JP2005273003A - Production method of aluminum-magnesium-silicon alloy sheet suitable for flat hemming - Google Patents

Production method of aluminum-magnesium-silicon alloy sheet suitable for flat hemming Download PDF

Info

Publication number
JP2005273003A
JP2005273003A JP2004269009A JP2004269009A JP2005273003A JP 2005273003 A JP2005273003 A JP 2005273003A JP 2004269009 A JP2004269009 A JP 2004269009A JP 2004269009 A JP2004269009 A JP 2004269009A JP 2005273003 A JP2005273003 A JP 2005273003A
Authority
JP
Japan
Prior art keywords
orientation
magnesium
alloy sheet
silicon alloy
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004269009A
Other languages
Japanese (ja)
Inventor
Seung Hyun Hong
承 賢 洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Original Assignee
Hyundai Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co filed Critical Hyundai Motor Co
Publication of JP2005273003A publication Critical patent/JP2005273003A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B5/00Accessories or details specially adapted for hand carts
    • B62B5/06Hand moving equipment, e.g. handle bars
    • B62B5/061Hand moving equipment, e.g. handle bars both ends or periphery of cart fitted with handles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method of an alloy sheet suitable for flat hemming, whereby cracks in a hem part can be prevented at manufacturing of a car body component and quality of product appearance can be ensured. <P>SOLUTION: The production method relates to a rolled sheet of an AA6000-series aluminum alloy comprising silicon and magnesium as essential alloying components. The rolled sheet is the aluminum alloy sheet which is capable of flat hemming, is excellent in moldability and has a volume percentage of cube system orientation being ≥35%. The alloy sheet is produced by the production method wherein an ingot is subjected to hot-rolling at a temperature of ≥300°C and ≤350°C to achieve a volume percentage of RW orientation being <10%, subsequently to cold-rolling and finally to T4 heat-treatment to obtain a property suitable for flat hemming. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フラットヘムの可能なAA6000系アルミニウム−マグネシウム−シリコン合金板材の製造方法に関するものであって、さらに詳細には、成形性を向上させてフラットヘムを可能にすることにより、車両素材に対する適用の幅を広めることができる、AA6000系アルミニウム−マグネシウム−シリコン合金板材の製造方法に関するものである。   The present invention relates to a method for producing an AA6000-based aluminum-magnesium-silicon alloy plate material capable of flat hem, and more specifically, by improving formability and enabling flat hem, The present invention relates to a method for producing an AA6000 series aluminum-magnesium-silicon alloy sheet that can broaden the range of application.

一般に、自動車用外板としては、成形性、形状凍結性(プレス成形後、スプリングバックが少ないか生じないため寸法精度が高い性質)、耐デント性、耐食性及び優れた表面品質などが要求される。   In general, automotive outer panels are required to have formability, shape freezing properties (highly dimensional accuracy due to little or no springback after press molding), dent resistance, corrosion resistance, and excellent surface quality. .

従来、自動車外板には、AA5000系アルミニウム−マグネシウム合金板材が適用されてきたが、成形後強度向上の効果が期待できなくて、また表面品質がよくないため、最近は、AA6000系アルミニウム−マグネシウム−シリコン合金板材の適用がだんだん増えている傾向にある。   Conventionally, AA5000 series aluminum-magnesium alloy sheet materials have been applied to automobile outer plates. However, since the effect of improving strength after molding cannot be expected and the surface quality is not good, AA6000 series aluminum-magnesium has recently been used. -The application of silicon alloy sheets tends to increase.

この合金は、塗装焼付硬化性に優れており、その結果高強度が得られるため、薄肉化及びより一層の軽量化が期待できるという長所があって、様々な物性改良が試みられている(特許文献1、特許文献2)。   This alloy is excellent in paint bake hardenability, and as a result, high strength can be obtained. Therefore, it has an advantage that it can be expected to be thinner and lighter, and various physical property improvements have been attempted (patents). Literature 1, Patent Literature 2).

フードなどの車体部品は、外板と内板との機械的結合よりなる。
車体外板の端部に適切な長さのフランジ(flange)を設け成形して、この外板の内側に内板を固定した後、外板のフランジを折り曲げて内板との機械的な接合をするようになる。このような過程をヘム(hemming)という。
Body parts such as a hood are formed by mechanical coupling of an outer plate and an inner plate.
A flange having an appropriate length is formed at the end of the outer plate of the vehicle body, the inner plate is fixed inside the outer plate, and then the flange of the outer plate is bent and mechanically joined to the inner plate. Come to do. Such a process is called hemming.

ヘム工程において、曲げ中心半径(r)と板厚(t)との比(r/t)が小さくて加工条件が厳しいフラットヘム(180°曲げ加工)が行われるが、AA6000系アルミニウム−マグネシウム−シリコン合金は、AA5000系合金に比べ曲げ加工性が劣るため、プレス加工度の大きい部分(変形率が大きく加えられた部分)では、フラットヘムを行う場合、不良率が著しく増加する。   In the hem process, flat hem (180 ° bending) in which the ratio (r / t) between the bending center radius (r) and the plate thickness (t) is small and the processing conditions are severe is performed, but AA6000 series aluminum-magnesium- Since the silicon alloy is inferior in bending workability compared to the AA5000 series alloy, the defective rate is remarkably increased when flat hem is performed in a portion where the degree of press work is large (a portion where a large deformation rate is added).

これを解決するために、設計的にカールヘム(Curl hemming)を導入し、フラットヘム部位を代替してはいるが、これは、製品デザイン及び設計外観を損なうと共に、車体部品間の段差の問題などがあって、結果的に商品性を落としてしまうことになる。   In order to solve this problem, the curl hem (Curl hemming) is introduced in the design, and the flat hem part is replaced, but this impairs the product design and the appearance of the design, and the problem of the step between the car body parts. As a result, the merchantability is reduced.

特開平5−247610号公報JP-A-5-247610 特開平5−279822号公報JP-A-5-279822 A.A.Ridha and W.B.Hutchinson、Acta metal、Vol.30、pp.1929−1939、1982A. A. Ridha and W.M. B. Hutchinson, Acta metal, Vol. 30, pp. 1929-1939, 1982

本発明は、前記のような問題点に鑑みて案出したものであって、自動車外板用AA6000系アルミニウム−マグネシウム−シリコン合金板材の製造時、外板のフラットヘム性に影響を与える立方晶方位の発達を誘導するために、RW方位(cube orientation)の発達を抑えた熱間圧延法を行った後、冷間圧延及びT4熱処理を行うことにより、車体部品の製作時、ヘム部のクラック発生を抑えることができると共に外観品質を確保することができる、フラットヘムの可能なアルミニウム−マグネシウム−シリコン合金板材の製造方法を提供することにその目的がある。   The present invention has been devised in view of the above-described problems, and has a cubic effect that affects the flat heme property of an outer plate during the production of an AA6000 series aluminum-magnesium-silicon alloy plate for an automobile outer plate. In order to induce the development of the orientation, after performing the hot rolling method that suppresses the development of the RW orientation (cube orientation), by performing cold rolling and T4 heat treatment, cracks in the hem part are produced during the production of the body parts. It is an object to provide a method for producing an aluminum-magnesium-silicon alloy plate material capable of flat hem, which can suppress generation and ensure appearance quality.

このような目的は、アルミニウム−マグネシウム−シリコン合金板材の熱間圧延時、300℃以上350℃以下の温度で圧延を行いRW方位の発達を体積分率10%未満に抑えて、さらに冷間圧延及びT4熱処理を行うという本発明の方法により達成できる。   The purpose is to perform cold rolling at a temperature of 300 ° C. or higher and 350 ° C. or lower during hot rolling of an aluminum-magnesium-silicon alloy sheet to further suppress the development of the RW orientation to less than 10%. And the T4 heat treatment can be achieved by the method of the present invention.

前記目的を達成するために、本発明は、AA6000系アルミニウム−マグネシウム−シリコン合金板材の製造方法において、アルミニウム−マグネシウム−シリコン合金板材の熱間圧延時、300℃以上350℃以下の温度条件で圧延を行い、ヘム工程時フラットヘムを可能にしたことを特徴とずる。   In order to achieve the above object, the present invention provides a method for producing an AA6000 series aluminum-magnesium-silicon alloy sheet, which is rolled at a temperature of 300 ° C. to 350 ° C. during hot rolling of the aluminum-magnesium-silicon alloy sheet. It is characterized by enabling flat hem during the hem process.

前記アルミニウム−マグネシウム−シリコン合金板材を300℃以上350℃以下の温度条件で熱間圧延した後、冷間圧延及びT4熱処理を行う工程をさらに含むことを特徴とする。   The aluminum-magnesium-silicon alloy sheet is further subjected to cold rolling and T4 heat treatment after hot rolling under a temperature condition of 300 ° C. or higher and 350 ° C. or lower.

本発明によると、AA6000系アルミニウム−マグネシウム−シリコン合金板材の製造時、熱間圧延の段階において300℃以上350℃以下の温度で圧延を行い、RW方位の発達を体積分率10%未満に抑えて、その後、冷間圧延及びT4熱処理を通じて立方晶方位の体積分率を35%以上に発達させることにより、成形性を向上させてフラットヘムが可能になる。   According to the present invention, during the production of the AA6000 series aluminum-magnesium-silicon alloy sheet, rolling is performed at a temperature of 300 ° C. or higher and 350 ° C. or lower in the hot rolling stage, and the development of the RW orientation is suppressed to less than 10%. Then, by developing the volume fraction of the cubic orientation to 35% or more through cold rolling and T4 heat treatment, the formability is improved and flat hem becomes possible.

これにより、アルミニウムを適用した軽量化を通じて燃費向上及び排気ガスの低減が可能になると共に、さらにはデザイン及び設計自由度を高め製品間の段差問題を解決し、商品性を向上させることができる。   As a result, it is possible to improve fuel efficiency and reduce exhaust gas through weight reduction by applying aluminum, and further improve the design and design freedom to solve the step problem between products and improve the merchantability.

本発明者は、AA6000系アルミニウム−マグネシウム−シリコン合金の成形性、特に曲げ加工性をより一層改善するための方法について鋭意研究した結果、AA6000系アルミニウム合金において曲げ加工性は、素材の集合組織(texture)の立方晶方位(Cube orientation、{001}<100>)の集積度が高いほど向上されることを見出した。   As a result of intensive research on the method for further improving the formability of the AA6000 series aluminum-magnesium-silicon alloy, particularly the bending workability, the present inventors have found that the bending workability of the AA6000 series aluminum alloy is the texture of the material ( It was found that the higher the degree of integration of the texture (cube orientation, {001} <100>), the higher the degree of integration.

そして、前記特性を最適化するためには、熱間圧延時、摩擦に影響を与える温度を最適化して立方晶方位の発達を阻害するRW方位(Rotated Cube orientation、{001}<110>)を抑えることが重要であるということを見出した。   And in order to optimize the said characteristic, the RW direction (Rotated Cube orientation, {001} <110>) which optimizes the temperature which affects friction at the time of hot rolling, and inhibits the development of a cubic crystal orientation. I found out that it is important to suppress it.

本発明は、前述の内容に基づいたものであって、その目的は、フラットヘムの可能な優れた成形性を有するAA6000系アルミニウム−マグネシウム−シリコン合金板材の製造方法を提供することにある。   This invention is based on the above-mentioned content, The objective is to provide the manufacturing method of the AA6000 type | system | group aluminum-magnesium-silicon alloy board | plate material which has the outstanding moldability in which flat hem is possible.

通常、AA6000系アルミニウム−マグネシウム−シリコン合金板材は、熱間圧延、冷間圧延及びT4熱処理工程を経て生産されて、最終製品の集合組織は、銅方位、ゴス(Goss)方位、P方位及び立方晶方位から構成された結晶学的な集合組織が発達するようになる。
これらの相対的な体積分率が板材の成形性に影響を与えるようになる。
In general, AA6000 series aluminum-magnesium-silicon alloy sheet is produced through hot rolling, cold rolling and T4 heat treatment process, and the texture of the final product is copper orientation, Goss orientation, P orientation and cubic. A crystallographic texture composed of crystal orientations develops.
These relative volume fractions affect the formability of the plate material.

圧延により生産した板材において結晶の方位は、圧延板材面と圧延方向とにより定義する。即ち、圧延面と平行するように置かれた結晶の面と、圧延方向と平行するように置かれた結晶の方向により集合組織を示すことができる。   In the plate material produced by rolling, the crystal orientation is defined by the rolled plate surface and the rolling direction. That is, the texture can be shown by the crystal plane placed parallel to the rolling surface and the crystal orientation placed parallel to the rolling direction.

特定な面をミラー指数{hkl}で表し、特定な方向を<uvw>で表す。   A specific surface is represented by a Miller index {hkl}, and a specific direction is represented by <uvw>.

従って、銅方位:{112}<111>、ゴス(Goss)方位:{011}<100>、黄銅方位:{110}<112>、S方位:{123}<634>、立方晶方位:{001}<100>、RW方位:{001}<110>などが代表的な方位である。   Therefore, copper orientation: {112} <111>, Goss orientation: {011} <100>, brass orientation: {110} <112>, S orientation: {123} <634>, cubic orientation: { 001} <100>, RW orientation: {001} <110>, etc. are typical orientations.

冷間圧延後、板材は、巨視的に銅方位+黄銅方位+S方位から構成されて、T4熱処理後、立方晶方位+S方位+黄銅方位に集合組織が変わるようになる。   After cold rolling, the plate material is macroscopically composed of copper orientation + brass orientation + S orientation, and after T4 heat treatment, the texture changes to cubic orientation + S orientation + brass orientation.

また、弱いゴス(Goss)方位が発達するようになる。   Also, a weak Goss orientation develops.

この中で、板材の成形性に最も大きい影響を及ぼす方位は、立方晶方位である。   Among these, the orientation that has the greatest influence on the formability of the plate material is the cubic orientation.

立方晶方位の発達を抑えるためには、現在の生産工程以外の特別な生産工程、例えば、せん断圧延などを導入しなければならない。   In order to suppress the development of the cubic orientation, a special production process other than the current production process, such as shear rolling, must be introduced.

フラットヘム加工性を向上させるためには、立方晶方位を発達させればよいが、S方位及びP方位の相対的な発達により立方晶方位の発達が抑制される場合、フラットヘム加工性が劣るようになるため、S方位及びP方位の発達を抑えなければならない。   In order to improve the flat heme workability, the cubic orientation should be developed. However, when the development of the cubic orientation is suppressed by the relative development of the S and P orientations, the flat heme workability is poor. Therefore, the development of the S direction and the P direction must be suppressed.

S方位は、冷間圧延後に発達するようになる方位であって、発達を抑えることができなく、P方位は、マグネシウム及びシリコンの添加により生成される方位であって、これもまた発達を抑えることはできない。   The S orientation is an orientation that develops after cold rolling and cannot be suppressed, and the P orientation is an orientation generated by the addition of magnesium and silicon, which also suppresses development. It is not possible.

しかしながら、T4熱処理の間、立方晶方位の発達を促進させると、既に発達されていたS方位とP方位とが立方晶方位の発達及び成長により、S方位及びP方位を示す結晶粒の分率を減少(発達を抑制)させることができる。   However, when the development of the cubic orientation is promoted during the T4 heat treatment, the fraction of the crystal grains showing the S and P orientations due to the development and growth of the cubic orientation of the already developed S and P orientations. Can be reduced (development is suppressed).

立方晶方位を発達させるためには、冷間圧延過程で銅状集合組織を発達させればよい。
銅状集合組織が熱処理の途中、立方晶方位に成長するからである。
これは非特許文献1により確認できる。
In order to develop the cubic orientation, a copper-like texture may be developed in the cold rolling process.
This is because the copper-like texture grows in the cubic orientation during the heat treatment.
This can be confirmed by Non-Patent Document 1.

しかし、銅状集合組織が発達する場合、熱処理後S方位の残存を防ぐことができないため、立方晶方位の発達は相対的に弱くなる。
これは、最終的にフラットヘム性を落としてしまう。
However, when a copper-like texture develops, the remaining of the S orientation after heat treatment cannot be prevented, and therefore the development of the cubic orientation becomes relatively weak.
This ultimately degrades the flat hem property.

本発明では、冷間圧延後銅状集合組織が発達し、T4熱処理後立方晶方位が発達できて、T4熱処理後S方位の発達が抑えられて、立方晶方位の発達が体積分率で35%以上になれるようにするために、熱間圧延時、RW方位の発達を抑える方法を提示する。   In the present invention, a copper-like texture is developed after cold rolling, a cubic orientation can be developed after the T4 heat treatment, the development of the S orientation is suppressed after the T4 heat treatment, and the development of the cubic orientation is 35% by volume. In order to be able to be more than%, a method for suppressing the development of the RW orientation during hot rolling is presented.

RW方位は、熱間圧延などのように、摩擦などによりせん断変形(shear deformation)が加えられる場合発達する方位であって、この方位は、その後冷間圧延工程を行うと、銅状方位の中でS方位の発達を加速化させる特徴があり、再結晶熱処理時(T4熱処理時)立方晶方位の発達を抑える特徴があるため、これの発達を前もって制御することにより、所望の立方晶方位の発達をもたらすことができる。   The RW orientation is an orientation that develops when shear deformation is applied due to friction, such as hot rolling, and this orientation is the center of the copper-like orientation when the cold rolling process is performed thereafter. Since there is a feature that accelerates the development of the S orientation, and there is a feature that suppresses the development of the cubic orientation at the time of recrystallization heat treatment (at the time of T4 heat treatment), by controlling this development in advance, Can bring about development.

本発明の特徴は、通常的に350〜400℃の温度で行う熱間圧延法の代わりに、300℃以上350℃以下の温度で熱間圧延を行って、素材と圧延ロールとの摩擦を減らし、その結果RW方位の発達を抑え、その後冷間圧延及びT4熱処理工程を通じて生産したAA6000系アルミニウム−マグネシウム−シリコン合金板材において立方晶方位の体積分率が35%以上となるようにして、これによりフラットヘムの可能な成形性に優れた素材の製造方法を提供することである。   The feature of the present invention is that, instead of the hot rolling method usually performed at a temperature of 350 to 400 ° C., the hot rolling is performed at a temperature of 300 ° C. or higher and 350 ° C. or lower to reduce the friction between the material and the rolling roll. As a result, the development of the RW orientation is suppressed, and the volume fraction of the cubic orientation is 35% or more in the AA6000 series aluminum-magnesium-silicon alloy sheet produced through the cold rolling and the T4 heat treatment process. The object is to provide a method for producing a material excellent in moldability capable of flat hem.

以下、実施例を通じて本発明を具体的に説明する。   Hereinafter, the present invention will be described in detail through examples.

一般的なDC鋳造法を使用し、アルミニウム−マグネシウム−シリコン合金を厚さ120mmに鋳造した後、摂氏480℃で48時間均質化処理を行った後、5mmまで熱間圧延した。   Using a general DC casting method, an aluminum-magnesium-silicon alloy was cast to a thickness of 120 mm, homogenized at 480 ° C. for 48 hours, and then hot-rolled to 5 mm.

熱間圧延の開始温度は、300℃以上350℃以下の条件で実施し、巻取温度は、300℃に固定し発明の範囲を限定した。   The hot rolling start temperature was 300 ° C. to 350 ° C., and the coiling temperature was fixed at 300 ° C. to limit the scope of the invention.

この素材を冷間圧延して1.0mmにして、その後の熱処理は、熔体化処理及び急冷処理をするT4熱処理条件に従った。   This material was cold-rolled to 1.0 mm, and the subsequent heat treatment was in accordance with T4 heat treatment conditions for melting and quenching.

製造された板材を使用し10%引張変形後、フラットヘムを行ってヘム断面部のクラックの発生有無を確認した。   The manufactured plate material was used, and after 10% tensile deformation, flat hem was performed to confirm the presence or absence of cracks in the hem cross section.

図1と図2に、本発明により製造した試片と、従来の生産方法により製造した試片を使用してフラットヘムを行った場合のクラック発生の有無を表示した。   In FIG. 1 and FIG. 2, the presence or absence of the crack generation | occurrence | production when performing flat hem using the test piece manufactured by this invention and the test piece manufactured by the conventional production method was displayed.

図1と図2に、熱間圧延及びT4熱処理後の方位分布関数を示し、RW方位と立方晶方位の発達程度を比較した。   FIG. 1 and FIG. 2 show the orientation distribution functions after hot rolling and T4 heat treatment, and compared the degree of development of the RW orientation and the cubic orientation.

図1と図2から、本発明の方法(図1)により製造した場合、従来の方法(図2)に比べ、RW方位の発達は抑えられて、立方晶方位が2倍以上発達したことを確認することができる。   From FIG. 1 and FIG. 2, when manufactured by the method of the present invention (FIG. 1), the development of the RW orientation is suppressed compared to the conventional method (FIG. 2), and the cubic orientation has developed more than twice. Can be confirmed.

方位分布関数は、集合組織の発達程度を定量的に分析することができて、等高線は、集合組織の発達程度を示したものであって、等高線が高いほど発達程度が高いことを意味する。図1から分かるように、立方晶方位が発達する場合、フラットヘムが可能になることが分かる。   The orientation distribution function can quantitatively analyze the degree of texture development, and the contour line indicates the degree of texture development. The higher the contour line, the higher the degree of development. As can be seen from FIG. 1, it can be seen that flat hems are possible when the cubic orientation develops.

しかし、比較例の通常的な方法により製造した図2のサンプルの場合、フラットヘムの途中、クラックが発生したことが分かる。   However, in the case of the sample of FIG. 2 manufactured by the usual method of the comparative example, it can be seen that cracks occurred during the flat hem.

表1は、本発明及び比較方法を通じて本発明の効果を調べたものである。   Table 1 shows the effects of the present invention through the present invention and the comparative method.

本発明において、熱間圧延は、表1に示した通りであり、その後の工程は、既存の方法である冷間圧延、T4熱処理を経た。   In this invention, hot rolling is as having shown in Table 1, and the subsequent process passed through cold rolling and T4 heat processing which are the existing methods.

従来の方法は、450℃で熱間圧延を開始して310℃で巻取する。   The conventional method starts hot rolling at 450 ° C. and winds at 310 ° C.

時効硬化効果を無くすために、本発明及び比較方法に対し同時にT4熱処理を行った。   In order to eliminate the age hardening effect, T4 heat treatment was simultaneously performed on the present invention and the comparative method.

表1から分かるように、本発明から提供する300℃以上350℃以下の温度区間で熱間圧延を行った場合、RW方位の体積分率が35%以上となり、フラットヘムの後クラックの発生が防止される。   As can be seen from Table 1, when hot rolling is performed in the temperature range of 300 ° C. or more and 350 ° C. or less provided by the present invention, the volume fraction of the RW orientation is 35% or more, and the occurrence of cracks after flat hem occurs. Is prevented.

これは、本発明から提供した温度区間では板材と圧延ロールとの付着摩擦が減少し、せん断変形が減らされて、RW方位の発達が10以下に抑えられるためである。   This is because, in the temperature section provided by the present invention, the adhesion friction between the plate material and the rolling roll is reduced, the shear deformation is reduced, and the development of the RW orientation is suppressed to 10 or less.

しかし、従来の方法により行った場合、RW方位の発達が体積分率28%であって、その後立方晶方位の発達が微弱で、フラットヘム時、クラックが発生したことが分かる。   However, when the conventional method is used, it can be seen that the development of the RW orientation is 28%, the development of the cubic orientation is weak thereafter, and cracks occur during flat hem.

また、実施例10の場合、温度区間で板破断が生じ、その後の工程の効果を調べることができなかった。   Moreover, in the case of Example 10, the plate breakage occurred in the temperature section, and the effect of the subsequent process could not be examined.

本発明から提供した温度範囲外の区間である実施例7〜9の場合、熱間圧延の開始時、素材と圧延ロールとの付着摩擦によりRW方位の発達が加速化されて、これにより最終製品でヘム時クラックが発生した。   In the case of Examples 7 to 9, which are sections outside the temperature range provided by the present invention, at the start of hot rolling, the development of the RW orientation is accelerated by the adhesion friction between the material and the rolling roll, thereby the final product. At the hem, cracks occurred.

実施例11の場合、熱間圧延時、付着摩擦の効果はなかったが、操業温度が低いことから、圧延パスが既存の8パスから13パスに増加し、製造原価の上昇を招来して、それにも拘わらず、立方晶方位の発達を誘導することができなかった。   In the case of Example 11, there was no effect of adhesion friction during hot rolling, but because the operation temperature was low, the rolling pass increased from the existing 8 passes to 13 passes, leading to an increase in manufacturing costs, Nevertheless, the development of cubic orientation could not be induced.

以上、実施例から分かるように、本発明によるとフラットヘム工程の可能な素材を生産することができるようになる。   As described above, as can be seen from the examples, according to the present invention, a material capable of a flat hem process can be produced.

以上で本発明に関する好ましい実施例を説明したが、本発明は前記実施例に限定されず、その技術的範囲内において、本発明の実施例から当該発明が属する技術分野で通常の知識を有する者により容易に変更され得るであろう。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments. Those skilled in the art to which the present invention belongs from the embodiments of the present invention within the technical scope thereof. Could be changed more easily.

本発明により製造したAA6000系アルミニウム−マグネシウム−シリコン合金板材の熱間圧延後の集合組織、最終製品の集合組織及びフラットヘム作業写真である。It is the texture after hot rolling of the AA6000 series aluminum-magnesium-silicon alloy sheet material manufactured by this invention, the texture of a final product, and a flat hem work photograph. 従来の方法により製造したAA6000系アルミニウム−マグネシウム−シリコン合金板材の熱間圧延後の集合組織、最終製品の集合組織及びフラットヘム作業写真である。It is the texture after hot rolling of the AA6000 series aluminum-magnesium-silicon alloy sheet material manufactured by the conventional method, the texture of the final product, and a flat hem work photograph.

Claims (2)

AA6000系アルミニウム−マグネシウム−シリコン合金板材の製造方法において、
アルミニウム−マグネシウム−シリコン合金板材の熱間圧延時、300℃以上350℃以下の温度条件で圧延を行い、ヘム工程時フラットヘムを可能にしたことを特徴とずる、フラットヘムの可能なアルミニウム−マグネシウム−シリコン合金板材の製造方法。
In the manufacturing method of AA6000 series aluminum-magnesium-silicon alloy sheet,
Aluminium-magnesium-silicon alloy sheet material that is capable of flat hem, characterized by being capable of flat hem during the hem process by rolling at a temperature of 300 ° C. to 350 ° C. during hot rolling of an aluminum-magnesium-silicon alloy sheet. -Manufacturing method of silicon alloy sheet.
前記アルミニウム−マグネシウム−シリコン合金板材を300℃以上350℃以下の温度条件で熱間圧延した後、冷間圧延及びT4熱処理を行う工程をさらに含むことを特徴とする、請求項1に記載のフラットヘムの可能なアルミニウム−マグネシウム−シリコン合金板材の製造方法。   2. The flat according to claim 1, further comprising a step of performing cold rolling and T4 heat treatment after hot rolling the aluminum-magnesium-silicon alloy sheet at a temperature of 300 ° C. to 350 ° C. 3. A method for producing an aluminum-magnesium-silicon alloy sheet capable of hemming.
JP2004269009A 2004-03-22 2004-09-15 Production method of aluminum-magnesium-silicon alloy sheet suitable for flat hemming Pending JP2005273003A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040019335A KR100600157B1 (en) 2004-03-22 2004-03-22 Manufacturing method of Al-Mg-Si alloy sheet which can flat hemming

Publications (1)

Publication Number Publication Date
JP2005273003A true JP2005273003A (en) 2005-10-06

Family

ID=34984927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004269009A Pending JP2005273003A (en) 2004-03-22 2004-09-15 Production method of aluminum-magnesium-silicon alloy sheet suitable for flat hemming

Country Status (3)

Country Link
US (1) US20050205177A1 (en)
JP (1) JP2005273003A (en)
KR (1) KR100600157B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111002A1 (en) * 2006-03-29 2007-10-04 The Furukawa Electric Co., Ltd. High-formability aluminum material
JPWO2007111002A1 (en) * 2005-04-19 2009-08-06 古河電気工業株式会社 High formability aluminum material
CN102560295A (en) * 2011-12-31 2012-07-11 浙江吉利汽车研究院有限公司 Thermal processing method for improving aluminum alloy stamping forming
CN104099498A (en) * 2014-08-12 2014-10-15 山东裕航特种合金装备有限公司 Method for producing super-wide aluminum alloy section bars for freight train bodies with ultra-equipment capacity
CN104099499A (en) * 2014-08-12 2014-10-15 山东裕航特种合金装备有限公司 Manufacturing method of 6082T6 aluminum alloy profile for rescue helicopter take-off and landing platform
CN104120312A (en) * 2014-08-12 2014-10-29 山东裕航特种合金装备有限公司 Manufacturing method of 6A02T651 aluminum alloy seam pipe for air separators

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015155911A1 (en) * 2014-04-09 2015-10-15 日本軽金属株式会社 High-strength aluminum alloy plate having exceptional bendability and shape fixability, and method for manufacturing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594509B1 (en) * 1992-10-23 1996-08-14 The Furukawa Electric Co., Ltd. Process for manufacturing Al-Mg alloy sheets for press forming
US5480498A (en) * 1994-05-20 1996-01-02 Reynolds Metals Company Method of making aluminum sheet product and product therefrom
US5913989A (en) * 1996-07-08 1999-06-22 Alcan International Limited Process for producing aluminum alloy can body stock
JP3693485B2 (en) * 1998-03-09 2005-09-07 日本軽金属株式会社 Manufacturing method of aluminum alloy base plate for lithographic printing plate
US6780259B2 (en) * 2001-05-03 2004-08-24 Alcan International Limited Process for making aluminum alloy sheet having excellent bendability
US6811625B2 (en) * 2002-10-17 2004-11-02 General Motors Corporation Method for processing of continuously cast aluminum sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007111002A1 (en) * 2005-04-19 2009-08-06 古河電気工業株式会社 High formability aluminum material
WO2007111002A1 (en) * 2006-03-29 2007-10-04 The Furukawa Electric Co., Ltd. High-formability aluminum material
CN102560295A (en) * 2011-12-31 2012-07-11 浙江吉利汽车研究院有限公司 Thermal processing method for improving aluminum alloy stamping forming
CN104099498A (en) * 2014-08-12 2014-10-15 山东裕航特种合金装备有限公司 Method for producing super-wide aluminum alloy section bars for freight train bodies with ultra-equipment capacity
CN104099499A (en) * 2014-08-12 2014-10-15 山东裕航特种合金装备有限公司 Manufacturing method of 6082T6 aluminum alloy profile for rescue helicopter take-off and landing platform
CN104120312A (en) * 2014-08-12 2014-10-29 山东裕航特种合金装备有限公司 Manufacturing method of 6A02T651 aluminum alloy seam pipe for air separators

Also Published As

Publication number Publication date
US20050205177A1 (en) 2005-09-22
KR100600157B1 (en) 2006-07-12
KR20050094181A (en) 2005-09-27

Similar Documents

Publication Publication Date Title
JP7321828B2 (en) High-strength 6xxx aluminum alloy and method for making same
JP4312819B2 (en) Aluminum alloy sheet with excellent ridging marks during molding
JP4495623B2 (en) Aluminum alloy plate excellent in stretch flangeability and bending workability and method for producing the same
JP2007247000A (en) Method for manufacturing aluminum alloy sheet having superior ridging-mark resistance in forming step
JP5148930B2 (en) Method for producing Al-Mg-Si aluminum alloy plate for press forming, and Al-Mg-Si aluminum alloy plate for press forming
JP4057199B2 (en) Al-Mg-Si alloy plate
JP2006257505A (en) Aluminum alloy sheet having excellent extension flange formability
JP2005273003A (en) Production method of aluminum-magnesium-silicon alloy sheet suitable for flat hemming
JP3438993B2 (en) Al-Mg based alloy sheet excellent in bending workability and method for producing the same
JP2008190022A (en) Al-Mg-Si-BASED ALLOY HOT ROLLED SHEET, AND METHOD FOR PRODUCING THE SAME
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JP2001262265A (en) Hot rolling stock of high formability aluminum alloy sheet
JP3749687B2 (en) Aluminum alloy plate and panel structure for bending
JP3749627B2 (en) Al alloy plate with excellent press formability
JP6585436B2 (en) Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof
JP6230142B1 (en) Aluminum alloy sheet for forming
JP2017210673A (en) Aluminum alloy sheet for press molding small in anisotropy of r value and manufacturing method therefor
JP2003129156A (en) Al ALLOY SHEET SUPERIOR IN FORMABILITY FOR STRETCH FLANGE AND MANUFACTURING METHOD THEREFOR
JP2008101239A (en) Method for manufacturing aluminum alloy sheet superior in bendability, and aluminum alloy sheet
JP2005105347A (en) Ferritic stainless steel sheet and manufacturing method therefor
JP4778395B2 (en) Aluminum alloy sheet with excellent stretch flangeability and high post-baking strength
JP4694770B2 (en) Aluminum alloy plate with excellent bending workability
WO2007111002A1 (en) High-formability aluminum material
JP4202894B2 (en) Mg-containing Al alloy
JP4588338B2 (en) Aluminum alloy sheet with excellent bending workability and press formability