JP2010138459A - Titanium or titanium alloy sheet excellent in balance between press formability and strength - Google Patents

Titanium or titanium alloy sheet excellent in balance between press formability and strength Download PDF

Info

Publication number
JP2010138459A
JP2010138459A JP2008317041A JP2008317041A JP2010138459A JP 2010138459 A JP2010138459 A JP 2010138459A JP 2008317041 A JP2008317041 A JP 2008317041A JP 2008317041 A JP2008317041 A JP 2008317041A JP 2010138459 A JP2010138459 A JP 2010138459A
Authority
JP
Japan
Prior art keywords
titanium
titanium alloy
plate
value
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008317041A
Other languages
Japanese (ja)
Other versions
JP4452753B1 (en
Inventor
Teruhisa Fujita
皓久 藤田
Hideto Oyama
英人 大山
Yoshio Henmi
義男 逸見
Tadashige Nakamoto
忠繁 中元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008317041A priority Critical patent/JP4452753B1/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to RU2011128718/02A priority patent/RU2463385C1/en
Priority to KR1020117013295A priority patent/KR101325364B1/en
Priority to US13/130,497 priority patent/US9790576B2/en
Priority to EP09831947.8A priority patent/EP2357265B1/en
Priority to CN200980149586.5A priority patent/CN102245808B/en
Priority to PCT/JP2009/070689 priority patent/WO2010067843A1/en
Application granted granted Critical
Publication of JP4452753B1 publication Critical patent/JP4452753B1/en
Publication of JP2010138459A publication Critical patent/JP2010138459A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubricants (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium or titanium alloy sheet which is excellent in a balance between press formability and strength and is useful as a material for a heat exchanger or a chemical plant. <P>SOLUTION: The titanium or titanium alloy sheet is unidirectionally rolled in such a way that it has a lubricating coating applied to its surface, and the dynamic friction coefficient at the surface of the lubricating coating is controlled to <0.15. In the titanium or titanium alloy sheet, the elongation (L-El) in the rolling direction and the r value (T-r) in the direction perpendicular to the rolling direction satisfy the relation: (T-r)/(L-El)≥0.07. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱交換器や化学プラントの素材として有用なチタンまたはチタン合金板に関するものであり、特に所定の強度を確保しつつプレス成形性にも優れたチタンまたはチタン合金板に関するものである。   The present invention relates to a titanium or titanium alloy plate useful as a material for a heat exchanger or a chemical plant, and particularly relates to a titanium or titanium alloy plate having excellent press formability while ensuring a predetermined strength.

チタンまたはチタン合金板(以下、「チタン板で代表することがある」は、優れた耐食性および比強度を有することから、近年熱交換器や化学プラントの素材として使用されている。チタン板は、特に海水に対しては全く腐食しないことから、海水熱交換器に多く使用されている。   Titanium or a titanium alloy plate (hereinafter “may be represented by a titanium plate”) has been used as a material for heat exchangers and chemical plants in recent years because it has excellent corrosion resistance and specific strength. In particular, it does not corrode at all against seawater, so it is often used in seawater heat exchangers.

チタン板の主要な用途の一つとして、プレート式熱交換器が挙げられるが、こうした用途に適用するチタン板には、伝熱効率(熱交換効率)を向上させるという観点から、複雑な形状に成形できる程度に良好なプレス成形性が望まれている。また、熱交換器の高圧力化に対応できる程度に高い強度も要求されることになる。しかしながら、強度とプレス成形性は相反する特性であり、これら両特性を満足し得るようなチタン板が得られていないのが実情である。   One of the main uses of titanium plates is plate-type heat exchangers. Titanium plates applied to these uses are formed into complex shapes from the viewpoint of improving heat transfer efficiency (heat exchange efficiency). The press formability as good as possible is desired. In addition, the strength is required to be high enough to cope with the high pressure of the heat exchanger. However, strength and press formability are contradictory properties, and the actual situation is that a titanium plate that can satisfy both of these properties has not been obtained.

鋼板等の金属板におけるプレス成形性を向上させる手段としては、合金設計、集合組織や結晶粒径などの適正化のための組織制御などによる特性向上方法に加え、例えば特許文献1や特許文献2等に開示されているように、潤滑皮膜を鋼板表面に塗布する方法が知られている。これらの技術では、鋼板表面に潤滑皮膜を形成すことによって、金型への鋼板の変形を許容してプレス成形性を向上されるものである。   As a means for improving the press formability in a metal plate such as a steel plate, for example, Patent Document 1 and Patent Document 2 include, in addition to alloy design, a property improvement method by structure control for optimization of texture, crystal grain size, and the like. As disclosed in the above, a method of applying a lubricating film to the surface of a steel sheet is known. In these techniques, by forming a lubricating film on the surface of the steel sheet, deformation of the steel sheet into the mold is allowed and press formability is improved.

上記各技術においては、潤滑皮膜を形成する金属板の種類として、チタン板への適用も示唆されている。また、特許文献3や特許文献4等に開示されているように、鋼板に潤滑皮膜を施し、原板のr値と伸びを夫々一定以上に定めると潤滑皮膜の効果を発揮するという記述も認められる。これらの特許文献3,4によれば、一般に伸びが高く、r値が高くなるにつれて成形性が向上することが示されており、より成形性の高い鋼板に潤滑皮膜を塗布することで、成形性が更に向上することが言及されている。しかしながら、潤滑皮膜がチタン板のプレス成形性に及ぼす影響について検討したところ、単に伸びが高く、r値が高い高成形性のチタン薄板に潤滑皮膜を表面に形成しただけでは、必ずしも良好な成形性が得られるとは限らないことが判明した。   In each of the above technologies, application to a titanium plate is also suggested as a type of metal plate for forming a lubricating film. In addition, as disclosed in Patent Document 3, Patent Document 4, and the like, it is also recognized that a lubricating film is applied to a steel sheet, and the effect of the lubricating film is exhibited when the r value and elongation of the original sheet are determined to be above a certain level. . According to these Patent Documents 3 and 4, it is generally shown that the elongation is high and the formability is improved as the r value is increased. By applying a lubricating film to a steel sheet having a higher formability, forming is performed. It is mentioned that the properties are further improved. However, when the influence of the lubricating film on the press formability of the titanium plate was examined, it was not always possible to obtain a good formability simply by forming the lubricating film on the surface of a high formability titanium thin plate having high elongation and a high r value. It turns out that is not always obtained.

即ち、チタン板はその結晶構造が最密六方格子(hcp)であるので、チタンにおける特性上の異方性が、鋼板等に比べて大きいことが知られている。一方向に圧延して製造されたチタン板では、圧延方向(以下、「L方向」と呼ぶことがある)と圧延方向に垂直な方向(以下、「T方向」と呼ぶことがある)での特性が大きく異なるものとなる。例えば、降伏応力(YS)では、T方向に対してL方向はおよそ20%以上低く、またL方向の伸びはT方向に対しておよそ40%以上高いというチタン板ならではの特徴を示すものとなる。こうした特性上の違いが、鋼板で有用とされていた技術をそのままチタン板に適用しても、その効果が有効に発揮されない理由と考えられる。
特許第3056446号公報 特開2004−232085号公報 特開2003−65564号公報 特許第3639060号公報
That is, since the crystal structure of a titanium plate is a close-packed hexagonal lattice (hcp), it is known that the characteristic anisotropy of titanium is larger than that of a steel plate or the like. In a titanium plate produced by rolling in one direction, the rolling direction (hereinafter sometimes referred to as “L direction”) and the direction perpendicular to the rolling direction (hereinafter sometimes referred to as “T direction”) The characteristics are greatly different. For example, in the yield stress (YS), the characteristic of the titanium plate is such that the L direction is about 20% or more lower than the T direction, and the elongation in the L direction is about 40% or more higher than the T direction. . This difference in characteristics is considered to be the reason why the effect that is not effectively exhibited even if the technology that has been considered useful for the steel plate is applied to the titanium plate as it is.
Japanese Patent No. 3056446 JP 2004-232085 A JP 2003-65564 A Japanese Patent No. 3639060

本発明は上記の様な事情に着目してなされたものであって、その目的は、プレス成形性と強度とのバランスに優れ、熱交換器や化学プラントの素材として有用なチタンまたはチタン合金板を提供することにある。   The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is excellent in the balance between press formability and strength, and titanium or titanium alloy plate useful as a material for heat exchangers and chemical plants. Is to provide.

上記目的を達成し得た本発明のチタンまたはチタン合金板とは、一方向に圧延されたチタンまたはチタン合金板であって、その表面に潤滑皮膜が塗布され、該潤滑皮膜表面の動摩擦係数が0.15未満に制御されると共に、チタンまたはチタン合金板における圧延方向の伸び(L−El)と、圧延方向と垂直な方向でのr値(T−r)との間に下記(1)式の関係を有するものである点に要旨を有するものである。
T−r/L−El≧0.07 …(1)
The titanium or titanium alloy plate of the present invention capable of achieving the above object is a titanium or titanium alloy plate rolled in one direction, and a lubricating film is applied to the surface, and the dynamic friction coefficient of the surface of the lubricating film is The following (1) between the elongation in the rolling direction (L-El) and the r value (Tr) in the direction perpendicular to the rolling direction while being controlled to be less than 0.15 It has a gist in that it has a formula relationship.
T−r / L−E1 ≧ 0.07 (1)

本発明のチタンまたはチタン合金板においては、板厚は0.3〜1.0mm程度であることが好ましい。   In the titanium or titanium alloy plate of the present invention, the plate thickness is preferably about 0.3 to 1.0 mm.

本発明によれば、その表面に潤滑皮膜を塗布すると共に、チタンまたはチタン合金板における圧延方向の伸び(L−El)と、圧延方向と垂直な方向でのr値(T−r)との間に所定の関係を満足させることにとって、プレス成形性と強度とのバランスに優れたチタンまたはチタン合金板が実現でき、こうしたチタンまたはチタン合金板は、熱交換器や化学プラントの素材として極めて有用である。   According to the present invention, the lubricating film is applied to the surface, and the elongation in the rolling direction (L-El) in the titanium or titanium alloy plate and the r value (T-r) in the direction perpendicular to the rolling direction. In order to satisfy a predetermined relationship between them, a titanium or titanium alloy plate excellent in balance between press formability and strength can be realized, and such titanium or titanium alloy plate is extremely useful as a material for heat exchangers and chemical plants. It is.

本発明者らは、チタンまたはチタン合金板のプレス成形性に対する潤滑皮膜の影響について、様々な角度から検討した。その結果、次のような知見が得られた。まずチタン板表面における潤滑性が高くなると、低延性であるT方向への塑性変形が起こり易くなることから、チタン板におけるプレス成形性が却って悪くなる場合があり、潤滑性を高くすることによるプレス成形性向上効果を有効に発揮させるためには、T方向への変形を素材自体が起こりにくくなるようにする必要があることが分かった。そして、その指標として、本発明者らはランクフォード値(r値)を選び、T方向におけるr値を或る程度高く設定すれば良いとの着想が得られた。   The present inventors examined the influence of the lubricating film on the press formability of titanium or a titanium alloy plate from various angles. As a result, the following knowledge was obtained. First, if the lubricity on the surface of the titanium plate is increased, plastic deformation in the T direction, which is low ductility, is likely to occur, so the press formability on the titanium plate may be worsened, and the press by increasing the lubricity It was found that in order to effectively exhibit the formability improvement effect, it is necessary to make the material itself difficult to deform in the T direction. As an index, the present inventors obtained an idea that a Rankford value (r value) should be selected and the r value in the T direction should be set to be somewhat high.

尚、上記r値(ランクフォード値)は、一軸引張り試験における幅方向(本発明ではL方向に相当)の対数歪みεと板厚方向対数歪みεの比(r=ε/ε)で表されるものであり、このr値が大きいほど、限界絞り比が大きくなる(荷重を受け持つ金型部分での板厚が薄くなりにくくなる)ものとして知られているものである。 The r value (Rankford value) is the ratio (r = ε w / ε t ) of the logarithmic strain ε w in the width direction (corresponding to the L direction in the present invention) and the logarithmic strain ε t in the plate thickness direction in the uniaxial tensile test. It is known that the larger the r value, the larger the limit drawing ratio (the plate thickness at the mold part responsible for the load is less likely to be reduced).

一方、チタン板表面に潤滑皮膜の塗布をせずに、通常のプレス油程度の潤滑性を付与した程度では、L方向の伸び(L−El)が高ければ高いほどプレス成形性が良好になる。しかしながら、チタン板表面が高潤滑な状態になれば、マクロ的にチタン板が流動しやすい状態となるので、均一変形領域が大きくなる。これによって、プレス油程度の摩擦抵抗ではごく微小な高塑性歪み領域であれば局部変形によって当該部分が割れに至らないものであっても、局部変形ではまかないきれない比較的大きな領域に応力が集中して高塑性歪み領域を成形しまうことになり、却って潤滑皮膜が無い場合よりも大きな割れに至ってしまうことになる。   On the other hand, the press formability becomes better as the elongation in the L direction (L-El) is higher in the extent that the lubricity equivalent to that of ordinary press oil is given without applying a lubricating film to the surface of the titanium plate. . However, if the surface of the titanium plate is highly lubricated, the titanium plate is likely to flow macroscopically, and the uniform deformation region becomes large. This allows stress to concentrate in a relatively large area that cannot be overcome by local deformation, even if the area does not crack due to local deformation in a very high plastic strain region with a friction resistance equivalent to that of press oil. As a result, a high plastic strain region is formed, and on the contrary, a larger crack is caused than in the case where there is no lubricating film.

そして、こうした状況を防止するためには、L方向が高延性になること(即ち、L方向での強度低下)はあまり好ましい状態とはいえず、L方向での伸びは或る程度低くして強度をある程度高めにすることによって、T方向への塑性歪みも或る程度促さなければならないことが分かった。   In order to prevent such a situation, it is not preferable that the L direction becomes highly ductile (that is, the strength decreases in the L direction), and the elongation in the L direction is reduced to some extent. It has been found that by increasing the strength to some extent, plastic strain in the T direction must also be promoted to some extent.

そしてこれらの知見に基づいて、更に検討した結果、素地であるチタン板自体の上記L方向の伸び(L−El)とT方向のr値(T−r)の比(T−r/L−El)が所定の範囲となれば、強度を確保しつつ良好なプレス成形性が確保できることを見出し、本発明を完成した。具体的には、圧延方向の伸び(L−El)と、圧延方向と垂直な方向でのr値(T−r)との間に下記(1)式の関係があれば、潤滑皮膜を塗布したチタン板に優れたプレス成形性が発揮できたのである。尚、この(1)式の右辺の好ましい値(下限)は0.08である。また、比(T−r/L−El)の値の上限については、特に限定されるものではないが、チタンの引張り特性および製造条件を考慮すれば、0.2程度となる。
T−r/L−El≧0.07 …(1)
Based on these findings, as a result of further studies, the ratio (T−r / L−) of the L direction elongation (L−E1) to the T direction r value (T−r) of the titanium plate itself as a substrate When El) is within a predetermined range, the inventors have found that good press formability can be secured while securing strength, and the present invention has been completed. Specifically, if there is a relationship of the following formula (1) between the elongation in the rolling direction (L-El) and the r value (T-r) in the direction perpendicular to the rolling direction, a lubricating film is applied. The excellent press formability of the titanium plate was achieved. A preferable value (lower limit) on the right side of the equation (1) is 0.08. Further, the upper limit of the value of the ratio (Tr / L-El) is not particularly limited, but is about 0.2 considering the tensile properties and production conditions of titanium.
T−r / L−E1 ≧ 0.07 (1)

本発明では、上記のように圧延方向(L方向)の伸び(L−El)と、圧延方向と垂直な方向(T方向)でのr値(T−r)の比を適切な範囲に制御することによって、上記のような効果を発揮させるものであり、夫々のパラメータ[伸び(L−El)およびr値(Tr)]自体の範囲については限定するものではないが、チタンの引張り特性および製造条件等を考慮すれば、伸び(L−EL)は50%以下、r値(T−r)は1.8以上であることが好ましい。   In the present invention, as described above, the ratio of the elongation (L-El) in the rolling direction (L direction) to the r value (T-r) in the direction perpendicular to the rolling direction (T direction) is controlled within an appropriate range. Thus, the above-described effects are exhibited, and the range of each parameter [elongation (L-El) and r value (Tr)] itself is not limited, but the tensile properties of titanium and Considering production conditions and the like, it is preferable that the elongation (L-EL) is 50% or less and the r value (T-r) is 1.8 or more.

上記伸び(L−El)については、最終焼鈍温度を変化させて粒径の成長を変更させることによって調整できる。最終焼鈍温度は、通常750〜800℃程度で行なわれるが、この温度を比較的低くすることによって(例えば、700℃程度)、L方向の伸びを低くすることができる。   About the said elongation (L-El), it can adjust by changing the growth of a particle size by changing the final annealing temperature. The final annealing temperature is usually about 750 to 800 ° C., but by making this temperature relatively low (for example, about 700 ° C.), the elongation in the L direction can be lowered.

尚、チタンの焼鈍方法は、実験室的には真空焼鈍(真空雰囲気、若しくは真空引き後にArで置換した雰囲気での焼鈍→その後酸洗なし)を行う場合もあるが、工業的には生産性を重視して大気雰囲気での10分程度の焼鈍(その後酸洗)が行なわれるのが一般的である。   In addition, although the annealing method of titanium may be performed in the laboratory by vacuum annealing (vacuum atmosphere or annealing in an atmosphere replaced with Ar after evacuation → no acid pickling thereafter), it is industrially productive. In general, annealing (after pickling) is performed in an air atmosphere for about 10 minutes.

T方向のr値(T−r)については、冷間圧延時(通常の圧延方向)の圧下回数を調整することによって調整することができる。即ち、通常では圧下率50〜75%程度の冷間圧延が2回行なわれるのであるが、こうした冷間圧延の回数を増減させることによって、r値(T−r)を調整することができる。r値は集合組織を考えた場合、結晶の(0001)面が板厚に平行に集積するほど高くなる。これは、チタンのすべり面が(0001)面で優先的に発生していることに起因している。また、冷間圧延を施すことによって、r値が高くなる集合組織つまり結晶の(0001)面が板面に平行に集積するので、圧延回数を増やすことによって、r値を調整することができる。   The r value (T−r) in the T direction can be adjusted by adjusting the number of reductions during cold rolling (normal rolling direction). That is, normally, cold rolling with a rolling reduction of about 50 to 75% is performed twice, but the r value (T−r) can be adjusted by increasing or decreasing the number of cold rolling. When considering the texture, the r value increases as the (0001) planes of the crystals accumulate in parallel with the plate thickness. This is due to the fact that the sliding surface of titanium is preferentially generated in the (0001) plane. Moreover, since the texture in which the r value becomes high, that is, the (0001) plane of the crystal accumulates parallel to the plate surface by performing cold rolling, the r value can be adjusted by increasing the number of rolling.

T方向のr値(T−r)とL方向の伸び(L−El)が、上記(1)式の関係を満足させることによって、強度を維持しつつ良好な成形性が得られる理由については、特に異方性が強いチタン板のプレス成形時の変形挙動の解析の全てが把握できたものではないが、おそらくL方向の伸び(L−El)とT方向のr値(Tr)をバランスさせることによって、強度を低下させることなく、適切な変形状態が確保できたものと考えることができた。   About the reason why good formability can be obtained while maintaining the strength by satisfying the relationship of the above formula (1) when the r value in the T direction (Tr) and the elongation in the L direction (L-El) satisfy the relationship of the above formula (1). Although not all of the analysis of deformation behavior during press forming of titanium plates with particularly strong anisotropy has been grasped, the balance between the L direction elongation (L-El) and the T direction r value (Tr) Thus, it was considered that an appropriate deformation state could be secured without reducing the strength.

本発明のチタン板は、その表面に高潤滑性の皮膜が形成されていることを前提とするものであり、高潤滑性であることによって、上記(1)式の関係を規定することの有用性が顕著になる。即ち、潤滑性皮膜を形成することによる成形性向上効果を、上記(1)式の関係を満足させることによって有効に発揮させためには、潤滑皮膜の動摩擦係数は0.15未満であることが必要である(後記図3参照)。この動摩擦係数が0.15以上となると、十分に材料の流入が起こらず、マクロ的な均一性が向上しないために、上記の効果が発揮されにくくなる。   The titanium plate of the present invention is based on the premise that a highly lubricious film is formed on the surface thereof, and it is useful to define the relationship of the above formula (1) by having high lubricity. Sex becomes remarkable. In other words, the dynamic friction coefficient of the lubricating film should be less than 0.15 in order to effectively exhibit the effect of improving the formability by forming the lubricating film by satisfying the relationship of the above formula (1). Necessary (see FIG. 3 below). When the dynamic friction coefficient is 0.15 or more, the material does not sufficiently flow in and the macroscopic uniformity is not improved, so that the above effect is hardly exhibited.

また、潤滑皮膜を形成する素材については、従来公知の素材を使用することができ、例えばポリウレタン樹脂やポリオレフィン樹脂等を主体とする有機系樹脂を好適に用いることができる(後記実施例参照)。また、潤滑皮膜には、必要によりシリカ系の無機系固体潤滑剤を配合したものも使用できるが、この配合割合が大きくなると、潤滑皮膜表面の動摩擦係数が大きくなるので、良好な潤滑性を発揮させる(即ち、動摩擦係数をできるだけ小さくする)範囲に調整することが好ましい。尚、潤滑皮膜表面の動摩擦係数については、基本的に樹脂皮膜の種類によって或る程度決まってくるのであるが、素地となるチタン板の表面性状(表面の凹凸)の影響を受けて、同じ種類の潤滑皮膜であっても若干変化することになる。   As the material for forming the lubricating film, a conventionally known material can be used, and for example, an organic resin mainly composed of a polyurethane resin, a polyolefin resin, or the like can be preferably used (see Examples below). In addition, a lubricant film containing a silica-based inorganic solid lubricant can be used if necessary. However, if the blending ratio increases, the dynamic friction coefficient of the surface of the lubricant film increases, so that good lubricity is exhibited. It is preferable to adjust to a range in which the dynamic friction coefficient is made as small as possible. The dynamic friction coefficient on the surface of the lubricating film is basically determined to some extent by the type of resin film, but the same type is affected by the surface properties (surface irregularities) of the titanium plate used as the substrate. Even a lubricating film of the above will change slightly.

本発明のチタン合金は、熱交換機器や化学プラントの素材として適用され、こうした素材に適用するときのプレス成形性を良好にするものであるが、板厚があまり厚くなると、潤滑皮膜を塗布することによる成形性向上効果が発揮されにくくなる。即ち、板厚が大きくなればなるほど、プレス油程度の摩擦抵抗ではごく微小な高塑性歪み領域であれば、局部変形によって、当該部分が割れには至らないものであるが、潤滑皮膜を施すことによって逆に局部変形ではまかないきれない比較的大きな領域に集中して高塑性歪み領域を成形してしまい割れに至ることになる。こうしたことから、チタン板の板厚は1.0mm以下とすることが好ましい。   The titanium alloy of the present invention is applied as a material for heat exchange equipment and chemical plants, and improves the press formability when applied to such a material, but when the plate thickness becomes too thick, a lubricating film is applied. Therefore, the effect of improving the formability is difficult to be exhibited. In other words, as the plate thickness increases, if the friction resistance is almost the same as that of press oil, if the region is a very high plastic strain region, the portion will not crack due to local deformation. On the contrary, the high plastic strain region is formed by concentrating on a relatively large region that cannot be covered by local deformation, resulting in cracks. For these reasons, the thickness of the titanium plate is preferably 1.0 mm or less.

チタン板(若しくはチタン合金板)の厚さの下限については、必要とされる強度等を考慮して設定すればよく、チタンまたはチタン合金板の種類によっても異なるが、例えば工業用純チタンの場合(1種または2種)には、0.3mm程度以上とするのが良く、少量の合金元素を含有させたチタン合金の場合には、それよりも薄くなっても構わない。   The lower limit of the thickness of the titanium plate (or titanium alloy plate) may be set in consideration of the required strength, etc., and may vary depending on the type of titanium or titanium alloy plate. For example, in the case of industrial pure titanium (1 type or 2 types) is preferably about 0.3 mm or more, and in the case of a titanium alloy containing a small amount of alloy elements, it may be thinner.

本発明で対象とするチタン板は基本的に工業的に用いられる純チタン(JIS1種または2種)を想定したものであり、こうしたチタンを熱交換器や化学プラント部材に適用するときに要求されるプレス成形性を更に高めたものである。しかしながら、プレス成形性を阻害しない程度で少量の合金元素を含有させたチタン合金も、本発明で対象とするチタン合金に含まれるものである。例えば、Al、Si、Nb等の元素を含有させることはチタン板(即ち、チタン合金板)の強度を高める上で有効であるが、これらの元素の含有量が増大すると、強度が高くなり過ぎて、本発明で期待するプレス成形性が得られなくなるので、これらの元素の含有量(1種または2種以上の合計の含有量)は2%程度までとすることが好ましい。また、Feについては、不可避不純物として基本的に含まれているものであるが、こうしたFeを1.5%程度までを積極的に含有させて強度を高めたチタン合金板を適用することもできる。   The titanium plate to be used in the present invention basically assumes pure titanium (JIS type 1 or type 2) used industrially, and is required when such titanium is applied to a heat exchanger or a chemical plant member. The press formability is further improved. However, a titanium alloy containing a small amount of alloy elements to the extent that press formability is not hindered is also included in the titanium alloy targeted by the present invention. For example, containing elements such as Al, Si, and Nb is effective in increasing the strength of a titanium plate (that is, a titanium alloy plate). However, if the content of these elements increases, the strength becomes too high. Then, since the press formability expected in the present invention cannot be obtained, the content of these elements (the total content of one or more types) is preferably up to about 2%. In addition, although Fe is basically included as an inevitable impurity, it is also possible to apply a titanium alloy plate in which the strength is increased by actively including such Fe up to about 1.5%. .

本発明で対象とするチタン板またはチタン合金板は、上記含有成分の他(残部)は、チタンおよび不可避的不純物からなるものである。上記「不可避的不純物」は、原料のスポンジチタンに不可避的に含まれる不純物元素のことであり、代表的には、酸素、鉄(Feを積極的に含有させた場合を除く)、炭素、窒素、水素、クロム、ニッケル等があり、また製造工程においても更に製品中に取り込まれる可能性のある元素、例えば水素等も不可避的不純物に含まれる。これらの不純物のうち、特に酸素および鉄についてはチタン板またはチタン合金板の特性(引張強度、伸び)に影響を与えるものであり、その含有量によってこれらの特性が違ったものとなる(後記表1〜3参照)。酸素、鉄等の不可避的不純物の含有量範囲は、酸素:0.03〜0.05質量%程度、鉄:0.02〜0.04質量%程度である。   The titanium plate or titanium alloy plate targeted in the present invention is composed of titanium and unavoidable impurities in addition to the above-mentioned components (the remainder). The above-mentioned “inevitable impurities” are impurity elements inevitably contained in the raw sponge titanium, and are typically oxygen, iron (except when Fe is actively added), carbon, nitrogen In addition, hydrogen, chromium, nickel, and the like, and in the manufacturing process, elements that may be incorporated into the product, such as hydrogen, are also included in the inevitable impurities. Among these impurities, oxygen and iron in particular affect the properties (tensile strength and elongation) of the titanium plate or titanium alloy plate, and these properties differ depending on their contents (see table below). 1-3). The content ranges of inevitable impurities such as oxygen and iron are about 0.03 to 0.05% by mass of oxygen and about 0.02 to 0.04% by mass of iron.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記表1に示す各種化学成分組成のチタン板またはチタン合金板を用い、これら冷間圧延を行うことによって各種板厚とした(0.5〜1.5mm)。用いたチタン板は、JIS1種、JIS2種相当純チタンとし、チタン合金板は、Al、SiおよびNb等を合計で1.2%含有させたもの(表中「1.2ASN」と記す)と、Feを1.5%含有させたもの(表中「1.5Feチタン合金」と記す)とし、大気焼鈍した後(焼鈍時間10分)、酸洗処理(硝ふっ酸洗浄)を行なった。また、JIS1種相当純チタンについては、L方向伸び(L−El)は焼鈍温度、T方向のr値(T−r)については、化学成分組成および冷間圧延回数によって調整した。   Various plate thicknesses (0.5 to 1.5 mm) were obtained by performing cold rolling using titanium plates or titanium alloy plates having various chemical composition compositions shown in Table 1 below. The titanium plate used was JIS type 1 and JIS type 2 equivalent pure titanium, and the titanium alloy plate contained 1.2% of Al, Si, Nb, etc. in total (denoted as “1.2ASN” in the table). , Fe containing 1.5% (referred to as “1.5Fe titanium alloy” in the table), and after atmospheric annealing (annealing time 10 minutes), pickling treatment (washing with hydrofluoric acid) was performed. Further, for JIS Class 1 equivalent pure titanium, the L direction elongation (L-El) was adjusted by the annealing temperature, and the r value in the T direction (Tr) was adjusted by the chemical composition and the number of cold rolling.

得られたチタンまたはチタン合金板に対して、下記に示す各種潤滑皮膜を塗布した(塗布量:0.2〜3.0g/m2)。このときの各種チタン板またはチタン合金板の焼鈍温度、冷間圧延回数、板厚、潤滑皮膜の種類、潤滑皮膜表面の動摩擦係数を下記表2に示す。尚、同じ種類の潤滑皮膜であってもその表面の動摩擦係数が異なることがあるのは、上述したように、チタンまたはチタン合金板表面の性状(表面凹凸)の影響によるものである。
[潤滑皮膜の種類]
有機系1:ポリウレタン90質量%+コロイダルシリカ10質量%
有機系2:ポリオレフィン90質量%+コロイダルシリカ10質量%
有機系3:ポリオレフィン80質量%+コロイダルシリカ20質量%
無機系1:コロイダルシリカ70質量%+ポリウレタン25質量%+ポリオレフィン5質量%
無機系2:コロイダルシリカ60質量%+ポリウレタン30質量%+ポリオレフィン10質量%
Various lubricating films shown below were applied to the obtained titanium or titanium alloy plate (application amount: 0.2 to 3.0 g / m 2 ). Table 2 below shows the annealing temperature, the number of cold rolling operations, the plate thickness, the type of the lubricating coating, and the dynamic friction coefficient of the lubricating coating surface of the various titanium plates or titanium alloy plates at this time. In addition, even if it is the same kind of lubricating film, the dynamic friction coefficient of the surface may differ depending on the influence (surface unevenness | corrugation) of the titanium or titanium alloy plate surface as mentioned above.
[Lubrication film type]
Organic system 1: 90% by mass of polyurethane + 10% by mass of colloidal silica
Organic system 2: 90% by mass of polyolefin + 10% by mass of colloidal silica
Organic system 3: 80% by mass of polyolefin + 20% by mass of colloidal silica
Inorganic system 1: 70% by mass of colloidal silica + 25% by mass of polyurethane + 5% by mass of polyolefin
Inorganic system 2: colloidal silica 60% by mass + polyurethane 30% by mass + polyolefin 10% by mass

上記潤滑皮膜を塗布する前のチタンまたはチタン合金板について、ASTMに規定されている試験片を採取し、ASTM E8に規定されている金属材料引張試験方法に基づいてL方向の降伏応力(L−YS)、L方向の引張強度(L−TS)、全伸び(L方向の伸び:L−El)、T方向のr値(T−r)を測定した。降伏応力(YS)、引張強度(TS)および伸び(L−El)については、引張試験時の試験速度は始めから0.5%の歪みまでは0.5%/minで、それ以降は40%/minとした。また、r値(T−r)の測定については、歪む付加量は6%とし、引張試験速度を10%/minとして、r値(T−r)を求めた。   For the titanium or titanium alloy plate before the lubrication film is applied, a test piece specified in ASTM is taken, and the yield stress in the L direction (L−) is determined based on the metal material tensile test method specified in ASTM E8. YS), tensile strength in the L direction (L-TS), total elongation (elongation in the L direction: L-El), and r value in the T direction (Tr). For the yield stress (YS), tensile strength (TS) and elongation (L-El), the test speed during the tensile test was 0.5% / min from the beginning to 0.5% strain, and thereafter 40%. % / Min. Further, for the measurement of the r value (T−r), the r value (T−r) was determined with the strain addition amount being 6% and the tensile test speed being 10% / min.

潤滑皮膜を塗布したチタンまたはチタン板について、後述する方法によってプレス成形性を評価した。このとき、本発明の評価方法と対比させるために、一般的なプレス成形性の評価方法とされているエリクセン値についても測定した。このエレクセン値の測定には、上記で得られたチタン板またはチタン合金板(潤滑皮膜を塗布したもの)から、大きさ90mm×90mmの試験片を採取し、JIS Z 2247に規定されているエリクセン試験を実施した。本発明で用いたプレス成形性評価方法は次の通りである。   About the titanium or titanium plate which apply | coated the lubricating film, the press moldability was evaluated by the method mentioned later. At this time, in order to contrast with the evaluation method of the present invention, the Erichsen value, which is a general evaluation method for press formability, was also measured. For the measurement of this Eleksen value, a test piece having a size of 90 mm × 90 mm was taken from the titanium plate or titanium alloy plate (coated with a lubricating film) obtained above, and Erichsen defined in JIS Z 2247 was used. The test was conducted. The press formability evaluation method used in the present invention is as follows.

各チタンまたはチタン合金板について、プレート式熱交換器の熱交換部分を模擬した、大きさ100×100mm、ピッチ:10mm,最大高さ4mm、曲率半径R=0.4,0.6,0.8,1.0,1.4,1.8(mm)の6種の稜線を有する金型を用い、8ton(トン)油圧プレス機でプレスを行なった。このときのプレス条件は、最大荷重300N、プレス速度:1mm/秒、4mmの押し切りである。   For each titanium or titanium alloy plate, the size 100 × 100 mm, the pitch: 10 mm, the maximum height 4 mm, the radius of curvature R = 0.4, 0.6, 0,. Using a mold having six kinds of ridgelines of 8, 1.0, 1.4, and 1.8 (mm), pressing was performed with an 8 ton hydraulic press. The press conditions at this time are a maximum load of 300 N, a press speed of 1 mm / second, and a press cut of 4 mm.

上記のようにして得られるプレス試験片の割れ測定位置は、図1に示すように[図1(a)は平面図、図1(b)は断面図]、稜部と破線の交点の36箇所である。割れの基点となる、A、C、C’、Eに関しては、目視にて判断したときに、健全なら2点、ネッキング(くびれる現象)傾向があれば1点、割れが生じていれば0点とし[下記(2)式]、B、Dに関しては、健全なら1点、ネッキング傾向があれば0.5点、割れが生じていれば0点とし[下記(3)式]、更に夫々の点数に曲率半径R[これらを一括して「R(ij)」と表す]の逆数を掛けて割れの状況を数値化し[下記(2)式、(3)式]、その値と全体に割れが生じていない場合の割合をスコアとして表しており[下記(4)式]、本発明におけるプレス成形性評価の指標としている。   As shown in FIG. 1, the crack measurement position of the press test piece obtained as described above is shown in FIG. 1 (FIG. 1A is a plan view and FIG. 1B is a cross-sectional view). It is a place. Regarding A, C, C ', and E, which are the base points of cracks, when visually judged, 2 points if healthy, 1 point if there is a tendency to necking (constriction phenomenon), 0 points if cracking has occurred As for [Equation (2) below], B and D, 1 point if healthy, 0.5 point if there is a tendency to necking, 0 point if there is a crack [Equation (3) below], and more Multiply the number of points by the reciprocal of the radius of curvature R [collectively "R (ij)"] to quantify the cracking condition (Equations (2) and (3) below) The ratio when no occurrence occurs is expressed as a score [formula (4) below], and is used as an index for evaluating the press formability in the present invention.

E(ij)=1.0×(健全:2、ネッキング:1、割れ発生:0) …(2)
E(ij)=0.5×(健全:2、ネッキング:1、割れ発生:0) …(3)
スコア=[ΣE(ij)/R(ij)]/[ΣA,C,C’,E2/R(ij)+ΣB,D1/R(ij)]×100…(4)
E (ij) = 1.0 × (healthy: 2, necking: 1, crack occurrence: 0) (2)
E (ij) = 0.5 × (healthy: 2, necking: 1, crack occurrence: 0) (3)
Score = [ΣE (ij) / R (ij)] / [ΣA , C, C ′, E2 / R (ij) + ΣB , D 1 / R (ij)] × 100 (4)

潤滑性皮膜を塗布した場合のスコアと、潤滑性皮膜を塗布していない場合のスコアを測定すると共に、その比(塗布ありスコア/塗布なしスコア)を算出し、潤滑性皮膜塗布による成形性向上効果を更に向上させることができるかによって(即ち、上記比の値が1.0以上となるかによって)、本発明の効果を確認した。   Measure the score when the lubricant film is applied and the score when the lubricant film is not applied, and calculate the ratio (score with application / score without application) to improve moldability by applying the lubricant film The effect of the present invention was confirmed depending on whether the effect can be further improved (that is, whether the value of the ratio is 1.0 or more).

測定結果を、チタン板またはチタン合金板の引張特性(L−YS、L−TS、L−El、T−rおよびT−r/L−El)と共に、下記表3に一括して示す。また、この結果に基づき、T−r/L−Elと(塗布ありスコア/塗布なしスコア)の関係を図2に、動摩擦係数が高い場合(0.15以上)のT−r/L−Elと(塗布ありスコア/塗布なしスコア)の関係を図3に、エリクセン値とスコア(潤滑皮膜を塗布したときのスコア)との関係を図4に夫々示す(各図中、No.は試験No.を示す)。   The measurement results are collectively shown in Table 3 below together with the tensile properties (L-YS, L-TS, L-El, Tr, and Tr / L-El) of the titanium plate or titanium alloy plate. Further, based on this result, the relationship between Tr / L-El and (score with application / score without application) is shown in FIG. 2, and Tr / L-El when the dynamic friction coefficient is high (0.15 or more). 3 and the relationship between the Erichsen value and the score (score when the lubricating film is applied) are shown in FIG. 4 (in each figure, No. indicates the test No.). .)

図2の結果から明らかなように、T−r/L−Elの値を0.07以上とすることによって、潤滑皮膜の塗布による成形性向上効果が有効に発揮されていることが分かる。   As is apparent from the results of FIG. 2, it can be seen that when the value of Tr / L-El is 0.07 or more, the effect of improving the formability by applying the lubricating film is effectively exhibited.

図3は、潤滑皮膜の動摩擦係数が高い場合(0.15以上)のT−r/L−Elと(塗布ありスコア/塗布なしスコア)の関係を示したものであるが、動摩擦係数が0.15未満でないと、潤滑皮膜の塗布によるプレス成形性向上効果が得られにくいことが分かる。   FIG. 3 shows the relationship between Tr / L-El and (score with application / score without application) when the dynamic friction coefficient of the lubricant film is high (0.15 or more). If it is not less than .15, it can be seen that it is difficult to obtain the effect of improving the press formability by applying the lubricating film.

図4の結果から明らかなように、本発明でプレス成形性の評価基準である「スコア」は、エリクセン値と良好な相関関係があり、スコアによってプレス成形性が正確に評価できていることが分かる。   As is clear from the results of FIG. 4, the “score”, which is the evaluation standard for press formability in the present invention, has a good correlation with the Erichsen value, and the press formability can be accurately evaluated by the score. I understand.

プレス成形性を評価する方法を説明するための図であるIt is a figure for demonstrating the method of evaluating press moldability. T−r/L−Elと(塗布ありスコア/塗布なしスコア)の関係を示すグラフである。It is a graph which shows the relationship between Tr / L-El and (score with application / score without application). 動摩擦係数が高い場合(0.15以上)のT−r/L−Elと(塗布ありスコア/塗布なしスコア)の関係を示すグラフである。It is a graph which shows the relationship between Tr / L-El when a dynamic friction coefficient is high (0.15 or more) and (score with application / score without application). エリクセン値とスコアとの関係を示すグラフである。It is a graph which shows the relationship between an Eriksen value and a score.

Claims (2)

一方向に圧延されたチタンまたはチタン合金板であって、その表面に潤滑皮膜が塗布され、該潤滑皮膜表面の動摩擦係数が0.15未満に制御されると共に、チタンまたはチタン合金板における圧延方向の伸び(L−El)と、圧延方向と垂直な方向でのr値(T−r)との間に下記(1)式の関係を有するものであることを特徴とするプレス成形性と強度のバランスに優れたチタンまたはチタン合金板。
T−r/L−El≧0.07 …(1)
A titanium or titanium alloy plate rolled in one direction, the surface of which is coated with a lubricating film, the dynamic friction coefficient of the surface of the lubricating film is controlled to be less than 0.15, and the rolling direction of the titanium or titanium alloy sheet The press formability and strength are characterized by having the relationship of the following formula (1) between the elongation (L-El) of the steel and the r value (Tr) in the direction perpendicular to the rolling direction: Titanium or titanium alloy plate with excellent balance.
T−r / L−E1 ≧ 0.07 (1)
板厚が0.3〜1.0mmである請求項1に記載のチタンまたはチタン合金板。   The titanium or titanium alloy plate according to claim 1, wherein the plate thickness is 0.3 to 1.0 mm.
JP2008317041A 2008-12-12 2008-12-12 Titanium or titanium alloy plate with excellent balance of press formability and strength Expired - Fee Related JP4452753B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008317041A JP4452753B1 (en) 2008-12-12 2008-12-12 Titanium or titanium alloy plate with excellent balance of press formability and strength
KR1020117013295A KR101325364B1 (en) 2008-12-12 2009-12-10 Titanium or titanium alloy plate having excellent balance between press formability and strength
US13/130,497 US9790576B2 (en) 2008-12-12 2009-12-10 Titanium or titanium alloy plate excellent in balance between press formability and strength
EP09831947.8A EP2357265B1 (en) 2008-12-12 2009-12-10 Titanium or titanium alloy plate having excellent balance between press formability and strength
RU2011128718/02A RU2463385C1 (en) 2008-12-12 2009-12-10 Plate from titanium or titanium alloy with perfect ratio between stamping capability and strength
CN200980149586.5A CN102245808B (en) 2008-12-12 2009-12-10 Titanium or titanium alloy plate having excellent balance between press formability and strength
PCT/JP2009/070689 WO2010067843A1 (en) 2008-12-12 2009-12-10 Titanium or titanium alloy plate having excellent balance between press formability and strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008317041A JP4452753B1 (en) 2008-12-12 2008-12-12 Titanium or titanium alloy plate with excellent balance of press formability and strength

Publications (2)

Publication Number Publication Date
JP4452753B1 JP4452753B1 (en) 2010-04-21
JP2010138459A true JP2010138459A (en) 2010-06-24

Family

ID=42260213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008317041A Expired - Fee Related JP4452753B1 (en) 2008-12-12 2008-12-12 Titanium or titanium alloy plate with excellent balance of press formability and strength

Country Status (1)

Country Link
JP (1) JP4452753B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591661A (en) * 1982-06-25 1984-01-07 Sumitomo Metal Ind Ltd Manufacture of pure titanium plate with little anisotropy in yield strength
JPH0853726A (en) * 1994-08-09 1996-02-27 Nippon Steel Corp Pure titanium thin sheet for roll forming and its production
JPH09216004A (en) * 1996-02-07 1997-08-19 Nippon Steel Corp Pure titanium sheet for press forming and manufacture thereof
JP2002180166A (en) * 2000-12-19 2002-06-26 Nippon Steel Corp Titanium sheet having high ductility and small anisotropy of material in plane and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591661A (en) * 1982-06-25 1984-01-07 Sumitomo Metal Ind Ltd Manufacture of pure titanium plate with little anisotropy in yield strength
JPH0853726A (en) * 1994-08-09 1996-02-27 Nippon Steel Corp Pure titanium thin sheet for roll forming and its production
JPH09216004A (en) * 1996-02-07 1997-08-19 Nippon Steel Corp Pure titanium sheet for press forming and manufacture thereof
JP2002180166A (en) * 2000-12-19 2002-06-26 Nippon Steel Corp Titanium sheet having high ductility and small anisotropy of material in plane and its production method

Also Published As

Publication number Publication date
JP4452753B1 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
EP2481824B1 (en) Pure titanium sheet excellent in balance between stamping formability and strenght
TWI449798B (en) An aging hardening type steel sheet excellent in aging resistance after coating and a method for producing the same
JP6301095B2 (en) Al-Mg-Si aluminum alloy plate for automobile panel and method for producing the same
JP2010255085A (en) Titanium plate and method for producing titanium plates
JP5937865B2 (en) Production method of pure titanium plate with excellent balance of press formability and strength, and excellent corrosion resistance
WO2016152935A1 (en) Titanium plate, plate for heat exchanger, and separator for fuel cell
US10144985B2 (en) Steel sheet for can and method for manufacturing the same
JP5776850B2 (en) Titanium sheet
EP3050984B1 (en) Titanium plate
JP2014205904A (en) Titanium plate
JP2006257475A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN PRESS FORMABILITY, MANUFACTURING METHOD THEREFOR AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET MATERIAL
JP5950653B2 (en) Ferritic stainless steel plate with excellent surface roughness resistance
KR102010079B1 (en) Steel sheet having excellent image clarity after painting, and method for manufacturing the same
JP4452753B1 (en) Titanium or titanium alloy plate with excellent balance of press formability and strength
JP2009108342A (en) Aluminum alloy plate for forming, and its manufacturing method
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
KR101412905B1 (en) Titanium steel and manufacturing method of the same
US11098386B2 (en) Steel sheet and method of manufacturing same
JP2007321180A (en) Surface-treated steel sheet for cover material for optical pickup parts, its manufacturing method, and cover material for optical pickup parts manufactured by the manufacturing method
WO2010067843A1 (en) Titanium or titanium alloy plate having excellent balance between press formability and strength
JP2010236067A (en) Titanium alloy sheet superior in balance between press formability and strength
RU2524030C2 (en) Steel sheet and coated steel sheet of perfect formability and method of its production
JP2007146235A (en) Surface treated steel sheet for liquid crystal front frame, its manufacturing method, and liquid crystal front frame manufactured by the manufacturing method
WO2005083140A1 (en) Extremely thin cold rolled steel sheet having high strength, method for production thereof, material for gasket using the sheet and gasket member using the material
JP2018535313A (en) Flat steel product having a Zn galvanic treatment protective coating and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Ref document number: 4452753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees