JP6029662B2 - Austenitic stainless steel sheet and manufacturing method thereof - Google Patents

Austenitic stainless steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP6029662B2
JP6029662B2 JP2014517308A JP2014517308A JP6029662B2 JP 6029662 B2 JP6029662 B2 JP 6029662B2 JP 2014517308 A JP2014517308 A JP 2014517308A JP 2014517308 A JP2014517308 A JP 2014517308A JP 6029662 B2 JP6029662 B2 JP 6029662B2
Authority
JP
Japan
Prior art keywords
stainless steel
austenitic stainless
content
less
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014517308A
Other languages
Japanese (ja)
Other versions
JPWO2015087376A1 (en
Inventor
正美 澤田
正美 澤田
安達 和彦
和彦 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP6029662B2 publication Critical patent/JP6029662B2/en
Publication of JPWO2015087376A1 publication Critical patent/JPWO2015087376A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling

Description

本発明は、オーステナイト系ステンレス鋼板およびその製造方法に関し、具体的には、例えば自動車や電車等の構造部材として用いるのに適した、衝突相当の高歪み速度域での強度とプレス成形相当の低歪み速度域での延性とを両立したオーステナイト系ステンレス鋼板とその製造方法に関する。   The present invention relates to an austenitic stainless steel sheet and a method for producing the same, and specifically, for example, suitable for use as a structural member such as an automobile or a train. The present invention relates to an austenitic stainless steel sheet having both ductility in a strain rate region and a method for producing the same.

近年、環境問題への対応として、自動車や鉄道等の燃費向上が要望されており、この解決策としては、車体の軽量化が非常に効果的である。さらに車体の軽量化には、重量の多くを占める構造部材を形成する素材の軽量化、具体的には素材の薄肉化が有効である。しかしながら、素材の薄肉化は剛性や衝突時の衝撃吸収能を低下させる。そこで、近年では特に構造部材への高強度素材の適用が進んでいる。   In recent years, there has been a demand for improvement in fuel efficiency of automobiles, railways, and the like as a countermeasure to environmental problems, and as a solution to this, a reduction in the weight of the vehicle body is very effective. Furthermore, to reduce the weight of the vehicle body, it is effective to reduce the weight of the material forming the structural member that occupies most of the weight, specifically to reduce the thickness of the material. However, the thinning of the material decreases the rigidity and the shock absorption capacity at the time of collision. Therefore, in recent years, application of high-strength materials to structural members has been progressing.

例えば、自動車のフロントサイドメンバーなどは、大きく変形せずに衝撃エネルギーを吸収する必要がある。このような小さい歪み域での衝撃吸収能の指標としては、衝突相当の歪み速度1000/sでの10%流動応力が適すると考えられる。また、プレス成形性の指標としては、プレス相当の歪み速度0.1/sでの一様伸びが適すると考えられる。すなわち、歪み速度1000/sでの10%流動応力と歪み速度0.1/sでの一様伸びとに優れる材料が構造部材として適するといえる。具体的には、歪み速度1000/sでの10%流動応力と、歪み速度0.1/sでの一様伸びとの積が450MPa以上となる衝撃吸収能とプレス成形性のいずれか、あるいは両方が極めて優れた材料が望ましい。   For example, a front side member of an automobile needs to absorb impact energy without being greatly deformed. As an index of the impact absorbing ability in such a small strain region, 10% flow stress at a strain rate equivalent to collision of 1000 / s is considered suitable. Further, as an index of press formability, it is considered that uniform elongation at a strain rate of 0.1 / s equivalent to press is suitable. That is, it can be said that a material excellent in 10% flow stress at a strain rate of 1000 / s and uniform elongation at a strain rate of 0.1 / s is suitable as a structural member. Specifically, either the impact absorbing ability and press formability in which the product of 10% flow stress at a strain rate of 1000 / s and uniform elongation at a strain rate of 0.1 / s is 450 MPa or more, or Materials that are both very good are desirable.

特許文献1には、Mnを多量に添加し、変形時に加工誘起マルテンサイト変態を起こさせず、オーステナイトの双晶変形によって強度を高めるオーステナイト系ステンレス鋼に係る発明が開示される。しかし、この発明のオーステナイト系ステンレス鋼では、加工誘起マルテンサイト変態を全く起こさせないため、得られる強度および伸びのバランスが不十分な場合がある。具体的には、特許文献1には、実施例として動的引張試験における10%流動応力と静的引張試験における破断のびとが記載されているが、これらの積はいずれも400MPa弱にとどまる。   Patent Document 1 discloses an invention related to an austenitic stainless steel in which Mn is added in a large amount and does not cause work-induced martensitic transformation at the time of deformation, and the strength is increased by twin deformation of austenite. However, since the austenitic stainless steel of the present invention does not cause any work-induced martensitic transformation, there may be an insufficient balance of strength and elongation. Specifically, Patent Document 1 describes, as an example, 10% flow stress in a dynamic tensile test and breakage in a static tensile test, but the product of these is only less than 400 MPa.

特許文献2には、低Ni型の自動車構造部材用オーステナイト系ステンレス鋼に係る発明が開示される。しかし、この発明のオーステナイト系ステンレス鋼は、結晶粒径が数10μmと粗大であるため、自動車構造部材として成形する際に曲げ加工部の表面で亀裂が発生することが多く、構造部材の特性として不十分である。   Patent Document 2 discloses an invention relating to a low Ni type austenitic stainless steel for automobile structural members. However, since the austenitic stainless steel of the present invention has a coarse crystal grain size of several tens of μm, cracks often occur on the surface of the bent portion when it is molded as an automobile structural member. It is insufficient.

特開2009−30128号公報JP 2009-30128 A 特開2010−196103号公報JP 2010-196103 A

構造部材のさらなる軽量化や設計自由度の向上を図るため、現在でも、素材には高歪み速度での高強度化と、低歪み速度での延性の向上が要求されている。このため、特許文献1,2により開示されたオーステナイト系ステンレス鋼であっても、最新の製品に要求される性能を十分に満足できない場合がある。   In order to further reduce the weight of structural members and improve design flexibility, materials are still required to have high strength at high strain rates and to improve ductility at low strain rates. For this reason, even the austenitic stainless steel disclosed in Patent Documents 1 and 2 may not fully satisfy the performance required for the latest products.

本発明者らは、一般的に相反する特性である高強度および高延性の両立にあたり、鋼の各種高強度化の手法を検討した結果、各種高強度化の手法のうちで(a)固溶C,固溶Nによる強化、(b)変形時の変態誘起塑性(TRIP効果)による強化、及び(c)結晶粒微細化による強化を活用することにより、高歪み速度での高強度と、低歪み速度での高延性を両立させることができることを知見し、本発明を完成した。本発明は、以下に列記の通りである。   As a result of studying various methods for increasing the strength of steel in order to achieve both high strength and high ductility, which are generally contradictory properties, the present inventors have found (a) solid solution among various methods for increasing strength. C, strengthening by solid solution N, (b) strengthening by transformation-induced plasticity (TRIP effect) during deformation, and (c) strengthening by crystal grain refinement, high strength at high strain rate and low The present invention has been completed by finding that high ductility at a strain rate can be achieved at the same time. The present invention is listed below.

[1] 質量%で、C:0.02〜0.30%、Cr:10.0〜25.0%、Ni:3.5〜10.0%、Si:0.1〜3.0%、Mn:0.5%〜5.0%、N:0.10〜0.40%、Mo:0〜3.0%、Cu:0〜3.0%、Ti:0〜0.10%、Nb:0〜0.50%、V:0〜1.0%であり、C+3×N:0.4%以上であり、残部Feおよび不純物からなり、下記(1)式により規定されるMd30値が0℃以上50℃以下であり、Cr炭化物およびCr窒化物の体積率が1%以下であり、かつ母相の平均結晶粒径が10μm以下であり、歪み速度1000/sでの10%流動応力と歪み速度0.1/sでの一様伸びとの積が450MPa以上である、オーステナイト系ステンレス鋼板。

Figure 0006029662
[1] By mass%, C: 0.02 to 0.30%, Cr: 10.0 to 25.0%, Ni: 3.5 to 10.0%, Si: 0.1 to 3.0% , Mn: 0.5% to 5.0%, N: 0.10 to 0.40%, Mo: 0 to 3.0%, Cu: 0 to 3.0%, Ti: 0 to 0.10% , Nb: 0 to 0.50%, V: 0 to 1.0%, C + 3 × N: 0.4% or more, consisting of the balance Fe and impurities, Md defined by the following formula (1) 30 value is at 50 ° C. or less 0 ℃ or more, a volume ratio of Cr carbide and Cr nitrides than 1%, and the average crystal grain size of the matrix phase is Ri der less 10 [mu] m, at a strain rate of 1000 / s An austenitic stainless steel sheet having a product of 10% flow stress and uniform elongation at a strain rate of 0.1 / s of 450 MPa or more .
Figure 0006029662

[2]
質量%で、Mo:0.4〜3.0%、Cu:0.4〜3.0%の少なくとも1種を含有する、[1]に記載のオーステナイト系ステンレス鋼板。
[2]
The austenitic stainless steel sheet according to [1], which contains at least one of Mo: 0.4 to 3.0% and Cu: 0.4 to 3.0% by mass%.

[3]
質量%で、Ti:0.01〜0.10%、Nb:0.02〜0.50%、V:0.02〜1.0%からなる群から選ばれた1種または2種以上を含有する、[1]または[2]に記載のオーステナイト系ステンレス鋼板。
[3]
One or more selected from the group consisting of Ti: 0.01 to 0.10%, Nb: 0.02 to 0.50%, and V: 0.02 to 1.0% by mass% The austenitic stainless steel sheet according to [1] or [2].

[4] [1]に記載のオーステナイト系ステンレス鋼板を製造する方法であって、 質量%で、C:0.02〜0.30%、Cr:10.0〜25.0%、Ni:3.5〜10.0%、Si:0.1〜3.0%、Mn:0.5%〜5.0%、N:0.10〜0.40%、Mo:0〜3.0%、Cu:0〜3.0%、Ti:0〜0.10%、Nb:0〜0.50%、V:0〜1.0%であり、C+3×N:0.4%以上であり、残部Feおよび不純物からなるステンレス鋼素材に熱間圧延を施した後、得られた熱延鋼板に下記(2)式を満足する焼鈍温度T(℃)および焼鈍時間t(sec)で熱延板焼鈍を施す、オーステナイト系ステンレス鋼板の製造方法。

Figure 0006029662
[4] A method for producing an austenitic stainless steel sheet according to [1], wherein, in mass%, C: 0.02 to 0.30%, Cr: 10.0 to 25.0%, Ni: 3 0.5 to 10.0%, Si: 0.1 to 3.0%, Mn: 0.5% to 5.0%, N: 0.10 to 0.40%, Mo: 0 to 3.0% Cu: 0 to 3.0%, Ti: 0 to 0.10%, Nb: 0 to 0.50%, V: 0 to 1.0%, C + 3 × N: 0.4% or more Then, after hot rolling the stainless steel material composed of the remaining Fe and impurities, the obtained hot-rolled steel sheet is hot-rolled at an annealing temperature T (° C.) and an annealing time t (sec) satisfying the following expression (2). A method for producing an austenitic stainless steel sheet, which is subjected to sheet annealing.
Figure 0006029662

本発明に係るオーステナイト系ステンレス鋼板は、歪み速度1000/sでの10%流動応力と歪み速度0.1/sでの一様伸びとの積が450MPa以上であり、衝撃吸収能とプレス成形性のいずれかあるいは両方を、従来鋼よりも大きく向上でき、高歪み速度での高強度化と、低歪み速度での延性の向上とが図られる。   The austenitic stainless steel sheet according to the present invention has a product of 10% flow stress at a strain rate of 1000 / s and a uniform elongation at a strain rate of 0.1 / s of 450 MPa or more. Either or both of these can be greatly improved as compared with conventional steels, and high strength can be achieved at a high strain rate and ductility can be improved at a low strain rate.

図1は(2)式を図示したグラフである。FIG. 1 is a graph illustrating equation (2). 図2は、EPMA線分析による熱延焼鈍板の分析結果を示すグラフであり、図2(a)鋼板3の分析結果を示し、図2(b)は鋼板43の分析結果を示し、図2(c)は鋼板44の分析結果を示す。FIG. 2 is a graph showing the analysis result of the hot-rolled annealed plate by EPMA line analysis, FIG. 2 (a) shows the analysis result of the steel plate 3, FIG. 2 (b) shows the analysis result of the steel plate 43, and FIG. (C) shows the analysis result of the steel plate 44.

本発明に係るオーステナイト系ステンレス鋼板の化学組成、金属組織および製造方法を説明する。なお、本明細書では特に断りがない限り化学組成に関する「%」は「質量%」を意味する。   The chemical composition, metal structure and manufacturing method of the austenitic stainless steel sheet according to the present invention will be described. In this specification, “%” relating to chemical composition means “mass%” unless otherwise specified.

1.化学組成
(C:0.02〜0.30%)
Cは、固溶強化元素であり、高歪み速度での高強度化に大きく寄与する。Cによる固溶強化は、短範囲障害物を活用した強化であり、強化の歪み速度依存性が大きい。したがって、合金元素による固溶強化、転位による強化、析出物による他の強化と比較して、低歪み速度での延性の劣化が小さく、本発明の目的である高歪み速度での高強度化と低歪み速度での延性との両立に極めて有効である。このため、C含有量は0.02%以上とする。ただし、C含有量が過剰であると、製造過程において粗大な炭化物を生成して、強度および延性のバランスが劣化するので、C含有量は0.30%以下とする。C含有量は、好ましくは0.04%以上0.30%以下であり、さらに好ましくは0.06%以上0.30%以下である。
1. Chemical composition (C: 0.02-0.30%)
C is a solid solution strengthening element and greatly contributes to high strength at a high strain rate. Solid solution strengthening by C is strengthening utilizing short-range obstacles, and the strain rate dependence of strengthening is large. Therefore, compared to solid solution strengthening with alloy elements, strengthening with dislocations, and other strengthening with precipitates, the deterioration of ductility at a low strain rate is small, and the purpose of the present invention is to increase the strength at a high strain rate. It is extremely effective in achieving both ductility at a low strain rate. For this reason, C content shall be 0.02% or more. However, if the C content is excessive, coarse carbides are produced in the production process, and the balance between strength and ductility deteriorates, so the C content is 0.30% or less. The C content is preferably 0.04% or more and 0.30% or less, and more preferably 0.06% or more and 0.30% or less.

(Cr:10.0〜25.0%)
Crは、ステンレス鋼の基本元素であり、10.0%以上含有させることにより鋼材の表面に不動態皮膜を形成して耐食性を高める作用を奏する。しかし、Cr含有量が過剰であると、高温でδフェライトが生成し、鋼の熱間加工性が著しく劣化する。そのため、Cr含有量は10.0%以上25.0%以下とする。Cr含有量は、好ましくは15%以上20%以下である。
(Cr: 10.0 to 25.0%)
Cr is a basic element of stainless steel, and by containing 10.0% or more, Cr has an effect of forming a passive film on the surface of the steel material to enhance corrosion resistance. However, if the Cr content is excessive, δ ferrite is generated at a high temperature, and the hot workability of the steel is significantly deteriorated. Therefore, the Cr content is set to 10.0% or more and 25.0% or less. The Cr content is preferably 15% or more and 20% or less.

(Ni:3.5〜10.0%)
Niは、オーステナイト系ステンレス鋼の基本元素であり、室温で優れた強度および延性のバランスを有するオーステナイト相を安定して得るために、Niを3.5%以上含有させる。しかし、Ni含有量が多過ぎるとオーステナイト相が過剰に安定化し、変形時の加工誘起マルテンサイト変態が抑制され、加工硬化し難くなる結果、伸びが低下する。そのために、Ni含有量は3.5%以上10.0%以下とする。Ni含有量は、好ましくは3.5%以上8%以下である。
(Ni: 3.5 to 10.0%)
Ni is a basic element of austenitic stainless steel. In order to stably obtain an austenitic phase having an excellent balance between strength and ductility at room temperature, Ni is contained in an amount of 3.5% or more. However, if the Ni content is too large, the austenite phase is excessively stabilized, the work-induced martensitic transformation during deformation is suppressed, and work hardening becomes difficult, resulting in a decrease in elongation. Therefore, the Ni content is set to 3.5% or more and 10.0% or less. The Ni content is preferably 3.5% or more and 8% or less.

(Mn:0.5〜5.0%)
Mnは、溶製時の脱酸材として用いられる。また、Mnは,オーステナイト安定化元素であり、かつC,Nの固溶限を上げ、多量のC,Nを固溶させる効果があり、他の元素とのバランスを考慮して適量を含有させる。しかし、Mn含有量が過剰であると、製造過程で粗大なMn化合物が生成され、粗大なMn化合物が破壊の起点となって、成形性が劣化する。以上の理由により、Mn含有量は0.5%以上5.0%以下とする。Mn含有量は、好ましくは1.0%以上5.0%以下であり、さらに好ましくは1.5%以上5.0%以下である。
(Mn: 0.5-5.0%)
Mn is used as a deoxidizer during melting. Further, Mn is an austenite stabilizing element and has an effect of increasing the solid solubility limit of C and N to dissolve a large amount of C and N, and contains an appropriate amount in consideration of balance with other elements. . However, if the Mn content is excessive, a coarse Mn compound is produced in the production process, and the coarse Mn compound becomes a starting point of destruction, and the moldability deteriorates. For the above reasons, the Mn content is set to 0.5% or more and 5.0% or less. The Mn content is preferably 1.0% or more and 5.0% or less, and more preferably 1.5% or more and 5.0% or less.

(N:0.10〜0.40%)
Nは、Cと同様に固溶強化元素であり、高歪み速度での高強度化に有効である。固溶Nは、固溶Cと同様に、合金元素による固溶強化、転位による強化、析出物による強化と比較して、低歪み速度での延性の劣化が小さいため、本発明の目的である高歪み速度での高強度化と低歪み速度での延性の向上に極めて有効である。このため、N含有量は0.10%以上とする。ただし、N含有量が過剰であると、製造過程において粗大な窒化物を生成して、強度および延性のバランスが劣化するので、N含有量は0.40%以下とする。N含有量は、好ましくは0.15%以上0.30%以下であり、さらに好ましくは0.20%以上0.25%以下である。
(N: 0.10 to 0.40%)
N, like C, is a solid solution strengthening element and is effective for increasing the strength at a high strain rate. Solid solution N is the object of the present invention because, like solid solution C, the deterioration in ductility at a low strain rate is small compared to solid solution strengthening by alloy elements, strengthening by dislocation, and strengthening by precipitates. It is extremely effective in increasing strength at high strain rates and improving ductility at low strain rates. For this reason, N content shall be 0.10% or more. However, if the N content is excessive, coarse nitrides are produced in the manufacturing process, and the balance between strength and ductility deteriorates. Therefore, the N content is set to 0.40% or less. The N content is preferably 0.15% or more and 0.30% or less, and more preferably 0.20% or more and 0.25% or less.

(C+3×N:0.4%以上)
上述したように、C、Nは固溶強化元素であり、高歪み速度での高強度化に大きく寄与する。CとNによる固溶強化は、合金元素による固溶強化、転位による強化、析出物による強化と比較して、低歪み速度での延性の劣化が小さいことから、本発明の目的である高歪み速度での高強度化と低歪み速度での延性の両立のため、C+3×Nを0.4%以上とする。
(C + 3 × N: 0.4% or more)
As described above, C and N are solid solution strengthening elements, and greatly contribute to increasing the strength at a high strain rate. Since the solid solution strengthening by C and N has less ductile deterioration at a low strain rate than the solid solution strengthening by alloying element, the strengthening by dislocation, and the strengthening by precipitates, the high strain which is the object of the present invention In order to achieve both high strength at a speed and ductility at a low strain rate, C + 3 × N is set to 0.4% or more.

本発明に係るオーステナイト系ステンレス鋼は、必要に応じて以下に説明する任意添加元素をさらに含有していてもよい。   The austenitic stainless steel according to the present invention may further contain an optional additive element described below as required.

(Si:0〜3.0%)
Siは、固溶強化元素であり、鋼の高強度化に寄与するとともに、溶製時の脱酸材としても用いられる。Siは、必要に応じて含有させてもよい。高強度化のためには、0.1%以上含有することが望ましい。しかし、Si含有量が過剰であると、製造過程で粗大なSi化合物が生成され、これらの粗大なSi化合物が熱間加工性及び冷間加工性の劣化を招く。このため、Si含有量は、3.0%以下であり、望ましくは2.8%以下である。
(Si: 0 to 3.0%)
Si is a solid solution strengthening element, contributes to increasing the strength of steel, and is also used as a deoxidizer during melting. Si may be contained as necessary. In order to increase the strength, it is desirable to contain 0.1% or more. However, if the Si content is excessive, coarse Si compounds are produced during the production process, and these coarse Si compounds cause deterioration of hot workability and cold workability. For this reason, Si content is 3.0% or less, Preferably it is 2.8% or less.

(Mo:0〜3.0%またはCu:0〜3.0%の一方または両方)
Moは、耐食性の向上に有効な元素であり、必要に応じて含有させてもよい。しかし、Mo含有量が多過ぎると延性の低下をもたらすため、Mo含有量は、3.0%以下とする。Mo含有量は、好ましくは2.5%以下であり、耐食性向上効果を確実に得るためには0.4%以上含有することが好ましい。
(Mo: 0 to 3.0% or Cu: 0 to 3.0%, or both)
Mo is an element effective for improving the corrosion resistance, and may be contained as necessary. However, if the Mo content is too large, ductility is lowered, so the Mo content is 3.0% or less. The Mo content is preferably 2.5% or less, and preferably 0.4% or more in order to reliably obtain the effect of improving corrosion resistance.

Cuは、冷間加工性や延性の向上に有効であり、必要に応じて含有させてもよい。しかし、Cu含有量が多過ぎると熱間脆性を誘発するため、Cu含有量は3.0%以下とする。Cu含有量は、好ましくは2.5%以下であり、冷間加工性や延性の向上効果を確実に得るためには0.4%以上含有することが好ましい。   Cu is effective in improving cold workability and ductility, and may be contained as necessary. However, if the Cu content is too high, hot brittleness is induced, so the Cu content is 3.0% or less. The Cu content is preferably 2.5% or less, and is preferably contained in an amount of 0.4% or more in order to surely improve the cold workability and ductility.

(Ti:0〜0.10%、Nb:0〜0.50%およびV:0〜1.0%から選ばれた1種または2種以上)
Ti、NbおよびVは、いずれも、製造過程において、微細な炭化物あるいは窒化物として析出し、ピン止め効果により結晶の粒成長を抑制する効果があるので、必要に応じて含有させてもよい。ただし、これらの元素の含有量が過剰になると、粗大な炭化物や窒化物が生成し、これらが変形時の破壊起点となって成形性を著しく劣化させる。そのために、Ti含有量は0.10%以下とし、Nb含有量は0.50%以下とし、V含有量は1.0%以下とする。好ましくは、Ti含有量は0.05%以下であり、Nb含有量は0.2%以下であり、V含有量は0.5%以下である。また、結晶の粒成長を抑制する効果を確実に得るためには、Tiは0.01%以上、Nbは0.02%以上、Vは0.02%以上、含有することが好ましい。
(One or more selected from Ti: 0 to 0.10%, Nb: 0 to 0.50% and V: 0 to 1.0%)
Ti, Nb, and V are all precipitated as fine carbides or nitrides in the manufacturing process and have an effect of suppressing crystal grain growth due to the pinning effect, and may be contained as necessary. However, if the content of these elements is excessive, coarse carbides and nitrides are formed, which become the starting points of fracture during deformation and significantly deteriorate the moldability. Therefore, the Ti content is 0.10% or less, the Nb content is 0.50% or less, and the V content is 1.0% or less. Preferably, the Ti content is 0.05% or less, the Nb content is 0.2% or less, and the V content is 0.5% or less. In order to reliably obtain the effect of suppressing crystal grain growth, Ti is preferably contained in an amount of 0.01% or more, Nb is contained in an amount of 0.02% or more, and V is contained in an amount of 0.02% or more.

上述した以外の残部は、Fe及び不純物である。不純物としては、鉱石やスクラップ等の原材料に含まれるもの、製造工程において含まれるもの、が例示される。代表的な不純物としては、P:0.05%以下、S:0.03%以下などが例示される。   The balance other than those described above is Fe and impurities. Examples of the impurities include those contained in raw materials such as ore and scrap and those contained in the manufacturing process. Typical impurities include P: 0.05% or less, S: 0.03% or less, and the like.

(Md30値が0℃以上50℃以下)
Md30値は、オーステナイト安定度を示す指標であり、30%の伸び歪みを与えた時に50%がマルテンサイトに変態する加工温度である。Md30値は、下記(1)式により規定される。Md30値を0℃以上50℃以下とすることにより、変形時に適度に加工誘起マルテンサイトが生成し、TRIP効果が発現することで、より優れた強度および延性のバランスが得られる。
(Md 30 value is 0 ° C or more and 50 ° C or less)
The Md 30 value is an index indicating austenite stability, and is a processing temperature at which 50% is transformed into martensite when an elongation strain of 30% is applied. The Md 30 value is defined by the following equation (1). By setting the Md 30 value to 0 ° C. or more and 50 ° C. or less, processing-induced martensite is appropriately generated at the time of deformation, and the TRIP effect is exhibited, so that a better balance between strength and ductility can be obtained.

Figure 0006029662
Figure 0006029662

2.金属組織
(オーステナイト母相の結晶粒径:10μm以下)
結晶粒の微細化は、鋼の延性の劣化が小さい強化法であり、本発明で対象とするステンレス鋼においても有効な強化手法であることが分かった。また、結晶粒径を小さくし、結晶粒界の密度を上げることにより、変形時に結晶粒界に集中する歪を分散させ、き裂の発生を抑制する効果もある。そこで、オーステナイト母相の結晶粒径を10μm以下とする。オーステナイト母相の結晶粒径は、好ましくは7μm以下であり、さらに好ましくは6μm以下である。
2. Metal structure (crystal grain size of austenite matrix: 10 μm or less)
The refinement of crystal grains is a strengthening method in which the deterioration of the ductility of the steel is small, and it has been found that it is an effective strengthening method even in the stainless steel targeted by the present invention. In addition, by reducing the crystal grain size and increasing the density of the crystal grain boundaries, the strain concentrated on the crystal grain boundaries at the time of deformation can be dispersed to suppress the generation of cracks. Therefore, the crystal grain size of the austenite matrix is set to 10 μm or less. The crystal grain size of the austenite matrix is preferably 7 μm or less, more preferably 6 μm or less.

(Cr炭窒化物の体積率:1.0%以下)
前述のとおり、C、N含有量を増やすことにより、高歪み速度での強度と低歪み速度での延性とのバランスが向上するが、これは、固溶C、Nの場合、高強度化に及ぼす歪み速度依存性が大きいためである。したがって、C、Nを多く添加しても、これらがCr炭化物やCr窒化物として存在したのではこの効果を得られない。ここで、Cr炭化物としてはCr23が挙げられ、Cr窒化物としてはCrN,CrNが挙げられる。ここでいうCr炭化物には、微量のNが固溶したCr23(C,N)を含み、Cr窒化物には微量のCが固溶したCr(C,N),Cr(C,N)を含む。さらに、Cr炭化物,Cr窒化物のように粗大な化合物が存在する場合、Cr炭化物,Cr窒化物自身、あるいはCr炭化物,Cr窒化物と母相との界面がき裂の起点となり易く、延性を顕著に劣化させる。このため、Cr炭化物,Cr窒化物が少ないことが望ましく、具体的には、Cr炭化物およびCr窒化物の体積率を1.0%以下とする。
(Volume ratio of Cr carbonitride: 1.0% or less)
As described above, increasing the C and N contents improves the balance between strength at a high strain rate and ductility at a low strain rate, but this increases the strength in the case of solute C and N. This is because the strain rate dependence is large. Therefore, even if a large amount of C and N is added, this effect cannot be obtained if they exist as Cr carbide or Cr nitride. Here, Cr 23 C 6 is exemplified as the Cr carbide, and Cr 2 N, CrN is exemplified as the Cr nitride. Here, the Cr carbide includes Cr 23 (C, N) 6 in which a small amount of N is dissolved, and the Cr nitride includes Cr 2 (C, N), Cr (C, N) in which a small amount of C is dissolved. N). Furthermore, when a coarse compound such as Cr carbide or Cr nitride exists, the Cr carbide, Cr nitride itself, or the interface between the Cr carbide, Cr nitride and the parent phase is likely to be a crack starting point, and the ductility is remarkable. To deteriorate. For this reason, it is desirable that the amount of Cr carbide and Cr nitride is small. Specifically, the volume ratio of Cr carbide and Cr nitride is set to 1.0% or less.

3.製造方法
本発明は、多くのC、Nを固溶させることにより、優れた強度および延性のバランスを得ることを特徴とする。しかし、例えば特許文献2で開示された、1080℃、60秒間程度の熱延板焼鈍では、熱間圧延時に析出あるいは濃化したC,Nが十分に均一化せず、これらの析出あるいは濃化したC,Nが、その後の固溶化熱処理や焼鈍を経ても残存する場合があり、固溶化熱処理や焼鈍後の冷却過程で、Cr炭化物や窒化物が残存した析出物を核として析出しやすく、C、Nを多く固溶した状態にできない。
3. Manufacturing Method The present invention is characterized by obtaining an excellent balance between strength and ductility by dissolving a large amount of C and N in a solid solution. However, for example, in hot-rolled sheet annealing at 1080 ° C. for about 60 seconds disclosed in Patent Document 2, C and N precipitated or concentrated at the time of hot rolling are not sufficiently uniformed, and these precipitation or concentration C, N may remain even after the subsequent solution heat treatment and annealing, and in the cooling process after the solution heat treatment and annealing, it is easy to precipitate as a nucleus in which the Cr carbide and nitride remain, C and N cannot be made a solid solution.

本発明者らは、焼鈍温度T(℃),焼鈍時間t(sec)とC,Nの拡散を詳細に検討した結果、熱延板中のC,Nが150μm以上拡散するような焼鈍温度Tおよび焼鈍時間tにより熱延板焼鈍を施すことによって、熱間圧延時に析出あるいは濃化したC,Nが十分に固溶し均一化することが判明した。   As a result of detailed examination of the annealing temperature T (° C.), the annealing time t (sec), and the diffusion of C and N, the present inventors have found that the annealing temperature T is such that C and N in the hot-rolled sheet diffuse 150 μm or more. It has also been found that by performing hot-rolled sheet annealing with an annealing time t, C and N precipitated or concentrated during hot rolling are sufficiently dissolved and uniformized.

ここで、拡散距離λは、(3)式のように拡散係数D,時間tで整理される。さらに、オーステナイト系ステンレス鋼中のNの拡散係数D(m/sec)は、文献(例えば、鋼の物性と窒素 69ページ アグネ技術センター)によると、(4)式により表わされる。Here, the diffusion distance λ is arranged by the diffusion coefficient D and time t as shown in the equation (3). Furthermore, the diffusion coefficient D (m 2 / sec) of N in the austenitic stainless steel is represented by the formula (4) according to literature (for example, physical properties of steel and nitrogen, page 69 Agne Technical Center).

Figure 0006029662
Figure 0006029662

Figure 0006029662
Figure 0006029662

(3)式および(4)式に基づいてNが150μm以上拡散する条件を整理したものが(2)式である。また、(2)式を図示したものが図1である。図1中の灰色に塗られた部分(右上方部分)が、(2)式を満たす範囲である。オーステナイト系ステンレス鋼中のCは、拡散係数がNとほぼ同じであるため、(2)式を満たす焼鈍温度および焼鈍時間の熱延板焼鈍を行えば、Cも十分に拡散し、均一化される。   Formula (2) is a summary of the conditions under which N diffuses by 150 μm or more based on formulas (3) and (4). Further, FIG. 1 illustrates the equation (2). A portion painted in gray (upper right portion) in FIG. 1 is a range satisfying the expression (2). Since C in the austenitic stainless steel has a diffusion coefficient substantially the same as N, C is sufficiently diffused and uniformized by performing hot-rolled sheet annealing at an annealing temperature and an annealing time satisfying the formula (2). The

Figure 0006029662
Figure 0006029662

また、熱延板焼鈍時にC,Nが拡散して均一化されても、冷却速度が遅いと、冷却中にC,NがCr炭化物,Cr窒化物として析出する場合がある。特にCr炭化物,Cr窒化物が析出し易い700℃までは冷却速度を2.0℃/sec以上とすることが好ましい。熱延板焼鈍以後の溶体化処理や焼鈍においても、温度は900℃以上で保持し、保持温度から700℃までの冷却速度は2.0℃/sec以上とすることが好ましい。   Further, even if C and N are diffused and uniformized during hot-rolled sheet annealing, if the cooling rate is slow, C and N may precipitate as Cr carbide and Cr nitride during cooling. In particular, the cooling rate is preferably 2.0 ° C./sec or more up to 700 ° C. where Cr carbide and Cr nitride are likely to precipitate. Also in the solution treatment and annealing after hot-rolled sheet annealing, the temperature is preferably maintained at 900 ° C. or higher, and the cooling rate from the holding temperature to 700 ° C. is preferably 2.0 ° C./sec or higher.

表1に示す化学組成の17kgのステンレス鋼塊を溶製した。表1において、鋼種A1〜A25は、化学組成、(C+3×N)量、Md30値がいずれも本発明の範囲を満足する材料であり、鋼種B1〜B14は、化学組成、(C+3×N)量、Md30値の少なくとも1つが本発明の範囲を外れる材料である。表1中、「−」は、含有を意図していないこと(含有量が望ましい範囲未満もしくは0)を示す。A 17 kg ingot of stainless steel having the chemical composition shown in Table 1 was melted. In Table 1, steel types A1 to A25 are materials whose chemical composition, (C + 3 × N) amount, and Md 30 value all satisfy the scope of the present invention, and steel types B1 to B14 have chemical compositions (C + 3 × N). ) At least one of the quantities, Md 30 values, is a material outside the scope of the present invention. In Table 1, “-” indicates that inclusion is not intended (the content is less than the desired range or 0).

Figure 0006029662
Figure 0006029662

このステンレス鋼鋳塊を切削加工して厚さ45mmの熱間圧延用素材とした。その後に熱間圧延を施して、厚さ6.0mmの熱延鋼板とした後、この熱延鋼板にそれぞれ表2に示す焼鈍温度および焼鈍時間で熱延板焼鈍を施した。鋼板28、34、35、43、44は、熱延板焼鈍における焼鈍温度T(℃)、焼鈍時間t(sec)が上記(2)式を満足しない例である。   This stainless steel ingot was cut to obtain a hot rolling material having a thickness of 45 mm. Thereafter, hot rolling was performed to obtain a hot-rolled steel sheet having a thickness of 6.0 mm, and then the hot-rolled steel sheet was subjected to hot-rolled sheet annealing at an annealing temperature and an annealing time shown in Table 2, respectively. The steel plates 28, 34, 35, 43, and 44 are examples in which the annealing temperature T (° C.) and the annealing time t (sec) in hot-rolled sheet annealing do not satisfy the above formula (2).

その後、冷間圧延と焼鈍を2〜3回ずつ繰り返して、厚さ1.0mmの冷延板を得た。最後に900〜1000℃で180秒間焼鈍を施した。
Cr炭窒化物の体積率V(%),平均結晶粒径D(μm),歪み速度1000/sでの10%流動応力(10%FS),歪み速度0.1/sでの一様伸び(UEL)は、以下の手法で測定した。
Thereafter, cold rolling and annealing were repeated 2 to 3 times to obtain a cold rolled sheet having a thickness of 1.0 mm. Finally, annealing was performed at 900 to 1000 ° C. for 180 seconds.
Cr volume fraction V (%), average grain size D (μm), 10% flow stress (10% FS) at a strain rate of 1000 / s, uniform elongation at a strain rate of 0.1 / s (UEL) was measured by the following method.

(Cr炭窒化物の体積率)
鋼板を板厚が3/4となるまで化学研磨した後、特性X線をCo―Kα線、2θを30−100(degree)の範囲でX回折測定を行った。検出された回折ピークを用いてCr炭化物およびCr窒化物の体積率Vを算出した。母相のX線回折ピークは、オーステナイト相の(111)面、(200)面、(220)面、および母相のマルテンサイト相の(110)面、(200)面、(211)面からの回折ピークを用いた。炭化物のX線回折ピークとしてCr23の(420)面、(422)面、(440)面からの回折ピーク、窒化物のX線回折ピークとしてCrNの(110)面、(002)面、(111)面および、CrNの(111)面、(220)面、(311)面からの回折ピークを用いた。
(Volume ratio of Cr carbonitride)
After the steel plate was chemically polished until the plate thickness was 3/4, X diffraction measurement was performed with the characteristic X-rays in the range of Co-Kα rays and 2θ in the range of 30-100 (degrees). The volume fraction V of Cr carbide and Cr nitride was calculated using the detected diffraction peak. The X-ray diffraction peaks of the parent phase are from the (111) plane, (200) plane, (220) plane of the austenite phase, and the (110) plane, (200) plane, (211) plane of the parent martensite phase. The diffraction peak of was used. The diffraction peak from the (420) plane, the (422) plane and the (440) plane of Cr 23 C 6 as the X-ray diffraction peak of carbide, the (110) plane of Cr 2 N as the X-ray diffraction peak of nitride, (002 ) Plane, (111) plane, and diffraction peaks from CrN (111) plane, (220) plane, and (311) plane were used.

同じ相からのピークであっても面によってX線の反射率が異なる。したがって、各ピークの積分強度は、JCPDSカードの各ピークの相対強度で割り、規格化した。
また、各相の構成元素が異なると、それらの構成元素の原子散乱因子(atomic scattering factor)が異なるため、X線の反射率は異なる。しかしながら、X線回折測定に関する代表的な文献である「B.D.Cullity:Elements of X-ray Diffraction,2nd ed.,Addison-Wesley,Massachussets,(1978)」によると、本発明で対象とするステンレス鋼の母相、および炭化物,窒化物の主要元素であるFe,Cr,Ni,Mnの原子散乱因子の差は小さいため、今回の実施例の範囲では、各相の構成元素の差が反射率に及ぼす影響は無視できる。
Even with peaks from the same phase, the reflectivity of X-rays varies depending on the surface. Therefore, the integrated intensity of each peak was divided by the relative intensity of each peak of the JCPDS card and normalized.
Also, if the constituent elements of each phase are different, the atomic scattering factors of those constituent elements are different, so that the X-ray reflectivity is different. However, according to “BDCullity: Elements of X-ray Diffraction, 2nd ed., Addison-Wesley, Massachussets, (1978)”, which is a representative document relating to X-ray diffraction measurement, Since the difference in atomic scattering factors of Fe, Cr, Ni, and Mn, which are the main elements of phases and carbides and nitrides, is small, the effect of the difference in the constituent elements of each phase on the reflectance is within the scope of this example. Can be ignored.

以上により、Cr炭化物およびCr窒化物の体積率Vは、下記(5)式により表わせる。V、V、Vγ、Vα’は、それぞれCr炭化物、Cr窒化物、オーステナイト相、マルテンサイト相の各面のピークの積分強度をJCPDSカードの相対強度で割った後、その値を足し合わせた値である。Thus, the volume fraction V of Cr carbide and Cr nitride can be expressed by the following equation (5). V C , V N , V γ , V α ′ are obtained by dividing the integrated intensity of the peak of each surface of the Cr carbide, Cr nitride, austenite phase, and martensite phase by the relative strength of the JCPDS card, respectively. It is the value added together.

Figure 0006029662
Figure 0006029662

一例を(6)式に示す。ここで、Iγ(hkl)は、X線回折測定で得られたγ(hkl)面からのピークの積分強度、RIγ(hkl)は、JCPDSカードのRIγ(hkl)の相対強度である。An example is shown in equation (6). Here, I gamma (hkl) is the integrated intensity of the peaks from the obtained gamma (hkl) plane obtained by X-ray diffraction measurement, RI gamma (hkl) is the relative intensity of JCPDS card RI gamma (hkl) .

Figure 0006029662
Figure 0006029662

(結晶粒径)
鋼板の圧延方向平行断面を研磨し、硝酸電解腐食後に、走査型顕微鏡で金属組織を撮影した。撮影した写真から得られた公称粒径を母相の平均結晶粒径とした。
(Crystal grain size)
The cross-section in the rolling direction of the steel plate was polished, and after the nitric acid electrolytic corrosion, the metal structure was photographed with a scanning microscope. The nominal grain size obtained from the photograph taken was taken as the average crystal grain size of the parent phase.

(歪み速度1000/sでの10%流動応力,歪み速度0.1/sでの一様伸び)
歪み速度1000/sおよび0.1/sで引張試験を行った。各鋼板について引張試験を3回ずつ行い、それらの平均値を特性値とした。ここでは、衝突相当の高歪み速度の強度として歪み速度1000/sでの10%流動応力を利用するとともに、プレス相当の低歪み速度での延性として歪み速度0.1/sでの一様伸びを測定した。これらの10%流動応力と一様伸びの積を、強度および延性のバランスの指標とした。
(10% flow stress at a strain rate of 1000 / s, uniform elongation at a strain rate of 0.1 / s)
Tensile tests were performed at strain rates of 1000 / s and 0.1 / s. Each steel plate was subjected to a tensile test three times, and the average value was taken as the characteristic value. Here, 10% flow stress at a strain rate of 1000 / s is used as the strength of the high strain rate equivalent to the collision, and uniform elongation at a strain rate of 0.1 / s is used as the ductility at the low strain rate equivalent to the press. Was measured. The product of these 10% flow stress and uniform elongation was used as an index of balance between strength and ductility.

表2に、これらの鋼板のCr炭化物およびCr窒化物の体積率V(%),平均結晶粒径D(μm),歪み速度1000/sでの引張試験における10%流動応力,歪み速度0.1/sでの引張試験における一様伸び,およびこれらの積をまとめて示す。   Table 2 shows the volume fraction V (%) of Cr carbide and Cr nitride of these steel sheets, the average crystal grain size D (μm), 10% flow stress in a tensile test at a strain rate of 1000 / s, and a strain rate of 0. The uniform elongation in a tensile test at 1 / s and the product of these are shown together.

Figure 0006029662
Figure 0006029662

表2における鋼板1〜26は、本発明例の鋼板である。 Steel plates 1 to 26 in Table 2 are steel plates according to examples of the present invention.

鋼板1〜26は、いずれも、優れた強度および延性のバランスを有する。具体的には、歪み速度1000/sでの10%流動応力と歪み速度0.1/sでの一様伸びの積が450MPaを超える鋼である。   Each of the steel plates 1 to 26 has an excellent balance between strength and ductility. Specifically, it is a steel in which the product of 10% flow stress at a strain rate of 1000 / s and uniform elongation at a strain rate of 0.1 / s exceeds 450 MPa.

一方、鋼板27〜44は比較鋼であり、強度および延性のバランスに劣る鋼である。
鋼板27,28は、C含有量が本発明の範囲から外れるため、強度および延性のバランスに劣る。
On the other hand, the steel plates 27 to 44 are comparative steels and are inferior in balance between strength and ductility.
The steel plates 27 and 28 are inferior in balance between strength and ductility because the C content is out of the scope of the present invention.

鋼板29,30は、N含有量が本発明の範囲から外れ、特に鋼板29は(C+3×N)量も本発明の範囲よりも少なくいため、強度および延性のバランスに劣る。
鋼板31,32は、(C+3×N)量が本発明の範囲よりも少なく、特に鋼板31はC含有量およびN含有量のいずれもが本発明の範囲を外れるため、強度および延性のバランスに劣る。
The steel plates 29 and 30 have an N content that is out of the range of the present invention. In particular, the steel plate 29 has a smaller amount of (C + 3 × N) than the range of the present invention, so that the balance between strength and ductility is poor.
The steel plates 31 and 32 have a (C + 3 × N) amount less than the range of the present invention. In particular, the steel plate 31 has a balance between strength and ductility because both the C content and the N content are outside the range of the present invention. Inferior.

鋼板33,34は、Cr含有量およびMd30値が本発明の範囲から外れるため、強度および延性のバランスに劣る。
鋼板35は、Ni含有量およびMd30値が本発明の範囲から外れるため、強度および延性のバランスに劣る。
The steel plates 33 and 34 are inferior in balance between strength and ductility because the Cr content and the Md 30 value are out of the scope of the present invention.
The steel plate 35 is inferior in the balance between strength and ductility because the Ni content and the Md 30 value are out of the scope of the present invention.

鋼板36は、Ni含有量およびMd30値が本発明の範囲から外れるため、強度および延性のバランスに劣る。
鋼板37は、Si含有量およびMn含有量が本発明の範囲から外れるため、強度および延性のバランスに劣る。
The steel plate 36 is inferior in balance between strength and ductility because the Ni content and the Md 30 value are out of the scope of the present invention.
The steel plate 37 is inferior in the balance between strength and ductility because the Si content and the Mn content are out of the scope of the present invention.

鋼板38は、Si含有量、Mn含有量およびTi含有量が本発明の範囲から外れるため、強度および延性のバランスに劣る。
鋼板39は、Mo含有量およびNb含有量が本発明の範囲から外れるため、強度および延性のバランスに劣る。
The steel plate 38 is inferior in balance between strength and ductility because the Si content, the Mn content and the Ti content deviate from the scope of the present invention.
The steel plate 39 is inferior in the balance between strength and ductility because the Mo content and the Nb content deviate from the scope of the present invention.

鋼板40は、Cu含有量およびV含有量が本発明の範囲から外れるため、強度および延性のバランスに劣る。
鋼板41,42は、いずれも、本発明の範囲を満足する化学組成、(C+3×N)量およびMd30値を有するものの、結晶粒径が本発明の範囲から外れるため、強度および延性のバランスに劣る。鋼種A1から作製した鋼板1,41,42を比較することにより、結晶粒径を10μm以下にすることにより優れた強度および延性のバランスを得られることが分かる。
The steel plate 40 is inferior in balance between strength and ductility because the Cu content and the V content deviate from the scope of the present invention.
The steel plates 41 and 42 both have a chemical composition that satisfies the scope of the present invention, a (C + 3 × N) amount, and an Md 30 value, but the crystal grain size is out of the scope of the present invention, so that the balance between strength and ductility is achieved. Inferior to By comparing the steel plates 1, 41, 42 produced from the steel type A1, it can be seen that an excellent balance of strength and ductility can be obtained by making the crystal grain size 10 μm or less.

さらに、鋼板43,44は、いずれも、本発明の範囲を満足する化学組成、(C+3×N)量およびMd30値を有するものの、冷延焼鈍材のCr炭化物およびCr窒化物の合計の体積率が1%を超えており、強度および延性のバランスに劣る。鋼種A3から作った鋼板3,4,43,44を比較することにより、Cr炭化物およびCr窒化物の合計の体積率を1%以下にすることにより、優れた強度および延性のバランスが得られることがわかる。Further, the steel plates 43 and 44 both have a chemical composition that satisfies the scope of the present invention, a (C + 3 × N) amount and an Md 30 value, but the total volume of Cr carbide and Cr nitride of the cold-rolled annealing material. The rate exceeds 1%, and the balance between strength and ductility is poor. By comparing steel plates 3, 4, 43, and 44 made from steel type A3, the balance of excellent strength and ductility can be obtained by making the total volume fraction of Cr carbide and Cr nitride 1% or less. I understand.

図2はEPMA線分析による熱延焼鈍板の分析結果を示すグラフであり、図2(a)鋼板3の分析結果を示し、図2(b)は鋼板43の分析結果を示し、図2(c)は鋼板44の分析結果を示す。   FIG. 2 is a graph showing the analysis result of the hot-rolled annealed plate by EPMA line analysis, FIG. 2 (a) shows the analysis result of the steel plate 3, FIG. 2 (b) shows the analysis result of the steel plate 43, and FIG. c) shows the analysis result of the steel plate 44.

鋼板43,44は、本発明の範囲を満足する化学組成であるが、熱間圧延後の熱延板焼鈍の焼鈍温度および焼鈍時間が(2)式を満たさず、図2(a)〜図2(c)の熱延焼鈍板のEPMA分析結果からわかるように、熱延板焼鈍後にC,Nが濃化した領域が存在する。これらが、最終焼鈍後まで残存し、多量のCrの炭化物、窒化物として存在する。   Although the steel plates 43 and 44 have a chemical composition that satisfies the scope of the present invention, the annealing temperature and annealing time of hot-rolled sheet annealing after hot rolling do not satisfy the formula (2), and FIG. As can be seen from the EPMA analysis result of the hot rolled annealed sheet 2 (c), there is a region where C and N are concentrated after the hot rolled sheet anneal. These remain until after the final annealing and exist as a large amount of Cr carbide and nitride.

Claims (4)

質量%で、C:0.02〜0.30%、Cr:10.0〜25.0%、Ni:3.5〜10.0%、Si:0.1〜3.0%、Mn:0.5%〜5.0%、N:0.10〜0.40%、Mo:0〜3.0%、Cu:0〜3.0%、Ti:0〜0.10%、Nb:0〜0.50%、V:0〜1.0%であり、C+3×N:0.4%以上であり、残部Feおよび不純物からなり、下記(1)式により規定されるMd30値が0℃以上50℃以下であり、Cr炭化物およびCr窒化物の体積率が1%以下であり、かつ母相の平均結晶粒径が10μm以下であり、歪み速度1000/sでの10%流動応力と歪み速度0.1/sでの一様伸びとの積が450MPa以上である、オーステナイト系ステンレス鋼板。
Figure 0006029662
In mass%, C: 0.02 to 0.30%, Cr: 10.0 to 25.0%, Ni: 3.5 to 10.0%, Si: 0.1 to 3.0%, Mn: 0.5% to 5.0%, N: 0.10 to 0.40%, Mo: 0 to 3.0%, Cu: 0 to 3.0%, Ti: 0 to 0.10%, Nb: 0 to 0.50%, V: 0 to 1.0%, C + 3 × N: 0.4% or more, and the balance is Fe and impurities, and the Md 30 value defined by the following formula (1) is and at 0 ℃ than 50 ° C. or less, and a volume ratio of Cr carbide and Cr nitrides than 1%, and the average crystal grain size of the matrix phase is Ri der less 10 [mu] m, 10% flow at a strain rate of 1000 / s An austenitic stainless steel sheet in which the product of stress and uniform elongation at a strain rate of 0.1 / s is 450 MPa or more .
Figure 0006029662
質量%で、Mo:0.4〜3.0%、Cu:0.4〜3.0%の少なくとも1種を含有する、請求項1に記載のオーステナイト系ステンレス鋼板。   The austenitic stainless steel sheet according to claim 1, which contains at least one of Mo: 0.4 to 3.0% and Cu: 0.4 to 3.0% by mass%. 質量%で、Ti:0.01〜0.10%、Nb:0.02〜0.50%、V:0.02〜1.0%からなる群から選ばれた1種または2種以上を含有する、請求項1または請求項2に記載のオーステナイト系ステンレス鋼板。   One or more selected from the group consisting of Ti: 0.01 to 0.10%, Nb: 0.02 to 0.50%, and V: 0.02 to 1.0% by mass% The austenitic stainless steel sheet according to claim 1 or 2, which is contained. 請求項1に記載のオーステナイト系ステンレス鋼板を製造する方法であって、  A method for producing the austenitic stainless steel sheet according to claim 1,
質量%で、C:0.02〜0.30%、Cr:10.0〜25.0%、Ni:3.5〜10.0%、Si:0.1〜3.0%、Mn:0.5%〜5.0%、N:0.10〜0.40%、Mo:0〜3.0%、Cu:0〜3.0%、Ti:0〜0.10%、Nb:0〜0.50%、V:0〜1.0%であり、C+3×N:0.4%以上であり、残部Feおよび不純物からなるステンレス鋼素材に熱間圧延を施した後、得られた熱延鋼板に下記(2)式を満足する焼鈍温度T(℃)および焼鈍時間t(sec)で熱延板焼鈍を施す、オーステナイト系ステンレス鋼板の製造方法。  In mass%, C: 0.02 to 0.30%, Cr: 10.0 to 25.0%, Ni: 3.5 to 10.0%, Si: 0.1 to 3.0%, Mn: 0.5% to 5.0%, N: 0.10 to 0.40%, Mo: 0 to 3.0%, Cu: 0 to 3.0%, Ti: 0 to 0.10%, Nb: 0 to 0.50%, V: 0 to 1.0%, C + 3 × N: 0.4% or more, obtained after hot rolling a stainless steel material composed of the remaining Fe and impurities. A method for producing an austenitic stainless steel sheet, wherein the hot-rolled steel sheet is subjected to hot-rolled sheet annealing at an annealing temperature T (° C.) and an annealing time t (sec) satisfying the following expression (2).
Figure 0006029662
Figure 0006029662
JP2014517308A 2013-12-09 2013-12-09 Austenitic stainless steel sheet and manufacturing method thereof Active JP6029662B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082940 WO2015087376A1 (en) 2013-12-09 2013-12-09 Austenitic stainless steel sheet and method for producing same

Publications (2)

Publication Number Publication Date
JP6029662B2 true JP6029662B2 (en) 2016-11-24
JPWO2015087376A1 JPWO2015087376A1 (en) 2017-03-16

Family

ID=53370725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014517308A Active JP6029662B2 (en) 2013-12-09 2013-12-09 Austenitic stainless steel sheet and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP6029662B2 (en)
KR (1) KR101779305B1 (en)
CN (1) CN105452505B (en)
WO (1) WO2015087376A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961989A (en) * 2020-08-05 2020-11-20 广西柳钢中金不锈钢有限公司 Method for manufacturing high-nitrogen low-nickel copper-free austenitic stainless steel
CN112063936A (en) * 2020-08-05 2020-12-11 广西柳钢中金不锈钢有限公司 High-nitrogen low-nickel copper-free austenitic stainless steel

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108138281B (en) * 2015-09-30 2020-05-01 日本制铁株式会社 Austenitic stainless steel
JP6628561B2 (en) * 2015-11-09 2020-01-08 日鉄ステンレス株式会社 Stainless steel sheet for structural member excellent in workability and method for producing the same
CN106048465A (en) * 2016-05-30 2016-10-26 苏州双金实业有限公司 Steel with high strength performance
CN106011677A (en) * 2016-06-13 2016-10-12 苏州双金实业有限公司 Steel capable of preventing impact effectively
CN106086711A (en) * 2016-08-27 2016-11-09 郭云琴 A kind of high intensity, high-ductility TRIP steel plate and preparation method thereof
CN107604262A (en) * 2017-08-09 2018-01-19 宁波市镇海甬鼎紧固件制造有限公司 A kind of stainless steel of high intensity 304 and preparation method thereof
CN108149157A (en) * 2017-12-29 2018-06-12 芜湖三联锻造有限公司 A kind of stainless steel bars and its forging method
CN108034896B (en) * 2018-01-17 2020-01-07 北京金物科技发展有限公司 Particle-reinforced austenitic stainless steel material and preparation method thereof
CN109468547A (en) * 2019-01-06 2019-03-15 浙江火科技股份有限公司 A kind of high-ductility abrasion-proof inner rotating-shuttle and preparation method thereof
KR102292016B1 (en) * 2019-11-18 2021-08-23 한국과학기술원 Austenitic stainless steel having a large amount of unifromly distributed nanometer-sized precipitates and preparing method of the same
CN111020381B (en) * 2019-12-09 2022-01-11 宁波宝新不锈钢有限公司 Austenitic stainless steel and preparation method thereof
WO2021220754A1 (en) * 2020-04-30 2021-11-04 Jfeスチール株式会社 Stainless steel sheet, method for producing same, edged tools and cutlery
EP3960881A1 (en) * 2020-09-01 2022-03-02 Outokumpu Oyj Austenitic stainless steel
KR102491305B1 (en) * 2020-11-18 2023-01-20 주식회사 포스코 Non-magnetic steel having excellent High strength property and manufacturing method thereof
CN112899575A (en) * 2021-01-20 2021-06-04 钢铁研究总院 Austenitic stainless steel wire material manufactured based on cold metal transition arc additive manufacturing and process
CN113549820B (en) * 2021-06-29 2022-05-17 鞍钢股份有限公司 High-carbon low-ferrite-content austenitic stainless steel plate and production method thereof
CN113293335B (en) * 2021-07-27 2021-11-09 科华控股股份有限公司 Low-nickel precipitation hardening austenitic heat-resistant steel material and application thereof
CN114086077B (en) * 2022-01-11 2022-05-20 科华控股股份有限公司 Cast iron-based austenite creep-resistant steel and preparation method and application thereof
KR20230166672A (en) * 2022-05-31 2023-12-07 주식회사 포스코 Austenite stainless steel and manufacturing method
CN114807769B (en) * 2022-06-23 2022-10-25 科华控股股份有限公司 Double-phase heat-resistant steel with controllable TCP phase distribution and application thereof
CN115261731A (en) * 2022-08-16 2022-11-01 安徽尚德科技有限公司 Large-size cast austenitic stainless steel ball crown lining plate in support for continuous beam bridge
CN116162845B (en) * 2022-12-30 2024-02-27 兰州理工大学温州泵阀工程研究院 Method for improving thermoplastic property of high-silicon austenitic stainless steel

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4334113B2 (en) * 2000-07-05 2009-09-30 新日鐵住金ステンレス株式会社 Method for selecting austenitic stainless steel to be used as a collision absorbing member
ES2320224T3 (en) * 2004-07-08 2009-05-20 Arcelormittal-Stainless France COMPOSITION OF STAINLESS STEEL STAINLESS STEEL AND ITS USE FOR THE MANUFACTURE OF STRUCTURE PARTS OF TERRESTRIAL TRANSPORT MEDIA AND CONTAINERS.
JP2007321182A (en) * 2006-05-31 2007-12-13 Nisshin Steel Co Ltd Automobile member having high collision absorbing performance
JP5165236B2 (en) * 2006-12-27 2013-03-21 新日鐵住金ステンレス株式会社 Stainless steel plate for structural members with excellent shock absorption characteristics
CN100567550C (en) * 2007-05-24 2009-12-09 宝山钢铁股份有限公司 A kind of austenitic stainless steel and manufacture method thereof
JP5544633B2 (en) 2007-07-30 2014-07-09 新日鐵住金ステンレス株式会社 Austenitic stainless steel sheet for structural members with excellent shock absorption characteristics
JP5388589B2 (en) * 2008-01-22 2014-01-15 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet for structural members with excellent workability and shock absorption characteristics and method for producing the same
JP5091733B2 (en) 2008-03-17 2012-12-05 日新製鋼株式会社 Stainless steel for low Ni body parts with excellent workability and shock absorption performance
JP5421615B2 (en) 2009-02-24 2014-02-19 日新製鋼株式会社 Ni-saving stainless steel automotive parts
JP5347600B2 (en) 2009-03-16 2013-11-20 新日鐵住金株式会社 Austenitic stainless steel and method for producing austenitic stainless steel sheet
JP2014001422A (en) * 2012-06-18 2014-01-09 Nippon Steel & Sumitomo Metal Austenitic stainless steel plate and manufacturing method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961989A (en) * 2020-08-05 2020-11-20 广西柳钢中金不锈钢有限公司 Method for manufacturing high-nitrogen low-nickel copper-free austenitic stainless steel
CN112063936A (en) * 2020-08-05 2020-12-11 广西柳钢中金不锈钢有限公司 High-nitrogen low-nickel copper-free austenitic stainless steel

Also Published As

Publication number Publication date
WO2015087376A1 (en) 2015-06-18
JPWO2015087376A1 (en) 2017-03-16
KR20160018748A (en) 2016-02-17
CN105452505B (en) 2018-05-25
KR101779305B1 (en) 2017-09-18
CN105452505A (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP6029662B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP5838796B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
WO2010114131A1 (en) Cold-rolled steel sheet and process for producing same
JP4977185B2 (en) High-strength cold-rolled steel sheet with excellent balance between elongation and stretch flangeability and method for producing the same
JP4484070B2 (en) High-tensile hot-rolled steel sheet and manufacturing method thereof
JP5286409B2 (en) High strength steel plate and manufacturing method thereof
JP2014001422A (en) Austenitic stainless steel plate and manufacturing method for the same
EP2617852A1 (en) High-strength hot-rolled steel sheet having excellent bending workability and method for producing same
WO2020110843A1 (en) Hot-rolled steel sheet
JP2009545676A (en) High manganese-type high-strength steel sheet with excellent impact characteristics and manufacturing method thereof
JP6229181B1 (en) Metastable austenitic stainless steel strip or steel plate and method for producing the same
JP2007154283A (en) High strength steel sheet having excellent formability and shape fixability
WO2021149676A1 (en) Steel sheet and method for producing same
JP2016191150A (en) Stainless steel sheet excellent in toughness and production method thereof
EP3556892A1 (en) Low alloy steel sheet having excellent strength and ductility
JP2009173959A (en) High-strength steel sheet and producing method therefor
KR101568519B1 (en) Hot rolled steel sheet having excellent deformation anisotropy in sheared edge and anti fatigue property and method for manufacturing the same
EP3231886A2 (en) Dual-phase steel sheet with excellent formability and manufacturing method therefor
JP2012197516A (en) Method for manufacturing hot-rolled steel sheet
JP5233428B2 (en) Ferritic stainless steel sheet excellent in deep drawability and method for producing the same
JP7192819B2 (en) High-strength steel plate and its manufacturing method
KR102463485B1 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
KR20170005251A (en) Ferric lightweight steel sheet having excellent strength and ductility and method for manufacturing the same
CN107995931B (en) High-strength thin steel sheet excellent in drawability and bake hardenability, and method for producing same
WO2023153185A1 (en) Austenitic stainless steel and method for producing austenitic stainless steel

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161018

R150 Certificate of patent or registration of utility model

Ref document number: 6029662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350