JP2006322064A - High moldability aluminum material - Google Patents

High moldability aluminum material Download PDF

Info

Publication number
JP2006322064A
JP2006322064A JP2006090454A JP2006090454A JP2006322064A JP 2006322064 A JP2006322064 A JP 2006322064A JP 2006090454 A JP2006090454 A JP 2006090454A JP 2006090454 A JP2006090454 A JP 2006090454A JP 2006322064 A JP2006322064 A JP 2006322064A
Authority
JP
Japan
Prior art keywords
crystal
orientation
crystal grains
aluminum material
occupancy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006090454A
Other languages
Japanese (ja)
Inventor
Hideo Morimoto
秀夫 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2006090454A priority Critical patent/JP2006322064A/en
Priority to US12/294,833 priority patent/US20100247369A1/en
Priority to PCT/JP2006/323861 priority patent/WO2007111002A1/en
Publication of JP2006322064A publication Critical patent/JP2006322064A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum material having high hem bendability required upon assembling an automobile body sheet, an automobile component, a machine component or the like and excellent sheet moldability, e.g., in press molding upon body formation and enclosure formation, in which the hem bendability and sheet moldability can be made consistent by considering the influence of the crystal orientation distribution of the crystal grains on the hem moldability and sheet moldability. <P>SOLUTION: The aluminum material is composed of crystal grains composed of: Cube-oriented grains; Brass-oriented grains; Copper-oriented grains, and the balance other crystal-oriented grains. Regrading each occupancy ratio, the occupancy ratio of the Cube-oriented grains is 0.3 to 0.7; the occupancy ratio of Brass-oriented grains is 0.1 to 0.5; the occupancy ratio of the Copper-oriented crystal grains is ≤0.2; also, the total occupancy ratio of these crystal orientations is 0.4 to 1.0. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車ボディシート、自動車部品、機械部品などの組立時に要求される高度なヘム曲げ性およびボディ形成や筐体形成時のプレス成形などの板成形性に優れたアルミニウム材料に関する。   TECHNICAL FIELD The present invention relates to an aluminum material having excellent hem bendability required at the time of assembling automobile body sheets, automobile parts, machine parts, and the like, and plate formability such as press forming at the time of body formation or housing formation.

自動車は、ボディシートなどのアルミ化が進んでおり、アウター材にはベークハード性(塗装焼付時の加熱で析出硬化する性質)に優れ、塗装焼付後に高強度となる6000系(Al−Mg−Si系)アルミニウム合金が多用され、インナー材には絞り成形性に優れた5000系(Al−Mg系)アルミニウム合金が使用されている。
この6000系アルミニウム合金からなるアウター材は、通常インナー材とかしめて用いられるヘム曲げと呼ばれる曲げ加工性に優れることが要求されるが、6000系(Al−Mg−Si系合金板)は、このヘム曲げ加工性が劣り、特にベークハード性を高めるために高温で溶体化処理した材料では著しくこのヘム曲げ加工性が劣るという問題がある。
Automobiles are being made of aluminium such as body sheets. Outer materials are excellent in bake hardness (property that precipitates and hardens when heated during paint baking), and high strength after paint baking (6000 series) (Al-Mg- Si-based) aluminum alloys are frequently used, and 5000-based (Al-Mg-based) aluminum alloys having excellent drawability are used as the inner material.
The outer material made of this 6000 series aluminum alloy is required to be excellent in bending workability called hem bending, which is usually used by caulking with the inner material, but 6000 series (Al-Mg-Si based alloy plate) There is a problem that bending workability is inferior, and particularly in a material solution-treated at a high temperature in order to enhance the bake hardness, the hem bending workability is remarkably deteriorated.

更に、この6000系アルミニウム合金のアウター材には、自動車のデザインを決定するために制約の少ない板成形の一種であるプレス成形性が良いことも必要とされているが、一般に従来の鋼板や5000系アルミニウム合金板に比較してプレス成形性が劣り、自動車部品のリサイクル問題を考慮した使用材質の統合化を図る上で、その改善が望まれている。   Further, the outer material of the 6000 series aluminum alloy is required to have good press formability, which is a kind of plate forming with less restrictions in order to determine the design of an automobile. The press formability is inferior to that of aluminum-based aluminum alloy plates, and improvements are desired in order to integrate the materials used in consideration of the problem of recycling automobile parts.

このような状況において、曲げ加工性の向上には、アルミニウム合金板表面硬さを制御する方法(特許文献1参照)、結晶粒サイズや析出物サイズを制御する方法(例えば、特許文献2、3参照)、アルミニウム合金板表面の結晶方位を制御する方法(例えば、特許文献4、5参照)、アルミニウム合金板全体の結晶方位を制御する方法(特許文献6参照)、アルミニウム合金表面から一定深さまでの結晶方位を制御ずることで曲げ加工性を制御する方法(例えば、特許文献7参照)などが提案されている。   In such a situation, for improving the bending workability, a method for controlling the surface hardness of the aluminum alloy plate (see Patent Document 1), a method for controlling the crystal grain size and the precipitate size (for example, Patent Documents 2 and 3). Reference), a method of controlling the crystal orientation of the surface of the aluminum alloy plate (for example, see Patent Documents 4 and 5), a method of controlling the crystal orientation of the entire aluminum alloy plate (see Patent Document 6), from the aluminum alloy surface to a certain depth. A method of controlling the bending workability by controlling the crystal orientation of (see, for example, Patent Document 7) has been proposed.

板成形の向上に対しては、アルミニウム合金板の圧延方向に対する0°、45°、90°方向のランクフォード値を制御することによりプレス成形性を高める方法(例えば、特許文献8、9参照)、並びに引張強度と耐力の関係及びアルミニウム合金板表面の結晶粒サイズと無析出帯(PFZ)を制御することでプレス成形性と曲げ加工性を高める方法(特許文献10参照)が提案されている。   For improving plate forming, press formability is improved by controlling the Rankford values in the 0 °, 45 °, and 90 ° directions relative to the rolling direction of the aluminum alloy plate (see, for example, Patent Documents 8 and 9). In addition, a method for improving press formability and bending workability by controlling the relationship between tensile strength and proof stress and the crystal grain size and precipitation free zone (PFZ) of the aluminum alloy plate surface has been proposed (see Patent Document 10). .

非特許文献1には、板成形における結晶粒の結晶方位と板成形性の良否の関係が、Cube方位、Brass方位およびCopper方位の単結晶方位材料から求めた結果を基にして行なわれた最適設計で述べられている。又、非特許文献2では、板成形の一種である深絞り加工における単方位結晶粒材料の変形能の違いが示されている。   In Non-Patent Document 1, the relationship between the crystal orientation of crystal grains and the quality of plate formability in plate forming was determined based on the results obtained from single crystal orientation materials of Cube, Brass, and Copper orientations. Is stated in the design. Non-Patent Document 2 shows a difference in deformability of a unidirectional grain material in deep drawing, which is a kind of plate forming.

特開2003−129201号公報JP 2003-129201 A 特開2003−221637号公報JP 2003-221737 A 特開2003−268472号公報JP 2003-268472 A 特開2003−226926号公報JP 2003-226926 A 特開2003−226927号公報JP 2003-226927 A 特開2003−268475号公報JP 2003-268475 A 特開2004−27253号公報JP 2004-27253 A 特開2002−146462号公報JP 2002-146462 A 特開2004−10982号公報JP 2004-10982 A 特開2003−105473号公報JP 2003-105473 A 仲町英治、濱田佳紀:塑性と加工、39−446(1998)、252.Eiji Nakamachi, Yoshinori Hamada: Plasticity and processing, 39-446 (1998), 252. 森本秀夫、仲町英治:古河電工時報、103(1999)、7.Hideo Morimoto, Eiji Nakamachi: Furukawa Electric Times, 103 (1999), 7.

しかしながら、特に自動車のボディシートには、ボディの組立に必要であるヘム曲げのような強烈な曲げ加工とボディ形状を精緻に加工する上で必要となるプレス成形性に代表される板成形性の両者が高いレベルで要求されるが、上記従来技術(特許文献1〜7参照)では、ヘム曲げ性を向上されることは可能であったが、同時に板成形性を従来の鋼製ボディと同等のレベルに引き上げることは難しく、逆に特許文献8、9のように板成形性のレベルを引き上げようとするとヘム曲げ性のレベルが低くなくなり、又両者が向上されるとする特許文献10に示される技術を以ってしても、その板成形性レベルの獲得は難しいものであった。   However, especially for automobile body seats, it has strong plate forming properties such as hem bending, which is necessary for the assembly of the body, and plate formability typified by press formability required for precise processing of the body shape. Although both are required at a high level, the above-described prior art (see Patent Documents 1 to 7) can improve the hem bendability, but at the same time, the plate formability is equivalent to that of a conventional steel body. However, it is difficult to raise the sheet formability as shown in Patent Documents 8 and 9, and it is shown in Patent Document 10 that the hem bendability level is not lowered when both are improved. Even with this technology, it was difficult to achieve the plate formability level.

このような状況において、本発明者は、結晶粒の結晶方位分布がヘム曲げ性、板成形性に与える影響を検討した結果、ヘム曲げ性及び板成形性を高レベルで両立できる本発明を見出し、提供することを目的とするものである。
なお、本発明の係る材料は、材料を構成する結晶粒を、その結晶粒が示す結晶方位のうち、Cube方位、Brass方位、Copper方位の3者の割合を制御することで、ヘム曲げのような峻烈な曲げやプレス成形のような板成形の両特性に優れたアルミニウム材料を提供するものである。
Under such circumstances, the present inventors have examined the influence of the crystal orientation distribution of crystal grains on hem bendability and plate formability, and as a result, found the present invention that can achieve both hem bendability and plate formability at a high level. Is intended to provide.
In the material according to the present invention, the crystal grains constituting the material can be shaped like a hem bend by controlling the ratio of three of the Cube orientation, the Brass orientation, and the Copper orientation among the crystal orientations indicated by the crystal grains. The present invention provides an aluminum material excellent in both the characteristics of plate forming such as sharp and sharp bending and press forming.

通常、圧延板の集合組織は、板材の圧延面と圧延方向(ABC)と<DEF>の関係で表現する。(A,B,C,D,E,Fは整数。)ここで、板材の結晶集合組織の結晶方位分布とは、ランダムな方位に対する各板材に特有な結晶方位の分布を、結晶方位の比率を表したものである。   Usually, the texture of a rolled sheet is expressed by the relationship between the rolled surface of the sheet, the rolling direction (ABC), and <DEF>. (A, B, C, D, E, and F are integers.) Here, the crystal orientation distribution of the crystal texture of the plate material is a distribution of crystal orientation specific to each plate material relative to a random orientation, and a ratio of crystal orientation. It represents.

本発明では、Cube方位、Brass方位、Copper方位を対象として評価した。Cube方位とは、(100)<001>方位、Brass方位は、(011)<211>方位、Copper方位は、(112)<111>方位に結晶が配向しているものを表すものとする。なお、実際の板材の方位は、前記Cube方位、Brass方位、Copper方位のそれぞれの理想方位からはずれを生じるために、各結晶方位の占有率は、Cube方位、Brass方位、Copper方位の各結晶の理想方位を中心に±5度までずれた結晶方位を含んだものをCube方位、Brass方位、Copper方位と定義した。   In the present invention, evaluation was made on the Cube orientation, the Brass orientation, and the Copper orientation. The Cube orientation represents the (100) <001> orientation, the Brass orientation represents the (011) <211> orientation, and the Copper orientation represents that the crystal is oriented in the (112) <111> orientation. Since the actual orientation of the plate material deviates from the ideal orientation of each of the Cube orientation, the Brass orientation, and the Copper orientation, the occupancy of each crystal orientation is the Cube orientation, the Brass orientation, and the Copper orientation of each crystal. Cubic orientation, Brass orientation, and Copper orientation were defined as including a crystal orientation shifted by ± 5 degrees from the ideal orientation.

請求項1記載の発明は、結晶方位の異なる結晶粒で構成されるアルミニウム材料であって、前記結晶粒が、Cube方位結晶粒と、Brass方位結晶粒と、Copper方位結晶粒、及び残部が他方位結晶粒からなり、各結晶粒の方位として、Cube方位の結晶粒の占有率が0.3から0.7、Brass方位の結晶粒の占有率が0.1から0.5、Copper方位の結晶粒の占有率が0.2以下、且つこれらの方位の総占有率が0.4から1.0であり、残部がその他の結晶方位の結晶粒であることを特徴とするアルミニウム材料である。   The invention according to claim 1 is an aluminum material composed of crystal grains having different crystal orientations, the crystal grains being Cube orientation crystal grains, Brass orientation crystal grains, Copper orientation crystal grains, and the rest being other The crystal grain occupancy is from 0.3 to 0.7, the Brass crystal grain occupancy is from 0.1 to 0.5, and the Copper orientation is the orientation of each crystal grain. An aluminum material characterized in that the occupation ratio of crystal grains is 0.2 or less, the total occupation ratio of these orientations is 0.4 to 1.0, and the balance is crystal grains of other crystal orientations .

請求項2記載の発明は、結晶方位の異なる結晶粒で構成されるアルミニウム材料であって、前記結晶粒が、Cube方位結晶粒と、Brass方位結晶粒と、Copper方位結晶粒、及び残部が他方位結晶粒からなり、各結晶粒の方位として、Cube方位の結晶粒の占有率が0.4から0.6、Brass方位の結晶粒の占有率が0.2から0.4、Copper方位の結晶粒の占有率が0.05から0.1、且つこれらの方位の総占有率が0.6から0.9であり、残部がその他の結晶方位の結晶粒であることを特徴とするアルミニウム材料である。   The invention according to claim 2 is an aluminum material composed of crystal grains having different crystal orientations, the crystal grains being Cube orientation crystal grains, Brass orientation crystal grains, Copper orientation crystal grains, and the rest being other The crystal grain occupancy is 0.4 to 0.6, the Brass crystal grain occupancy is 0.2 to 0.4, and the Copper orientation is the orientation of each crystal grain. Aluminum having a crystal grain occupancy of 0.05 to 0.1, a total occupancy of these orientations of 0.6 to 0.9, and the balance being crystal grains of other crystal orientations Material.

請求項3記載の発明は、結晶方位の異なる結晶粒で構成されるアルミニウムであって、前記結晶粒が、Brass方位結晶粒と、Copper方位結晶粒、及び残部が他方位結晶粒からなり、各結晶粒の方位として、Brass方位の結晶粒の占有率が0.2から0.4、Copper方位の結晶粒の占有率が0.05から0.1、且つこれらの方位の総占有率が0.6から0.9であり、残部がその他の結晶方位の結晶粒とで構成され板成形性に優れることを特徴とするアルミニウム材料である。   The invention according to claim 3 is aluminum composed of crystal grains having different crystal orientations, wherein the crystal grains are composed of Brass-oriented crystal grains, Copper-oriented crystal grains, and the balance is the other-order crystal grains, As the orientation of crystal grains, the occupancy ratio of Brass-oriented crystal grains is 0.2 to 0.4, the occupancy ratio of Copper-oriented crystal grains is 0.05 to 0.1, and the total occupancy ratio of these orientations is 0. .6 to 0.9, and the balance is composed of crystal grains having other crystal orientations and is excellent in sheet formability.

請求項4記載の発明は、30mmの張出し高さで張出し表面上に割れを生じない板成形性を有し、且つ、ヘム曲げ性における曲げ表面上の割れが生じない範囲が、曲げ半径/板厚の比で0.5以下のヘム曲げ性を有することを特徴とする請求項1乃至請求項2のいずれかに記載のアルミニウム材料である。   The invention according to claim 4 has a plate formability that does not cause cracks on the surface of the overhang at an overhang height of 30 mm, and the range in which no cracks occur on the bending surface in the hem bendability is within the bending radius / plate. 3. The aluminum material according to claim 1, wherein the aluminum material has a hem bendability of 0.5 or less in terms of thickness ratio.

請求項5記載の発明は、50mmの張出し高さで張出し表面上に割れを生じない板成形性を有し、且つ、ヘム曲げ性における曲げ表面上の割れが生じない範囲が、曲げ半径/板厚の比で0.25以下のヘム曲げ性を有することを特徴とする請求項1乃至請求項2のいずれかに記載のアルミニウム材料である。   The invention according to claim 5 has a plate formability that does not cause cracks on the surface of the overhang at an overhang height of 50 mm, and the range in which no cracks occur on the bending surface in the hem bendability is within the bending radius / plate. 3. The aluminum material according to claim 1, wherein the aluminum material has a hem bendability of 0.25 or less in thickness ratio.

請求項6記載の発明は、前記アルミニウム材料が、Mgを0.25から1.0mass%、Siを0.5から1.3mass%、残部Alと不可避不純物とからなるアルミニウム合金であることを特徴とする請求項1から請求項5のいずれかに記載のアルミニウム材料である。   The invention according to claim 6 is characterized in that the aluminum material is an aluminum alloy composed of Mg of 0.25 to 1.0 mass%, Si of 0.5 to 1.3 mass%, the balance Al and inevitable impurities. The aluminum material according to any one of claims 1 to 5.

請求項7記載の発明は、請求項4あるいは請求項5のいずれかに記載のアルミニウム材料を用いた自動車部材である。   The invention according to claim 7 is an automobile member using the aluminum material according to claim 4 or 5.

請求項8記載の発明は、前記アルミニウム材料が、Mgを0.25から1.0mass%、Siを0.5から1.3mass%、残部Alと不可避不純物とかなるアルミニウム合金であることを特徴とする請求項7に記載の自動車部材である。 The invention according to claim 8 is characterized in that the aluminum material is an aluminum alloy composed of Mg of 0.25 to 1.0 mass%, Si of 0.5 to 1.3 mass%, the balance Al and inevitable impurities. The automobile member according to claim 7.

本発明によれば、自動車ボディシート、自動車部品、機械部品などの組立時に要求される高度なヘム曲げ性およびボディ形成や筐体形成時のプレス成形などの板成形性に優れたアルミニウム材料を提供するものである。   ADVANTAGE OF THE INVENTION According to this invention, the high hem bendability required at the time of assembling an automobile body sheet, an automobile part, a machine part, etc. and an aluminum material excellent in plate formability such as press forming at the time of body formation or housing formation are provided. To do.

本発明は、材料を構成する結晶粒が示す結晶方位のうち、Cube方位、Brass方位、Copper方位の3者の割合を制御して適正化することにより、ヘム曲げのような峻烈な曲げやボディプレス成形のような板成形の両者を高レベルで満足する材料を見出したもので、Cube方位結晶粒の占有率が0.3〜0.7、Brass方位結晶粒の占有率が0.1〜0.5、Copper方位結晶粒の占有率が0.2以下で、且つCube方位、Brass方位、Copper方位の各結晶方位の総合計割合としての総占有率が0.4から1.0であることを満たす材料において、良好な曲げ性及び板成形性を示す。
そこで、先ず構成する結晶粒の各結晶方位の占有率と両特性の関係について述べる。
The present invention controls and optimizes the ratio of three of the Cube orientation, the Brass orientation, and the Copper orientation among the crystal orientations indicated by the crystal grains constituting the material, so that a sharp bend or body such as a hem bend can be obtained. A material that satisfies both high-level plate forming such as press forming has been found. The occupancy ratio of Cube orientation crystal grains is 0.3 to 0.7, and the occupancy ratio of Brass orientation crystal grains is 0.1 to 0.7. 0.5, the occupancy ratio of the Copper orientation crystal grains is 0.2 or less, and the total occupancy ratio is 0.4 to 1.0 as a total ratio of the crystal orientations of the Cube orientation, the Brass orientation, and the Copper orientation. In a material that satisfies this requirement, good bendability and plate formability are exhibited.
First, the relationship between the occupancy ratio of each crystal orientation of the constituting crystal grains and both characteristics will be described.

第一に、Cube方位の結晶粒は、前記特許文献4〜7で述べられているように、その結晶方位密度がヘム曲げに大きく影響していることが知られており、その結晶方位密度がランダム方位結晶粒の結晶方位密度より高まるにつれて、ヘム曲げが良好となることが述べられている。本発明においても、同様にヘム曲げを良好とするために、このCube方位の結晶粒の占有率を高めることが望ましい。しかしながら、前記非特許文献1で知られるように、Cube方位結晶粒の占有率の増大は、板成形性を大きく損ねてしまう結果となる。   First, as described in Patent Documents 4 to 7, it is known that the crystal orientation density of the Cube orientation crystal grains has a great influence on the hem bending. It is stated that the hem bending becomes better as the crystal orientation density of the randomly oriented crystal grains increases. Also in the present invention, in order to improve the hem bending, it is desirable to increase the occupancy ratio of the crystal grains having the Cube orientation. However, as is known from Non-Patent Document 1, an increase in the occupancy ratio of Cube-oriented crystal grains results in a significant loss of plate formability.

そこで、本発明では、種々検討の結果、その占有率の範囲を0.3〜0.7、好ましくは0.4〜0.6と限定したものである。この範囲の下限域においては実用上充分なヘム曲げ性が提供でき、上限域では、ボディシートの自動車外形へのプレス成形を実施するのに充分な板成形性を維持している。   Therefore, in the present invention, as a result of various studies, the range of the occupation ratio is limited to 0.3 to 0.7, preferably 0.4 to 0.6. In the lower limit range of this range, practically sufficient hem bendability can be provided, and in the upper limit range, plate formability sufficient to perform press molding of the body sheet to the automobile outer shape is maintained.

第二に、Brass方位結晶粒の占有率が高いと、前記Cube方位結晶粒の占有率が高い場合とは正反対に板成形性を良好にする。しかしながら、Brass方位結晶粒がヘム曲げ性に及ぼす影響については判っておらず、更にその占有率の影響に関しても不明である。   Second, when the occupancy ratio of the Brass orientation crystal grains is high, the plate formability is improved as opposed to the case where the occupancy ratio of the Cube orientation crystal grains is high. However, the influence of Brass-oriented crystal grains on heme bendability is not known, and the influence of the occupation ratio is unknown.

そこで、本発明では、Brass方位結晶粒の占有率のヘム曲げ及び板成形に及ぼす影響を精査した結果、その占有率の範囲を0.1〜0.5、好ましくは0.2〜0.4としたものである。前記Cube方位結晶粒の占有率範囲内において、Brass方位結晶粒の占有率を0.1〜0.5とすることによりヘム曲げ及び板成形の両者を高いレベルで獲得することができるものである。この範囲を外れる材料では、ヘム曲げ或いは板成形のどちらか一方が優れるか、両者ともに低レベルとなってしまう。   Therefore, in the present invention, as a result of examining the influence of the occupancy ratio of the Brass-oriented crystal grains on the hem bending and plate forming, the occupancy ratio range is 0.1 to 0.5, preferably 0.2 to 0.4. It is what. Within the occupancy range of the Cube orientation crystal grains, by setting the occupancy ratio of the Brass orientation crystal grains to 0.1 to 0.5, both hem bending and plate forming can be obtained at a high level. . If the material is out of this range, either hem bending or plate molding will be excellent, or both will be at a low level.

第三に、Copper方位結晶粒の占有率を0.2以下、好ましくは0.05〜0.1、より好ましくは0.05〜0.1である。このように限定した理由は、Copper方位結晶粒は、板成形に対して、Brass方位結晶粒と同様の働きを示すことが非特許文献2より明らかであるが、本発明では、もう一つの効果として、このCopper方位結晶粒が、その占有率の割合で存在することで、ヘム曲げ性及び板成形の両者のレベルを引き上げる効果を示すことを見出したもので、Cube方位結晶粒とBrass方位結晶粒の両者の緩衝材として働くのではないかと考えている。   Third, the occupation ratio of Copper-oriented crystal grains is 0.2 or less, preferably 0.05 to 0.1, and more preferably 0.05 to 0.1. The reason for this limitation is that it is clear from Non-Patent Document 2 that the Copper-oriented crystal grains exhibit the same function as the Brass-oriented crystal grains for plate forming. However, the present invention has another effect. As a result, it has been found that the Copper-oriented crystal grains are present at a ratio of the occupation ratio, thereby showing the effect of raising both the hem bendability and the plate forming level. Cube-oriented crystal grains and Brass-oriented crystals I think that it may work as a cushioning material for both grains.

次に、この結晶方位の占有率の算出方法について述べる。
測定に供されるアルミニウム板材、ここでは所定厚み(本発明では厚み1mm)のアルミニウム板材を準備し、その表面をアセトンなどの油分清浄材で脱脂後、アルミニウム板材の材質に合った酸化層除去剤(例えば、Al合金では王水など)を用いて表面の酸化層を除去したアルミニウム板を、電解研磨法により鏡面仕上げとし、アルミニウム板材の表層近傍を供試材として結晶方位を測定した。
次に、この供試材を用いて、結晶粒の結晶方位を電子後方散乱回折像法(Electron Backscatter Diffraction Pattern、以下EBSPと略す)により測定する。
測定は、熱電子放出型走査電子顕微鏡内で行い、1.0mm四方の範囲を一地点として、その範囲内にある結晶粒の各結晶方位を測定し、範囲内の全結晶粒の数を100とした場合の、Cube方位、Brass方位、Copper方位の各結晶粒の割合を求め、その占有率を算出した。なお、測定は、一供試材につき100点で測定を行い、測定した占有率をその平均で示している。
Next, a method for calculating the crystal orientation occupancy will be described.
An aluminum plate to be used for measurement, in this case an aluminum plate having a predetermined thickness (1 mm in the present invention) is prepared, and the surface is degreased with an oil cleaning material such as acetone, and then an oxide layer removing agent suitable for the material of the aluminum plate The aluminum plate from which the oxide layer on the surface was removed using (for example, aqua regia for Al alloy) was mirror-finished by electrolytic polishing, and the crystal orientation was measured using the vicinity of the surface layer of the aluminum plate as a test material.
Next, using this test material, the crystal orientation of the crystal grains is measured by an electron backscatter diffraction pattern (hereinafter abbreviated as EBSP).
The measurement is performed in a thermionic emission scanning electron microscope, with a 1.0 mm square range as one point, each crystal orientation of the crystal grains in the range is measured, and the total number of crystal grains in the range is 100. In this case, the proportion of each crystal grain in the Cube orientation, the Brass orientation, and the Copper orientation was determined, and the occupation ratio was calculated. The measurement is performed at 100 points for each test material, and the measured occupancy is shown as an average.

本発明に係る材料は、その結晶構造が面心立方構造であることにより前記結晶方位の占有率割合で、良好な曲げ性及び板成形性を示すものである。面心立方構造をとる材料としては、Al合金、Cu合金、Ni合金、Ag合金、Au合金などがあるが、特にAl合金では顕著な効果を示すものである。   The material according to the present invention exhibits good bendability and plate formability at the occupancy ratio of the crystal orientation because the crystal structure is a face-centered cubic structure. Examples of the material having a face-centered cubic structure include an Al alloy, a Cu alloy, a Ni alloy, an Ag alloy, and an Au alloy, and the Al alloy exhibits a remarkable effect.

前記Al合金としては、Mgを0.25から1.0mass%、Siを0.5から1.3mass%、残部Alと不可避不純物とからなるAl−Mg−Si合金において、大きな効果を示す。
このAl−Mg−Si合金に必須元素として含まれるSi及びMgはMgSi化合物として析出し、強度の向上に寄与するもので、範囲値未満ではその効果が充分でなく、Si量が範囲値を超えると自然時効現象が生じて曲げ加工性を大きく低下させる原因となることから限定している。また、Mg量が範囲値を超えると粗大なMgSi化合物が多量に析出し、その結果、固容量が大きく減少して曲げ加工性並びにベークハード性の低下を引き起こすために限定するものである。
As the Al alloy, an Al—Mg—Si alloy consisting of 0.25 to 1.0 mass% of Mg, 0.5 to 1.3 mass% of Si, and the balance Al and inevitable impurities shows a great effect.
Si and Mg contained as essential elements in this Al—Mg—Si alloy precipitate as Mg 2 Si compounds and contribute to the improvement of strength. If the amount is less than the range value, the effect is not sufficient, and the amount of Si is within the range value. Exceeding the limit is limited because it causes a natural aging phenomenon and greatly reduces the bending workability. Further, if the amount of Mg exceeds the range value, a large amount of coarse Mg 2 Si compound is precipitated, and as a result, the solid volume is greatly reduced, and the bending workability and the bake hardness are lowered. .

前記、Mg及びSiの他に、Cu,Zn、Mn、Cr、Tiなどが添加されても良い。
Cuの添加は強度、延性、脱脂性、化成処理性などを高め、Znの添加は、脱脂性や化成処理性を高める、Mn、Ti、Crの添加は結晶粒の微細化を促し、曲げ加工性をよくする働きを示すが、これらの元素を過剰に添加されると耐食性の低下や延性の低下を招くために、いずれの元素も1mass%以下、特にTiやCrでは0.1mass%以下にするのが良い。
In addition to the Mg and Si, Cu, Zn, Mn, Cr, Ti, etc. may be added.
Addition of Cu increases strength, ductility, degreasing, chemical conversion treatment, etc. Addition of Zn improves degreasing and chemical conversion processing, and addition of Mn, Ti, Cr promotes refinement of crystal grains and bending processing Although adding these elements excessively leads to a decrease in corrosion resistance and a decrease in ductility, all elements are 1 mass% or less, especially 0.1 mass% or less for Ti and Cr. Good to do.

前記元素の他に、不純物として含まれるFeは、MgSi化合物より硬い晶出物を形成してしまい、周囲に大きなひずみを形成して割れの伝播を助長することから、Fe量は0.1%以下に抑えることが望ましい。 In addition to the above elements, Fe contained as an impurity forms a crystallized material that is harder than the Mg 2 Si compound, and forms a large strain around it to promote the propagation of cracks. It is desirable to keep it below 1%.

(実施例1)
Mgを0.5mass%、Siを0.9mass%、Mnを0.06mass%、Feを0.07mass%、残部AlからなるAl合金を常法により厚み500mmのインゴットに溶解鋳造し、このインゴットを540℃、6時間の均質化処理後、開始温度500℃、終了温度200℃の条件下で熱間圧延して厚み10mmの熱間圧延板を得た。次に、この熱間圧延板を、20%、30%、50%、70%、90%の仕上げ加工率で厚み1mmの仕上げ素板になるような所定厚みに冷間圧延した。なお、仕上げ冷間加工率が90%の試料に関しては、厚み10mmの熱間圧延板から直接厚み1mmの仕上げ素板を得た。
次に、この所定厚みの冷間圧延板を325℃、2時間の条件で焼鈍し、仕上げ冷間圧延を施し、厚み1mmの仕上げ素板を作製した。この仕上げ素板に連続焼鈍炉を用いた500℃の溶体化処理と、100℃、24時間の安定化処理を施して供試材とした。
Example 1
An Al alloy consisting of 0.5 mass% Mg, 0.9 mass% Si, 0.06 mass% Mn, 0.07 mass% Fe, and the balance Al is cast into an ingot having a thickness of 500 mm by a conventional method. After a homogenization treatment at 540 ° C. for 6 hours, hot rolling was performed under conditions of a start temperature of 500 ° C. and an end temperature of 200 ° C. to obtain a hot-rolled sheet having a thickness of 10 mm. Next, this hot-rolled sheet was cold-rolled to a predetermined thickness such that a finished base sheet having a thickness of 1 mm was obtained at a finishing rate of 20%, 30%, 50%, 70%, and 90%. In addition, about the sample whose finishing cold work rate is 90%, the finishing base plate of thickness 1mm was obtained directly from the hot-rolling board of thickness 10mm.
Next, this cold-rolled sheet having a predetermined thickness was annealed at 325 ° C. for 2 hours and subjected to finish cold-rolling to produce a finished blank having a thickness of 1 mm. The finished base plate was subjected to a solution treatment at 500 ° C. using a continuous annealing furnace and a stabilization treatment at 100 ° C. for 24 hours to obtain a test material.

結晶方位の占有率の測定を前段に述べた方法により測定し、表1に示した。
表1に記載された供試材No.1は仕上げ冷間加工率20%で仕上げ圧延を行なったもので,以下No.2は30%、No.3は50%、No.4は70%、No.5は80%、No.10は10%、No.11は90%の仕上げ冷間加工率で仕上げ冷間圧延を行なった。
なお、各結晶方位の占有率は、Cube方位、Brass方位、Copper方位の各結晶の理想方位を中心に±5度までずれた結晶方位を含むものとした。
The crystal orientation occupancy was measured by the method described in the preceding paragraph and is shown in Table 1.
Specimen No. listed in Table 1 No. 1 was finish-rolled at a finish cold work rate of 20%. 2 is 30%. 3 is 50%. 4 is 70%. 5 is 80%. 10 is 10%. No. 11 was subjected to finish cold rolling at a finish cold work rate of 90%.
Note that the occupancy ratio of each crystal orientation includes crystal orientations shifted by ± 5 degrees from the ideal orientation of each crystal of the Cube orientation, the Brass orientation, and the Copper orientation.

作製した供試材を用いて、180℃曲げ加工試験と張出し成形試験を行い、それぞれヘム曲げ加工性及び板成形性を評価した。
先ず、ヘム曲げ加工性に関しては、図1(a)の予歪付与、図1(b)の折り曲げ角170度までのパンチ押し込み、図1(c)に示す万力締め付けを順に行う180℃曲げ加工試験を用い、パンチ1の先端曲率Rを0.25、0.5、0.75、1.0mmと変化させて各R毎に繰り返し5枚の試験数で試験し、全てにおいて肌荒れ及び割れが生じない先端曲率を表1に記した。従って、この試験において、肌荒れと割れが生じない先端曲率が小さければ小さい程ヘム曲げ加工性に優れることになる。
Using the produced test material, a 180 ° C. bending test and a stretch forming test were performed, and hem bending workability and plate formability were evaluated, respectively.
First, regarding the hem bending workability, 180 ° bending is performed in which the pre-strain is applied as shown in FIG. 1 (a), the punch is pushed down to a bending angle of 170 ° in FIG. 1 (b), and the vise is clamped as shown in FIG. 1 (c). Using a processing test, the tip curvature R of the punch 1 was changed to 0.25, 0.5, 0.75, and 1.0 mm, and each R was repeatedly tested with 5 tests. Table 1 shows the leading edge curvature at which no occurrence occurs. Therefore, in this test, the smaller the tip curvature at which rough skin and cracks do not occur, the better the hem bending workability.

張出し成形性に関しては、供試材を300mm角に切断し、両面に潤滑油を塗布した後、直径100mmの球頭ポンチを用いて張出し高さ50mmの条件で張出し試験を繰り返し5枚の試験数で試験を行い、張出し成形性を評価した。
全数、割れの発生していない供試材を「○」、1個のみ割れている供試材を「△」、2個以上が割れてしまう供試材を「×」として表1に記した。
Regarding the stretch formability, after cutting the test material into 300 mm squares and applying lubricant on both sides, the stretch test was repeated using a ball head punch with a diameter of 100 mm under the condition of a stretch height of 50 mm. The test was conducted to evaluate the stretch formability.
Table 1 shows all specimens with no cracks as "O", specimens with only one crack as "△", and specimens with two or more cracks as "X". .

作製した供試材の強度、伸びは、仕上げ冷間加工率90%の供試材を除いて、強度が230〜240MPa、0.2%耐力が130〜140MPa、伸びが30%以上であった。仕上げ冷間加工率90%の供試材は、強度、0.2%耐力共に他の加工率の供試材と変わらなかったが、伸びが17%と低かった。   The strength and elongation of the prepared specimens were 230 to 240 MPa in strength, 130 to 140 MPa in 0.2% proof stress, and 30% or more in elongation, except for specimens with a finish cold working rate of 90%. . The test material with a finish cold working rate of 90% was the same in strength and 0.2% proof stress as the other test materials, but the elongation was as low as 17%.

Figure 2006322064
表1から明らかなように、各結晶方位が本発明範囲内の供試材No.1からNo.5では、ヘム曲げ加工性および板成形性共に良好であるのに対して、Cube方位の占有率割合が低く、Brass方位の占有率割合が多い供試材No.10では、両特性共に優れず、殆どの結晶粒がCube方位を示す供試材No.11では、ヘム曲げ加工性には優れるが、反面板成形性が劣っていることがわかる。
Figure 2006322064
As is apparent from Table 1, each crystal orientation was within the scope of the present invention. 1 to No. No. 5, while the hem bending workability and the plate formability are both good, the test piece No. No. 1 has a low occupancy ratio in the Cube orientation and a large occupancy ratio in the Brass orientation. No. 10, both properties are not excellent, and most of the crystal grains have a Cube orientation. No. 11 is excellent in hem bending workability but is inferior in plate formability.

(a)ヘム曲げ加工性試験模式図(供試材セッティング)、(b)ヘム曲げ加工性試験模式図(試験中)、(c)ヘム曲げ加工性試験模式図(万力による密着曲げ)(A) hem bendability test schematic diagram (specimen setting), (b) hem bendability test schematic diagram (under test), (c) hem bendability test schematic diagram (adhesion bending by vise)

符号の説明Explanation of symbols

1 パンチ 1 punch

Claims (8)

結晶方位の異なる結晶粒で構成されるアルミニウム材料であって、前記結晶粒が、Cube方位結晶粒と、Brass方位結晶粒と、Copper方位結晶粒、及び残部が他方位結晶粒からなり、各結晶粒の方位として、Cube方位の結晶粒の占有率が0.3から0.7、Brass方位の結晶粒の占有率が0.1から0.5、Copper方位の結晶粒の占有率が0.2以下、且つこれらの方位の総占有率が0.4から1.0であり、残部がその他の結晶方位の結晶粒であることを特徴とするアルミニウム材料。 An aluminum material composed of crystal grains having different crystal orientations, wherein the crystal grains are Cube-oriented crystal grains, Brass-oriented crystal grains, Copper-oriented crystal grains, and the balance is the other-order crystal grains. As the grain orientation, the Cube orientation crystal grain occupancy is 0.3 to 0.7, the Brass orientation crystal grain occupancy is 0.1 to 0.5, and the Copper orientation crystal grain occupancy is 0.00. 2 or less, and the total occupancy of these orientations is 0.4 to 1.0, and the balance is crystal grains having other crystal orientations. 結晶方位の異なる結晶粒で構成されるアルミニウム材料であって、前記結晶粒が、Cube方位結晶粒と、Brass方位結晶粒と、Copper方位結晶粒、及び残部が他方位結晶粒からなり、各結晶粒の方位として、Cube方位の結晶粒の占有率が0.4から0.6、Brass方位の結晶粒の占有率が0.2から0.4、Copper方位の結晶粒の占有率が0.05から0.1、且つこれらの方位の総占有率が0.6から0.9であり、残部がその他の結晶方位の結晶粒であることを特徴とするアルミニウム材料。 An aluminum material composed of crystal grains having different crystal orientations, wherein the crystal grains are Cube-oriented crystal grains, Brass-oriented crystal grains, Copper-oriented crystal grains, and the balance is the other-order crystal grains. As the grain orientation, the Cube orientation crystal grain occupancy is 0.4 to 0.6, the Brass orientation crystal grain occupancy is 0.2 to 0.4, and the Copper orientation crystal grain occupancy is 0.00. An aluminum material characterized in that the total occupancy of these orientations is from 0.5 to 0.1, and the rest is crystal grains of other crystal orientations. 結晶方位の異なる結晶粒で構成されるアルミニウムであって、前記結晶粒が、Brass方位結晶粒と、Copper方位結晶粒、及び残部が他方位結晶粒からなり、各結晶粒の方位として、Brass方位の結晶粒の占有率が0.2から0.4、Copper方位の結晶粒の占有率が0.05から0.1、且つこれらの方位の総占有率が0.25から0.5であり、残部がその他の結晶方位の結晶粒とで構成される板成形性に優れることを特徴とするアルミニウム材料。 Aluminum composed of crystal grains having different crystal orientations, wherein the crystal grains are composed of a Brass-oriented crystal grain, a Copper-oriented crystal grain, and the balance is the other crystal grain. The crystal grain occupancy is 0.2 to 0.4, the Copper crystal orientation occupancy is 0.05 to 0.1, and the total occupancy of these orientations is 0.25 to 0.5. An aluminum material characterized in that the balance is excellent in plate formability composed of crystal grains having other crystal orientations. 30mmの張出し高さで張出し表面上に割れを生じない板成形性を有し、且つ、ヘム曲げ性における曲げ表面上の割れが生じない範囲が、曲げ半径/板厚の比で0.5以下のヘム曲げ性を有することを特徴とする請求項1乃至請求項2のいずれかに記載のアルミニウム材料。 It has a plate formability that does not cause cracks on the overhanging surface at an overhanging height of 30 mm, and the range in which no cracks occur on the bending surface in the hem bendability is 0.5 or less in the ratio of bending radius / plate thickness. The aluminum material according to claim 1, wherein the aluminum material has a hem bendability of: 50mmの張出し高さで張出し表面上に割れを生じない板成形性を有し、且つ、ヘム曲げ性における曲げ表面上の割れが生じない範囲が、曲げ半径/板厚の比で0.25以下のヘム曲げ性を有することを特徴とする請求項1乃至請求項2のいずれかに記載のアルミニウム材料。 It has a plate formability that does not cause cracks on the extended surface at an extended height of 50 mm, and the range in which no cracks occur on the bent surface in the hem bendability is 0.25 or less in terms of the ratio of bending radius / plate thickness. The aluminum material according to claim 1, wherein the aluminum material has a hem bendability of: 前記アルミニウム材料が、Mgを0.25から1.0mass%、Siを0.5から1.3mass%、残部Alと不可避不純物とからなるアルミニウム合金であることを特徴とする請求項1から請求項5のいずれかに記載のアルミニウム材料。 The aluminum material is an aluminum alloy composed of Mg of 0.25 to 1.0 mass%, Si of 0.5 to 1.3 mass%, and the balance Al and inevitable impurities. The aluminum material according to any one of 5. 請求項4あるいは請求項5のいずれかに記載のアルミニウム材料を用いた自動車部材。 An automobile member using the aluminum material according to claim 4. 前記アルミニウム材料が、Mgを0.25から1.0mass%、Siを0.5から1.3mass%、残部Alと不可避不純物とかなるアルミニウム合金であることを特徴とする請求項7に記載の自動車部材。 8. The automobile according to claim 7, wherein the aluminum material is an aluminum alloy composed of Mg of 0.25 to 1.0 mass%, Si of 0.5 to 1.3 mass%, and the balance Al and inevitable impurities. Element.
JP2006090454A 2005-04-19 2006-03-29 High moldability aluminum material Pending JP2006322064A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006090454A JP2006322064A (en) 2005-04-19 2006-03-29 High moldability aluminum material
US12/294,833 US20100247369A1 (en) 2005-04-19 2006-11-29 Aluminum material with high formability
PCT/JP2006/323861 WO2007111002A1 (en) 2006-03-29 2006-11-29 High-formability aluminum material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005121565 2005-04-19
JP2006090454A JP2006322064A (en) 2005-04-19 2006-03-29 High moldability aluminum material

Publications (1)

Publication Number Publication Date
JP2006322064A true JP2006322064A (en) 2006-11-30

Family

ID=37541952

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2006090454A Pending JP2006322064A (en) 2005-04-19 2006-03-29 High moldability aluminum material
JP2007535737A Expired - Fee Related JP4158944B2 (en) 2005-04-19 2006-11-29 High formability aluminum material

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007535737A Expired - Fee Related JP4158944B2 (en) 2005-04-19 2006-11-29 High formability aluminum material

Country Status (2)

Country Link
US (1) US20100247369A1 (en)
JP (2) JP2006322064A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111002A1 (en) * 2006-03-29 2007-10-04 The Furukawa Electric Co., Ltd. High-formability aluminum material
JPWO2007111002A1 (en) * 2005-04-19 2009-08-06 古河電気工業株式会社 High formability aluminum material
CN108486510A (en) * 2018-04-24 2018-09-04 东莞理工学院 A kind of aviation covering Al-Cu-MgT3 aluminium alloy process quality control methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3036986B1 (en) * 2015-06-05 2017-05-26 Constellium Neuf-Brisach BODY FOR CAR BODY WITH HIGH MECHANICAL STRENGTH
EP3400316B1 (en) * 2016-01-08 2020-09-16 Arconic Technologies LLC New 6xxx aluminum alloys, and methods of making the same
JP6599062B1 (en) 2018-03-27 2019-10-30 古河電気工業株式会社 Aluminum alloy material and conductive member, battery member, fastening part, spring part and structural part using the same
CN115011848B (en) * 2022-05-11 2023-03-28 北京理工大学 High-purity aluminum alloy conductor and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080431A (en) * 1998-09-02 2000-03-21 Kobe Steel Ltd Al-Mg ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JP4819233B2 (en) * 2000-08-30 2011-11-24 新日本製鐵株式会社 Aluminum alloy plate with excellent formability
CA2712316C (en) * 2001-03-28 2013-05-14 Sumitomo Light Metal Industries, Ltd. Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
JP2003268475A (en) * 2002-03-12 2003-09-25 Sky Alum Co Ltd Aluminum alloy sheet for forming, and manufacturing method therefor
JP3740086B2 (en) * 2002-04-26 2006-01-25 株式会社神戸製鋼所 A method for producing an aluminum alloy plate that is excellent in hemmability after aging at room temperature and is hemmed after stretch forming
JP2004315878A (en) * 2003-04-15 2004-11-11 Nippon Steel Corp Method for manufacturing aluminum alloy sheet to be formed superior in hem bendability and surface quality
JP4798943B2 (en) * 2003-09-05 2011-10-19 古河スカイ株式会社 Aluminum alloy plate for forming and method for producing the same
JP4164437B2 (en) * 2003-11-10 2008-10-15 古河スカイ株式会社 Method for producing aluminum alloy sheet for forming
JP4588338B2 (en) * 2004-03-10 2010-12-01 株式会社神戸製鋼所 Aluminum alloy sheet with excellent bending workability and press formability
KR100600157B1 (en) * 2004-03-22 2006-07-12 현대자동차주식회사 Manufacturing method of Al-Mg-Si alloy sheet which can flat hemming
JP4495623B2 (en) * 2005-03-17 2010-07-07 株式会社神戸製鋼所 Aluminum alloy plate excellent in stretch flangeability and bending workability and method for producing the same
JP2006322064A (en) * 2005-04-19 2006-11-30 Furukawa Electric Co Ltd:The High moldability aluminum material
JP4939091B2 (en) * 2006-03-23 2012-05-23 株式会社神戸製鋼所 Manufacturing method of aluminum alloy plate with excellent bending workability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007111002A1 (en) * 2005-04-19 2009-08-06 古河電気工業株式会社 High formability aluminum material
WO2007111002A1 (en) * 2006-03-29 2007-10-04 The Furukawa Electric Co., Ltd. High-formability aluminum material
CN108486510A (en) * 2018-04-24 2018-09-04 东莞理工学院 A kind of aviation covering Al-Cu-MgT3 aluminium alloy process quality control methods

Also Published As

Publication number Publication date
JPWO2007111002A1 (en) 2009-08-06
US20100247369A1 (en) 2010-09-30
JP4158944B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP6029662B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP5882380B2 (en) Manufacturing method of aluminum alloy sheet for press forming
JP4495623B2 (en) Aluminum alloy plate excellent in stretch flangeability and bending workability and method for producing the same
JP4158944B2 (en) High formability aluminum material
CN1791697A (en) A cold-rolled steel sheet having a tensile strength of 780 MPa or more an excellent local formability and a suppressed increase in weld hardness
JP5924459B1 (en) Stainless steel for cold rolled steel
JPWO2008013305A1 (en) Stainless steel sheet for parts and manufacturing method thereof
JP5937865B2 (en) Production method of pure titanium plate with excellent balance of press formability and strength, and excellent corrosion resistance
JPH08232052A (en) Production of aluminum alloy sheet for automobile outer sheet
JP5368968B2 (en) Aluminum alloy plate for heat insulator and manufacturing method thereof
JP4856368B2 (en) Aluminum alloy fin material with excellent formability
JP4865174B2 (en) Manufacturing method of aluminum alloy sheet with excellent bending workability and drawability
JP4836486B2 (en) Al-Mg-Si alloy sheet having excellent deep drawability and method for producing the same
JP5323673B2 (en) Aluminum alloy plate for heat insulator and manufacturing method thereof
KR20110018457A (en) Cold-rolled steel sheet, process for production of same, and backlight chassis
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
WO2007111002A1 (en) High-formability aluminum material
CN112703265A (en) Cold rolled steel sheet
JP2017210673A (en) Aluminum alloy sheet for press molding small in anisotropy of r value and manufacturing method therefor
JP2019173070A (en) Al-CONTAINING FERRITIC STAINLESS STEEL MATERIAL EXCELLENT IN FABRICABILITY AND HIGH TEMPERATURE OXIDATION RESISTANCE AND WORKED ARTICLE
JP2019173069A (en) Al-CONTAINING FERRITIC STAINLESS STEEL MATERIAL EXCELLENT IN FABRICABILITY AND HIGH TEMPERATURE OXIDATION RESISTANCE
JP6585436B2 (en) Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof
JP4116956B2 (en) Al alloy plate with excellent bending workability
JP2008144279A (en) Aluminum material having high moldability
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor