JPS591661A - Manufacture of pure titanium plate with little anisotropy in yield strength - Google Patents

Manufacture of pure titanium plate with little anisotropy in yield strength

Info

Publication number
JPS591661A
JPS591661A JP10918282A JP10918282A JPS591661A JP S591661 A JPS591661 A JP S591661A JP 10918282 A JP10918282 A JP 10918282A JP 10918282 A JP10918282 A JP 10918282A JP S591661 A JPS591661 A JP S591661A
Authority
JP
Japan
Prior art keywords
rolling
cold
rolled
pure titanium
titanium plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10918282A
Other languages
Japanese (ja)
Inventor
Shiro Kitayama
北山 司郎
Shiyuujirou Suzuki
鈴木 脩二郎
Tomio Nishikawa
西川 富雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10918282A priority Critical patent/JPS591661A/en
Publication of JPS591661A publication Critical patent/JPS591661A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To manufacture simply and easily a pure Ti plate with little anisotropy in the yield strength, by cold-rolling a hot-or cold-rolled and annealed pure Ti plate at a low draft and by optionally annealing it under specified conditions. CONSTITUTION:A hot-or cold-rolled and annealed pure Ti plate is cold-rolled at a low draft. When the Ti plate is made of pure Ti, the draft is adjusted to >=about 5%, and when the Ti plate contains a reinforcing element such as Fe or O, the draft is adjusted to <=about 2.5%. The cold rolled plate is optionally annealed at <=500 deg.C for <=30min.

Description

【発明の詳細な説明】 この発明は、圧延長手方向と幅方向とがほぼ同程度の強
度を示すところの、耐力異方性の少ない純チタン板の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a pure titanium plate with low strength anisotropy and which exhibits approximately the same strength in the longitudinal direction and the width direction.

近年、航空機部材や、化学プラントあるいは海水淡水化
プラント等の建設素材としてチタンの需要が益々増加す
る傾向にあるが・、それどともに、各種構造部材として
の純チタン板の諸特性向にに対する要求もさらに厳しい
ものとなってきている。
In recent years, the demand for titanium as a construction material for aircraft components, chemical plants, seawater desalination plants, etc. has been increasing.At the same time, there has been an increase in demand for the various properties of pure titanium sheets used as various structural components. is becoming even more difficult.

ところで、チタン板は、通常、「熱延−焼鈍一酸洗一冷
延一焼鈍」という工程で、しかも一方向圧延によって製
造されるものであるが、特に熱間および冷間圧延段階で
一方向に強加工されるために、このようKして製造され
たチタン板はL方向(圧延方向)とT方向(圧延と直角
の板幅方向)の耐力比〔σ0.2(’r)/σ0.2 
(L) :lが1.2〜]、、 3と高く、顕著な耐力
異方性を示すものであった。そして、耐力比で・示せば
、チタン板の耐力異方性の程度は」二記の如き値となる
のが普通であるけれども、不純物として、あるいは強化
元素として、含有されているFeや0の量が高くなって
いる高強度純チタン板では、L方向とT方向の耐力の差
の絶対値が15 kgf/ylにも達する場合があった
By the way, titanium plates are usually produced by unidirectional rolling in the process of "hot rolling - annealing - pickling - cold rolling - annealing". In order to undergo strong processing, the titanium plate manufactured by K in this way has a proof stress ratio [σ0.2('r)/σ0 .2
(L): l was as high as 1.2 to 3, indicating remarkable proof stress anisotropy. The degree of proof stress anisotropy of a titanium plate, expressed as a proof stress ratio, is normally a value as shown in 2. In high-strength pure titanium plates with a high amount of steel, the absolute value of the difference in yield strength between the L direction and the T direction could reach as much as 15 kgf/yl.

従来、L方向とT方向の耐力異方性が問題となる場合、
例えばT方向にL方向よりもより高い耐力値を示すチタ
ン板では、これをさらにT方向に圧延(クロス圧延)す
ることによって耐力異方性を低減する措置がとられてい
たが、このようなりロス圧延は、シート状の製品(但し
、製品の圧延幅の寸法がロール有効幅以下のもの)に対
してのみ有効であり、製品の圧延幅の寸法がロール有効
幅を越えるような長尺物、例えば−コイルのような製品
には適用することができないという問題点があった。
Conventionally, when the strength anisotropy in the L direction and the T direction is a problem,
For example, for titanium plates that exhibit a higher proof stress value in the T direction than in the L direction, measures have been taken to reduce the proof stress anisotropy by further rolling (cross rolling) in the T direction. Loss rolling is only effective for sheet-shaped products (however, the rolling width of the product is less than or equal to the roll effective width), and is only effective for long products where the rolling width of the product exceeds the roll effective width. However, there is a problem in that it cannot be applied to products such as coils, for example.

本発明者等は、上述のような観点から、コイルのような
長尺物であってクロス圧延不可能な寸法の製品であって
も、工場に現在設置されている設備類を変更することな
く、■、方向とT方向との耐力異方性の少ない純チタン
板の製造法を見出すべく研究を行なった結果、 (a)  L方向とT方向とで耐力異方性を示す熱間圧
延または冷間圧延後焼鈍を施した純チタン板に対して、
L方向に軽圧下圧延を施せば、I、・T方向の耐力比〔
σ0.2 (T)/σ0.2 (L) ]が低減するこ
と、(b)」−記のように軽圧下圧延を施した純チタン
板に、さらに軽度の焼鈍を施すことにより、L・T方向
の耐力比にそれほどの変化を与えずに延性をある程度改
善できること、 以上、(a)および(b)に示す如き知見を得るに至っ
たのである。
From the above-mentioned viewpoint, the inventors of the present invention have proposed that even if the product is a long product such as a coil and has dimensions that cannot be cross-rolled, it is possible to do so without changing the equipment currently installed in the factory. , ■, As a result of research to find a method for producing pure titanium plates with less yield strength anisotropy in the L and T directions, we found that (a) hot rolling or For a pure titanium plate that has been cold rolled and then annealed,
If light reduction rolling is performed in the L direction, the proof stress ratio in the I and T directions [
σ0.2 (T) / σ0.2 (L)] is reduced, and by further annealing a pure titanium plate that has been subjected to light reduction rolling as shown in (b), L. We have come to the knowledge shown in (a) and (b) above that ductility can be improved to some extent without significantly changing the yield strength ratio in the T direction.

したがって、この発明は上記知見に基いてなされたもの
であって、その要旨とするところは、熱間圧延または冷
間圧延後焼鈍を施した純チタン板を、更に軽圧下率で冷
間圧延し、必要により500℃以下の温度で30分以内
で焼鈍することを特徴とする耐力異方性の少ない純チタ
ン板の製造方法にある。
Therefore, the present invention has been made based on the above findings, and the gist thereof is to further cold-roll a pure titanium plate that has been hot-rolled or cold-rolled and then annealed at a light reduction rate. , a method for manufacturing a pure titanium plate with low proof stress anisotropy, characterized by annealing at a temperature of 500° C. or less for 30 minutes or less, if necessary.

ここで純チタン板とは、強化元素としてFe:01〜0
5%(以下、組成成分量を示す係は重量係とする)、O
:0.06〜04%程度を含み、その他C,H,N等の
不可避的不純物を含有するチタン板をも含むものであり
、さらにシート状はもちろんコイルをも意味することは
言うまでもないことである。
Here, pure titanium plate means Fe: 01 to 0 as a reinforcing element.
5% (hereinafter, the section indicating the amount of the composition component is referred to as the section by weight), O
: Contains approximately 0.06 to 0.04%, and also includes titanium plates containing unavoidable impurities such as C, H, and N, and it goes without saying that it also includes not only sheet shapes but also coils. be.

また、軽圧下の冷間圧延の圧下率は、上記Feや0等の
強化元素を含む純チタン板の場合、5係を越えた値にす
るとチタン板の伸びが悪くなシ、ASTMB−265G
r、4およびA、MS4901規格で規定されている伸
び15%以上が得られなくなる恐れがあり、後述の実施
例がらも分るように圧下率:2.5%以下が好ましい。
In addition, in the case of pure titanium sheets containing reinforcing elements such as Fe and 0, the rolling reduction ratio of cold rolling under light rolling is determined by the ASTM B-265
r, 4 and A, there is a possibility that the elongation of 15% or more specified in the MS4901 standard cannot be obtained, so as can be seen from the examples below, the rolling reduction ratio is preferably 2.5% or less.

しかし、強化元素を含まない延性の良い純チタン板の場
合については、圧下率が5%以上であっても十分な伸び
率が得られる。
However, in the case of a pure titanium plate containing no reinforcing elements and having good ductility, a sufficient elongation rate can be obtained even if the rolling reduction is 5% or more.

そして、このような軽圧下の冷間圧延を施したチタン板
をそのまま製品として使用しても良いことはもちろんの
ことであるが、この場合にはチタン板はわずかに加工硬
化しているので、この冷延板を成形して使用に供するよ
うなときには、これに更に焼鈍を施すと成形が容易とな
るのである。
Of course, it is possible to use a titanium plate that has been subjected to such light reduction and cold rolling as a product as is, but in this case, the titanium plate is slightly work-hardened, so When this cold-rolled sheet is to be formed and used, it is easier to form the sheet by further annealing it.

このときの焼鈍温度が500℃を越えたり、あるいは焼
鈍時間が30分を越えるような場合には、軽圧下冷間圧
延によって軽減されたL−T方向の耐力比が圧延前のそ
の値に戻ってしまい、軽圧下冷間圧延の効果が消失する
ことになる恐れがあるので、焼鈍温度およびその時間は
、それぞれ500第   1   表 第   2   表 ℃以下および30分以下とするのが好ましい。
If the annealing temperature exceeds 500°C or the annealing time exceeds 30 minutes, the proof stress ratio in the L-T direction, which was reduced by light reduction cold rolling, will return to its value before rolling. Therefore, the annealing temperature and the annealing time are preferably 500° C. or less and 30 minutes or less, respectively.

ついで、この発明を実施例により比較例と対比し々から
具体的に説明する。
Next, the present invention will be specifically explained using examples and comparisons with comparative examples.

実施例 まず、第1表に示される化学成分組成を有し、通常の製
造工程(熱延−焼鈍一酸一洗一冷延一焼鈍一酸洗)で製
造され、一方向圧延材である板厚::1.、2 ’i’
 mHの純チタン板を用意した。
Examples First, a plate having the chemical composition shown in Table 1, manufactured by a normal manufacturing process (hot rolling - annealing, one acid wash, one cold rolling, one annealing, one pickle), is a unidirectionally rolled material. Thickness::1. , 2 'i'
A mH pure titanium plate was prepared.

この純チタン板の機械的性質を測定したところ、第2表
に示したような値が得られた。
When the mechanical properties of this pure titanium plate were measured, the values shown in Table 2 were obtained.

なお、第1表に示す供試材のうちの0分、0分νよびF
e分の含有量の高いC材は第2表に示す如くその伸びが
12〜]3係しかなく、ASTMB−265Or、4お
よびAMS 4901に規定される伸びの値を満足せず
、構造部材として適正な性質を有していないことが再確
認された。
In addition, 0 minutes, 0 minutes ν and F of the test materials shown in Table 1
As shown in Table 2, the C material with a high content of e has an elongation of only 12 to 3, which does not satisfy the elongation values specified in ASTM B-265 Or, 4 and AMS 4901, and cannot be used as a structural member. It was reconfirmed that it did not have appropriate properties.

つぎに、第1表に示したA材およびB材に、以下に示す
条件の冷間圧延および冷間圧延後焼鈍を施し、得られた
製品純チタン板の■・・T方向の弓1張試験を行なって
、その機械的性質を測定した。
Next, material A and material B shown in Table 1 were subjected to cold rolling and annealing after cold rolling under the conditions shown below, and the resulting pure titanium plate was made with one bow in the T direction. Tests were conducted to determine its mechanical properties.

L方向冷間圧延率(%):0.23’、0.5,1,2
.5゜5、10゜ 焼鈍湯度E) : O(冷間圧延のまま)、4.00゜
500、 600. 700゜ 焼鈍時間;30分(炉温昇温後の在炉時間)。
L direction cold rolling ratio (%): 0.23', 0.5, 1, 2
.. 5°5, 10° Annealing temperature E): O (as cold rolled), 4.00°500, 600. 700° annealing time: 30 minutes (furnace time after raising the furnace temperature).

このようにして得られたA材およびB 41製品の引張
試験の結果を第3表および第4表に示し、機械的性質に
及ぼす冷間圧延率の影響を第1図および第3図に、そし
て冷間圧延材のTおよびL方向耐力比に及ぼす冷間圧延
率の影響を第2図および第4図にそれぞれ線図によって
示した。
Tables 3 and 4 show the results of the tensile tests for the A and B 41 products obtained in this way, and the effects of cold rolling reduction on mechanical properties are shown in Figures 1 and 3. The influence of the cold rolling rate on the T- and L-direction yield strength ratios of the cold-rolled material is shown in diagrams in FIGS. 2 and 4, respectively.

第3表および第1図に示されるA桐についての結果から
も、冷間圧延のままで焼鈍を施さなかったチタン板Ar
tでは、L方向耐力は圧延率の増加とともに増大するが
、T方向耐力は圧延率が0.5受まででは圧延率の増加
とともに減少し、圧延率:0.5〜1%で極小値を示す
こととなり、さらに圧延率を増すと今度は増大に転する
ことが明らかである。また、第4表および第3図に示さ
れるB材についての結果からも、冷間圧延のままで同様
の傾向を示すことが明らかである。
From the results for A paulownia shown in Table 3 and Figure 1, it is clear that the titanium plate Ar was cold rolled and not annealed
At t, the L direction yield strength increases as the rolling ratio increases, but the T direction yield strength decreases as the rolling ratio increases up to 0.5 rolling ratio, and reaches a minimum value at a rolling ratio of 0.5 to 1%. It is clear that if the rolling rate is further increased, the value will turn to increase. Furthermore, it is clear from the results for material B shown in Table 4 and FIG. 3 that the same tendency is shown even when the material is cold rolled.

また、第3表および第2図に示されるA利の結果からは
、例えば冷間圧延のままのチタン板のL・T方向の耐力
比をみると、圧延率の増加とともに減少しており、圧延
率:2.5%で極小値1.11チを示すが、圧延率をさ
らに増していくとわずかに耐力比は増大する傾向にある
ことがわかる。しかしながら、圧延率が]0%であって
も、L−T方向の耐力比は1.13であシ、L−T方向
の耐力異方性の低減効果を認めることができる。第4表
および第4図に示されるB材における結果も同様である
が、Feおよび0含有量の高いB材では、このように圧
延率を高めると、伸び(引張破断伸び)が11〜]4%
どなって、延性の低下が著しいという現象が現われてく
る。そこで、前述のように、ASTM B−265Gr
ade 4あるいはAMS 4901規格で伸びが15
%以上に規定されているところのとの種線チタン板では
、これらの条件が満たされていて、加工硬化も顕著では
ない、圧延率:5係以丁のものが良好であることがわか
る。
In addition, from the results of A-rate shown in Table 3 and Figure 2, for example, when looking at the yield strength ratio in the L and T directions of a titanium plate as cold rolled, it decreases as the rolling ratio increases. The minimum value is 1.11 inches at a rolling ratio of 2.5%, but it can be seen that as the rolling ratio is further increased, the proof stress ratio tends to increase slightly. However, even if the rolling reduction is ]0%, the yield strength ratio in the LT direction is 1.13, and the effect of reducing the yield strength anisotropy in the LT direction can be recognized. The results for material B shown in Table 4 and FIG. 4%
Suddenly, a phenomenon appears in which the ductility decreases significantly. Therefore, as mentioned above, ASTM B-265Gr
ade 4 or AMS 4901 standard with elongation of 15
% or more, it can be seen that these conditions are satisfied, work hardening is not significant, and the rolling ratio is 5 or more.

一方、A材およびB材について冷間圧延後焼鈍を行なう
と、第2図および第4図に示されるように、L −T方
向の耐力比〔σO,’2 (T)/σ0.2 (L) 
)が冷間圧延のままの材料に比べて上昇し、焼鈍流度が
高くなるに従って軽圧下冷間圧延前の耐力比に近づいて
いく。しかしながら、同一加熱条件での耐力比の変化を
みると、焼鈍流度:500t:以下では依然として圧延
率:2.5%で極小値を示し、゛なお異方性低減効果の
認められることが明らかである。
On the other hand, when material A and material B are annealed after cold rolling, the proof stress ratio in the L-T direction [σO,'2 (T)/σ0.2 ( L)
) increases compared to the as-cold-rolled material, and as the annealing flow rate increases, the yield strength ratio approaches the yield strength ratio before light reduction cold rolling. However, when looking at the change in proof stress ratio under the same heating conditions, it still shows a minimum value at a rolling reduction of 2.5% when the annealing flow rate is below 500t, and it is clear that an anisotropy reduction effect is still observed. It is.

このことから、B材のように冷間加工により十分な伸び
が得られない材料では延性改善のために500℃以下の
焼鈍を実施有効であることがわかる。事実、第5図に示
されるように、B材に圧延率:25および5チの冷間加
工を施した後焼鈍を施すと伸びの回復することが確認さ
れた。
From this, it can be seen that for materials such as material B, where sufficient elongation cannot be obtained by cold working, annealing at 500° C. or lower is effective for improving ductility. In fact, as shown in FIG. 5, it was confirmed that when material B was subjected to cold working at rolling ratios of 25 and 5 inches and then annealed, the elongation recovered.

以上に示した結果からも、純チタン板のL −T方向の
耐力異方性は、冷間圧延率:5%以下のL方向冷間圧延
を行なうことによって低減させることができる。そして
この効果は、延性改善のために冷間圧延後に500℃以
下の焼鈍を行なっても残存することが明らかである。ま
た、第3表および第2図に示される結果を検討すれば、
−り記圧延率を2〜3%程度とすることが最も望ましい
ということが窺える。
Also from the results shown above, the proof stress anisotropy of the pure titanium plate in the L-T direction can be reduced by cold rolling in the L direction at a cold rolling rate of 5% or less. It is clear that this effect remains even if annealing is performed at 500° C. or lower after cold rolling to improve ductility. Also, if we consider the results shown in Table 3 and Figure 2,
- It can be seen that it is most desirable to set the rolling rate to about 2 to 3%.

なお、これまでは純チタン圧延板を中心に説明を行なっ
てきたが、純チタン板以外の、チタン合金板にこの発明
の方法を適用しても、同様に耐力異方性低減効果が発揮
されることが確認された。
Although the explanation has so far focused on pure titanium rolled plates, the same effect of reducing proof stress anisotropy will be exhibited even if the method of this invention is applied to titanium alloy plates other than pure titanium plates. It was confirmed that

上述のように、この発明によれば、コイルのような長尺
の純チタン圧延板であっても、単に該圧延板の圧延方向
と同一の軽圧下圧延を施すのみで、その耐力′異方性を
確実に低減することができ、現状の設備をそのまま使用
して、簡単容易に耐力異方性の少ない純チタン板を製造
できるなど、工業上有用な効果がもたらされるのである
As described above, according to the present invention, even if a long rolled pure titanium plate such as a coil is subjected to light reduction rolling in the same direction as the rolling direction of the rolled plate, its yield strength anisotropy can be improved. Industrially useful effects can be brought about, such as the ability to reliably reduce the stress, and the ability to simply and easily produce pure titanium plates with low yield anisotropy using existing equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第3図は冷間圧延材の機械的性質に及ぼす
冷間圧延率の影響を表わした線図、第2図および第4図
は冷間圧延材のTおよび工、方向耐力比に及ぼす冷間圧
延率および焼鈍温度の影響を表わした線図、第5図は本
発明実施例におけるB材に圧延率:2.5および5係の
冷間加工を施した材料の伸び回復に及ぼす焼鈍温度の影
響を示した線図である。 出願人  住友金属工業株式会社 代理人  富  1) 和  夫 外1名第 1因 撞間μg半c%) 第2図 ン+ I’ia /liE SL−に牢、  56の、
2(T)/の、2(L)
Figures 1 and 3 are diagrams showing the influence of cold rolling reduction on the mechanical properties of cold-rolled materials, and Figures 2 and 4 are diagrams showing the T, T, and directional strength ratios of cold-rolled materials. Fig. 5 is a diagram showing the effects of cold rolling rate and annealing temperature on the elongation recovery of material B in an example of the present invention subjected to cold working at rolling rates of 2.5 and 5. FIG. 3 is a diagram showing the influence of annealing temperature. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo and 1 other person 1st factor μg half c%) Figure 2 + I'ia /liE SL-, 56,
2(T)/of, 2(L)

Claims (1)

【特許請求の範囲】[Claims] 熱間圧延または冷間圧延後焼鈍を施した純チタン板を、
更に軽圧下率で冷間圧延し、必要により500℃以下の
温度で30分以内で焼鈍することを特徴とする耐力異方
性の少ない純チタン板の製造方法。
A pure titanium plate that has been hot rolled or cold rolled and then annealed,
A method for producing a pure titanium plate with low yield strength anisotropy, characterized by further cold rolling at a light reduction rate and, if necessary, annealing at a temperature of 500° C. or less for 30 minutes or less.
JP10918282A 1982-06-25 1982-06-25 Manufacture of pure titanium plate with little anisotropy in yield strength Pending JPS591661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10918282A JPS591661A (en) 1982-06-25 1982-06-25 Manufacture of pure titanium plate with little anisotropy in yield strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10918282A JPS591661A (en) 1982-06-25 1982-06-25 Manufacture of pure titanium plate with little anisotropy in yield strength

Publications (1)

Publication Number Publication Date
JPS591661A true JPS591661A (en) 1984-01-07

Family

ID=14503723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10918282A Pending JPS591661A (en) 1982-06-25 1982-06-25 Manufacture of pure titanium plate with little anisotropy in yield strength

Country Status (1)

Country Link
JP (1) JPS591661A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169642A (en) * 1984-09-07 1986-04-10 ペル アンド ハウエル カンパニ− Gripping arm device for feeding document,detector for state of connection of document in gripping arm device and method of operating these device
JPS61111271A (en) * 1984-10-29 1986-05-29 ピツトネイ・ボウズ・インコーポレーテツド Device and method of separating multi-web of document havingcapability of normal interruption and restarting of operation
JPS61244499A (en) * 1985-04-20 1986-10-30 中小企業事業団 Automatic rapping continuing device
JPH06199465A (en) * 1992-12-28 1994-07-19 Tadao Uno Counting sorter of loading paper
US5900605A (en) * 1996-12-06 1999-05-04 Uno; Tadao Construction of rotary type sheet counter disc
JP4452753B1 (en) * 2008-12-12 2010-04-21 株式会社神戸製鋼所 Titanium or titanium alloy plate with excellent balance of press formability and strength
WO2010067843A1 (en) * 2008-12-12 2010-06-17 株式会社神戸製鋼所 Titanium or titanium alloy plate having excellent balance between press formability and strength
JP2011026649A (en) * 2009-07-23 2011-02-10 Kobe Steel Ltd Titanium sheet with high yield strength and excellent in press formability
JP2013011013A (en) * 2011-05-30 2013-01-17 Kobe Steel Ltd Pure titanium sheet having excellent balance between press formability and strength and excellent corrosion resistance, and process for manufacturing the same
JP2013095964A (en) * 2011-10-31 2013-05-20 Kobe Steel Ltd Titanium plate, method for producing titanium plate and method for manufacturing heat-exchanging plate for plate-type heat-exchanger

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169642A (en) * 1984-09-07 1986-04-10 ペル アンド ハウエル カンパニ− Gripping arm device for feeding document,detector for state of connection of document in gripping arm device and method of operating these device
JPS61111271A (en) * 1984-10-29 1986-05-29 ピツトネイ・ボウズ・インコーポレーテツド Device and method of separating multi-web of document havingcapability of normal interruption and restarting of operation
JPS61244499A (en) * 1985-04-20 1986-10-30 中小企業事業団 Automatic rapping continuing device
JPH0329560B2 (en) * 1985-04-20 1991-04-24
JPH06199465A (en) * 1992-12-28 1994-07-19 Tadao Uno Counting sorter of loading paper
US5900605A (en) * 1996-12-06 1999-05-04 Uno; Tadao Construction of rotary type sheet counter disc
JP4452753B1 (en) * 2008-12-12 2010-04-21 株式会社神戸製鋼所 Titanium or titanium alloy plate with excellent balance of press formability and strength
WO2010067843A1 (en) * 2008-12-12 2010-06-17 株式会社神戸製鋼所 Titanium or titanium alloy plate having excellent balance between press formability and strength
JP2010138459A (en) * 2008-12-12 2010-06-24 Kobe Steel Ltd Titanium or titanium alloy sheet excellent in balance between press formability and strength
US9790576B2 (en) 2008-12-12 2017-10-17 Kobe Steel, Ltd. Titanium or titanium alloy plate excellent in balance between press formability and strength
JP2011026649A (en) * 2009-07-23 2011-02-10 Kobe Steel Ltd Titanium sheet with high yield strength and excellent in press formability
JP2013011013A (en) * 2011-05-30 2013-01-17 Kobe Steel Ltd Pure titanium sheet having excellent balance between press formability and strength and excellent corrosion resistance, and process for manufacturing the same
JP2013095964A (en) * 2011-10-31 2013-05-20 Kobe Steel Ltd Titanium plate, method for producing titanium plate and method for manufacturing heat-exchanging plate for plate-type heat-exchanger

Similar Documents

Publication Publication Date Title
US4581077A (en) Method of manufacturing rolled titanium alloy sheets
JP3742558B2 (en) Unidirectionally rolled titanium plate with high ductility and small in-plane material anisotropy and method for producing the same
JP2772237B2 (en) Method for producing ferritic stainless steel strip with small in-plane anisotropy
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
US4581066A (en) Corrosion resistant alloy
JPS591661A (en) Manufacture of pure titanium plate with little anisotropy in yield strength
US4968356A (en) Method of producing hardened aluminum alloy forming sheet having high strength and superior corrosion resistance
JPH04143236A (en) High strength alpha type titanium alloy excellent in cold workability
JPS5850299B2 (en) Manufacturing method for precipitation-strengthened high-strength cold-rolled steel sheets
JPS5842752A (en) Cold rolled steel plate with superior press formability
JPS60228616A (en) Manufacture of hot rolled steel strip of ferrite stainless steel
JPH06248332A (en) Production of steel sheet for vessel
JP3481428B2 (en) Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy
JPS6140285B2 (en)
WO2013084458A1 (en) Hot-rolled steel sheet for cold rolling material, and method for producing same
JPS5896851A (en) Ferritic stainless steel for formed steel plate with improved ridging resistance
JPH0441620A (en) Production of high strength hot-dip galvanized steel sheet
JPS60194052A (en) Production of high-strength pure titanium sheet
JPH0813097A (en) Ferritic stainless steel sheet small in plane anisotropy and production thereof
JPH062069A (en) High strength cold rolled steel sheet and galvanized steel sheet excellent in deep drawability
US20020040746A1 (en) Architectural aluminum alloy material and process for manufacturing the same
JPS61174346A (en) Corrosion resisting titanium alloy having superior bendability
JPH04311518A (en) Production of cold rolled steel strip of ferritic stainless steel excellent in drilling workability
JPS5989723A (en) Manufacture of steel sheet for working by continuous casting and direct hot rolling
JPS60190527A (en) Manufacture of ferritic stainless steel sheet having superior workability