-8V-3Al-6Cr-4Mo-4Zr、Ti-13V-11Cr-3Al、Ti-15V-3Al-3Cr-3Sn、Ti-20V-4Al-1Sn、Ti-22V-4Alなどがある。 Examples of the β-type titanium alloy include Ti-11.5Mo-6Zr-4.5Sn, Ti-8V-3Al-6Cr-4Mo-4Zr, Ti-13V-11Cr-3Al, Ti-15V-3Al-3Cr-3Sn. , Ti-20V-4Al-1Sn, Ti-22V-4Al and the like.
[板厚]
 本実施形態に係るチタン材の板厚は、例えば、0.3mm以上4.5mm以下である。チタン材の板厚は、0.4mm以上、又は0.5mm以上であってもよい。また、チタン材の板厚は、4.3mm以下、又は4.0mm以下であってもよい。
[Plate thickness]
The plate thickness of the titanium material according to this embodiment is, for example, 0.3 mm or more and 4.5 mm or less. The plate thickness of the titanium material may be 0.4 mm or more, or 0.5 mm or more. Further, the plate thickness of the titanium material may be 4.3 mm or less, or 4.0 mm or less.
 本実施形態に係るチタン材は、その少なくとも一方の表面に液体の状態で塗布した後に乾燥させて固体皮膜となる固体潤滑剤を用いて深絞り成形する場合に、優れた深絞り成形性が得られる。
 ここまで、本実施形態に係るチタン材を説明した。
The titanium material according to the present embodiment has excellent deep drawability when it is applied to at least one surface in a liquid state and then dried to form a solid film by deep drawing using a solid lubricant. Be done.
Up to this point, the titanium material according to the present embodiment has been described.
 次に、本実施形態に係るチタン材の製造方法の一例について説明する。ただし、本実施形態に係るチタン材の製造方法は特に限定されない。上述の要件を満たすチタン材は、その製造方法に関わらず、本実施形態に係るチタン材とみなされる。以下に説明する製造方法は好適な一例にすぎず、本実施形態に係るチタン材を限定するものではない。 Next, an example of the titanium material manufacturing method according to the present embodiment will be described. However, the method for producing the titanium material according to the present embodiment is not particularly limited. A titanium material satisfying the above requirements is regarded as a titanium material according to the present embodiment regardless of the manufacturing method thereof. The manufacturing method described below is only a suitable example, and does not limit the titanium material according to the present embodiment.
<チタン材の製造方法>
 本実施形態に係るチタン材の製造方法は、チタン素材の少なくとも一方の表面に凹凸を形成する凹凸形成工程と、真空雰囲気、酸化雰囲気、又は窒化雰囲気の少なくともいずれかの雰囲気で焼鈍を施す焼鈍工程と、を有する。凹凸形成工程では、複数回のダルロールを用いた冷間のスキンパス圧延又はブラスト処理を施す。以下に凹凸形成工程及び焼鈍工程について詳細に説明する。
<Manufacturing method of titanium material>
The method for producing a titanium material according to the present embodiment includes an unevenness forming step of forming irregularities on at least one surface of the titanium material, and a annealing step of annealing in at least one of a vacuum atmosphere, an oxidizing atmosphere, and a nitriding atmosphere. And have. In the unevenness forming step, cold skin pass rolling or blasting using a plurality of dull rolls is performed. The unevenness forming step and the annealing step will be described in detail below.
[凹凸形成工程]
 凹凸形成工程では、チタン素材の少なくとも一方の表面に凹凸を形成する。凹凸形成工程では、少なくとも2回のダルロールを用いた冷間のスキンパス圧延を施す。ダルロールは、その表面にダル加工が施されたものであるが、ロール表面のダル加工方法は、特段制限されず、例えば、ショット又はグリットを用いたダル加工であってよい。ショット又はグリットとしては、例えば、JIS G 5903:2018に準拠したものを用いることができる。具体的には、SG-50、SG-100、SG-140、SG-170、もしくはSG-200と呼ばれるスチールグリット等、又は、SS-200もしくはSS-240と呼ばれるスチールショット等が用いられてよい。2回のスキンパス圧延を施す場合、以下の条件を満たすことが好ましい。
 (条件)SG-50~SG-240又は、SS-50~SS-240のいずれかの投射材を用い、1回目のスキンパス圧延に用いるダルロールの表面粗さRaを7.0μm以上8.0μm未満とし、2回目のスキンパス圧延に用いるダルロールの表面粗さRaを6.0μm以上8.5μm以下とする。このとき、2回目のスキンパス圧延に用いるダルロールを製造するときの投射材径は、1回目のスキンパス圧延に用いるダルロールを製造するときの投射材径以上となるようにすることが好ましい。また、同一の投射材を用いて製造した異なる表面粗さRaのダルロールを用いる場合は、1回目のスキンパス圧延に用いるダルロールの表面粗さRaが、2回目のスキンパス圧延に用いるダルロールの表面粗さRaよりも小さい方が好ましい。
[Concavo-convex forming process]
In the unevenness forming step, unevenness is formed on at least one surface of the titanium material. In the unevenness forming step, cold skin pass rolling using dull roll is performed at least twice. The surface of the dull roll is dull-processed, but the method of dull-processing the surface of the roll is not particularly limited, and for example, dull processing using a shot or grit may be used. As the shot or grit, for example, one conforming to JIS G 5903: 2018 can be used. Specifically, a steel grit called SG-50, SG-100, SG-140, SG-170, or SG-200, or a steel shot called SS-200 or SS-240 may be used. .. When performing two skin pass rollings, it is preferable to satisfy the following conditions.
(Conditions) Using any of the projection materials SG-50 to SG-240 or SS-50 to SS-240, the surface roughness Ra of the dull roll used for the first skin pass rolling is 7.0 μm or more and less than 8.0 μm. The surface roughness Ra of the dull roll used for the second skin pass rolling is set to 6.0 μm or more and 8.5 μm or less. At this time, it is preferable that the diameter of the projection material when manufacturing the dull roll used for the second skin pass rolling is equal to or larger than the diameter of the projection material when manufacturing the dull roll used for the first skin pass rolling. When dull rolls having different surface roughness Ra manufactured using the same projection material are used, the surface roughness Ra of the dull roll used for the first skin pass rolling is the surface roughness Ra of the dull roll used for the second skin pass rolling. It is preferably smaller than Ra.
 さらに、上記条件において、ダル加工に用いる最大粒度の投射材をSG-200又はSS-200としてもよい。 Further, under the above conditions, the projection material having the maximum particle size used for dull processing may be SG-200 or SS-200.
 また、1回目のスキンパス圧延に用いるダルロールの表面粗さRaが7.0μm未満であり、2回目のスキンパス圧延に用いるダルロールの表面粗さRaが6.0μm未満の場合、適度な条件で3回目のスキンパス圧延を実施してもよい。 When the surface roughness Ra of the dull roll used for the first skin pass rolling is less than 7.0 μm and the surface roughness Ra of the dull roll used for the second skin pass rolling is less than 6.0 μm, the third time under appropriate conditions. Skin path rolling may be carried out.
 本実施形態に係るチタン材を得るためには、ダルロールの表面が、細かいピッチで急な斜面を有することが重要である。ダルロールの表面性状は、例えば、ダル加工の方法やダル加工に用いる投射材の種類の影響を受ける。例えば、投射材の粒径を変えて、同一条件でダル加工を行った場合、投射材の粒径が小さい方が、表面粗さRaが小さいダルロールが製造される。表面粗さRaが著しく小さいダルロールでは、上記式(1)及び上記式(2)が満足されない場合がある。そのため、本工程では、1回目のスキンパス圧延及び2回目のスキンパス圧延に用いられるダルロールの表面粗さRaが小さい場合、3回目のスキンパス圧延を施すことが好ましい。 In order to obtain the titanium material according to this embodiment, it is important that the surface of the dull roll has a steep slope with a fine pitch. The surface texture of dull roll is influenced by, for example, the method of dull processing and the type of projection material used for dull processing. For example, when the particle size of the projecting material is changed and dull processing is performed under the same conditions, a dull roll having a smaller surface roughness Ra is produced when the particle size of the projecting material is smaller. The above formula (1) and the above formula (2) may not be satisfied with the dull roll having a significantly small surface roughness Ra. Therefore, in this step, when the surface roughness Ra of the dull roll used for the first skin pass rolling and the second skin pass rolling is small, it is preferable to perform the third skin pass rolling.
 3回目のスキンパス圧延に用いられるダルロールの表面粗さRaは、例えば、2.9μm以上8.5μm以下であってよい。しかしながら、3回目のスキンパス圧延に用いられるダルロールの表面粗さは、好ましくは、1回目又は2回目のスキンパス圧延に用いたダルロールの表面粗さの少なくともいずれか以上である。3回目のスキンパス圧延に用いられるダルロールの表面粗さが、1回目又は2回目のスキンパス圧延に用いたダルロールの表面粗さの少なくともいずれか以上であれば、チタン材の表面により細かいピッチで鋭い凹凸が形成される。 The surface roughness Ra of the dull roll used for the third skin pass rolling may be, for example, 2.9 μm or more and 8.5 μm or less. However, the surface roughness of the dull roll used for the third skin pass rolling is preferably at least one of the surface roughness of the dull roll used for the first or second skin pass rolling. If the surface roughness of the dull roll used for the third skin pass rolling is at least one of the surface roughness of the dull roll used for the first or second skin pass rolling, the surface of the titanium material has finer pitch and sharp unevenness. Is formed.
 上記のとおり、1回目のスキンパス圧延に用いられるダルロール表面粗さRaが7.0μm未満であり、2回目のスキンパス圧延に用いられるダルロール表面粗さRaが6.0μm未満の場合、3回目のスキンパス圧延を、例えば、表面粗さRaが2.9μm以上8.5μm以下のダルロールを用いて行う。ただし、同一のダルロールを用いて3回のスキンパス圧延する場合は、ダルロールの表面粗さRaが4.0μm以下のダルロールを用いる。同一のダルロールを用いて3回のスキンパス圧延する場合のダルロールの表面粗さRaが4.0μm超であると、二乗平均平方根傾斜RΔqと粗さ曲線要素の平均長さRSmとのバランスが適正でなくなり、上記式(1)及び式(2)を満たさない。一方、同一のダルロールを用いて3回のスキンパス圧延する場合のダルロールの表面粗さRaが小さすぎると、RΔqが小さくなり、式(1)及び式(2)を満たさない。よって、同一のダルロールを用いて3回のスキンパス圧延する場合のダルロールの表面粗さRaは、好ましくは、2.9μm以上である。 As described above, when the dull roll surface roughness Ra used for the first skin pass rolling is less than 7.0 μm and the dull roll surface roughness Ra used for the second skin pass rolling is less than 6.0 μm, the third skin pass Rolling is performed using, for example, a dull roll having a surface roughness Ra of 2.9 μm or more and 8.5 μm or less. However, when skin pass rolling is performed three times using the same dull roll, a dull roll having a surface roughness Ra of 4.0 μm or less is used. When the surface roughness Ra of the dull roll in the case of three skin pass rolling using the same dull roll is more than 4.0 μm, the balance between the root mean square slope RΔq and the average length RSm of the roughness curve element is appropriate. It disappears and does not satisfy the above equations (1) and (2). On the other hand, if the surface roughness Ra of the dull roll in the case of three skin pass rollings using the same dull roll is too small, RΔq becomes small and the formulas (1) and (2) are not satisfied. Therefore, the surface roughness Ra of the dull roll in the case of three skin pass rollings using the same dull roll is preferably 2.9 μm or more.
 また、ダルロールの製造のために使用する投射材が同種であって表面粗さが異なる複数のダルロールを用いてスキンパス圧延する場合、先に表面粗さが小さいダルロールでチタン素材をスキンパス圧延することが好ましい。このようにすることで、チタン材の表面により細かいピッチで鋭い凹凸が形成される。 In addition, when skin pass rolling is performed using a plurality of dull rolls of the same type and different surface roughness used for manufacturing dull rolls, it is possible to first skin pass roll the titanium material with dull rolls having a small surface roughness. preferable. By doing so, sharp irregularities are formed on the surface of the titanium material at a finer pitch.
 通常の冷間圧延に使用するブライトロールの表面粗さRaは0.2μm以下であり、凹凸形成工程のスキンパス圧延で用いられるダルロールとは表面粗さRaの点で異なる。 The surface roughness Ra of the bright roll used for normal cold rolling is 0.2 μm or less, which is different from the dull roll used in the skin pass rolling in the unevenness forming step in terms of the surface roughness Ra.
[焼鈍工程]
 焼鈍工程では、チタン素材に対して、真空雰囲気、酸化雰囲気、又は窒化雰囲気の少なくともいずれかの雰囲気で焼鈍を施す。
[Annealing process]
In the annealing step, the titanium material is annealed in at least one of a vacuum atmosphere, an oxidizing atmosphere, and a nitrided atmosphere.
 真空雰囲気は、真空度が、1Paを含み、それよりも圧力が低い雰囲気を言う。また、酸化雰囲気は、酸素を5体積%以上含有する雰囲気であり、例えば、大気雰囲気である。窒化雰囲気は、窒素を99体積%以上含有する雰囲気である。 The vacuum atmosphere refers to an atmosphere in which the degree of vacuum includes 1 Pa and the pressure is lower than that. The oxidizing atmosphere is an atmosphere containing 5% by volume or more of oxygen, and is, for example, an atmospheric atmosphere. The nitriding atmosphere is an atmosphere containing 99% by volume or more of nitrogen.
 焼鈍雰囲気が真空雰囲気である場合、材料の歪みを除去し、冷間加工性を良好にする観点から、焼鈍温度は、500℃以上であることが好ましく、550℃以上であることがより好ましい。焼鈍温度は、結晶の歪みを除去し、冷間加工性を良好にする観点から、800℃以下であることが好ましい。焼鈍雰囲気が真空雰囲気である場合の焼鈍時間は、例えば、2分以上24時間以下である。 When the annealing atmosphere is a vacuum atmosphere, the annealing temperature is preferably 500 ° C. or higher, more preferably 550 ° C. or higher, from the viewpoint of removing distortion of the material and improving cold workability. The annealing temperature is preferably 800 ° C. or lower from the viewpoint of removing the strain of crystals and improving the cold workability. When the annealing atmosphere is a vacuum atmosphere, the annealing time is, for example, 2 minutes or more and 24 hours or less.
 焼鈍雰囲気が酸化雰囲気又は窒化雰囲気である場合、結晶粒の歪みを除去し、冷間加工性を良好にする観点及び皮膜の厚さが薄くなりすぎないようにするために、焼鈍温度は、550℃以上であることが好ましく、600℃以上であることがより好ましい。また、焼鈍雰囲気が酸化雰囲気である場合、結晶粒の歪みを除去し、冷間加工性を良好にする観点や過剰な厚さの皮膜形成抑制の観点から、焼鈍温度は、800℃以下であることが好ましく、770℃以下であることがより好ましい。焼鈍雰囲気が酸化雰囲気である場合の焼鈍時間は、例えば、2分以上24時間以下である。酸化雰囲気で焼鈍した場合は、チタン素材の表面を溶削してもよい。 When the annealing atmosphere is an oxidizing atmosphere or a nitriding atmosphere, the annealing temperature is 550 in order to remove the distortion of the crystal grains, improve the cold workability, and prevent the film thickness from becoming too thin. The temperature is preferably ℃ or higher, and more preferably 600 ℃ or higher. When the annealing atmosphere is an oxidizing atmosphere, the annealing temperature is 800 ° C. or lower from the viewpoint of removing distortion of crystal grains to improve cold workability and suppressing the formation of an excessively thick film. It is preferably 770 ° C. or lower, and more preferably 770 ° C. or lower. When the annealing atmosphere is an oxidizing atmosphere, the annealing time is, for example, 2 minutes or more and 24 hours or less. When annealed in an oxidizing atmosphere, the surface of the titanium material may be melted.
 焼鈍雰囲気は、酸化雰囲気又は窒化雰囲気であることが好ましい。焼鈍雰囲気が酸化雰囲気又は窒化雰囲気であれば、酸化皮膜又は窒化皮膜を形成し、荷重が50gfである場合のビッカース硬さを荷重が1000gfである場合のビッカース硬さより30HV以上大きくすることができる。 The annealing atmosphere is preferably an oxidizing atmosphere or a nitriding atmosphere. When the annealing atmosphere is an oxidizing atmosphere or a nitrided atmosphere, an oxide film or a nitrided film is formed, and the Vickers hardness when the load is 50 gf can be increased by 30 HV or more from the Vickers hardness when the load is 1000 gf.
 本実施形態に係るチタン材の製造方法では、焼鈍工程が凹凸形成工程の前に実施されてもよいし、凹凸形成工程が焼鈍工程の前に実施されてもよい。焼鈍工程が凹凸形成工程の前に実施される場合の焼鈍工程に供するチタン素材には、公知の方法で製造されたものを用いてよい。例えば、スポンジチタンや合金元素を添加するための母合金などを原料として、真空アーク溶解法や電子ビーム溶解法又はプラズマ溶解法等のハース溶解法等の各種溶解法により、上記の成分を有する純チタン又はチタン合金のインゴットを作製する。次に、得られたインゴットを必要に応じて分塊、熱間鍛造してスラブとする。その後、スラブに熱間圧延及び冷間圧延を順に施して上記の組成を有する純チタン又はチタン合金の冷延コイルとする。この冷延コイルを焼鈍してもよい。なお、スラブには、必要に応じて研磨、切削等の前処理が施されていてもよい。又はインゴットを溶解法で熱延可能な矩形とした場合は、分塊や熱間鍛造等を行わず熱間圧延に供してもよい。 In the method for producing a titanium material according to the present embodiment, the annealing step may be carried out before the unevenness forming step, or the unevenness forming step may be carried out before the annealing step. When the annealing step is performed before the unevenness forming step, a titanium material manufactured by a known method may be used as the titanium material to be subjected to the annealing step. For example, using titanium sponge or a mother alloy for adding an alloy element as a raw material, pure having the above components by various melting methods such as a vacuum arc melting method, an electron beam melting method, or a hearth melting method such as a plasma melting method. Titanium or titanium alloy ingots are made. Next, the obtained ingot is lumped and hot forged as necessary to form a slab. Then, the slab is subjected to hot rolling and cold rolling in order to obtain a cold-rolled coil of pure titanium or a titanium alloy having the above composition. This cold-rolled coil may be annealed. The slab may be subjected to pretreatment such as polishing and cutting, if necessary. Alternatively, when the ingot is formed into a rectangular shape that can be hot-rolled by a melting method, it may be subjected to hot rolling without lumping or hot forging.
 また、凹凸形成工程が焼鈍工程の前に実施される場合の凹凸形成工程に供するチタン素材は、公知の方法で製造されたものでよく、上記スラブに熱間圧延を施した熱延コイル又は当該熱延コイルに冷間圧延を施した冷延コイルを凹凸形成工程に供してもよい。 Further, the titanium material used for the unevenness forming step when the unevenness forming step is carried out before the annealing step may be manufactured by a known method, and is a hot-rolled coil obtained by hot-rolling the slab or the said slab. A cold-rolled coil obtained by cold-rolling the hot-rolled coil may be subjected to the unevenness forming step.
 焼鈍工程に供するチタン素材は、上記のとおり、熱間圧延及び冷間圧延を施して製造されるが、当該冷間圧延において、1パスあたりの平均圧下率は、12%以上であることが好ましい。圧下率が高いと、チタン素材の表面にCとTiの化合物(トライボフィルム)が生じ、当該化合物が焼鈍工程により浸炭して硬くなる。その結果、チタン材の表面が硬くなる。1パスあたりの平均圧下率が12%以上であると、荷重を50gfとしたときの最終製品であるチタン材のビッカース硬さが、荷重を1000gfとしたときの最終製品であるチタン材のビッカース硬さに対して30HV以上大きくなる。一方、冷間圧延における1パスあたりの平均圧下率の上限は、冷延後の外観の観点から、例えば、25%である。 As described above, the titanium material to be subjected to the annealing step is manufactured by hot rolling and cold rolling, and in the cold rolling, the average reduction rate per pass is preferably 12% or more. .. When the reduction rate is high, a compound of C and Ti (tribo film) is formed on the surface of the titanium material, and the compound is carburized and hardened by the annealing step. As a result, the surface of the titanium material becomes hard. When the average reduction rate per pass is 12% or more, the Vickers hardness of the final product titanium material when the load is 50 gf and the Vickers hardness of the final product titanium material when the load is 1000 gf. On the other hand, it increases by 30 HV or more. On the other hand, the upper limit of the average reduction rate per pass in cold rolling is, for example, 25% from the viewpoint of appearance after cold rolling.
 凹凸形成工程が焼鈍工程の後に実施される場合、凹凸形成工程におけるスキンパス圧延の圧下率は、例えば、0.3%以上であればよい。凹凸形成工程が焼鈍工程の後に実施される場合の凹凸形成工程におけるスキンパス圧延の圧下率の上限は特段制限されないが、圧下率が大きすぎると、チタン材に導入されるひずみによって成形性が低下する場合がある。よって、凹凸形成工程が焼鈍工程の後に実施される場合の凹凸形成工程におけるスキンパス圧延の圧下率は、2.0%以下であることが好ましい。
 一方、凹凸形成工程が焼鈍工程の前に実施される場合、凹凸形成工程におけるスキンパス圧延の圧下率は、例えば、0.5%以上であればよい。凹凸形成工程が焼鈍工程の後に実施される場合の凹凸形成工程におけるスキンパス圧延の圧下率の上限は特段制限されないが、ダルロールを用いたスキンパス圧延では、圧延時にチタン素材に生じる摩擦力が大きく、圧下率を大きくしようとすると圧延機にかかる負荷が大きくなりすぎ、所望の圧下率で圧下できない場合がある。よって、凹凸形成工程が焼鈍工程の前に実施される場合の凹凸形成工程におけるスキンパス圧延の圧下率は、例えば、7.0%以下である。
When the unevenness forming step is carried out after the annealing step, the rolling reduction rate of the skin pass rolling in the unevenness forming step may be, for example, 0.3% or more. When the unevenness forming step is carried out after the annealing step, the upper limit of the rolling reduction rate of skin pass rolling in the unevenness forming step is not particularly limited, but if the rolling reduction rate is too large, the strain introduced into the titanium material deteriorates the formability. In some cases. Therefore, when the unevenness forming step is carried out after the annealing step, the rolling reduction rate of the skin pass rolling in the unevenness forming step is preferably 2.0% or less.
On the other hand, when the unevenness forming step is carried out before the annealing step, the rolling reduction rate of the skin pass rolling in the unevenness forming step may be, for example, 0.5% or more. When the unevenness forming step is carried out after the annealing step, the upper limit of the rolling reduction rate of the skin pass rolling in the uneven forming step is not particularly limited. If an attempt is made to increase the rate, the load applied to the rolling mill becomes too large, and it may not be possible to reduce the rolling force at a desired reduction rate. Therefore, when the unevenness forming step is carried out before the annealing step, the rolling reduction rate of the skin pass rolling in the unevenness forming step is, for example, 7.0% or less.
 凹凸形成工程が焼鈍工程の後に実施される場合、凹凸形成工程では、スキンパス圧延に代えて、ブラスト処理により、チタン素材の少なくとも一方の表面に凹凸を形成してもよい。焼鈍工程後のチタン素材にブラスト処理を施す場合、ブラスト処理の方法は、最終製品のチタン材について、粗さ曲線要素の平均長さRSmが8μm超300μm以下の場合、二乗平均平方根傾斜RΔq(rad.)が上記式(1)を満足し、粗さ曲線要素の平均長さRSmが300μm超の場合、二乗平均平方根傾斜RΔq(rad.)が上記式(2)を満足すれば特段制限されない。例えば、ブラスト処理としては、ビーズブラストやウェットブラストが挙げられる。 When the unevenness forming step is carried out after the annealing step, in the unevenness forming step, unevenness may be formed on at least one surface of the titanium material by blasting instead of skin pass rolling. When blasting the titanium material after the baking step, the blasting method is as follows: when the average length RSm of the roughness curve element is more than 8 μm and 300 μm or less for the titanium material of the final product, the root mean square slope RΔq (rad). When the above equation (1) is satisfied and the average length RSm of the roughness curve element is more than 300 μm, there is no particular limitation as long as the root mean square slope RΔq (rad.) Satisfies the above equation (2). For example, examples of the blasting treatment include bead blasting and wet blasting.
 凹凸形成工程が焼鈍工程の後に実施される場合、当該凹凸形成工程後のチタン材に、真空雰囲気、酸化雰囲気、又は窒化雰囲気の少なくともいずれかの雰囲気で更に焼鈍を施すことが好ましい。焼鈍工程後に凹凸形成工程を実施して凹凸が形成したチタン材は、チタン材の表層に加工層(凹凸形成で顕著にひずみが導入された表層)が形成する。この加工層では、延性が低下することがあり、その場合、深絞り成形をした際に破断することがある。この破断を抑制するために、凹凸形成工程後のチタン材に、真空雰囲気、酸化雰囲気、又は窒化雰囲気の少なくともいずれかの雰囲気でチタン素材に更に焼鈍を施すことが好ましい。凹凸形成工程後の焼鈍条件は、上記の焼鈍工程と同様の条件であってよい。 When the unevenness forming step is carried out after the annealing step, it is preferable that the titanium material after the unevenness forming step is further annealed in at least one of a vacuum atmosphere, an oxidizing atmosphere, and a nitrided atmosphere. In the titanium material in which the unevenness is formed by performing the unevenness forming step after the annealing step, a processed layer (a surface layer in which the strain is significantly introduced by the unevenness formation) is formed on the surface layer of the titanium material. This processed layer may have reduced ductility, in which case it may break during deep drawing. In order to suppress this breakage, it is preferable that the titanium material after the unevenness forming step is further annealed in at least one of a vacuum atmosphere, an oxidizing atmosphere, and a nitriding atmosphere. The annealing conditions after the unevenness forming step may be the same as those in the above-mentioned annealing step.
 凹凸形成工程及び焼鈍工程を経たチタン材は、必要に応じて、機械的特性を調整するための調質圧延又は形状を矯正するための引張矯正が施されてもよい。
 以上、本実施形態に係るチタン材の製造方法について説明した。
The titanium material that has undergone the unevenness forming step and the annealing step may be subjected to temper rolling for adjusting the mechanical properties or tensile straightening for correcting the shape, if necessary.
The method for producing the titanium material according to the present embodiment has been described above.
 以下に、実施例を示しながら、本発明の実施形態について、具体的に説明する。なお、以下に示す実施例は、本発明のあくまでも一例であって、本発明が、下記の例に限定されるものではない。 Hereinafter, embodiments of the present invention will be specifically described with reference to examples. The examples shown below are merely examples of the present invention, and the present invention is not limited to the following examples.
(実施例1)
 本実施例では、表1に示した成分を有するJIS H 4600:2012に準拠した、JIS1種~JIS3種に相当する純チタンのスラブ、JIS12種、JIS17種及びJIS21種に相当するチタン合金のスラブ、Ti-1.0Cuで表されるTi-1.0Cu合金のスラブ、Ti-1.0Cu-1.0Sn-0.3Si-0.25Nbで表されるTi-1.0Cu-1.0Sn-0.3Si-0.25Nb合金のスラブを熱間圧延した後、スケール除去を施し、板厚4mmの熱間圧延板とした。表1中の「-」は、意図的に添加していないことを示す。
(Example 1)
In this example, a pure titanium slab corresponding to JIS 1 to JIS 3 types, a titanium alloy slab corresponding to JIS 12 types, JIS 17 types, and JIS 21 types, according to JIS H 4600: 2012 having the components shown in Table 1. , Ti-1.0Cu alloy slab represented by Ti-1.0Cu, Ti-1.0Cu-1.0Sn- represented by Ti-1.0Cu-1.0Sn-0.3Si-0.25Nb. A slab of a 0.3Si-0.25Nb alloy was hot-rolled and then scale-removed to obtain a hot-rolled plate having a plate thickness of 4 mm. "-" In Table 1 indicates that it was not intentionally added.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 熱間圧延板を表2に示す圧下率で冷間圧延して板厚1.5mmの冷間圧延板を製造し、表2に示す条件で焼鈍工程を行った。大気雰囲気で焼鈍を行った場合、溶削して酸化皮膜を除去したチタン素材と、酸化皮膜を残したチタン素材を製造した。焼鈍工程後のチタン素材に対して、凹凸形成工程を実施した。表2中のダルロール圧延A~W及びダルロール圧延a~cは、表3に記載のダル圧延(スキンパス圧延)条件に対応する。表3に示した投射材は、ダル加工に用いた投射材を示している。表3に示したRaは、ダル加工後のロール(ダルロール)表面の表面粗さRaを示している。
 比較例1では、凹凸形成工程として、スチールグリット(SG-50)を用いて加工したダルロールの表面粗さRaが2.1μmのダルロールを用いて1回のスキンパス圧延を行った(ダルロール圧延O)。
 比較例2では、凹凸形成工程として、スチールグリット(SG-200)を用いて加工したダルロールの表面粗さRaが8.3μmのダルロールを用いて2回のスキンパス圧延を行った(ダルロール圧延P)。
 比較例3では、凹凸形成工程として、スチールグリット(SG-140)を用いて加工したダルロールの表面粗さRaが7.3μmのダルロールを用いて1回のスキンパス圧延を行った(ダルロール圧延Q)。
 比較例4では、凹凸形成工程として、スチールグリット(SG-170)を用いて加工したダルロールの表面粗さRaが7.4μmのダルロールを用いて1回のスキンパス圧延を行った(ダルロール圧延R)。
 比較例5では、凹凸形成工程として、1回目のスキンパス圧延に、スチールショット(SS-200)を用いて加工したダルロールの表面粗さRaが8.3μmのダルロールを用い、2回目のスキンパス圧延に、スチールショット(SS-200)を用いて加工したダルロールの表面粗さRaが5.6μmのダルロールを用いた(ダルロール圧延S)。
 比較例6では、凹凸形成工程として、スチールショット(SS-200)を用いて加工したダルロールの表面粗さRaが8.3μmのダルロールを用いて2回のスキンパス圧延を行った(ダルロール圧延T)。
 比較例7では、凹凸形成工程として、スチールショット(SS-240)を用いて加工したダルロールの表面粗さRaが8.1μmのダルロールを用いて2回のスキンパス圧延を行った(ダルロール圧延U)。
 比較例8では、凹凸形成工程として、スチールグリット(SG-50)を用いて加工したダルロールの表面粗さRaが2.1μmのダルロールを用いて2回のスキンパス圧延を行った(ダルロール圧延V)。
 比較例9では、凹凸形成工程として、スチールグリット(SG-170)を用いて加工したダルロールの表面粗さRaが2.9μmのダルロールを用いて2回のスキンパス圧延を行った(ダルロール圧延W)。
 比較例10、14では、凹凸形成工程としてのスキンパス圧延は行わず、冷間圧延板の表面を片面当たり100μm溶削した。
 比較例11では、凹凸形成工程としてのスキンパス圧延は行わず、冷間圧延板の表面を片面当たり10μm溶削した。比較例10、11、14における溶削は、硝フッ酸(HF:2mass%、HNO:8mass%)を用いて行った。
 比較例12では、凹凸形成工程は行わず、冷間圧延板の表面を鏡面研磨した。
 比較例13で、凹凸形成工程は行わなかった例であり、焼鈍工程後の冷間圧延板の表面状態が維持されたものである。
 比較例15では、凹凸形成工程として、スチールグリット(SG-100)を用いて加工したダルロールの表面粗さRaが3.1μmのダルロールを用いて2回のスキンパス圧延を行った(ダルロール圧延b)。
 比較例16では、凹凸形成工程として、スチールグリット(SG-170)を用いて加工したダルロールの表面粗さRaが4.4μmのダルロールを用いて3回のスキンパス圧延を行った(ダルロール圧延c)。
 また、表2中の凹凸形成工程の項目に示したビーズブラストは、ジルコニアビーズF40を用いて圧力0.3MPa、投射距離200mm、投射時間、1minの条件でビーズブラストを行ったことを示し、ウェットブラストは、アルミナグリットF230を用いてグリッドの体積割合15vol%としたスラリーを、流速15m/s、ラインスピード0.2m/sの条件でウェットブラストを行ったことを示している。
The hot-rolled plate was cold-rolled at the rolling reduction ratio shown in Table 2 to produce a cold-rolled plate having a plate thickness of 1.5 mm, and the annealing step was performed under the conditions shown in Table 2. When annealing was performed in an air atmosphere, a titanium material from which the oxide film had been removed by melting and a titanium material having an oxide film left were produced. An unevenness forming step was carried out on the titanium material after the annealing step. The dull roll rolling A to W and the dull roll rolling a to c in Table 2 correspond to the dull rolling (skin pass rolling) conditions shown in Table 3. The projection material shown in Table 3 shows the projection material used for dull processing. Ra shown in Table 3 shows the surface roughness Ra of the roll (dull roll) surface after dull processing.
In Comparative Example 1, as the unevenness forming step, one skin pass rolling was performed using a dull roll having a surface roughness Ra of 2.1 μm of the dull roll processed by using a steel grit (SG-50) (dull roll rolling O). ..
In Comparative Example 2, as the unevenness forming step, skin pass rolling was performed twice using a dull roll having a surface roughness Ra of 8.3 μm of the dull roll processed using a steel grit (SG-200) (dull roll rolling P). ..
In Comparative Example 3, as the unevenness forming step, one skin pass rolling was performed using a dull roll having a surface roughness Ra of 7.3 μm of the dull roll processed by using a steel grit (SG-140) (dull roll rolling Q). ..
In Comparative Example 4, as the unevenness forming step, one skin pass rolling was performed using a dull roll having a surface roughness Ra of 7.4 μm of the dull roll processed by using a steel grit (SG-170) (dull roll rolling R). ..
In Comparative Example 5, as the unevenness forming step, a dull roll having a surface roughness Ra of 8.3 μm processed by a steel shot (SS-200) was used for the first skin pass rolling, and the second skin pass rolling was performed. , A dull roll having a surface roughness Ra of 5.6 μm of the dull roll processed by using a steel shot (SS-200) was used (dull roll rolling S).
In Comparative Example 6, as the unevenness forming step, skin pass rolling was performed twice using a dull roll having a surface roughness Ra of 8.3 μm of the dull roll processed by using a steel shot (SS-200) (dull roll rolling T). ..
In Comparative Example 7, as the unevenness forming step, skin pass rolling was performed twice using a dull roll having a surface roughness Ra of 8.1 μm of the dull roll processed by using a steel shot (SS-240) (dull roll rolling U). ..
In Comparative Example 8, as the unevenness forming step, skin pass rolling was performed twice using a dull roll having a surface roughness Ra of 2.1 μm of the dull roll processed by using a steel grit (SG-50) (dull roll rolling V). ..
In Comparative Example 9, as the unevenness forming step, skin pass rolling was performed twice using a dull roll having a surface roughness Ra of 2.9 μm of the dull roll processed by using a steel grit (SG-170) (dull roll rolling W). ..
In Comparative Examples 10 and 14, skin pass rolling as a step of forming unevenness was not performed, and the surface of the cold-rolled plate was melted by 100 μm per one side.
In Comparative Example 11, the skin pass rolling as the unevenness forming step was not performed, and the surface of the cold rolled plate was melted by 10 μm per one side. The melting in Comparative Examples 10, 11 and 14 was carried out using niter hydrofluoric acid (HF: 2 mass%, HNO 3 : 8 mass%).
In Comparative Example 12, the surface of the cold-rolled plate was mirror-polished without performing the unevenness forming step.
In Comparative Example 13, the unevenness forming step was not performed, and the surface state of the cold rolled plate after the annealing step was maintained.
In Comparative Example 15, as the unevenness forming step, skin pass rolling was performed twice using a dull roll having a surface roughness Ra of 3.1 μm of the dull roll processed using a steel grit (SG-100) (dull roll rolling b). ..
In Comparative Example 16, as the unevenness forming step, skin pass rolling was performed three times using a dull roll having a surface roughness Ra of 4.4 μm of the dull roll processed by using a steel grit (SG-170) (dull roll rolling c). ..
Further, the bead blasting shown in the item of the unevenness forming step in Table 2 indicates that the bead blasting was performed using the zirconia beads F40 under the conditions of a pressure of 0.3 MPa, a projection distance of 200 mm, a projection time of 1 min, and wet. The blasting shows that a slurry having a grid volume ratio of 15 vol% using alumina grit F230 was wet-blasted under the conditions of a flow rate of 15 m / s and a line speed of 0.2 m / s.
 本発明例25~28については、凹凸形成工程後のチタン材に対して表2に示す条件で更に焼鈍を行った。 For Examples 25 to 28 of the present invention, the titanium material after the unevenness forming step was further annealed under the conditions shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 製造されたたチタン材の、粗さ曲線要素の平均長さRSm及び二乗平均平方根傾斜RΔqを、JIS B 0601:2013に準拠し、以下の条件で測定した。
  装置機器:表面粗さ形状測定機((株)東京精密製 SURFCOM480B-12、解析ソフトウェア:SURFCOM480B Ver.7.06)
  触針:(株)東京精密製形状測定子(型式:DT43801)
  パラメータ算出規格:JIS-01規格
  測定種別:粗さ測定
  カットオフ種別:ガウシアン
  測定間隔Δx:0.4μm
  傾斜補正:両端
  評価長さ:15.0mm
  測定速度:0.15mm/sec
  測定レンジ:400μm
  カットオフ波長λc:0.8mm
  λsカットオフ波長:25μm
The average length RSm and the root mean square slope RΔq of the roughness curve element of the produced titanium material were measured according to JIS B 0601: 2013 under the following conditions.
Equipment Equipment: Surface roughness shape measuring machine (SURFCOM480B-12 manufactured by Tokyo Seimitsu Co., Ltd., Analysis software: SURFCOM480B Ver.7.06)
Stylus: Tokyo Seimitsu Co., Ltd. Shape stylus (model: DT43801)
Parameter calculation standard: JIS-01 standard Measurement type: Roughness measurement Cutoff type: Gaussian measurement interval Δx: 0.4 μm
Tilt correction: Both ends evaluation length: 15.0 mm
Measurement speed: 0.15 mm / sec
Measurement range: 400 μm
Cutoff wavelength λc: 0.8 mm
λs cutoff wavelength: 25 μm
 上記条件で2箇所について算出された値の平均値を粗さ曲線要素の平均長さRSm及び二乗平均平方根傾斜RΔqとした。 The average value of the values calculated for the two locations under the above conditions was defined as the average length RSm of the roughness curve element and the root mean square slope RΔq.
 酸化皮膜、窒化皮膜の厚さはグロー放電分光分析法によって測定した。グロー放電分光分析法でチタン材の表面からO、C、N及びTiの分析を行い、酸化皮膜の厚さは測定されるO濃度、窒化皮膜の厚さはN濃度によって求めた。具体的には、最表面のO濃度に対してO濃度が半減した位置までの深さ方向の距離を酸化皮膜の厚みとし、最表面のN濃度に対してN濃度が半減した位置までの深さ方向の距離を窒化皮膜の厚みとした。 The thickness of the oxide film and the nitrided film was measured by glow discharge spectroscopy. O, C, N and Ti were analyzed from the surface of the titanium material by glow discharge spectroscopy, and the thickness of the oxide film was determined by the measured O concentration and the thickness of the nitride film was determined by the N concentration. Specifically, the distance in the depth direction to the position where the O concentration is halved with respect to the O concentration on the outermost surface is defined as the thickness of the oxide film, and the depth to the position where the N concentration is halved with respect to the N concentration on the outermost surface. The distance in the vertical direction was taken as the thickness of the nitrided film.
 ビッカース硬さには、JIS Z 2244:2009に準拠した方法で荷重50gf、1000gf、保持時間15sでそれぞれ5点測定し、測定された値の平均値を用いた。得られたチタン材の粗さ曲線要素の平均長さRSm及び二乗平均平方根傾斜RΔq、ビッカース硬さ及び皮膜の厚さを表4に示す。 For the Vickers hardness, 5 points were measured at a load of 50 gf, 1000 gf, and a holding time of 15 s by a method based on JIS Z 2244: 2009, and the average value of the measured values was used. Table 4 shows the average length RSm, the root mean square slope RΔq, the Vickers hardness, and the film thickness of the obtained roughness curve elements of the titanium material.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 得られたチタン材について、一段の深絞り試験及び多段深絞り試験を行った。図3は、実施例における深絞り試験を説明するための図である。図3では、円筒ポンチ用いた深絞り試験を示している。 The obtained titanium material was subjected to a one-step deep drawing test and a multi-step deep drawing test. FIG. 3 is a diagram for explaining a deep drawing test in an example. FIG. 3 shows a deep drawing test using a cylindrical punch.
 得られたチタン材からφ120mmの円形のブランクを切り出した。固体潤滑剤として日油株式会社製ミルボンド(登録商標)と水を体積比で3:1として混合し、これを切り出されたブランクの表面にバーコーターで塗布した。固体潤滑剤が塗布されたブランクを60℃で2時間乾燥させた。固体潤滑剤の厚さは3~5μmであった。 A circular blank with a diameter of 120 mm was cut out from the obtained titanium material. Mill Bond (registered trademark) manufactured by NOF CORPORATION as a solid lubricant and water were mixed at a volume ratio of 3: 1 and applied to the surface of the cut out blank with a bar coater. The blank coated with the solid lubricant was dried at 60 ° C. for 2 hours. The thickness of the solid lubricant was 3-5 μm.
 固体潤滑剤が形成したブランクを下ダイスと上ダイスで保持した。上ダイスのブランク側の端部を曲率半径が5mmの曲線とした。このときの下ダイスと上ダイスとの、ブランクの延在方向のクリアランスは2~4mmであった。そして、保持されたブランクに下ダイス側から荷重を加えた。 The blank formed by the solid lubricant was held by the lower die and the upper die. The end of the upper die on the blank side is a curve having a radius of curvature of 5 mm. At this time, the clearance between the lower die and the upper die in the extending direction of the blank was 2 to 4 mm. Then, a load was applied to the held blank from the lower die side.
 一段の深絞り試験では、φ60mmの球頭ポンチを用い、絞り深さが40mmになるまで荷重を加えた。多段深絞り試験では、3回の深絞りを行った。一段目の深絞りにはφ60mmの球頭ポンチを用いて絞り深さが40mmになるまで荷重を加え、二段目の深絞りにはφ50mmの球頭ポンチを用いて絞り深さが50mmになるまで荷重を加え、三段目の深絞りにはφ45mmの円筒ポンチを用いて絞り深さが65mmになるまで荷重を加えた。円筒ポンチのポンチ肩の曲率半径は5mmであった。深絞り速度は100mm/分とした。 In the one-step deep drawing test, a spherical head punch with a diameter of 60 mm was used, and a load was applied until the drawing depth reached 40 mm. In the multi-stage deep drawing test, three deep drawings were performed. For the first deep aperture, use a φ60 mm ball head punch to apply a load until the aperture depth becomes 40 mm, and for the second deep aperture, use a φ50 mm ball head punch to make the aperture depth 50 mm. A cylindrical punch with a diameter of 45 mm was used for the third deep drawing, and the load was applied until the drawing depth reached 65 mm. The radius of curvature of the punch shoulder of the cylindrical punch was 5 mm. The deep drawing speed was 100 mm / min.
 深絞り試験後の供試体について、目視にて外観検査を行った。
 固体潤滑剤が剥離し、焼き付き跡が認められたもの又は10本以上の線状の疵が認められたものを不良(C)、一部固体潤滑剤が剥離し、焼き付き跡がなく、6~9本の線状の疵が認められたものを可(B)、固体潤滑剤の剥離が認められず、焼き付き跡がなく、線状の疵が5本以下であったものを良好(A)と評価した。
The specimen after the deep drawing test was visually inspected for appearance.
Defective (C) if the solid lubricant was peeled off and a seizure mark was observed, or if 10 or more linear flaws were observed, some solid lubricant was peeled off and there was no seizure mark, 6 to Those with 9 linear flaws are acceptable (B), those with no solid lubricant peeling, no seizure marks, and 5 or less linear flaws are good (A). I evaluated it.
 また、深絞り成形性の評価指標として下記式(6)で板厚減少率を算出した。板厚減少率は、深絞り後の供試体について、深絞りされた底面から高さ20mm程度の位置を360°ポイントマイクロメーターで厚さを測定し、最も薄い部位の値を試験後の厚さとして用いた。
 板厚減少率(%)={1-(試験後の厚さ/試験前の厚さ)}×100 …式(6)
Further, as an evaluation index of deep drawing formability, the plate thickness reduction rate was calculated by the following formula (6). The plate thickness reduction rate is determined by measuring the thickness of the specimen after deep drawing at a position about 20 mm in height from the deeply drawn bottom surface with a 360 ° point micrometer, and determining the value of the thinnest part after the test. Used as.
Plate thickness reduction rate (%) = {1- (thickness after test / thickness before test)} x 100 ... Equation (6)
 一段の深絞り試験では板厚減少率が20%未満である場合を合格とし、多段深絞り試験では板厚減少率が30%未満である場合を合格とした。ブランクが破断した場合も不合格であり、表中には破断と記載した。評価結果を表5に示す。また、図4に、深絞り成形性の評価結果と、粗さ曲線要素の平均長さRSm及び二乗平均平方根傾斜RΔqとの関係を示す。図4中の〇は、一段の深絞り試験及び多段深絞り試験のいずれにおいても深絞り成形後の外観が可以上であった条件であり、△は、一段の深絞り試験のみでの深絞り成形後の外観が可以上であった条件であり、×は、一段の深絞り試験及び多段深絞り試験のいずれにおいても深絞り成形性が不良又はブランクが破断した条件である。 In the one-step deep drawing test, the case where the plate thickness reduction rate was less than 20% was passed, and in the multi-step deep drawing test, the case where the plate thickness reduction rate was less than 30% was passed. If the blank was broken, it was also rejected, and it was described as broken in the table. The evaluation results are shown in Table 5. Further, FIG. 4 shows the relationship between the evaluation result of deep drawing formability, the average length RSm of the roughness curve element, and the root mean square slope RΔq. 〇 in FIG. 4 is a condition that the appearance after deep drawing is more than acceptable in both the one-step deep drawing test and the multi-step deep drawing test, and Δ is the deep drawing only in the one-step deep drawing test. It is a condition that the appearance after molding is more than acceptable, and x is a condition that the deep drawing formability is poor or the blank is broken in both the one-step deep drawing test and the multi-step deep drawing test.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表5及び図4に示すように、粗さ曲線要素の平均長さRSmが8μm超300μm以下である場合、二乗平均平方根傾斜RΔq(rad.)が上記式(1)を満足し、前記粗さ曲線要素の平均長さRSmが300μm超である場合、前記二乗平均平方根傾斜RΔq(rad.)が上記式(2)を満足するときに、そうでない場合と比較して、一段の深絞り試験後の外観及び深絞り成形性に優れていた。また、粗さ曲線要素の平均長さRSmが400μm以下であり、かつ、二乗平均平方根傾斜RΔqが0.190rad.以下である場合に、そうでない場合と比較して、多段深絞り試験後の外観及び深絞り成形性に優れていた。 As shown in Table 5 and FIG. 4, when the average length RSm of the roughness curve element is more than 8 μm and 300 μm or less, the root mean square slope RΔq (rad.) Satisfies the above equation (1), and the roughness is described. When the average length RSm of the curve element is more than 300 μm, when the root mean square slope RΔq (rad.) Satisfies the above equation (2), as compared with the case where it does not, after the one-step deep drawing test. Was excellent in appearance and deep drawability. Further, the average length RSm of the roughness curve element is 400 μm or less, and the root mean square slope RΔq is 0.190 rad. In the following cases, the appearance after the multi-stage deep drawing test and the deep drawing formability were excellent as compared with the case where it was not.
(実施例2)
 本実施例では、表1に示した成分を有するJIS H 4600:2012に準拠したJIS1種に相当する純チタンのスラブを熱間圧延した後、スケール除去を施し、板厚4mmの熱間圧延板とした。
(Example 2)
In this embodiment, a pure titanium slab having the components shown in Table 1 and corresponding to JIS class 1 conforming to JIS H 4600: 2012 is hot-rolled, scale-removed, and a hot-rolled plate having a plate thickness of 4 mm. And said.
 熱間圧延板に対し、平均圧下率を10%として冷間圧延して板厚1.5mmの冷間圧延板を製造し、表6に示す条件でスキンパス圧延して凹凸を形成した。凹凸が形成されたチタン素材に対し、表6に示す条件で焼鈍工程を行った。大気雰囲気で焼鈍を行った場合、溶削して酸化皮膜を除去したチタン素材と、酸化皮膜を残したチタン素材を製造した。焼鈍工程後のチタン素材に対して、凹凸形成工程を実施した。表6に示す凹凸形成の項目のダルロール圧延A、E、Fは、それぞれ、表3に示すダルロール圧延A、E、Fである。 A cold rolled plate having a plate thickness of 1.5 mm was produced by cold rolling with an average rolling reduction of 10%, and skin pass rolling was performed under the conditions shown in Table 6 to form irregularities. The titanium material on which the unevenness was formed was annealed under the conditions shown in Table 6. When annealing was performed in an air atmosphere, a titanium material from which the oxide film had been removed by melting and a titanium material having an oxide film left were produced. An unevenness forming step was carried out on the titanium material after the annealing step. The dull roll rolling A, E, and F of the unevenness forming item shown in Table 6 are the dull roll rolling A, E, and F shown in Table 3, respectively.
 上記の方法で製造されたチタン材について、実施例1と同様にして、粗さ曲線要素の平均長さRSm及び二乗平均平方根傾斜RΔqの測定、酸化皮膜及び窒化皮膜の厚さの測定、ビッカース硬さの測定、一段の深絞り試験、多段深絞り試験、並びに、外観検査及び深絞り成形性の評価を行った。評価結果を表6に示す。 For the titanium material produced by the above method, the average length RSm and the root mean square slope RΔq of the roughness curve element were measured, the thicknesses of the oxide film and the nitrided film were measured, and the Vickers hardness was measured in the same manner as in Example 1. The measurement of the hardness, the one-step deep drawing test, the multi-step deep drawing test, the visual inspection and the evaluation of the deep drawing formability were performed. The evaluation results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表6に示すように、粗さ曲線要素の平均長さRSmが8μm超300μm以下である場合、二乗平均平方根傾斜RΔq(rad.)が上記式(1)を満足し、前記粗さ曲線要素の平均長さRSmが300μm超である場合、前記二乗平均平方根傾斜RΔq(rad.)が上記式(2)を満足するとき、式(1)及び式(2)の双方を満たさない場合と比較して、一段の深絞り試験後の外観及び深絞り成形性が優れていた。 As shown in Table 6, when the average length RSm of the roughness curve element is more than 8 μm and 300 μm or less, the root mean square slope RΔq (rad.) Satisfies the above equation (1), and the roughness curve element When the average length RSm is more than 300 μm, when the root mean square slope RΔq (rad.) Satisfies the above equation (2), it is compared with the case where both the equation (1) and the equation (2) are not satisfied. Therefore, the appearance after the one-step deep drawing test and the deep drawing formability were excellent.
 以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiment of the present invention has been described above in detail, the present invention is not limited to such an example. It is clear that a person having ordinary knowledge in the field of the art to which the present invention belongs can come up with various modifications or modifications within the scope of the technical idea described in the claims. , These are also naturally understood to belong to the technical scope of the present invention.

Claims (5)

  1.  少なくとも一方の表面において、粗さ曲線要素の平均長さRSmが8μm超300μm以下である場合、二乗平均平方根傾斜RΔq(rad.)が下記式(1)を満足し、前記粗さ曲線要素の平均長さRSmが300μm超である場合、前記二乗平均平方根傾斜RΔq(rad.)が下記式(2)を満足する、チタン材。
      RΔq≧0.060          ・・・式(1)
      RΔq≧2×RSm/10000   ・・・式(2)
    When the average length RSm of the roughness curve element is more than 8 μm and 300 μm or less on at least one surface, the root mean square slope RΔq (rad.) Satisfies the following equation (1), and the average of the roughness curve elements. A titanium material in which the root mean square slope RΔq (rad.) Satisfies the following formula (2) when the length RSm is more than 300 μm.
    RΔq ≧ 0.060 ・ ・ ・ Equation (1)
    RΔq ≧ 2 × RSm / 10000 ・ ・ ・ Equation (2)
  2.  前記粗さ曲線要素の平均長さRSmが400μm以下であり、かつ、二乗平均平方根傾斜RΔqが0.190rad.以下である、請求項1に記載のチタン材。 The average length RSm of the roughness curve element is 400 μm or less, and the root mean square slope RΔq is 0.190 rad. The titanium material according to claim 1, which is as follows.
  3.  荷重を50gfとしたときのビッカース硬さが荷重を1000gfとしたときのビッカース硬さに対して30HV以上大きい、請求項1又は2に記載のチタン材。 The titanium material according to claim 1 or 2, wherein the Vickers hardness when the load is 50 gf is 30 HV or more larger than the Vickers hardness when the load is 1000 gf.
  4.  酸化皮膜又は窒化皮膜を備える、請求項1~3のいずれか1項に記載のチタン材。 The titanium material according to any one of claims 1 to 3, which comprises an oxide film or a nitrided film.
  5.  前記酸化皮膜又は前記窒化皮膜の厚さが1.00μm未満である、請求項4に記載のチタン材。 The titanium material according to claim 4, wherein the thickness of the oxide film or the nitrided film is less than 1.00 μm.
PCT/JP2021/047921 2020-12-24 2021-12-23 Titanium material WO2022138837A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180049199.5A CN115812109B (en) 2020-12-24 2021-12-23 Titanium material
JP2022571629A JP7448859B2 (en) 2020-12-24 2021-12-23 titanium material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-214647 2020-12-24
JP2020214647 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022138837A1 true WO2022138837A1 (en) 2022-06-30

Family

ID=82159809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047921 WO2022138837A1 (en) 2020-12-24 2021-12-23 Titanium material

Country Status (3)

Country Link
JP (1) JP7448859B2 (en)
CN (1) CN115812109B (en)
WO (1) WO2022138837A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108234A (en) * 1996-06-18 1998-01-13 Kobe Steel Ltd Outdoor titanium or titanium alloy material excellent in discoloration resistance
JP2000015304A (en) * 1998-06-30 2000-01-18 Sumitomo Metal Ind Ltd Titanium plate excellent in glare shielding property and production thereof and work roll used to this production
US20190217336A1 (en) * 2016-07-14 2019-07-18 Arcanum Alloys, Inc. Methods for forming stainless steel parts
JP2020183551A (en) * 2019-04-26 2020-11-12 日本製鉄株式会社 Titanium plate excellent in lubricity and method for manufacturing the same
WO2020255963A1 (en) * 2019-06-20 2020-12-24 日本製鉄株式会社 Titanium material and apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4681663B2 (en) * 2009-07-15 2011-05-11 株式会社神戸製鋼所 Titanium plate and method for manufacturing titanium plate
CN110880602B (en) * 2018-09-05 2023-04-07 Sk纳力世有限公司 Copper foil with minimized swelling, wrinkling or tearing, electrode including the same, secondary battery including the same, and method of manufacturing the same
JP7114499B2 (en) * 2019-01-30 2022-08-08 Jx金属株式会社 Surface treated copper foil, copper clad laminate and printed wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108234A (en) * 1996-06-18 1998-01-13 Kobe Steel Ltd Outdoor titanium or titanium alloy material excellent in discoloration resistance
JP2000015304A (en) * 1998-06-30 2000-01-18 Sumitomo Metal Ind Ltd Titanium plate excellent in glare shielding property and production thereof and work roll used to this production
US20190217336A1 (en) * 2016-07-14 2019-07-18 Arcanum Alloys, Inc. Methods for forming stainless steel parts
JP2020183551A (en) * 2019-04-26 2020-11-12 日本製鉄株式会社 Titanium plate excellent in lubricity and method for manufacturing the same
WO2020255963A1 (en) * 2019-06-20 2020-12-24 日本製鉄株式会社 Titanium material and apparatus

Also Published As

Publication number Publication date
JPWO2022138837A1 (en) 2022-06-30
CN115812109A (en) 2023-03-17
CN115812109B (en) 2024-05-28
JP7448859B2 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
EP1308532B1 (en) Ferritic stainless steel sheet having excellent deep-drawability and brittle resistance to secondary processing and method for making the same
CN109844158B (en) Steel substrate for painted parts
EP2116311B1 (en) High tensile cold rolled steel plate and method for manufacturing the cold rolled steel plate
EP3388538B1 (en) Method of producing molded product and molded product
KR101943253B1 (en) Titanium plates, plates for heat exchangers and separators for fuel cells
EP3181714B1 (en) Material for cold-rolled stainless steel sheets
KR20120005473A (en) Titanium plate and method for manufacturing titanium plates
JP2008240046A (en) High-strength steel sheet having excellent scale adhesion upon hot pressing, and method for producing the same
CN109844159B (en) Steel for painted parts
AU761334B2 (en) Steel band with good forming properties and method for producing same
CN113897610B (en) Steel member provided with a coating
EP2700731A1 (en) Steel sheet for can with high barrel-part buckling strength under external pressure and with excellent formability and excellent surface properties after forming, and process for producing same
EP3778968A1 (en) Metal plate, method for manufacturing metal plate, method for manufacturing metal plate-molded article, and metal plate-molded article
JP6165369B1 (en) Stainless steel foil
WO2022138837A1 (en) Titanium material
EP3406361B1 (en) Titanium plate
JP2005298930A (en) Titanium material having surface ruggedness and its production method
EP2634282A1 (en) Steel sheet for can, and process for producing same
EP4079926A2 (en) Aluminum alloy-plated steel sheet having excellent workability and corrosion resistance and method for manufacturing same
JP6493632B1 (en) Titanium plate
JP6432330B2 (en) Titanium plate and manufacturing method thereof
TWI660052B (en) Titanium plate
CN109415794B (en) Titanium plate and method for producing same
JP6536076B2 (en) Titanium plate and method of manufacturing the same
JP2000328221A (en) Galvannealed steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571629

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910976

Country of ref document: EP

Kind code of ref document: A1