WO2007111002A1 - High-formability aluminum material - Google Patents

High-formability aluminum material Download PDF

Info

Publication number
WO2007111002A1
WO2007111002A1 PCT/JP2006/323861 JP2006323861W WO2007111002A1 WO 2007111002 A1 WO2007111002 A1 WO 2007111002A1 JP 2006323861 W JP2006323861 W JP 2006323861W WO 2007111002 A1 WO2007111002 A1 WO 2007111002A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal grains
less
force
aluminum material
crystal
Prior art date
Application number
PCT/JP2006/323861
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Morimoto
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006090454A external-priority patent/JP2006322064A/en
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to JP2007535737A priority Critical patent/JP4158944B2/en
Priority to US12/294,833 priority patent/US20100247369A1/en
Publication of WO2007111002A1 publication Critical patent/WO2007111002A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the present invention relates to an aluminum material, and in particular, to high hem bendability required at the time of assembling automobile body sheets, automobile parts, machine parts, and plate formability such as press forming at the time of body formation or housing formation. It relates to an excellent aluminum material.
  • Aluminium such as body seats, is advancing in automobiles, and the outer material is excellent in beta-hardness (property that precipitates and hardens when heated during paint baking), and has high strength after paint baking.
  • —Mg— Si-based aluminum alloys are often used, and 5000 (A1-Mg) aluminum alloys with excellent drawability are used for the inner material.
  • This outer material with 6000 series aluminum alloy strength is a force 6000 series (A1 Mg-S engagement metal plate) that is required to have excellent bending cacheability called hem bending, which is usually caulked with the inner material.
  • the hem bendability is inferior, and in particular, in the case of a material solution-treated at a high temperature in order to increase the beta hardness, there is a problem that this hem bendability is remarkably inferior.
  • the outer material of this 6000 series aluminum alloy is required to have a good press formability, which is a kind of plate forming, with few restrictions for determining the design of an automobile.
  • the press formability is generally inferior to that of conventional steel plates and 5000 series aluminum alloy plates, and improvements are desired in order to integrate the materials used in consideration of the problem of recycling automobile parts.
  • a method of controlling the surface hardness of the aluminum alloy plate for example, see Patent Document 1
  • a method of controlling the crystal grain size and the precipitate size for example, see Patent Documents 2 and 3
  • a method for controlling the crystal orientation of the aluminum alloy plate surface see, for example, Patent Documents 4 and 5
  • a method for controlling the crystal orientation of the entire aluminum alloy plate see, for example, Patent Document 6)
  • Aluminum alloy surface force a method of controlling the bending workability by controlling the crystal orientation up to a certain depth (for example, see Patent Document 7). It has been proposed.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-129201
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2003-221637
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2003-268472
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2003-226926
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2003-226927
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2003-268475
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2004-27253
  • Patent Document 9 JP 2004-10982 A Patent Document 10: Japanese Patent Laid-Open No. 2003-105473
  • Non-Patent Document 1 Eiji Nakamachi, Yoshinori Hamada: Plasticity and Processing, 39-446 (1998), 252.
  • Non-Patent Document 2 Hideo Morimoto, Eiji Nakamachi: Furukawa Electric Times, 103 (1999), 7.
  • the present inventors have studied the influence of the crystal orientation distribution of crystal grains on hem bendability and plate formability. As a result, the present inventors can achieve both hem bendability and plate formability at a high level. Invented.
  • An object of the present invention is to provide an aluminum material that can achieve both a high degree of hem bendability and sheet formability.
  • the texture of a rolled sheet is expressed by the relationship between the rolling surface of the sheet and the rolling direction ((ABC) and DEF>) (A, B, C, D, E, and F represent integers).
  • ABSC rolling surface of the sheet
  • DEF rolling direction
  • A, B, C, D, E, and F represent integers.
  • the Cube orientation is the (100) ⁇ 001> orientation
  • the Brass orientation is the (011) ⁇ 211> orientation
  • the Copper orientation is the (112) ⁇ 111> orientation. Since the actual orientation of the plate material deviates from the ideal orientations of the Cube orientation, Brass orientation, and Copper orientation, each crystal is based on the ideal orientation of each crystal of the Cube orientation, Brass orientation, and Copper orientation. It is assumed that crystal orientations up to 5 ° from the ideal orientation are also included in Cube orientation, Brass orientation, and Copper orientation, respectively.
  • An aluminum material composed of crystal grains having different crystal orientations wherein the crystal grain is composed of 1S Cube orientation crystal grains, Brass orientation crystal grains, Copper orientation crystal grains, and the balance is the other crystal grains.
  • the crystal grain occupancy is 0.3 force, 0.7, and brass orientation.
  • Grain occupancy is 0.1 force 0.5
  • copper orientation occupancy is 0.2 or less
  • total occupancy in these orientations is 0.4 to 1.0
  • the balance Is an aluminum material characterized by being grains of other crystal orientations,
  • the plate has a formability that does not cause cracks on the surface at an overhang height of 30 mm, and does not cause cracks on the bending surface in hem bendability. In the ratio
  • the above-mentioned Noreminicum material strength Mg is 0.25 force, etc. 1.0 mass%, Si is 0.5 force, etc. 1.3 mass s%, and is an aluminum alloy composed of the balance A1 and inevitable impurities.
  • Noreminicum material force Mg: 0.25 force, etc. 1.0 mass%, Si: 0.5 force, etc. 1.3 mass s%, Cu, Zn, Mn: less than lmass%, Fe: 0.40 mass % Or less, Ti, Cr 0.lmass%
  • Noreminicum material strength Mg 0.40 force, etc. 1. Omass%, Si 0.5 force, etc. 1.3 mass s%, Cu, Mn lmass% or less, ZnO. 3 mass% or less, Fe Of (1) to (5) above, characterized in that it is an aluminum alloy that contains Ti and Cr in an amount of 0.220 mass% or less, Ti and Cr in an amount of less than 0.1 lmass%, and the balance Al and inevitable impurities.
  • FIG. 1 Fig. 1 (a) to Fig. 1 (c) are diagrams schematically showing the hem bending workability test method performed in Example 1, and Fig. 1 (a) is a sample material.
  • Fig. 1 (b) shows punch indentation, and
  • Fig. 1 (c) shows tight bending (tightening) by vise.
  • the present invention relates to the Cube orientation among the crystal orientations indicated by the crystal grains constituting the aluminum material.
  • a material that satisfies both high-level bending such as hem bending and plate molding such as body press molding at a high level.
  • the occupancy ratio of Cube orientation crystal grains is 0.3 to 0.7
  • the occupancy ratio of Brass orientation crystal grains is 0.1 to 0.5
  • the occupancy ratio of Copper orientation crystal grains is 0.2 or less.
  • it exhibits good bendability and plate formability when compared with aluminum materials that satisfy a total occupancy ratio of Cube orientation, Brass orientation, and Copper orientation of 0.4 force 1.0.
  • the relationship between the occupancy of each crystal orientation of the crystal grains constituting the aluminum material and both characteristics is described below.
  • the crystal orientation density of Cube orientation crystal grains has a large effect on the heme bending, and as the crystal orientation density becomes higher than the crystal orientation density of random orientation grain, It is known that hem bending is good. Also in the present invention, it is preferable to increase the occupancy ratio of the crystal grains having the Cube orientation in order to improve the hem bending. However, an increase in the Cube-oriented crystal grain occupancy results in a significant loss of plate formability.
  • the range of the occupation ratio is preferably 0.3 to 0.7, and more preferably 0.4 to 0.6.
  • the lower limit of this range practically sufficient hem bendability can be provided, and in the upper limit, sufficient plate formability can be maintained to perform press molding of the body sheet to the car exterior.
  • the plate formability is improved as opposed to the case where the occupancy ratio of the brass orientation crystal grains is high and the occupancy ratio of the Cube orientation crystal grains is high.
  • the influence of brass-oriented grains on hem bendability was unknown, and the influence of the occupation rate was unknown.
  • the occupancy ratio range is 0.1 to 0.5, preferably 0.2 to 0.4.
  • the Cube-oriented crystal grain occupancy range by setting the brass-oriented crystal grain occupancy ratio to 0.1 to 0.5, both hem bending and plate forming can be obtained at a high level. . If the material is out of this range, either hem bending or plate forming will be superior, or both will be at a low level.
  • the occupation ratio of copper-oriented crystal grains is 0.2 or less, preferably 0.05-0.15, and more preferably 0.05-0.1.
  • the reason for this limitation is that the copper-oriented crystal grains are known to have the same function as the brass-oriented crystal grains for plate forming. Oriented grain force It has been found that the presence of the above-mentioned occupancy ratio has the effect of raising both the hem bendability and the plate forming level. It is expected that it will work as a cushioning material!
  • an aluminum plate for measurement in this case an aluminum plate with a predetermined thickness (for example, lmm), degrease the surface with an oil cleaning material such as acetone, and then apply an oxide layer suitable for the material of the aluminum plate.
  • An aluminum plate from which the surface of the acid oxide layer has been removed using a remover for example, aqua regia for an aluminum alloy
  • a remover for example, aqua regia for an aluminum alloy
  • the crystal orientation of the crystal grains is measured by an electron backscatter diffraction pattern (hereinafter abbreviated as EBSP).
  • EBSP electron backscatter diffraction pattern
  • the measurement is performed in a thermionic emission scanning electron microscope, each crystal orientation of the crystal grains in the unit area is measured, and when the number of all crystal grains in the unit area is 1, the Cu be orientation with respect to that
  • the ratio of the number of crystal grains in the brass orientation and the copper orientation was determined, and the value was taken as the occupation ratio. For example: 1. If the total number of grains in the Omm square is 100, the total number of grains in the Cube, Brass, and Copper orientations is 100 (that is, there are no grains in other crystal orientations). ), The total occupancy (total occupancy) of each crystal grain in Cube orientation, Brass orientation and Copper orientation is 1.
  • the aluminum material according to the present invention exhibits a good bendability and plate formability at the occupancy ratio of the crystal orientation because the crystal structure is a face-centered cubic structure.
  • Materials with a face-centered cubic structure include A1 alloys, Cu alloys, Ni alloys, Ag alloys, and Au alloys, but the A1 alloys exhibit remarkable effects.
  • the A1 alloy includes Mg of 0.25 force, 1. Omass%, Si of 0.5 force, 1.3 mass%, and the balance of A1 and inevitable impurities. Show a big effect Is preferable.
  • Si and Mg contained as essential elements in this Al-Mg-Si alloy are Mg Si composites.
  • the amount may be greatly reduced, causing a decrease in bending workability and beta-hardness.
  • the lower limit value of Mg is preferably set to 0.40% or more.
  • Cu, Zn, Mn, Cr, Ti, or the like may be added. Addition of Cu enhances strength, ductility, degreasing, chemical conversion, etc. Additive of Zn improves degreasing and chemical conversion, and additive of Mn, Ti, Cr refines crystal grains. It shows the action of improving the bending strength, but when these elements are added excessively, the corrosion resistance and ductility are lowered.
  • the addition of Cu and Zn has no practical problem as long as any element is within the range of lmass% or less, but considering the balance between strength, ductility, degreasing, chemical conversion treatment, corrosion resistance and ductility.
  • the upper limit can be appropriately determined to a level below lmass%.
  • Zn to 0.3 mass% or less.
  • the amount of added Mn, Cr, and Ti that promotes refinement of crystal grains and improves bending strength must be less than lmass% for Mn, and less than 0.1 lmass% for Ti and Cr. It is preferable to make it.
  • Fe contained as an impurity forms a crystallized product that is harder than the Mg Si compound.
  • the amount of Fe is preferably set to 0.40 mass% or less, and more preferably 0.20 mass% or less, because a large strain is formed in the periphery to promote the propagation of cracks.
  • V, Zr, etc. can be included in the range of 0.20 mass% or less as necessary for the purpose of grain refinement. If the amount of V and Zr added is in the range of 0.20 mass% or less, there will be no effect on the plate formability such as hem bendability and press formability, but in consideration of corrosion resistance and ductility, it will be 0.1 lmass% or less. Preferably there is.
  • An aluminum material excellent in formability can be provided.
  • the Al alloy consisting of the remaining Al is melted and cast in a 500 mm thick ingot by a conventional method, and this ingot is subjected to homogenization treatment at 540 ° C for 6 hours, after which the start temperature is 500 ° C and the end temperature is 200 ° C A hot rolled sheet having a thickness of 10 mm was obtained by hot rolling below.
  • this hot-rolled sheet was cold-rolled to a predetermined thickness such that a finished base sheet having a thickness of 1 mm was obtained at a finishing rate of 20%, 30%, 50%, 70%, and 90%.
  • a finished blank having a thickness of 1 mm was obtained directly from a hot rolled sheet having a thickness of 10 mm.
  • this cold-rolled sheet having a predetermined thickness was annealed at 325 ° C. for 2 hours and subjected to finish cold-rolling to produce a finished base sheet having a thickness of 1 mm.
  • the finished base plate was subjected to a solution treatment at 500 ° C using a continuous annealing furnace and a stabilization treatment at 100 ° C for 24 hours to obtain a test material.
  • Specimen No. 1 listed in Table 1 was finish-rolled at a finish cold work rate of 20%.
  • No. 2 is 30%
  • No. 3 is 50%
  • No. 4 is 70. %
  • No. 5 is 80%
  • each crystal orientation includes crystal orientations 5 degrees apart from the ideal orientation of each crystal in the Cube orientation, Brass orientation, and Copper orientation.
  • a 180 ° C bending test and a stretch forming test were performed using the prepared test materials, and the hem bending workability and the plate formability were evaluated.
  • Fig. 1 (a) the pre-strain is applied in Fig. 1 (a), the punch is pushed in up to a bending angle of 170 degrees in Fig. 1 (b), and the vise tightening shown in Fig. 1 (c) is performed in order.
  • ° C Bending Karoe test punch 1 tip curvature R was changed to 0.25, 0.5, 0.75, 1.0 mm. The test was repeated for each tip curvature with the number of tests of 5 sheets, and the minimum value of the tip curvature at which no rough skin and cracking occurred was recorded in the column of hem bending workability in Table 1. Therefore, in this test, rough skin and cracks do not occur! / If the tip curvature is small! /, The hem bending calorie is excellent.
  • Table 1 shows all specimens with no cracks as “ ⁇ ”, specimens with only one crack as “ ⁇ ”, and specimens with two or more cracks as “X” in Table 1. .
  • the strength and elongation of the specimens prepared were excluding the specimens with a finish cold working rate of 90%, and the strength was 230-240MPa, 0.2% strength 30-140MPa, and the elongation was More than 30%.
  • the specimen with a finish cold work rate of 90% had the same strength and 0.2% resistance as the other specimens, but the elongation was as low as 17%.
  • Example 1 the same materials as in Example 1 were used, except that only the Fe content was changed to 0.25 mass%, and the Fe content was changed to 0.25 mass% and the Cu content was changed to 0.15 mass%.
  • the same materials were produced in the process, both obtained excellent results satisfying the item (7).
  • V and Zr were added to the material of Example 1 with 0.1 and 15 mass% added, and V and Zr were both added with 0.08 mass% in the same process as Example 1.
  • the aluminum material of the present invention is excellent in hem bendability and plate formability, it can be suitably used for automobile body sheets, automobile parts, machine parts, and the like.

Abstract

An aluminum material made up of crystal grains differing in crystal orientation, the crystal grains consisting of cube-orientation crystal grains, brass-orientation crystal grains, copper-orientation crystal grains, and crystal grains having other crystal orientation(s) as the remainder, the proportions of the cube-orientation crystal grains, brass-orientation crystal grains, and copper-orientation crystal grains being 0.3-0.7, 0.1-0.5, and 0.2 or lower, respectively, and the total proportion of these crystal orientations being 0.4-1.0, with the remainder being the crystal grains having other crystal orientation(s). Also provided is an automotive part comprising the aluminum material.

Description

明 細 書  Specification
高成形性アルミニウム材料  High formability aluminum material
技術分野  Technical field
[0001] 本発明はアルミニウム材料に関し、特に、自動車ボディシート、自動車部品、機械 部品などの組立時に要求される高度なヘム曲げ性およびボディ形成や筐体形成時 のプレス成形などの板成形性に優れたアルミニウム材料に関する。  TECHNICAL FIELD [0001] The present invention relates to an aluminum material, and in particular, to high hem bendability required at the time of assembling automobile body sheets, automobile parts, machine parts, and plate formability such as press forming at the time of body formation or housing formation. It relates to an excellent aluminum material.
背景技術  Background art
[0002] 自動車は、ボディシートなどのアルミィヒが進んでおり、アウター材にはベータハード 性 (塗装焼付時の加熱で析出硬化する性質)に優れ、塗装焼付後に高強度となる 60 00系(Al—Mg— Si系)アルミニウム合金が多用され、インナー材には絞り成形性に 優れた 5000系(A1 - Mg系)アルミニウム合金が使用されて 、る。  [0002] Aluminium, such as body seats, is advancing in automobiles, and the outer material is excellent in beta-hardness (property that precipitates and hardens when heated during paint baking), and has high strength after paint baking. —Mg— Si-based) aluminum alloys are often used, and 5000 (A1-Mg) aluminum alloys with excellent drawability are used for the inner material.
この 6000系アルミニウム合金力もなるアウター材は、通常インナー材とかしめて用 いられるヘム曲げと呼ばれる曲げカ卩ェ性に優れることが要求される力 6000系 (A1 Mg— S係合金板)は、このヘム曲げカ卩ェ性が劣り、特にベータハード性を高める ために高温で溶体化処理した材料では著しくこのヘム曲げカ卩ェ性が劣ると!ヽぅ問題 がある。  This outer material with 6000 series aluminum alloy strength is a force 6000 series (A1 Mg-S engagement metal plate) that is required to have excellent bending cacheability called hem bending, which is usually caulked with the inner material. The hem bendability is inferior, and in particular, in the case of a material solution-treated at a high temperature in order to increase the beta hardness, there is a problem that this hem bendability is remarkably inferior.
[0003] 更に、この 6000系アルミニウム合金のアウター材には、自動車のデザインを決定す るために制約の少な 、板成形の一種であるプレス成形性が良 、ことも必要とされて V、るが、一般に従来の鋼板や 5000系アルミニウム合金板に比較してプレス成形性 が劣り、自動車部品のリサイクル問題を考慮した使用材質の統合ィ匕を図る上で、その 改善が望まれている。  [0003] Further, the outer material of this 6000 series aluminum alloy is required to have a good press formability, which is a kind of plate forming, with few restrictions for determining the design of an automobile. However, the press formability is generally inferior to that of conventional steel plates and 5000 series aluminum alloy plates, and improvements are desired in order to integrate the materials used in consideration of the problem of recycling automobile parts.
[0004] このような状況において、曲げ力卩ェ性の向上には、アルミニウム合金板表面硬さを 制御する方法 (例えば、特許文献 1参照)、結晶粒サイズや析出物サイズを制御する 方法 (例えば、特許文献 2、 3参照)、アルミニウム合金板表面の結晶方位を制御する 方法 (例えば、特許文献 4、 5参照)、アルミニウム合金板全体の結晶方位を制御する 方法 (例えば、特許文献 6参照)、アルミニウム合金表面力 一定深さまでの結晶方 位を制御することで曲げ加工性を制御する方法 (例えば、特許文献 7参照)などが提 案されている。 [0004] Under such circumstances, for improving the bending strength, a method of controlling the surface hardness of the aluminum alloy plate (for example, see Patent Document 1), a method of controlling the crystal grain size and the precipitate size ( For example, see Patent Documents 2 and 3), a method for controlling the crystal orientation of the aluminum alloy plate surface (see, for example, Patent Documents 4 and 5), a method for controlling the crystal orientation of the entire aluminum alloy plate (see, for example, Patent Document 6) ), Aluminum alloy surface force, a method of controlling the bending workability by controlling the crystal orientation up to a certain depth (for example, see Patent Document 7). It has been proposed.
[0005] 板成形の向上に対しては、アルミニウム合金板の圧延方向に対する 0° 方向、 45 ° 方向、 90° 方向の各方向のランクフォード値を制御することによりプレス成形性を 高める方法 (例えば、特許文献 8、 9参照)、並びに引張強度と耐力の関係及びアルミ -ゥム合金板表面の結晶粒サイズと無析出帯 (PFZ)を制御することでプレス成形性 と曲げ加工性を高める方法 (例えば、特許文献 10参照)が提案されている。  [0005] To improve plate forming, a method for improving press formability by controlling the Lankford value in each of the 0 °, 45 °, and 90 ° directions with respect to the rolling direction of the aluminum alloy plate (for example, , And Patent Documents 8 and 9), and a method for improving press formability and bending workability by controlling the relationship between tensile strength and proof stress and the crystal grain size and precipitation free zone (PFZ) of the aluminum-alloy plate surface. (See, for example, Patent Document 10).
[0006] なお、板成形における結晶粒の結晶方位と板成形性の良否の関係力 Cube方位 、 Brass方位および Copper方位の単結晶方位材料から求めた結果を基にして最適 に設計できることが知られている(例えば、非特許文献 1参照)。また、板成形の一種 である深絞り加工における単方位結晶粒材料の変形能の違 、が知られて 、る(例え ば、非特許文献 2参照)。  [0006] It is known that optimum design can be performed based on the results obtained from single crystal orientation materials of Cube orientation, Brass orientation and Copper orientation, which are the relationship force between crystal grain orientation and plate formability in plate forming. (For example, see Non-Patent Document 1). In addition, a difference in deformability of unidirectional grain materials in deep drawing, which is a type of plate forming, is known (for example, see Non-Patent Document 2).
[0007] しかしながら、特に自動車のボディシートには、ボディの組立に必要であるヘム曲げ のような強烈な曲げ加工とボディ形状を精緻に加工する上で必要となるプレス成形性 に代表される板成形性の両者が高いレベルで要求される力 ヘム曲げ性のみを向上 させることは可能であった力 同時に板成形性を従来の鋼製ボディと同等のレベルに 弓 Iき上げることは難しく、逆に板成形性のレベルを引き上げようとするとヘム曲げ性の レベルが低くなり、また引張強度と耐力の関係及びアルミニウム合金板表面の結晶 粒サイズと無析出帯 (PFZ)を制御することでプレス成形性と曲げ加工性を高める方 法を以つてしても、高 ヽレベルの板成形性の獲得は難 ヽものであった。  [0007] However, in particular, for body sheets of automobiles, a plate represented by an intense bending process such as hem bending necessary for the assembly of the body and press formability required to precisely process the body shape. Force required for both formability at a high level Force that was only possible to improve hem bendability At the same time, it is difficult to raise the plate formability to the same level as the conventional steel body. Attempting to raise the sheet formability level lowers the hem bendability level, and press forming is achieved by controlling the relationship between tensile strength and proof stress, crystal grain size on the aluminum alloy sheet surface, and precipitation free zone (PFZ). Even with a method to improve the workability and bending workability, it was difficult to obtain a high formability of sheet formability.
[0008] 特許文献 1 特開 2003— 129201号公報  [0008] Patent Document 1 Japanese Unexamined Patent Publication No. 2003-129201
特許文献 2特開 2003— 221637号公報  Patent Document 2 Japanese Unexamined Patent Publication No. 2003-221637
特許文献 3特開 2003— 268472号公報  Patent Document 3 Japanese Unexamined Patent Publication No. 2003-268472
特許文献 4特開 2003— 226926号公報  Patent Document 4 Japanese Unexamined Patent Publication No. 2003-226926
特許文献 5特開 2003— 226927号公報  Patent Document 5 Japanese Unexamined Patent Publication No. 2003-226927
特許文献 6特開 2003— 268475号公報  Patent Document 6 Japanese Unexamined Patent Publication No. 2003-268475
特許文献 7特開 2004 - 27253号公報  Patent Document 7 Japanese Unexamined Patent Application Publication No. 2004-27253
特許文献 8特開 2002— 146462号公報  Patent Document 8 JP 2002-146462
特許文献 9特開 2004 - 10982号公報 特許文献 10:特開 2003 - 105473号公報 Patent Document 9 JP 2004-10982 A Patent Document 10: Japanese Patent Laid-Open No. 2003-105473
非特許文献 1 :仲町英治、濱田佳紀:塑性と加工、 39—446 (1998)、 252.  Non-Patent Document 1: Eiji Nakamachi, Yoshinori Hamada: Plasticity and Processing, 39-446 (1998), 252.
非特許文献 2 :森本秀夫、仲町英治:古河電工時報、 103 (1999)、 7.  Non-Patent Document 2: Hideo Morimoto, Eiji Nakamachi: Furukawa Electric Times, 103 (1999), 7.
発明の開示  Disclosure of the invention
[0009] このような状況において、本発明者は、結晶粒の結晶方位分布がヘム曲げ性、板 成形性に与える影響を検討した結果、ヘム曲げ性及び板成形性を高レベルで両立 できる本発明を見出した。  [0009] Under such circumstances, the present inventors have studied the influence of the crystal orientation distribution of crystal grains on hem bendability and plate formability. As a result, the present inventors can achieve both hem bendability and plate formability at a high level. Invented.
本発明は、ヘム曲げ性及び板成形性を高レベルで両立できるアルミニウム材料を 提供することを課題とするものである。  An object of the present invention is to provide an aluminum material that can achieve both a high degree of hem bendability and sheet formability.
具体的には、アルミニウム材料を構成する結晶粒が示す結晶方位のうち、 Cube方 位、 Brass方位、 Copper方位の 3者の割合を制御することで、ヘム曲げのような峻烈 な曲げ性ゃプレス成形のような板成形性の両特性に優れたアルミニウム材料を提供 することを課題とする。  Specifically, by controlling the ratio of the Cube direction, Brass direction, and Copper direction among the crystal orientations shown by the crystal grains that make up the aluminum material, it is possible to press the steep bendability such as hem bending. It is an object to provide an aluminum material excellent in both properties of plate formability such as forming.
[0010] 通常、圧延板の集合組織は、板材の圧延面と圧延方向( (ABC)とく DEF〉)の関係 で表現する (A, B, C, D, E, Fは整数を表す。 )0ここで、板材の結晶集合組織の結 晶方位分布とは、ランダムな方位に対する各板材に特有な結晶方位の分布を、結晶 方位の比率で表したものである。 [0010] Usually, the texture of a rolled sheet is expressed by the relationship between the rolling surface of the sheet and the rolling direction ((ABC) and DEF>) (A, B, C, D, E, and F represent integers). 0 here, the crystal orientation distribution of the crystalline texture of the sheet, in which the distribution of the specific crystal orientation to each plate for a random orientation, expressed in the ratio of crystal orientation.
[0011] 本発明では、 Cube方位、 Brass方位、 Copper方位を対象として評価した。 Cube 方位とは(100)〈001〉方位、 Brass方位は(011)〈211〉方位、 Copper方位は(112 )〈111〉方位に結晶が配向しているものを表すものとする。なお、実際の板材の方位 は、前記 Cube方位、 Brass方位、 Copper方位のそれぞれの理想方位からはずれを 生じるために、 Cube方位、 Brass方位、 Copper方位の各結晶の理想方位を基準に 、各結晶の理想方位から 5度ずれた範囲までの結晶方位もそれぞれ Cube方位、 Br ass方位、 Copper方位に含まれるものとする。  [0011] In the present invention, evaluation was made with respect to Cube orientation, Brass orientation, and Copper orientation. The Cube orientation is the (100) <001> orientation, the Brass orientation is the (011) <211> orientation, and the Copper orientation is the (112) <111> orientation. Since the actual orientation of the plate material deviates from the ideal orientations of the Cube orientation, Brass orientation, and Copper orientation, each crystal is based on the ideal orientation of each crystal of the Cube orientation, Brass orientation, and Copper orientation. It is assumed that crystal orientations up to 5 ° from the ideal orientation are also included in Cube orientation, Brass orientation, and Copper orientation, respectively.
[0012] 本発明によれば、以下の手段が提供される:  [0012] According to the present invention, the following means are provided:
(1) 結晶方位の異なる結晶粒で構成されるアルミニウム材料であって、前記結晶粒 1S Cube方位結晶粒、 Brass方位結晶粒、 Copper方位結晶粒、及び残部が他方 位結晶粒からなり、 Cube方位の結晶粒の占有率が 0. 3力ら 0. 7、 Brass方位の結 晶粒の占有率が 0. 1力 0. 5、 Copper方位の結晶粒の占有率が 0. 2以下、且つこ れらの方位の総占有率が 0. 4から 1. 0であり、残部がその他の結晶方位の結晶粒で あることを特徴とするアルミニウム材料、 (1) An aluminum material composed of crystal grains having different crystal orientations, wherein the crystal grain is composed of 1S Cube orientation crystal grains, Brass orientation crystal grains, Copper orientation crystal grains, and the balance is the other crystal grains. The crystal grain occupancy is 0.3 force, 0.7, and brass orientation. Grain occupancy is 0.1 force 0.5, copper orientation occupancy is 0.2 or less, and total occupancy in these orientations is 0.4 to 1.0, the balance Is an aluminum material characterized by being grains of other crystal orientations,
[0013] (2) 結晶方位の異なる結晶粒で構成されるアルミニウム材料であって、前記結晶粒 1S Cube方位結晶粒、 Brass方位結晶粒、 Copper方位結晶粒、及び残部が他方 位結晶粒からなり、 Cube方位の結晶粒の占有率が 0. 4力ら 0. 6、 Brass方位の結 晶粒の占有率が 0. 2から 0. 4、 Copper方位の結晶粒の占有率が 0. 05力 0. 1、 且つこれらの方位の総占有率が 0. 65力ら 0. 9であり、残部がその他の結晶方位の 結晶粒であることを特徴とするアルミニウム材料、  [0013] (2) An aluminum material composed of crystal grains having different crystal orientations, wherein the crystal grains are composed of 1S Cube orientation crystal grains, Brass orientation crystal grains, Copper orientation crystal grains, and the remainder being the other crystal grains. , Cube orientation crystal grain occupancy is 0.4 force etc. 0.6, Brass orientation crystal grain occupancy is 0.2 to 0.4, Copper orientation crystal grain occupancy is 0.05 power 0.1, and the total occupancy of these orientations is 0.65 force and 0.9, and the remainder is crystal grains of other crystal orientations,
[0014] (3) 結晶方位の異なる結晶粒で構成されるアルミニウム材料であって、前記結晶粒 力 Brass方位結晶粒、 Copper方位結晶粒、及び残部が他方位結晶粒からなり、 B rass方位の結晶粒の占有率が 0. 2から 0. 4、 Copper方位の結晶粒の占有率が 0. 05力ら 0. 1、且つこれらの方位の総占有率が 0. 25力ら 0. 5であり、残部がその他の 結晶方位の結晶粒とで構成され板成形性に優れることを特徴とするアルミニウム材料  [0014] (3) An aluminum material composed of crystal grains having different crystal orientations, wherein the crystal grain force Brass orientation crystal grains, Copper orientation crystal grains, and the remainder are the other-order crystal grains, The crystal grain occupancy is 0.2 to 0.4, the crystal occupancy of the copper orientation is 0.05 force to 0.1, and the total occupancy of these orientations is 0.25 force to 0.5 An aluminum material characterized in that the balance is composed of crystal grains with other crystal orientations and has excellent plate formability
[0015] (4) 30mmの張出し高さで張出し表面上に割れを生じない板成形性を有し、且つ、 ヘム曲げ性における曲げ表面上の割れが生じな 、範囲が、曲げ半径 z板厚の比で[0015] (4) The plate has a formability that does not cause cracks on the surface at an overhang height of 30 mm, and does not cause cracks on the bending surface in hem bendability. In the ratio
0. 5以下のヘム曲げ性を有することを特徴とする前記(1)または(2)項に記載のアル ミニゥム材料、 0.5. The aluminum material according to item (1) or (2), wherein the aluminum material has a hem bendability of 5 or less,
[0016] (5) 50mmの張出し高さで張出し表面上に割れを生じない板成形性を有し、且つ、 ヘム曲げ性における曲げ表面上の割れが生じな 、範囲が、曲げ半径 z板厚の比で [5] (5) It has a plate formability that does not cause cracks on the surface at an overhang height of 50 mm, and does not cause cracks on the bending surface in hem bendability. In the ratio
0. 25以下のヘム曲げ性を有することを特徴とする前記(1)または(2)項に記載のァ ルミニゥム材料、 0.2. The aluminum material according to (1) or (2) above, which has a hemming bendability of 25 or less,
[0017] (6) 前記 ノレミニクム材料力 Mgを 0. 25力ら 1. 0mass%, Siを 0. 5力ら 1. 3mas s%、残部 A1と不可避的不純物とからなるアルミニウム合金であることを特徴とする前 記(1)〜(5)の 、ずれか 1項に記載のアルミニウム材料、  [0017] (6) The above-mentioned Noreminicum material strength Mg is 0.25 force, etc. 1.0 mass%, Si is 0.5 force, etc. 1.3 mass s%, and is an aluminum alloy composed of the balance A1 and inevitable impurities. The aluminum material according to any one of the above (1) to (5),
[0018] (7) 前記 ノレミニクム材料力 Mgを 0. 25力ら 1. 0mass%, Siを 0. 5力ら 1. 3mas s%、 Cu, Zn, Mnを lmass%以下、 Feを 0. 40mass%以下、 Ti、 Crを 0. lmass% 以下含み、残部 A1と不可避的不純物とからなるアルミニウム合金であることを特徴と する前記(1)〜(5)の 、ずれ力 1項に記載のアルミニウム材料、 [0018] (7) Noreminicum material force Mg: 0.25 force, etc. 1.0 mass%, Si: 0.5 force, etc. 1.3 mass s%, Cu, Zn, Mn: less than lmass%, Fe: 0.40 mass % Or less, Ti, Cr 0.lmass% The aluminum material as set forth in (1) to (5) above, wherein the aluminum material is an aluminum alloy comprising the balance A1 and unavoidable impurities,
[0019] (8) 前記 ノレミニクム材料力 Mgを 0. 40力ら 1. Omass%, Siを 0. 5力ら 1. 3mas s%、 Cu, Mnを lmass%以下、 ZnO. 3mass%以下、 Feを 0. 20mass%以下、 Ti、 Crを 0. lmass%以下含み、残部 Alと不可避的不純物と力 なるアルミニウム合金で あることを特徴とする前記(1)〜(5)の 、ずれか 1項に記載のアルミニウム材料、 [0019] (8) Noreminicum material strength Mg 0.40 force, etc. 1. Omass%, Si 0.5 force, etc. 1.3 mass s%, Cu, Mn lmass% or less, ZnO. 3 mass% or less, Fe Of (1) to (5) above, characterized in that it is an aluminum alloy that contains Ti and Cr in an amount of 0.220 mass% or less, Ti and Cr in an amount of less than 0.1 lmass%, and the balance Al and inevitable impurities. Aluminum material as described in
[0020] (9) 前記アルミニウム材料力 Mgを 0. 25力ら 1. Omass%、 Siを 0. 5力ら 1. 3mas s%、 Cu, Zn, Mnを lmass%以下、 Feを 0. 40mass%以下、 Ti、 Crを 0. lmass% 以下含み、さらに V, Zrを 0. 20mass%以下含み、残部 A1と不可避的不純物とから なるアルミニウム合金であることを特徴とする前記(1)〜(5)の 、ずれ力 1項に記載の アルミニウム材料、 [0020] (9) The aluminum material strength Mg: 0.25 force, etc. 1. Omass%, Si: 0.5 force, etc. 1. 3mass%, Cu, Zn, Mn: less than lmass%, Fe: 0.40mass (1) to (1) above, characterized in that it is an aluminum alloy containing 0.1% or less of Ti, Cr or less, further containing 0.2% or less of V and Zr, and comprising the balance A1 and inevitable impurities. 5), the aluminum material according to paragraph 1,
[0021] (10) 前記 ノレミニクム材料力 Mgを 0. 40力ら 1. Omass%, Siを 0. 5力ら 1. 3ma ss%、 Cu, Mnを lmass%以下、 ZnO. 3mass%以下、 Feを 0. 20mass%以下、 Ti 、 Crを 0. lmass%以下含み、さらに V, Zrを 0. lmass%以下含み、残部 A1と不可 避的不純物とからなるアルミニウム合金であることを特徴とする前記(1)〜(5)の 、ず れカ 1項に記載のアルミニウム材料、  [0021] (10) Noreminicum material strength Mg: 0.40 force, etc. 1. Omass%, Si: 0.5 force, etc. 1.3 mass%, Cu, Mn: lmass% or less, ZnO. 3mass% or less, Fe 0.2 mass% or less of Ti, Cr, 0.1 lmass% or less of V, and Zr of 0.1 lmass% or less, and an aluminum alloy comprising the balance A1 and inevitable impurities. (1) to (5), the aluminum material according to item 1;
[0022] (11) 前記 (4)または(5)項に記載のアルミニウム材料を用いた自動車部材、および  [0022] (11) An automobile member using the aluminum material according to (4) or (5), and
(12) 前記(6)〜(10)の 、ずれか 1項に記載のアルミニウム材料を用いた自動車部 材。  (12) An automobile member using the aluminum material according to any one of (6) to (10).
[0023] 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記 載力もより明らかになるであろう。  [0023] The above and other features and advantages of the present invention will become more apparent with reference to the accompanying drawings as appropriate.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]図 1 (a)〜図 1 (c)は、実施例 1で行ったヘム曲げ加工性試験方法を模式的に 示す図であり、図 1 (a)は供試材のセッティングを示し、図 1 (b)はパンチ押し込みを 示し、図 1 (c)は万力による密着曲げ (締付け)を示す。  [0024] [Fig. 1] Fig. 1 (a) to Fig. 1 (c) are diagrams schematically showing the hem bending workability test method performed in Example 1, and Fig. 1 (a) is a sample material. Fig. 1 (b) shows punch indentation, and Fig. 1 (c) shows tight bending (tightening) by vise.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下に本発明を詳細に説明する。 [0025] The present invention is described in detail below.
本発明は、アルミニウム材料を構成する結晶粒が示す結晶方位のうち、 Cube方位 、 Brass方位、 Copper方位の 3者の割合を制御して適正化することにより、ヘム曲げ のような峻烈な曲げやボディプレス成形のような板成形の両者を高レベルで満足する 材料を見出したもので、例えば、 Cube方位結晶粒の占有率が 0. 3〜0. 7、 Brass方 位結晶粒の占有率が 0. 1〜0. 5、 Copper方位結晶粒の占有率が 0. 2以下で、且 つ Cube方位、 Brass方位、 Copper方位の各結晶方位の総占有率が 0. 4力 1. 0 であることを満たすアルミニウム材料にぉ ヽて、良好な曲げ性及び板成形性を示す。 以下に、アルミニウム材料を構成する結晶粒の各結晶方位の占有率と両特性の関 係について述べる。 The present invention relates to the Cube orientation among the crystal orientations indicated by the crystal grains constituting the aluminum material. By controlling the ratio of the three directions, brass orientation and copper orientation, we found a material that satisfies both high-level bending such as hem bending and plate molding such as body press molding at a high level. For example, the occupancy ratio of Cube orientation crystal grains is 0.3 to 0.7, the occupancy ratio of Brass orientation crystal grains is 0.1 to 0.5, and the occupancy ratio of Copper orientation crystal grains is 0.2 or less. In addition, it exhibits good bendability and plate formability when compared with aluminum materials that satisfy a total occupancy ratio of Cube orientation, Brass orientation, and Copper orientation of 0.4 force 1.0. . The relationship between the occupancy of each crystal orientation of the crystal grains constituting the aluminum material and both characteristics is described below.
[0026] 第一に、 Cube方位の結晶粒はその結晶方位密度がヘム曲げに大きく影響してい ることが知られており、その結晶方位密度がランダム方位結晶粒の結晶方位密度より 高まるにつれて、ヘム曲げが良好となることが知られている。本発明においても、同 様にヘム曲げを良好とするために、この Cube方位の結晶粒の占有率を高めることが 好ましい。しかしながら、 Cube方位結晶粒の占有率の増大は、板成形性を大きく損 ねてしまう結果となる。  [0026] Firstly, it is known that the crystal orientation density of Cube orientation crystal grains has a large effect on the heme bending, and as the crystal orientation density becomes higher than the crystal orientation density of random orientation grain, It is known that hem bending is good. Also in the present invention, it is preferable to increase the occupancy ratio of the crystal grains having the Cube orientation in order to improve the hem bending. However, an increase in the Cube-oriented crystal grain occupancy results in a significant loss of plate formability.
[0027] そこで、本発明では、種々検討の結果、その占有率の範囲は 0. 3〜0. 7が好ましく 、より好ましくは 0. 4〜0. 6である。この範囲の下限域においては実用上充分なヘム 曲げ性が提供でき、上限域では、ボディシートの自動車外形へのプレス成形を実施 するのに充分な板成形性を維持して ヽる。  Accordingly, in the present invention, as a result of various studies, the range of the occupation ratio is preferably 0.3 to 0.7, and more preferably 0.4 to 0.6. In the lower limit of this range, practically sufficient hem bendability can be provided, and in the upper limit, sufficient plate formability can be maintained to perform press molding of the body sheet to the car exterior.
[0028] 第二に、 Brass方位結晶粒の占有率が高!、と、前記 Cube方位結晶粒の占有率が 高い場合とは反対に板成形性を良好にする。し力しながら、 Brass方位結晶粒がへ ム曲げ性に及ぼす影響については判っておらず、更にその占有率の影響に関しても 不明であった。  [0028] Secondly, the plate formability is improved as opposed to the case where the occupancy ratio of the brass orientation crystal grains is high and the occupancy ratio of the Cube orientation crystal grains is high. However, the influence of brass-oriented grains on hem bendability was unknown, and the influence of the occupation rate was unknown.
[0029] そこで、本発明では、 Brass方位結晶粒の占有率のヘム曲げ及び板成形に及ぼす 影響を精査した結果、その占有率の範囲を 0. 1〜0. 5、好ましくは 0. 2〜0. 4とした ものである。前記 Cube方位結晶粒の占有率範囲内において、 Brass方位結晶粒の 占有率を 0. 1〜0. 5とすることによりヘム曲げ及び板成形の両者を高いレベルで獲 得することができるものである。この範囲を外れる材料では、ヘム曲げ或いは板成形 のどちらか一方が優れるか、両者ともに低レベルとなってしまう。 [0030] 第三に、 Copper方位結晶粒の占有率を 0. 2以下、好ましくは 0. 05-0. 15、より 好ましくは 0. 05〜0. 1である。このように限定した理由は、 Copper方位結晶粒は、 板成形に対して、 Brass方位結晶粒と同様の働きを示すことが知られている力 本発 明では、もう一つの効果として、この Copper方位結晶粒力 前記占有率の割合で存 在することで、ヘム曲げ性及び板成形の両者のレベルを引き上げる効果を示すこと を見出したもので、 Cube方位結晶粒と Brass方位結晶粒の両者の緩衝材として働く のではな!/、かと予想される。 Therefore, in the present invention, as a result of examining the influence of the occupancy ratio of the brass-oriented crystal grains on the hem bending and plate forming, the occupancy ratio range is 0.1 to 0.5, preferably 0.2 to 0.4. Within the Cube-oriented crystal grain occupancy range, by setting the brass-oriented crystal grain occupancy ratio to 0.1 to 0.5, both hem bending and plate forming can be obtained at a high level. . If the material is out of this range, either hem bending or plate forming will be superior, or both will be at a low level. [0030] Thirdly, the occupation ratio of copper-oriented crystal grains is 0.2 or less, preferably 0.05-0.15, and more preferably 0.05-0.1. The reason for this limitation is that the copper-oriented crystal grains are known to have the same function as the brass-oriented crystal grains for plate forming. Oriented grain force It has been found that the presence of the above-mentioned occupancy ratio has the effect of raising both the hem bendability and the plate forming level. It is expected that it will work as a cushioning material!
[0031] 次に、この結晶方位の占有率の算出方法について述べる。  Next, a method for calculating the crystal orientation occupancy will be described.
測定に供されるアルミニウム板材、ここでは所定厚み(例えば厚み lmm)のアルミ- ゥム板材を準備し、その表面をアセトンなどの油分清浄材で脱脂後、アルミニウム板 材の材質に合った酸化層除去剤(例えば、アルミニウム合金では王水など)を用いて 表面の酸ィ匕層を除去したアルミニウム板を、電解研磨法により鏡面仕上げとし、アル ミニゥム板材の表層近傍を供試材として結晶方位の測定に用いた。  Prepare an aluminum plate for measurement, in this case an aluminum plate with a predetermined thickness (for example, lmm), degrease the surface with an oil cleaning material such as acetone, and then apply an oxide layer suitable for the material of the aluminum plate. An aluminum plate from which the surface of the acid oxide layer has been removed using a remover (for example, aqua regia for an aluminum alloy) is mirror-finished by electrolytic polishing, and the vicinity of the surface layer of the aluminum plate is used as a test material to change the crystal orientation. Used for measurement.
次に、この供試材を用いて、結晶粒の結晶方位を電子後方散乱回折像法 (Electr on Backscatter Diffraction Pattern,以下 EBSPと略す)により測定する。 測定は、熱電子放出型走査電子顕微鏡内で行い、単位面積内にある結晶粒の各 結晶方位を測定し、単位面積内の全結晶粒の数を 1とした場合の、それに対する Cu be方位、 Brass方位、 Copper方位の各結晶粒の数の比を求め、その値を占有率と した。例えば、 1. Omm四方内にある全結晶粒の数が 100の場合、 Cube方位、 Bras s方位、 Copper方位の各結晶粒の数の合計が 100 (つまり、他の結晶方位の結晶粒 がない)場合、 Cube方位、 Brass方位及び Copper方位の各結晶粒の占有率の合 計 (総占有率)は 1である。  Next, using this specimen, the crystal orientation of the crystal grains is measured by an electron backscatter diffraction pattern (hereinafter abbreviated as EBSP). The measurement is performed in a thermionic emission scanning electron microscope, each crystal orientation of the crystal grains in the unit area is measured, and when the number of all crystal grains in the unit area is 1, the Cu be orientation with respect to that The ratio of the number of crystal grains in the brass orientation and the copper orientation was determined, and the value was taken as the occupation ratio. For example: 1. If the total number of grains in the Omm square is 100, the total number of grains in the Cube, Brass, and Copper orientations is 100 (that is, there are no grains in other crystal orientations). ), The total occupancy (total occupancy) of each crystal grain in Cube orientation, Brass orientation and Copper orientation is 1.
[0032] 本発明に係るアルミニウム材料は、その結晶構造が面心立方構造であることにより 前記結晶方位の占有率割合で、良好な曲げ性及び板成形性を示すものである。面 心立方構造をとる材料としては、 A1合金、 Cu合金、 Ni合金、 Ag合金、 Au合金など があるが、特に A1合金では顕著な効果を示すものである。  [0032] The aluminum material according to the present invention exhibits a good bendability and plate formability at the occupancy ratio of the crystal orientation because the crystal structure is a face-centered cubic structure. Materials with a face-centered cubic structure include A1 alloys, Cu alloys, Ni alloys, Ag alloys, and Au alloys, but the A1 alloys exhibit remarkable effects.
[0033] 前記 A1合金としては、 Mgを 0. 25力ら 1. Omass%、 Siを 0. 5力ら 1. 3mass%、残 部 A1と不可避的不純物と力もなる Al—Mg— Si合金において、大きな効果を示すの で好ましい。 [0033] In the Al-Mg-Si alloy, the A1 alloy includes Mg of 0.25 force, 1. Omass%, Si of 0.5 force, 1.3 mass%, and the balance of A1 and inevitable impurities. Show a big effect Is preferable.
この Al— Mg— Si合金に必須元素として含まれる Si及び Mgは Mg Siィ匕合物として  Si and Mg contained as essential elements in this Al-Mg-Si alloy are Mg Si composites.
2  2
析出し、強度の向上に寄与するもので、少なすぎるとその効果が充分でなぐ Si量が 多すぎると自然時効現象が生じて曲げ加工性を大きく低下させる原因となることがあ る。また、 Mg量が多すぎると粗大な Mg Siィ匕合物が多量に析出し、その結果、固溶  It precipitates and contributes to the improvement of strength. If the amount is too small, the effect is insufficient. If the amount of Si is too large, a natural aging phenomenon occurs, which may cause a significant decrease in bending workability. In addition, if the amount of Mg is too large, a large amount of coarse Mg Si compound precipitates, resulting in a solid solution.
2  2
量が大きく減少して曲げ加工性並びにベータハード性の低下を引き起こす場合があ る。さらに、例えば、板材の強度を少し高めとするためには、 Mgの下限値を 0. 40% 以上にするのが好ましい。  The amount may be greatly reduced, causing a decrease in bending workability and beta-hardness. Further, for example, in order to slightly increase the strength of the plate material, the lower limit value of Mg is preferably set to 0.40% or more.
[0034] 前記、 Mg及び Siの他に、 Cu, Zn、 Mn、 Cr、 Tiなどが添カ卩されても良い。 Cuの添 加は強度、延性、脱脂性、化成処理性などを高め、 Znの添カ卩は、脱脂性や化成処 理性を高め、 Mn、 Ti、 Crの添カ卩は結晶粒の微細化を促し、曲げ力卩ェ性をよくする働 きを示すが、これらの元素を過剰に添加されると耐食性の低下や延性の低下を招く。 [0034] In addition to Mg and Si, Cu, Zn, Mn, Cr, Ti, or the like may be added. Addition of Cu enhances strength, ductility, degreasing, chemical conversion, etc. Additive of Zn improves degreasing and chemical conversion, and additive of Mn, Ti, Cr refines crystal grains. It shows the action of improving the bending strength, but when these elements are added excessively, the corrosion resistance and ductility are lowered.
Cu, Znの添加は、前記のようにいずれの元素も lmass%以下の範囲であれば実 用上問題ないが、強度、延性、脱脂性、化成処理性と耐食性や延性とのバランスを 考慮して lmass%以下のレベルにその上限を適宜決定することもできる。特に、板材 の耐食性を高めるには、 Znの添加を 0. 3mass%以下とするのが好ましい。  As described above, the addition of Cu and Zn has no practical problem as long as any element is within the range of lmass% or less, but considering the balance between strength, ductility, degreasing, chemical conversion treatment, corrosion resistance and ductility. The upper limit can be appropriately determined to a level below lmass%. In particular, to increase the corrosion resistance of the plate material, it is preferable to add Zn to 0.3 mass% or less.
また、結晶粒の微細化を促し、曲げ力卩ェ性をよくする Mn、 Cr, Tiの添カ卩量は、 Mn は lmass%以下にする必要があり、 Tiや Crでは 0. lmass%以下にするのが好まし い。  Also, the amount of added Mn, Cr, and Ti that promotes refinement of crystal grains and improves bending strength must be less than lmass% for Mn, and less than 0.1 lmass% for Ti and Cr. It is preferable to make it.
[0035] 前記元素の他に、不純物として含まれる Feは、 Mg Si化合物より硬い晶出物を形  [0035] In addition to the above elements, Fe contained as an impurity forms a crystallized product that is harder than the Mg Si compound.
2  2
成してしまい、周囲に大きなひずみを形成して割れの伝播を助長することから、 Fe量 は好ましくは 0. 40mass%以下、さらには 0. 20mass%以下にすることが好ましい。 さらに、結晶粒微細化等の目的で、 V、 Zrなどを必要に応じて、 0. 20mass%以下の 範囲で含むこともできる。 V、 Zr添カ卩量は、 0. 20mass%以下の範囲では、ヘム曲げ 性やプレス成形性等の板成形性に影響がな ヽが、耐食性や延性などを考慮すると 0 . lmass%以下であることが好ましい。  Therefore, the amount of Fe is preferably set to 0.40 mass% or less, and more preferably 0.20 mass% or less, because a large strain is formed in the periphery to promote the propagation of cracks. Furthermore, V, Zr, etc. can be included in the range of 0.20 mass% or less as necessary for the purpose of grain refinement. If the amount of V and Zr added is in the range of 0.20 mass% or less, there will be no effect on the plate formability such as hem bendability and press formability, but in consideration of corrosion resistance and ductility, it will be 0.1 lmass% or less. Preferably there is.
[0036] 本発明によれば、自動車ボディシート、自動車部品、機械部品などの組立時に要 求される高度なヘム曲げ性およびボディ形成や筐体形成時のプレス成形などの板成 形性に優れたアルミニウム材料を提供することができる。 [0036] According to the present invention, the high hem bendability required at the time of assembling automobile body sheets, automobile parts, machine parts, etc., and plate formation such as press forming at the time of body formation or housing formation. An aluminum material excellent in formability can be provided.
[0037] 以下、本発明を実施例に基づいてさらに詳細に説明する力 本発明はこれらに限 定されるものではない。  [0037] Hereinafter, the present invention will be described in more detail based on examples. The present invention is not limited to these.
実施例  Example
[0038] (実施例 1) [0038] (Example 1)
Mgを 0. 5mass%、 Siを 0. 9mass%、 Mnを 0. 06mass%、 Feを 0. 07mass%、 Cuを 0. 10mass%、 Zn、 Ti, Crはいずれも 0. 0. 05mass%以下含み、残部 Alから なる Al合金を常法により厚み 500mmのインゴットに溶解铸造し、このインゴットを 54 0°C、 6時間の均質化処理後、開始温度 500°C、終了温度 200°Cの条件下で熱間圧 延して厚み 10mmの熱間圧延板を得た。次に、この熱間圧延板を、 20%、 30%、 50 %、 70%、 90%の仕上げカ卩工率で厚み lmmの仕上げ素板になるような所定厚みに 冷間圧延した。なお、仕上げ冷間加工率が 90%の試料に関しては、厚み 10mmの 熱間圧延板から直接厚み lmmの仕上げ素板を得た。  0.5 mass% for Mg, 0.9 mass% for Si, 0.06 mass% for Mn, 0.007 mass% for Fe, 0.1 mass% for Cu, and 0.05 mass% for Zn, Ti and Cr. In addition, the Al alloy consisting of the remaining Al is melted and cast in a 500 mm thick ingot by a conventional method, and this ingot is subjected to homogenization treatment at 540 ° C for 6 hours, after which the start temperature is 500 ° C and the end temperature is 200 ° C A hot rolled sheet having a thickness of 10 mm was obtained by hot rolling below. Next, this hot-rolled sheet was cold-rolled to a predetermined thickness such that a finished base sheet having a thickness of 1 mm was obtained at a finishing rate of 20%, 30%, 50%, 70%, and 90%. For the sample with a finish cold work rate of 90%, a finished blank having a thickness of 1 mm was obtained directly from a hot rolled sheet having a thickness of 10 mm.
次に、この所定厚みの冷間圧延板を 325°C、 2時間の条件で焼鈍し、仕上げ冷間 圧延を施し、厚み lmmの仕上げ素板を作製した。この仕上げ素板に連続焼鈍炉を 用いた 500°Cの溶体化処理と、 100°C、 24時間の安定化処理を施して供試材とした  Next, this cold-rolled sheet having a predetermined thickness was annealed at 325 ° C. for 2 hours and subjected to finish cold-rolling to produce a finished base sheet having a thickness of 1 mm. The finished base plate was subjected to a solution treatment at 500 ° C using a continuous annealing furnace and a stabilization treatment at 100 ° C for 24 hours to obtain a test material.
[0039] 結晶方位の占有率の測定を前段に述べた方法により測定し、表 1に示した。 [0039] The crystal orientation occupancy was measured by the method described in the preceding paragraph and is shown in Table 1.
表 1に記載された供試材 No. 1は仕上げ冷間加工率 20%で仕上げ圧延を行なつ たもので,以下 No. 2は 30%、 No. 3は 50%、 No. 4は 70%、 No. 5は 80%、 No. Specimen No. 1 listed in Table 1 was finish-rolled at a finish cold work rate of 20%. No. 2 is 30%, No. 3 is 50%, and No. 4 is 70. %, No. 5 is 80%, No.
10は 10%、 No. 11は 90%の仕上げ冷間加工率で仕上げ冷間圧延を行なった。 なお、各結晶方位の占有率は、 Cube方位、 Brass方位、 Copper方位の各結晶の 理想方位を中心に 5度離れた結晶方位を含むものとした。 Finish cold rolling was performed at a finish cold working rate of 10% for No. 10 and 90% for No. 11. Note that the occupancy of each crystal orientation includes crystal orientations 5 degrees apart from the ideal orientation of each crystal in the Cube orientation, Brass orientation, and Copper orientation.
[0040] 作製した供試材を用いて、 180°C曲げ加工試験と張出し成形試験を行い、それぞ れヘム曲げ加工性及び板成形性を評価した。 [0040] A 180 ° C bending test and a stretch forming test were performed using the prepared test materials, and the hem bending workability and the plate formability were evaluated.
先ず、ヘム曲げカ卩ェ性に関しては、図 1 (a)の予歪付与、図 1 (b)の折り曲げ角 170 度までのパンチ押し込み、図 1 (c)に示す万力締め付けを順に行う 180°C曲げカロェ 試験を用い、パンチ 1の先端曲率 Rを 0. 25、 0. 5、 0. 75、 1. 0mmと変化させて各 先端曲率毎に繰り返し 5枚の試験数で試験を行い、全てにおいて肌荒れ及び割れ が生じない先端曲率の最小値を表 1のヘム曲げ加工性の欄に記した。従って、この 試験にお!、て、肌荒れと割れが生じな!/、先端曲率が小さければ小さ!/、程ヘム曲げカロ ェ性に優れることになる。 First, regarding the hem bendability, the pre-strain is applied in Fig. 1 (a), the punch is pushed in up to a bending angle of 170 degrees in Fig. 1 (b), and the vise tightening shown in Fig. 1 (c) is performed in order. ° C Bending Karoe test, punch 1 tip curvature R was changed to 0.25, 0.5, 0.75, 1.0 mm. The test was repeated for each tip curvature with the number of tests of 5 sheets, and the minimum value of the tip curvature at which no rough skin and cracking occurred was recorded in the column of hem bending workability in Table 1. Therefore, in this test, rough skin and cracks do not occur! / If the tip curvature is small! /, The hem bending calorie is excellent.
[0041] 張出し成形性に関しては、供試材を 300mm角に切断し、両面に潤滑油を塗布し た後、直径 100mmの球頭ポンチを用いて張出し高さ 50mmの条件で張出し試験を 繰り返し 5枚の試験数で試験を行 ヽ、張出し成形性を評価した。  [0041] Regarding the stretch formability, after cutting the specimen into 300mm squares and applying lubricant on both sides, the stretch test was repeated under the condition of a stretch height of 50mm using a ball head punch with a diameter of 100mm. The test was conducted with the number of sheets tested to evaluate the stretch formability.
全数、割れの発生していない供試材を「〇」、 1個のみ割れている供試材を「△」、 2 個以上が割れてしまう供試材を「 X」として表 1に記した。  Table 1 shows all specimens with no cracks as “◯”, specimens with only one crack as “△”, and specimens with two or more cracks as “X” in Table 1. .
[0042] 作製した供試材の強度、伸びは、仕上げ冷間加工率 90%の供試材を除 、て、強 度力 230〜240MPa、 0. 2%而力力 30〜140MPa、伸びが 30%以上であった。 仕上げ冷間加工率 90%の供試材は、強度、 0. 2%耐カ共に他の加工率の供試材と 変わらなかったが、伸びが 17%と低力つた。  [0042] The strength and elongation of the specimens prepared were excluding the specimens with a finish cold working rate of 90%, and the strength was 230-240MPa, 0.2% strength 30-140MPa, and the elongation was More than 30%. The specimen with a finish cold work rate of 90% had the same strength and 0.2% resistance as the other specimens, but the elongation was as low as 17%.
[0043] ¾ 1  [0043] ¾ 1
Figure imgf000012_0001
Figure imgf000012_0001
表 1から明らかなように、各結晶方位が本発明範囲内の供試材 No. 1から No. 5で は、ヘム曲げカ卩ェ性および板成形性共に良好であるのに対して、 Cube方位の占有 率割合が低ぐ Brass方位の占有率割合が多い供試材 No. 10では、両特性共に優 れず、殆どの結晶粒力 SCube方位を示す供試材 No. 11では、ヘム曲げカ卩ェ性には 優れるが、反面板成形性が劣っていることがわかる。すなわち、前記 (8)項を満足す る優れた材料が得られることが判る。 なお、 Mgを 0. 5mass%、 Siを 0. 9mass%のみを添カ卩し、残部が A1と不可避的不 純物からなる材料を実施例 1と同様の工程で製造したところ、前記 (6)項を満足する 優れた材料が得られた。また、 Fe添カ卩量のみを 0. 25mass%に変更した材料と、 Fe 添加量を 0. 25mass%、 Cu添力卩量を 0. 15mass%と変更した材料を実施例 1と同 様の工程で、同様の試作材を製造したところ、両者とも、前記 (7)項を満足する優れ た結果が得られた。さら〖こ、実施例 1の材料に、 V, Zrをとも〖こ 0. 15mass%添カ卩した 材料と、 V, Zrをともに 0. 08mass%添加した材料を実施例 1と同様の工程で、同様 の試作材を製造したところ、両者とも、前記 (9)または(10)項を満足する優れた結果 が得られた。 As is clear from Table 1, in each of the test materials No. 1 to No. 5 in which the crystal orientations are within the scope of the present invention, both the hem bending cacheability and the plate formability are good. Specimen No. 10 with a low orientation occupancy ratio and a large brass occupancy ratio, specimens No. 10 are not superior in both properties. It can be seen that although it has excellent properties, it is inferior in the formability of the reverse plate. That is, it can be seen that an excellent material satisfying the item (8) can be obtained. A material consisting of 0.5 mass% Mg, 0.9 mass% Si, and the balance consisting of A1 and inevitable impurities was manufactured in the same process as in Example 1. An excellent material satisfying the item) was obtained. In addition, the same materials as in Example 1 were used, except that only the Fe content was changed to 0.25 mass%, and the Fe content was changed to 0.25 mass% and the Cu content was changed to 0.15 mass%. When similar prototype materials were produced in the process, both obtained excellent results satisfying the item (7). Furthermore, V and Zr were added to the material of Example 1 with 0.1 and 15 mass% added, and V and Zr were both added with 0.08 mass% in the same process as Example 1. When similar prototype materials were produced, both obtained excellent results satisfying the item (9) or (10).
産業上の利用可能性  Industrial applicability
[0044] 本発明のアルミニウム材料はヘム曲げ性および板成形性に優れるので、自動車ボ ディシート、自動車部品、機械部品等に好適に用いることができる。 [0044] Since the aluminum material of the present invention is excellent in hem bendability and plate formability, it can be suitably used for automobile body sheets, automobile parts, machine parts, and the like.
[0045] 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明 を説明のどの細部においても限定しょうとするものではなぐ添付の請求の範囲に示 した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 [0045] While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified. The spirit and scope of the invention as set forth in the appended claims I think that it should be interpreted widely without contradicting.

Claims

請求の範囲 The scope of the claims
[1] 結晶方位の異なる結晶粒で構成されるアルミニウム材料であって、前記結晶粒が、 Cube方位結晶粒、 Brass方位結晶粒、 Copper方位結晶粒、及び残部が他方位結 晶粒からなり、 Cube方位の結晶粒の占有率が 0. 3力ら 0. 7、 Brass方位の結晶粒の 占有率が 0. 1力 0. 5、 Copper方位の結晶粒の占有率が 0. 2以下、且つこれらの 方位の総占有率が 0. 4から 1. 0であり、残部がその他の結晶方位の結晶粒であるこ とを特徴とするアルミニウム材料。  [1] An aluminum material composed of crystal grains having different crystal orientations, wherein the crystal grains consist of Cube-oriented crystal grains, Brass-oriented crystal grains, Copper-oriented crystal grains, and the balance of the other crystal grains. Occupancy rate of Cube orientation crystal grains is 0.3 force, 0.7, Brass orientation crystal grain occupation ratio is 0.1 force 0.5, Copper orientation crystal grain occupation ratio is less than 0.2, and An aluminum material characterized in that the total occupancy of these orientations is 0.4 to 1.0, and the balance is crystal grains of other crystal orientations.
[2] 結晶方位の異なる結晶粒で構成されるアルミニウム材料であって、前記結晶粒が、 Cube方位結晶粒、 Brass方位結晶粒、 Copper方位結晶粒、及び残部が他方位結 晶粒からなり、 Cube方位の結晶粒の占有率が 0. 4力ら 0. 6、 Brass方位の結晶粒の 占有率が 0. 2から 0. 4、 Copper方位の結晶粒の占有率が 0. 05力 0. 1、且つこ れらの方位の総占有率が 0. 65から 0. 9であり、残部がその他の結晶方位の結晶粒 であることを特徴とするアルミニウム材料。  [2] An aluminum material composed of crystal grains having different crystal orientations, wherein the crystal grains consist of Cube-oriented crystal grains, Brass-oriented crystal grains, Copper-oriented crystal grains, and the remaining part of the other crystal grains, The occupancy of the Cube-oriented crystal grains is 0.4 force, 0.6, the occupancy ratio of the brass-oriented crystal grains is 0.2 to 0.4, and the occupancy ratio of the copper-oriented crystal grains is 0.05 force. 1. An aluminum material characterized in that the total occupancy of these orientations is 0.65 to 0.9, and the balance is crystal grains of other crystal orientations.
[3] 結晶方位の異なる結晶粒で構成されるアルミニウム材料であって、前記結晶粒が、 Brass方位結晶粒、 Copper方位結晶粒、及び残部が他方位結晶粒からなり、 Brass 方位の結晶粒の占有率が 0. 2から 0. 4、 Copper方位の結晶粒の占有率が 0. 05か ら 0. 1、且つこれらの方位の総占有率が 0. 25力ら 0. 5であり、残部がその他の結晶 方位の結晶粒とで構成される板成形性に優れることを特徴とするアルミニウム材料。  [3] An aluminum material composed of crystal grains having different crystal orientations, wherein the crystal grains are composed of brass-oriented crystal grains, copper-oriented crystal grains, and the balance is the other-order crystal grains. The occupancy is 0.2 to 0.4, the crystal occupancy of the copper orientation is 0.05 to 0.1, and the total occupancy of these orientations is 0.25 force to 0.5, and the balance Is an aluminum material characterized by having excellent plate formability composed of crystal grains having other crystal orientations.
[4] 30mmの張出し高さで張出し表面上に割れを生じない板成形性を有し、且つ、へ ム曲げ性における曲げ表面上の割れが生じな 、範囲が、曲げ半径 Z板厚の比で 0. 5以下のヘム曲げ性を有することを特徴とする請求項 1または 2に記載のアルミニウム 材料。  [4] It has a plate formability that does not cause cracks on the overhanging surface at an overhanging height of 30 mm, and there is no cracking on the bending surface in the hem bendability. The aluminum material according to claim 1 or 2, wherein the aluminum material has a hemmability of 0.5 or less.
[5] 50mmの張出し高さで張出し表面上に割れを生じない板成形性を有し、且つ、へ ム曲げ性における曲げ表面上の割れが生じな 、範囲が、曲げ半径 Z板厚の比で 0. 25以下のヘム曲げ性を有することを特徴とする請求項 1または 2に記載のアルミ-ゥ ム材料。  [5] It has a plate formability that does not cause cracks on the extended surface at an extended height of 50 mm, and does not generate cracks on the bent surface in the hem bendability. The range is the ratio of the bending radius to the Z plate thickness. The aluminum material according to claim 1 or 2, which has a hem bendability of 0.25 or less.
[6] 前記 ノレミニクム材料力 Mgを 0. 25力ら 1. 0mass%, Siを 0. 5力ら 1. 3mass% [6] Noreminikum material strength Mg: 0.25 force, etc. 1.0 mass%, Si: 0.5 force, etc. 1.3 mass%
、残部 A1と不可避的不純物とからなるアルミニウム合金であることを特徴とする請求 項 1から 5のいずれか 1項に記載のアルミニウム材料。 And an aluminum alloy comprising the balance A1 and inevitable impurities. Item 6. The aluminum material according to any one of Items 1 to 5.
[7] 前記 ノレミニクム材料力 Mgを 0. 25力ら 1. Omass%, Siを 0. 5力ら 1. 3mass% [7] Noreminikum material strength Mg: 0.25 force, etc. 1. Omass%, Si: 0.5 force, etc. 1.3 mass%
、 Cu, Zn, Mnを lmass%以下、 Feを 0. 40mass%以下、 Ti、 Crを 0. 1111&55%以 下含み、残部 A1と不可避的不純物とからなるアルミニウム合金であることを特徴とす る請求項 1から 5のいずれ力 1項に記載のアルミニウム材料。 It is characterized by being an aluminum alloy containing Cu, Zn, Mn in lmass% or less, Fe in 0.440 mass% or less, Ti and Cr in 0.111 & 55% or less, and the balance A1 and inevitable impurities. The aluminum material according to any one of claims 1 to 5.
[8] 前記 ノレミニクム材料力 Mgを 0. 40力ら 1. Omass%, Siを 0. 5力ら 1. 3mass% [8] Noreminikum material strength Mg 0.40 force, etc. 1. Omass%, Si 0.5 force, etc. 1.3 mass%
、 Cu, Mnを lmass%以下、 ZnO. 3mass%以下、 Feを 0. 20mass%以下、 Ti、 Cr を 0. lmass%以下含み、残部 Alと不可避的不純物と力もなるアルミニウム合金であ ることを特徴とする請求項 1から 5のいずれ力 1項に記載のアルミニウム材料。 Cu, Mn is less than lmass%, ZnO. Less than 3 mass%, Fe is less than 0.20 mass%, Ti and Cr are less than 0. lmass%, and the balance is Al and inevitable impurities and power. The aluminum material according to any one of claims 1 to 5, wherein the force is one.
[9] 前記 ノレミニクム材料力 Mgを 0. 25力ら 1. Omass%, Siを 0. 5力ら 1. 3mass% [9] Noreminikum material strength Mg: 0.25 force, etc. 1. Omass%, Si: 0.5 force, etc. 1.3 mass%
、 Cu, Zn, Mnを lmass%以下、 Feを 0. 40mass%以下、 Ti、 Crを 0. 1111&55%以 下含み、さらに V, Zrを 0. 20mass%以下含み、残部 A1と不可避的不純物と力 なる アルミニウム合金であることを特徴とする請求項 1から 5のいずれか 1項に記載のアル ミニゥム材料。 Cu, Zn, Mn is contained in lmass% or less, Fe is contained in 0.40 mass% or less, Ti and Cr are contained in 0.111 & 55% or less, V and Zr are contained in 0.220 mass% or less, and the remainder is A1 and inevitable impurities. The aluminum material according to any one of claims 1 to 5, wherein the aluminum material is a strong aluminum alloy.
[10] 前記アルミニウム材料が、 Mgを 0. 40力ら 1. Omass%、 Siを 0. 5力ら 1. 3mass% 、 Cu, Mnを lmass%以下、 ZnO. 3mass%以下、 Feを 0. 20mass%以下、 Ti、 Cr を 0. lmass%以下含み、さらに V, Zrを 0. lmass%以下含み、残部 A1と不可避的 不純物と力 なるアルミニウム合金であることを特徴とする請求項 1から 5のいずれか 1項に記載のアルミニウム材料。  [10] The aluminum material is Mg 0.44 force 1. Omass%, Si 0.5 force 1.3 Cu, Mn lmass% or less, ZnO 3 mass% or less, Fe 0. 6. An aluminum alloy containing 20 mass% or less, containing Ti or Cr in an amount of 0.1 lmass% or less, further containing V or Zr in an amount of 0.1 lmass% or less, and remaining A1 and unavoidable impurities. The aluminum material according to any one of 1.
[11] 請求項 4または請求項 5に記載のアルミニウム材料を用いた自動車部材。 [11] An automobile member using the aluminum material according to claim 4 or 5.
[12] 請求項 6〜10の 、ずれか 1項に記載のアルミニウム材料を用いた自動車部材。 [12] An automobile member using the aluminum material according to any one of claims 6 to 10.
PCT/JP2006/323861 2005-04-19 2006-11-29 High-formability aluminum material WO2007111002A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007535737A JP4158944B2 (en) 2005-04-19 2006-11-29 High formability aluminum material
US12/294,833 US20100247369A1 (en) 2005-04-19 2006-11-29 Aluminum material with high formability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-90454 2006-03-29
JP2006090454A JP2006322064A (en) 2005-04-19 2006-03-29 High moldability aluminum material

Publications (1)

Publication Number Publication Date
WO2007111002A1 true WO2007111002A1 (en) 2007-10-04

Family

ID=38540937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323861 WO2007111002A1 (en) 2005-04-19 2006-11-29 High-formability aluminum material

Country Status (1)

Country Link
WO (1) WO2007111002A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144279A (en) * 2008-02-01 2008-06-26 Furukawa Electric Co Ltd:The Aluminum material having high moldability
WO2013093686A1 (en) 2011-12-20 2013-06-27 Koninklijke Philips Electronics N.V. Apparatus and method for monitoring a sleeping person
CN113927973A (en) * 2021-09-30 2022-01-14 江西睿捷新材料科技有限公司 External packing material for high-depth-of-penetration battery device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002079533A1 (en) * 2001-03-28 2002-10-10 Sumitomo Light Metal Industries, Ltd. Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
JP2003268475A (en) * 2002-03-12 2003-09-25 Sky Alum Co Ltd Aluminum alloy sheet for forming, and manufacturing method therefor
JP2005139530A (en) * 2003-11-10 2005-06-02 Furukawa Sky Kk Method of producing aluminum alloy sheet for forming
JP2005256053A (en) * 2004-03-10 2005-09-22 Kobe Steel Ltd Aluminum alloy sheet having excellent bending workability and press formability
JP2005273003A (en) * 2004-03-22 2005-10-06 Hyundai Motor Co Ltd Production method of aluminum-magnesium-silicon alloy sheet suitable for flat hemming
JP2006219763A (en) * 1998-09-02 2006-08-24 Kobe Steel Ltd Al-Mg BASED ALLOY SHEET WITH GOOD PRESS FORMABILITY
JP2006257506A (en) * 2005-03-17 2006-09-28 Kobe Steel Ltd Aluminum alloy sheet having excellent extension flange formability and bending workability and method for producing the same
JP2006322064A (en) * 2005-04-19 2006-11-30 Furukawa Electric Co Ltd:The High moldability aluminum material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219763A (en) * 1998-09-02 2006-08-24 Kobe Steel Ltd Al-Mg BASED ALLOY SHEET WITH GOOD PRESS FORMABILITY
WO2002079533A1 (en) * 2001-03-28 2002-10-10 Sumitomo Light Metal Industries, Ltd. Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
JP2003268475A (en) * 2002-03-12 2003-09-25 Sky Alum Co Ltd Aluminum alloy sheet for forming, and manufacturing method therefor
JP2005139530A (en) * 2003-11-10 2005-06-02 Furukawa Sky Kk Method of producing aluminum alloy sheet for forming
JP2005256053A (en) * 2004-03-10 2005-09-22 Kobe Steel Ltd Aluminum alloy sheet having excellent bending workability and press formability
JP2005273003A (en) * 2004-03-22 2005-10-06 Hyundai Motor Co Ltd Production method of aluminum-magnesium-silicon alloy sheet suitable for flat hemming
JP2006257506A (en) * 2005-03-17 2006-09-28 Kobe Steel Ltd Aluminum alloy sheet having excellent extension flange formability and bending workability and method for producing the same
JP2006322064A (en) * 2005-04-19 2006-11-30 Furukawa Electric Co Ltd:The High moldability aluminum material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144279A (en) * 2008-02-01 2008-06-26 Furukawa Electric Co Ltd:The Aluminum material having high moldability
WO2013093686A1 (en) 2011-12-20 2013-06-27 Koninklijke Philips Electronics N.V. Apparatus and method for monitoring a sleeping person
CN113927973A (en) * 2021-09-30 2022-01-14 江西睿捷新材料科技有限公司 External packing material for high-depth-of-penetration battery device

Similar Documents

Publication Publication Date Title
JP5882380B2 (en) Manufacturing method of aluminum alloy sheet for press forming
JP4495623B2 (en) Aluminum alloy plate excellent in stretch flangeability and bending workability and method for producing the same
KR20190065485A (en) High-strength 6xxx aluminum alloys and methods of making the same
EP2157200A1 (en) Al-Mg-Si aluminum alloy extruded product exhibiting excellent fatigue strength and impact fracture resistance
CN105008563A (en) Aluminium alloy for producing semi-finished products or components for motor vehicles, method for producing an aluminium alloy strip consisting of this aluminium alloy, and an aluminium alloy strip and use for same
JP4158944B2 (en) High formability aluminum material
JP2015532679A (en) Highly formable intergranular corrosion-resistant AlMg strip
JP4057199B2 (en) Al-Mg-Si alloy plate
JP2006257505A (en) Aluminum alloy sheet having excellent extension flange formability
JP5368968B2 (en) Aluminum alloy plate for heat insulator and manufacturing method thereof
JP3833574B2 (en) Aluminum alloy sheet with excellent bending workability and press formability
JP2004250738A (en) Al-Mg BASED ALLOY SHEET
WO2007111002A1 (en) High-formability aluminum material
JP4515363B2 (en) Aluminum alloy plate excellent in formability and method for producing the same
JP4865174B2 (en) Manufacturing method of aluminum alloy sheet with excellent bending workability and drawability
JP2003321754A (en) Method for manufacturing aluminum alloy sheet with excellent bendability
JP4867338B2 (en) Ultra-high strength steel sheet and method for manufacturing the same
JP6585436B2 (en) Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof
JP2019143206A (en) Magnesium alloy and manufacturing method of magnesium alloy
KR101895558B1 (en) Cu-Ti-based copper alloy sheet material and method of manufacturing same
JP4116956B2 (en) Al alloy plate with excellent bending workability
JP2001262265A (en) Hot rolling stock of high formability aluminum alloy sheet
JP4238019B2 (en) Aluminum alloy panel for flat hem processing
JP3766334B2 (en) Aluminum alloy plate with excellent bending workability
JP2003129156A (en) Al ALLOY SHEET SUPERIOR IN FORMABILITY FOR STRETCH FLANGE AND MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007535737

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06833664

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12294833

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833664

Country of ref document: EP

Kind code of ref document: A1