JP4334113B2 - Method for selecting austenitic stainless steel to be used as a collision absorbing member - Google Patents

Method for selecting austenitic stainless steel to be used as a collision absorbing member Download PDF

Info

Publication number
JP4334113B2
JP4334113B2 JP2000203746A JP2000203746A JP4334113B2 JP 4334113 B2 JP4334113 B2 JP 4334113B2 JP 2000203746 A JP2000203746 A JP 2000203746A JP 2000203746 A JP2000203746 A JP 2000203746A JP 4334113 B2 JP4334113 B2 JP 4334113B2
Authority
JP
Japan
Prior art keywords
range
max
stainless steel
strength
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000203746A
Other languages
Japanese (ja)
Other versions
JP2002020843A (en
Inventor
裕一 吉田
博司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2000203746A priority Critical patent/JP4334113B2/en
Publication of JP2002020843A publication Critical patent/JP2002020843A/en
Application granted granted Critical
Publication of JP4334113B2 publication Critical patent/JP4334113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明に属する技術分野】
本発明は、主として鉄道車両及び一般車両の構造部材や補強材に使用され、衝突吸収部材として用い動的変形特性に優れたオーステナイト系ステンレス鋼を選定する方法に関するものである。
【0002】
【従来の技術】
近年の環境対策を背景として、鉄道車両の軽量化が推進され、普通鋼によるモノコック構造の軽量車体を起点に無塗装化や腐食対策を中心としたメンテナンスフリー及び軽量化の見地からステンレス鋼を用いた車両構体が主流である。また、これまで鉄道車両用の構造部材強度に関しては、静的な強度のみを考慮して車両設計されており、構造部材の動的な強度は設計時、考慮されていなかった。
【0003】
一方、自動車、鉄道、航空機など、乗り物を利用する人の安全確保は、いずれの分野においても重要な問題として取り上げられており、鉄道車両においても踏み切り事故や列車衝突事故を想定した衝突安全設計の必要性がとくに在来線通勤車両を対象に高まりつつある。しかしながら、従来の車両用のステンレス鋼は耐腐食性の向上と共に車両の曲げ剛性に対する静的な強度の向上を主眼として開発されたものであり、耐衝突安全性の観点では開発されていなかった。また、鉄道車両に関しては自動車分野のように法的な衝突安全評価基準も設けられてないのが実情である。
【0004】
【発明が解決しようとする課題】
例えば、車両の全面衝突においては、車両フレーム部材に高い衝撃吸収能を持つ材料を適用すれば、この部材が圧潰座屈変形することで衝撃エネルギーが吸収され、車両内の人員に与える衝撃を緩和することができる。材料の衝突吸収性能を考慮する場合、車両衝突時に各部位が受ける歪速度は103 (s-1)程度に達するため、高歪速度領域での動的変形特性の解明が必要である。従って、その動的変形特性を見極めた上で、従来の耐腐食性能を有する動的変形特性に優れたステンレス鋼の開発が必要となった。
【0005】
ところが、高強度ステンレス鋼については車両衝突時の高歪速度領域での動的変形特性は殆ど解明されておらず、衝撃エネルギー吸収のための構成部材としてどのような鋼板の特性に着目し、いかなる基準で材料選定及び材料開発を行なうべきか従来知られていなかった。
【0006】
特開平9−228000号公報には表面品質を向上させたオーステナイト系ステンレス鋼板が開示されているが、衝突安全性能に関連する材料特性については考慮されていない。また、特開平8−176723号公報,特開平2000−17385号公報では、耐衝撃性,衝突安全性に優れた自動車用鋼板が考案されているが、炭素鋼であるため耐腐食性に劣っており、無塗装での車両部材への適用は不可能である。
【0007】
【課題を解決するための手段】
本発明は、上述した問題を解決すべく提案されたもので、具体的手段は以下に示すとおりである。
1)質量%で
C :0.020〜0.030%、 Si:0.500〜1.00%、
Mn:1.00〜2.00%、 P :0.045%以下、
S :0.030%以下、 Ni:6.00〜8.00%、
Cr:16.00〜18.00%、 N :0.20%以下
を含み、残部がFeおよび不可避的不純物からなる鋼であって、5×10−4〜5×10−2(s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における準静的変形強度σ と、5×10 〜5×10 (s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における動的変形強度σd との差(σ−σ )、及び、5×10−4〜5×10−2(s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における最大静的強度σ max と5×10 〜5×10 (s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における最大動的強度σd maxの比σd max /σ max で表わす静動比を材料特性の指標とし、前記(σ−σ )が120MPa以上、また前記(σd max /σ max)が1.2以上を満足するオーステナイト系ステンレス鋼を選定することを特徴とする衝撃吸収部材として用いるオーステナイト系ステンレス鋼を選定する方法。
2)質量%で
C :0.040〜0.080%、 Si:0.40〜1.00%、
Mn:0.90〜2.00%、 P :0.045%以下、
S :0.030%以下、 Ni:8.00〜10.50%、
Cr:18.00〜20.00%、
を含み、残部がFeおよび不可避的不純物からなる鋼であって、5×10−4〜5×10−2(s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における準静的変形強度σ と、5×10 〜5×10 (s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における動的変形強度σd との差(σ−σ )、及び、5×10−4〜5×10−2(s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における最大静的強度σ max と5×10 〜5×10 (s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における最大動的強度σd maxの比σd max /σ max で表わす静動比を材料特性の指標とし、前記(σ−σ )が100MPa以上、また前記(σ−σ )が120MPa以上、また前記(σd max/σ max)が1.2以上を満足するオーステナイト系ステンレス鋼を選定することを特徴とする衝撃吸収部材として用いるオーステナイト系ステンレス鋼を選定する方法。
3)5×10−4〜5×10−2(s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における加工硬化指数が0.3以上を満足するオーステナイト系ステンレス鋼を選定することを特徴とする前記1)または2)に記載の衝突吸収部材として用いるオーステナイト系ステンレス鋼を選定する方法。
4)5×10−4〜5×10−2(s−1)の歪速度範囲で変形した時の引張強度(MPa)×全伸び(%)≧30000を満足するオーステナイト系ステンレス鋼を選定することを特徴とする前記1)乃至3)の何れか1項に記載の衝突吸収部材として用いるオーステナイト系ステンレス鋼を選定する方法。
5)下記(1)式に示すオーステナイト安定度Md30 が0℃〜60℃の範囲にあるオーステナイト系ステンレス鋼を選定することを特徴とする前記1)乃至4)の何れか1項に記載の衝突吸収部材として用いるオーステナイト系ステンレス鋼を選定する方法。
d30 =413−462・(%C+%N)−9.2・%Si−8.1・%Mn
−13.7・%Cr−9.5・%Ni−18.5・%Mo ……(1)
【0008】
尚、準静的変形強度σs と動的変形強度σd との差(σd −σs )は、5×10-4〜5×10-2(s-1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における歪0.1%毎の準静的変形強度の平均値σs と、5×102 〜5×103 (s-1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における歪0.1%毎の動的変形強度の平均値σd との差と定義する。
【0009】
最大静的強度σs max と最大動的強度σd max の比σd max /σs max で表わす静動比は、5×10-4〜5×10-2(s-1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における最大静的強度σs max と5×102 〜5×103 (s-1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における最大動的強度σd max の比と定義する。
【0010】
加工硬化指数とは、下記(2)式に示すn乗硬化式(ステンレス協会編ステンレス鋼便覧記載のHollomonの式)で定義されるn値であり、5×10-4〜5×10-2(s-1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における加工硬化指数と定義する。
σ=C・εn ………(2)
ここで、σ:真応力,ε:真歪み,n:加工硬化指数,C:定数
尚、n値は引張り試験で得られた真応力真歪み曲線を(2)式で最小2乗法等により近似することにより計算されうる。
【0011】
【発明の実施の形態】
以下に、本発明の詳細について説明する。
車両衝突時の衝撃は、構造部材に対して加えられる可能性が高く、部材自身が高い衝撃吸収能を有していることが必要である。しかし、現在までのところ歪速度上昇による変形応力の上昇を考慮して、実部材としての衝撃吸収特性に優れた高強度ステンレス鋼材を提供する試みはなされておらず、実設計においても鉄道車両用の構造部材強度に関しては、静的な強度のみを考慮して車両設計されており、構造部材の動的な強度は考慮されていなかったことは前述した通りである。
【0012】
車両用の構造部材は通常、角筒に似た断面形状をなしており、このような部材での高速圧潰変形を解析した結果、吸収エネルギーの8割程度は10%以下の歪領域で吸収されていることが判明し、衝突吸収能および動的変形特性の指標として歪領域3〜10%の範囲の平均応力σを用いた。通常、静的な強度σs が適度に小さいと必要な部材形状に加工し易く、動的な強度σd は大きいほど衝突吸収能に優れる。
【0013】
従って、5×10-4〜5×10-2(s-1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における準静的変形強度σs と、5×102 〜5×103 (s-1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における動的変形強度σd との差(σd −σs )が大きいほど静的には成形性に優れ、動的には高い衝突吸収能に優れ,更に5×10-4〜5×10-2(s-1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における最大強度σs max と5×102 〜5×103 (s-1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における最大強度σd max の比σd max /σs max の値(静動比)も大きいほど静的には成形性に優れ、動的には高い衝突吸収能に優れる材料として好ましいといえる。また、一般的な材質の指標として、加工硬化指数と、成形性と耐衝撃性のバランス(引張強度と伸びのバランス)である引張強度(MPa)×全伸び(%)も衝突吸収特性を評価する指標として用いた。
【0014】
前記の材料特性指標に基づいて検討を行なった結果、優れた衝突吸収特性を有する鋼材として常温で加工誘起変態が生ずる所定の成分を有するオーステナイト系ステンレス鋼が最も適していることを見出した。オーステナイト系ステンレス鋼の加工誘起変態による加工硬化の大きさはオーステナイトの安定度に起因している。CrとNi等の添加量を調整し、オーステナイトの安定度を適度に減少させることにより、常温で加工力を受けた場合、金属組織中のオーステナイト相がマルテンサイト相に変態する加工誘起変態が適度に生ずるようになり、そのことを利用して高い動的変形応力を確保することができる。
【0015】
尚、オーステナイトの安定度Md30 は下記(1)式に示す算出式(ステンレス協会編ステンレス鋼便覧記載)に基づき、計算することができ、Md30 は0.3の引張り真歪みを与えたとき、50%のマルテンサイト変態を生じる温度を意味する。この(1)式を用いて衝突吸収性能を評価したところ、本発明の範囲に規定することにより良好な衝突吸収性能が得られることがわかった。
オーステナイト安定度Md30 =413-462・(%C+%N)-9.2・%Si-8.1・%Mn-13.7・%Cr
-9.5・%Ni-18.5・%Mo ・・・・(1)
【0016】
最終的に、前述した材料特性指標,オーステナイト安定度算出式,各元素の作用効果を総合的に鑑み、種々の実験を重ねた結果、本発明を完成した。
まず、前記1)の発明について説明する。
Cは強度を得るのに必要な元素であり0.02%以上の添加が必要である。一方、多量に添加すると成形性や溶接性が劣化するため0.030%以下とする。
【0017】
Siは固溶強化元素であり、0.50%以上の添加が必要である。一方、添加量が多くなると成形性が劣化し静動比を低下させるため1.00%以下とする。
【0018】
Mnは固溶強化元素であり、1.00%以上の添加が必要である。一方、Si添加と同様に添加量が多くなると成形性が劣化し静動比を低下させるため、2.00%以下とする。
【0019】
Pは不純物であり含有量が多くなると粒界が弱くなり、耐衝撃性,成形性が劣化するため0.045%以下とした。
【0020】
Sも不純物であり含有量が多くなると成形性が劣化するため0.030%以下とした。
【0021】
Ni添加量を増せば非酸化性の環境に対しても耐食性を示すので、Niは6.00%以上含有するものとする。一方、高価なNiの添加量を極力抑え、金属組織をオーステナイト単相に保つため、8.00%以下とする。
【0022】
Crの添加量を増せば耐食性が著しく向上するので、Crは16.00%以上含有するものとする。一方18.00%を超えると金属組織をオーステナイト単相に保つためさらに高価なNiを添加せねばならず、前記の範囲に限定する。
【0023】
不純物であるNは静動比向上に寄与するが、0.20%を超えて含有すると成形性を劣化させると共に粒界腐食を起こす恐れがあるため、0.20%以下とする。静動比を向上させるためには0.002%以上含有することが好ましい。
【0024】
上記の成分系において,5×10-4〜5×10-2(s-1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における準静的変形強度σs と、5×102 〜5×103 (s-1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における動的変形強度σd との差(σd −σs )は大きい値ほど衝突吸収構造部材用として好ましいが、種々の材料試験を重ねた結果、σd −σs が120MPa以上であれば、前記の材料組成で安定してその特性を示すことが判明したため、σd −σs を120MPa以上と限定する。σd −σs の上限は特に定めることなく本発明の効果を得ることができる。
【0025】
次に前記2)の発明について説明する。尚、前記2)の発明についてはコスト性を重視して、調質圧延を施さない前提で材料設計を行なった。
Cは強度を得るのに必要な元素であり0.040%以上の添加が必要である。一方、多量に添加すると成形性や溶接性が劣化するため、0.080%以下とする。
【0026】
Ni添加量を増せば非酸化性の環境に対しても耐食性を示すので、Niは8.00%以上含有するものとする。一方、高価なNiの添加量を極力抑え、金属組織をオーステナイト単相に保つため、10.50%以下とする。
【0027】
Crの添加量を増せば耐食性が著しく向上するので、Crは18.00%以上含有するものとする。一方20.00%を超えると金属組織をオーステナイト単相に保つためさらに高価なNiを添加せねばならず、前記の範囲に限定する。
【0028】
Si,Mn,P,Sの限定理由は前記1)の発明と同様である。
【0029】
上記の成分系において,5×10-4〜5×10-2(s-1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における準静的変形強度σs と、5×102 〜5×103 (s-1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における動的変形強度σd との差(σd −σs )は大きい値ほど衝突吸収構造部材用として好ましいが、種々の材料試験を重ねた結果、σd −σs が100MPa以上であれば、前記の材料組成で安定してその特性を示すことが判明したため、σd −σs を100MPa以上と限定する。σd −σs の上限は特に定めることなく、本発明の効果を得ることができるので上限値は定めない。
【0030】
次に前記1)及び2)の発明について更に説明する。
5×10−4〜5×10−2(s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における最大静的強度σs と、5×10 〜5×10 (s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における最大動的強度σd maxの比σd max /σ max で表わす静動比は大きい値ほど衝突吸収構造部材用として好ましいが、種々の材料試験を重ねた結果、σd max /σ max が1.2以上であれば、前記の材料組成で安定してその特性を示すことが判明したため、静動比σd max /σ max を1.2以上と限定する。静動比の上限は特に定めることなく、本発明の効果を得ることができるので上限値は定めない。
【0031】
次に前記)の発明について説明する。
5×10−4〜5×10−2(s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における加工硬化指数は大きい値ほど衝突吸収構造部材用として好ましいが、種々の材料試験を重ねた結果、加工硬化指数が0.3以上であれば、前記の材料組成で安定してその特性を示すことが判明したため、加工硬化指数を0.3以上と限定する。前記2)の成分系においては調質圧延を施さない前提で加工性を重視した成分なので、加工硬化指数を0.4以上とすることが更に好ましい。加工硬化指数の上限は特に定めることなく、本発明の効果を得ることができるので上限値は定めない。
【0032】
次に前記)の発明について説明する。
5×10−4〜5×10−2(s−1)の歪速度範囲で変形した時の引張強度(MPa)×全伸び(%)は成形性と耐衝撃性のバランス(引張強さと伸びのバランス)であり、大きい値ほど衝突吸収構造部材用として好ましいが、種々の材料試験を重ねた結果、引張強度(MPa)×全伸び(%)≧30000であれば、前記の材料組成で安定してその特性を示すことが判明したため、引張強度(MPa)×全伸び(%)≧30000と限定する。前記2)の成分系においては調質圧延を施さない前提で加工性を重視した成分なので、引張強度(MPa)×全伸び(%)≧40000を満足することが好ましい。
引張強度(MPa)×全伸び(%)の上限は特に定めることなく、本発明の効果を得ることができるので上限値は定めない。
【0033】
次に前記)の発明について説明する。
オーステナイト系ステンレス鋼の加工誘起変態による加工硬化の大きさはオーステナイトの安定度に起因している。CrとNi等の添加量を調整し、オーステナイトの安定度を適度に減少させることにより、常温で加工力を受けた場合、金属組織中のオーステナイト相がマルテンサイト相に変態する加工誘起変態が適度に生ずるようになり、そのことを利用して高い動的変形応力を確保することができる。尚、オーステナイトの安定度は前記(1)式に示す算出式に基づき、計算することができる。
【0034】
(1)式に示すオーステナイト安定度Md30 は、常温で加工力,衝撃力を受けた場合、金属組織中のオーステナイト相がマルテンサイト相に変態する加工誘起変態を発現させ、高い動的変形応力を確保するため、0℃以上とし、加工温度を考慮し好ましくは10℃以上とする。又、過剰な加工硬化による変形時の割れ等を防ぐため、(1)式に示すオーステナイト安定度を60℃以下とし、好ましくは40℃以下とする。
【0035】
このような成分の鋼を鋳造し、得られた熱片スラブまたは熱片ビレットを直接または加熱した後、あるいは冷片を再加熱して熱間圧延,熱間押し出し等により、衝突吸収性能に優れたオーステナイト系ステンレス鋼材を製造する。尚、前記1)の発明については、調質圧延を施している。
尚、本発明の鋼は上記の他に、Al、Nb、Mo及びTi等の1種又は2種以上を合計で0.03質量%以下含有することができる。
【0036】
【実施例】
以下に本発明の衝撃吸収部材に用いるオーステナイト系ステンレス鋼を選定する実施例及び比較例により、具体的に説明するが、本発明の技術的範囲は本実施例に限定されるものではない。
下記に示す種々の化学成分のオーステナイト系ステンレス鋼を実機で鋳造熱延して試作した。
[鋼種1] 質量%で
C :0.030%、 Si:1.00%、 Mn:2.00%、
P :0.045%、 S :0.030%、 Ni:7.00%、
Cr:17.00%、 N :0.20%
を含み、残部がFeおよび不可避的不純物
(3〜10%平均応力の静動差:138MPa,引張強さ:1106MPa)
[鋼種2] 質量%で
C :0.080%、 Si:1.00%、 Mn:2.00%、
P :0.045%、 S :0.030%、 Ni:9.50%、
Cr:19.00%
を含み、残部がFeおよび不可避的不純物
(3〜10%平均応力の静動差:125MPa,引張強さ:716MPa)
【0037】
以上の鋼種の板状試験片を用いて、JIS5号試験片を用いて静的引張試験及び動的引張試験を実施した。図1は鋼種1の歪速度10-3(s-1)における応力ひずみ曲線と歪速度103 (s-1)における応力ひずみ曲線を示したものであり、図2は鋼種2の歪速度10-3(s-1)における応力ひずみ曲線と歪速度103
(s-1)における応力ひずみ曲線を示したものである。
【0038】
図1の鋼種1の応力ひずみ線図を詳細に分析すると、10-3(s-1)の歪速度で3〜10%の相当歪範囲における準静的変形強度σs と、103 (s-1)の歪速度で3〜10%の相当歪範囲における動的変形強度σd との差(σd −σs )は138MPaであり、10-3(s-1)の歪速度で変形した時の3〜10%の相当歪範囲における最大静的強度σs max と103 (s-1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における最大動的強度σd max の比σd max /σs max で表わす静動比は1.2であり、10-3(s-1)の歪速度における3〜10%の相当歪範囲における加工硬化指数が0.32であり、10-3(s-1)の歪速度における引張強度(MPa)×全伸び(%)は43000であった。
【0039】
一方、図2の鋼種2の応力ひずみ線図を詳細に分析すると、10-3(s-1)の歪速度で3〜10%の相当歪範囲における準静的変形強度σs と、103 (s-1)の歪速度で3〜10%の相当歪範囲における動的変形強度σd との差(σd −σs )は125MPaであり、10-3(s-1)の歪速度で変形した時の3〜10%の相当歪範囲における最大静的強度σs max と103 (s-1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における最大動的強度σd max の比σd max /σs max で表わす静動比は1.26であり、10-3(s-1)の歪速度における3〜10%の相当歪範囲における加工硬化指数が0.48であり、10-3(s-1)の歪速度における引張強度(MPa)×全伸び(%)は46000であった。いずれも、高い動的強度を示している。
【0040】
因みにまた、図3は本発明によるオーステナイト系ステンレス鋼とTRIP (Transformation-induced Plasticity )鋼をはじめとする従来の高強度鋼の動的強度を比較した図である。TRIP鋼の成分を表1に、従来鋼の成分表2に示した。
【0041】
動的応力と静的応力の差である静動差(σ −σ )即ち、応力の歪速度依存性は一般的に鋼材の静的な強度の上昇と共に低下する傾向があるが、鋼種1,鋼種2は高い静的強度と静動差を有した車両構造部材として理想的な鋼材を選定できた
【0042】
また、衝突吸収エネルギー性能を確認するため、鋼材1とTRIP鋼(表1のNo.1を引用)で図4に示す角筒部材11を製作し、部材の長さ方向(矢印10の方向)に質量400kgの錘を速度15m/秒で衝突させる落重圧潰試験解析を実施した。図5は圧潰試験時の座屈変形過程における角筒部材の反力と変形量をプロットした荷重−変位線図で、図6は座屈変形過程における各変形時点での累積された吸収エネルギー量をプロットした吸収エネルギー−変位線図である。
図5においては、鋼種1は最大荷重経過後、TRIP鋼より高い荷重値を保っていると共に図6では、各変位過程において鋼種1はTRIP鋼より約1.2倍の吸収エネルギーを示しており、本発明のオーステナイト系ステンレス鋼が高い吸収エネルギー性能を有していることが判明した。
【0043】
【表1】

Figure 0004334113
【0044】
【表2】
Figure 0004334113
【0045】
【発明の効果】
以上のように本発明により、衝突吸収部材として優れたオーステナイト系ステンレス鋼を、鉄道車両をはじめとする車両用の衝突吸収部材として提供することができたと同時に、本発明のオーステナイト系ステンレス鋼により、従来考慮されていなかった鉄道車両の衝突吸収設計を可能にした。
【図面の簡単な説明】
【図1】鋼種1の歪速度10-3(s-1)における応力ひずみ曲線と歪速度103 (s-1)における応力ひずみ曲線を示したものである。
【図2】鋼種2の歪速度10-3(s-1)における応力ひずみ曲線と歪速度103 (s-1)における応力ひずみ曲線を示したものである。
【図3】本発明によるオーステナイト系ステンレス鋼とTRIP(Transformation-induced Plasticity )鋼をはじめとする従来の高強度鋼の動的強度を比較した図である。
【図4】落重圧潰試験用の角筒部材を示した図である。
【図5】圧潰試験時の座屈変形過程における角筒部材の反力と変形量をプロットした荷重−変位線図である。
【図6】座屈変形過程における各変形時点での累積された吸収エネルギー量をプロットした吸収エネルギー−変位線図である。
【符号の説明】
10 角筒部材
11 圧潰方向矢印[0001]
[Technical field belonging to the invention]
The present invention relates to a method mainly used in the structural member and reinforcing member of the railway vehicles and general vehicles, to select an excellent austenitic stainless steel dynamic deformation properties used as the shock absorbing component.
[0002]
[Prior art]
With the background of environmental measures in recent years, the weight reduction of railway vehicles has been promoted, and stainless steel is used from the standpoint of maintenance-free and light weight reduction centering on non-painting and corrosion countermeasures starting from a monocoque lightweight vehicle body made of ordinary steel. The existing vehicle structure is the mainstream. In addition, with regard to the structural member strength for railway vehicles, the vehicle has been designed considering only static strength, and the dynamic strength of the structural member has not been taken into consideration at the time of designing.
[0003]
On the other hand, ensuring the safety of people who use vehicles such as automobiles, railways, and aircraft has been taken up as an important issue in all fields. There is a growing need for conventional commuter vehicles. However, conventional stainless steel for vehicles has been developed mainly for improving corrosion resistance and static strength against vehicle bending rigidity, and has not been developed from the viewpoint of collision safety. In fact, there is no legal collision safety evaluation standard for railway vehicles as in the automobile field.
[0004]
[Problems to be solved by the invention]
For example, in the case of a full vehicle collision, if a material having a high impact absorption capacity is applied to the vehicle frame member, the impact energy is absorbed by the member being crushed and buckled and the impact applied to personnel in the vehicle is mitigated. can do. When considering the impact absorption performance of the material, the strain rate experienced by each part at the time of a vehicle collision reaches about 10 3 (s −1 ). Therefore, it is necessary to clarify the dynamic deformation characteristics in the high strain rate region. Therefore, it is necessary to develop a stainless steel having excellent dynamic deformation characteristics having conventional corrosion resistance performance after identifying the dynamic deformation characteristics.
[0005]
However, with regard to high-strength stainless steel, the dynamic deformation characteristics in the high strain rate region at the time of vehicle collision have not been elucidated, and attention is paid to the characteristics of any steel plate as a component for absorbing impact energy. It was not known in the past whether material selection and material development should be performed based on standards.
[0006]
Japanese Laid-Open Patent Publication No. 9-228000 discloses an austenitic stainless steel sheet with improved surface quality, but does not consider material properties related to collision safety performance. Moreover, in JP-A-8-176723 and JP-A-2000-17385, a steel plate for automobiles excellent in impact resistance and collision safety has been devised, but since it is a carbon steel, it is inferior in corrosion resistance. Therefore, it is impossible to apply it to a vehicle member without painting.
[0007]
[Means for Solving the Problems]
The present invention has been proposed to solve the above-described problems, and specific means are as follows.
1) By mass% C: 0.020 to 0.030%, Si: 0.500 to 1.00%,
Mn: 1.00 to 2.00%, P: 0.045% or less,
S: 0.030% or less, Ni: 6.00 to 8.00%,
Cr: steel containing 16.00 to 18.00%, N: 0.20% or less, with the balance being Fe and inevitable impurities, 5 × 10 −4 to 5 × 10 −2 (s −1 ) Quasi-static deformation strength σ s in the equivalent strain range of 3 to 10% when deformed in the strain rate range of And 5 × 10 2 ~ 5 × 10 3 Difference (σ d −σ s) from the dynamic deformation strength σd in the equivalent strain range of 3 to 10% when deformed in the strain rate range of (s −1 ) ), And the maximum static strength in 3-10% of equivalent strain range when deformed at a strain rate range of 5 × 10 -4 ~5 × 10 -2 (s -1) σ s max And 5 × 10 2 ~ 5 × 10 3 Ratio σ d max / σ s of maximum dynamic strength σ d max in the equivalent strain range of 3 to 10% when deformed in the strain rate range of (s −1 ) max d −σ s) ) Is 120 MPa or more, and the above (σ d max / σ s A method for selecting an austenitic stainless steel used as an impact absorbing member, wherein an austenitic stainless steel satisfying max ) of 1.2 or more is selected.
2) By mass% C: 0.040-0.080%, Si: 0.40-1.00%,
Mn: 0.90 to 2.00%, P: 0.045% or less,
S: 0.030% or less, Ni: 8.00 to 10.50%,
Cr: 18.00 to 20.00%,
In which the balance is Fe and inevitable impurities, and the equivalent strain range of 3 to 10% when deformed in the strain rate range of 5 × 10 −4 to 5 × 10 −2 (s −1 ) Quasi-static deformation strength σ s in And 5 × 10 2 ~ 5 × 10 3 Difference (σ d −σ s) from the dynamic deformation strength σd in the equivalent strain range of 3 to 10% when deformed in the strain rate range of (s −1 ) ), And the maximum static strength in 3-10% of equivalent strain range when deformed at a strain rate range of 5 × 10 -4 ~5 × 10 -2 (s -1) σ s max And 5 × 10 2 ~ 5 × 10 3 Ratio σ d max / σ s of maximum dynamic strength σ d max in the equivalent strain range of 3 to 10% when deformed in the strain rate range of (s −1 ) max d −σ s) ) Is 100 MPa or more, and the above (σ d −σ s ) Is 120 MPa or more, and the above (σ d max / σ s A method for selecting an austenitic stainless steel used as an impact absorbing member, wherein an austenitic stainless steel satisfying max ) of 1.2 or more is selected.
3) Austenitic stainless steel having a work hardening index of 0.3 or more in an equivalent strain range of 3 to 10% when deformed in a strain rate range of 5 × 10 −4 to 5 × 10 −2 (s −1 ). The method for selecting austenitic stainless steel used as a collision absorbing member according to 1) or 2) above, wherein steel is selected.
4) Select an austenitic stainless steel that satisfies tensile strength (MPa) × total elongation (%) ≧ 30000 when deformed in a strain rate range of 5 × 10 −4 to 5 × 10 −2 (s −1 ). A method for selecting an austenitic stainless steel used as a collision absorbing member according to any one of 1) to 3) above.
5) Austenite stability M d30 shown in the following formula (1) The method of selecting an austenitic stainless steel used as a collision absorbing member according to any one of 1) to 4), wherein an austenitic stainless steel having a temperature of 0 ° C. to 60 ° C. is selected.
M d30 = 413-462 · (% C +% N) −9.2 ·% Si−8.1 ·% Mn
-13.7% Cr-9.5% Ni-18.5% Mo (1)
[0008]
The difference (σ d −σ s ) between the quasi-static deformation strength σ s and the dynamic deformation strength σ d is a deformation rate in the range of 5 × 10 −4 to 5 × 10 −2 (s −1 ). The average value σ s of the quasi-static deformation strength for each strain of 0.1% in the equivalent strain range of 3 to 10% and a strain rate range of 5 × 10 2 to 5 × 10 3 (s −1 ) It is defined as the difference from the average value σ d of the dynamic deformation strength for each strain of 0.1% in the equivalent strain range of 3 to 10% when deformed.
[0009]
Maximum strain rate of Shizudohi represented by static strength sigma s max and maximum dynamic strength sigma d max of the ratio σ d max / σ s max is, 5 × 10 -4 ~5 × 10 -2 (s -1) The maximum static strength σ s max in the equivalent strain range of 3 to 10% when deformed in the range and 3 to 10% when deformed in the strain rate range of 5 × 10 2 to 5 × 10 3 (s −1 ) Is defined as the ratio of the maximum dynamic strength σ d max in the equivalent strain range.
[0010]
The work hardening index is an n value defined by the n-th power hardening equation (Hollomon equation described in the Stainless Steel Handbook edited by the Stainless Steel Association) shown in the following equation (2), and is 5 × 10 −4 to 5 × 10 −2. It is defined as a work hardening index in an equivalent strain range of 3 to 10% when deformed in a strain rate range of (s −1 ).
σ = C · ε n (2)
Here, σ: true stress, ε: true strain, n: work hardening index, C: constant, where n value approximates the true stress true strain curve obtained by the tensile test by the equation (2) by the least square method or the like. Can be calculated.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below.
The impact at the time of a vehicle collision is highly likely to be applied to the structural member, and the member itself needs to have a high shock absorption capability. However, up to now, no attempt has been made to provide high-strength stainless steel material with excellent shock absorption characteristics as an actual member in consideration of an increase in deformation stress due to an increase in strain rate. As described above, the structural member strength of the vehicle was designed in consideration of only the static strength, and the dynamic strength of the structural member was not considered.
[0012]
A structural member for a vehicle usually has a cross-sectional shape similar to that of a square tube. As a result of analyzing the high-speed crushing deformation of such a member, about 80% of the absorbed energy is absorbed in a strain region of 10% or less. The average stress σ in the range of 3 to 10% of the strain region was used as an index of the impact absorption capacity and dynamic deformation characteristics. Usually, when the static strength σ s is moderately small, it is easy to process into a required member shape, and the larger the dynamic strength σ d is, the better the impact absorbing ability is.
[0013]
Therefore, the quasi-static deformation strength σ s in the equivalent strain range of 3 to 10% when deformed in the strain rate range of 5 × 10 −4 to 5 × 10 −2 (s −1 ), and 5 × 10 2 to The larger the difference (σ d −σ s ) from the dynamic deformation strength σ d in the equivalent strain range of 3 to 10% when the deformation is in the strain rate range of 5 × 10 3 (s −1 ), the more static it is. Excellent formability, dynamic high impact absorption capability, and equivalent strain range of 3 to 10% when deformed in a strain rate range of 5 × 10 −4 to 5 × 10 −2 (s −1 ) The ratio of the maximum strength σ s max and the maximum strength σ d max in the equivalent strain range of 3 to 10% when deformed in the strain rate range of 5 × 10 2 to 5 × 10 3 (s −1 ) σ d max / It can be said that the larger the value (static ratio) of σ s max is, the better the material is as it is excellent in static formability and dynamically in terms of high impact absorption capacity. In addition, as a general material index, the work absorption index and tensile strength (MPa) x total elongation (%), which is a balance between formability and impact resistance (balance between tensile strength and elongation), are also evaluated for impact absorption characteristics. It was used as an indicator.
[0014]
As a result of investigation based on the above-mentioned material property index, it was found that an austenitic stainless steel having a predetermined component that causes a work-induced transformation at room temperature is most suitable as a steel material having excellent collision absorption characteristics. The magnitude of work hardening due to work-induced transformation of austenitic stainless steel is attributed to the stability of austenite. By adjusting the addition amount of Cr and Ni and reducing the austenite stability moderately, when subjected to processing force at room temperature, the work-induced transformation that transforms the austenite phase in the metal structure to the martensite phase is moderate. This can be used to secure a high dynamic deformation stress.
[0015]
The stability M d30 of austenite can be calculated based on the calculation formula shown in the following formula (1) (described in the Stainless Steel Handbook of Stainless Steel Association). When M d30 gives a true tensile strain of 0.3 , Which means the temperature at which 50% martensitic transformation occurs. When the collision absorption performance was evaluated using the equation (1), it was found that good collision absorption performance could be obtained by defining it within the range of the present invention.
Austenite Stability M d30 = 413-462 ・ (% C +% N) -9.2 ・% Si-8.1 ・% Mn-13.7 ・% Cr
-9.5 ・% Ni-18.5 ・% Mo ・ ・ ・ ・ (1)
[0016]
Finally, the present invention was completed as a result of various experiments repeated in view of the above-mentioned material characteristic index, austenite stability calculation formula, and action and effect of each element.
First, the invention 1) will be described.
C is an element necessary for obtaining strength, and it is necessary to add 0.02% or more. On the other hand, if added in a large amount, formability and weldability deteriorate, so the content is made 0.030% or less.
[0017]
Si is a solid solution strengthening element and needs to be added in an amount of 0.50% or more. On the other hand, if the amount added is large, the moldability deteriorates and the static / dynamic ratio is lowered, so the content is made 1.00% or less.
[0018]
Mn is a solid solution strengthening element and needs to be added in an amount of 1.00% or more. On the other hand, when the addition amount is increased as in the case of Si addition, the moldability deteriorates and the static / dynamic ratio is lowered, so the content is made 2.00% or less.
[0019]
P is an impurity, and when the content increases, the grain boundary becomes weak and impact resistance and moldability deteriorate.
[0020]
Since S is also an impurity and the content increases, the formability deteriorates, so the content was made 0.030% or less.
[0021]
If the amount of Ni added is increased, corrosion resistance is exhibited even in a non-oxidizing environment. Therefore, Ni is contained at 6.00% or more. On the other hand, in order to suppress the amount of expensive Ni added as much as possible and keep the metal structure in an austenite single phase, the content is made 8.00% or less.
[0022]
If the amount of Cr added is increased, the corrosion resistance is remarkably improved, so Cr is contained at 16.00% or more. On the other hand, if it exceeds 18.00%, more expensive Ni must be added in order to keep the metal structure in an austenite single phase, which is limited to the above range.
[0023]
N, which is an impurity, contributes to the improvement of the static ratio, but if it exceeds 0.20%, the formability is deteriorated and there is a risk of causing intergranular corrosion, so the content is made 0.20% or less. In order to improve the static ratio, the content is preferably 0.002% or more.
[0024]
In the above component system, the quasi-static deformation strength σ s in the equivalent strain range of 3 to 10% when deformed in the strain rate range of 5 × 10 −4 to 5 × 10 −2 (s −1 ), and 5 The difference (σ d −σ s ) from the dynamic deformation strength σ d in the equivalent strain range of 3 to 10% when deformed in the strain rate range of × 10 2 to 5 × 10 3 (s −1 ) is a large value. more preferred the crash absorbing structural members but, as a result of various materials tested, if sigma d - [sigma] s is 120MPa or more, the indicate the characteristics was found stable in the material composition, sigma ds is limited to 120 MPa or more. The upper limit of σ d −σ s is not particularly defined, and the effect of the present invention can be obtained.
[0025]
Next, the invention 2) will be described. Regarding the invention of 2), material design was performed on the premise that temper rolling was not performed with emphasis on cost.
C is an element necessary for obtaining strength, and it is necessary to add 0.040% or more. On the other hand, if added in a large amount, formability and weldability deteriorate, so 0.080% or less.
[0026]
If the Ni addition amount is increased, corrosion resistance is exhibited even in a non-oxidizing environment. Therefore, Ni is contained at 8.00% or more. On the other hand, in order to suppress the amount of expensive Ni added as much as possible and keep the metal structure in an austenite single phase, the content is made 10.50% or less.
[0027]
If the amount of Cr added is increased, the corrosion resistance is remarkably improved, so Cr is contained at 18.00% or more. On the other hand, if it exceeds 20.00%, more expensive Ni must be added in order to keep the metal structure in the austenite single phase, and the range is limited to the above range.
[0028]
The reasons for limitation of Si, Mn, P, and S are the same as in the first aspect of the invention.
[0029]
In the above component system, the quasi-static deformation strength σ s in the equivalent strain range of 3 to 10% when deformed in the strain rate range of 5 × 10 −4 to 5 × 10 −2 (s −1 ), and 5 The difference (σ d −σ s ) from the dynamic deformation strength σ d in the equivalent strain range of 3 to 10% when deformed in the strain rate range of × 10 2 to 5 × 10 3 (s −1 ) is a large value. more preferred the crash absorbing structural members but, as a result of various materials tested, if sigma d - [sigma] s is 100MPa or more, the indicate the characteristics was found stable in the material composition, sigma ds is limited to 100 MPa or more. The upper limit of σ d −σ s is not particularly defined, and the effect of the present invention can be obtained.
[0030]
Next, the inventions 1) and 2) will be further described.
The maximum static strength σs in the equivalent strain range of 3 to 10% when deformed in the strain rate range of 5 × 10 −4 to 5 × 10 −2 (s −1 ), and 5 × 10 2 ~ 5 × 10 3 Ratio σ d max of maximum dynamic strength σ d max in the equivalent strain range of 3 to 10% when deformed in the strain rate range of (s −1 ) / Σ s max The larger the static ratio represented by is, the more preferable it is for the impact absorbing structure member. However, as a result of repeated various material tests, σ d max / Σ s max Is 1.2 or more, it has been found that the material composition stably exhibits the characteristics, so the static ratio σ d max / Σ s max Is limited to 1.2 or more. There is no particular upper limit for the static ratio, and the effect of the present invention can be obtained, so no upper limit is set.
[0031]
Next, the invention 3 ) will be described.
A larger work hardening index in the equivalent strain range of 3 to 10% when deformed in a strain rate range of 5 × 10 −4 to 5 × 10 −2 (s −1 ) is preferable for the impact absorbing structure member. As a result of repeating various material tests, it has been found that if the work hardening index is 0.3 or more, the material composition stably shows the characteristics, so the work hardening index is limited to 0.3 or more. In the component system of 2), since workability is an important component on the premise that temper rolling is not performed, the work hardening index is more preferably 0.4 or more. The upper limit of the work hardening index is not particularly determined, and the effect of the present invention can be obtained, so the upper limit is not determined.
[0032]
Next, the invention 4 ) will be described.
Tensile strength (MPa) x total elongation (%) when deformed in a strain rate range of 5 × 10 −4 to 5 × 10 −2 (s −1 ) is a balance between formability and impact resistance (tensile strength and elongation A larger value is preferable for a collision-absorbing structural member. However, as a result of repeated various material tests, if tensile strength (MPa) × total elongation (%) ≧ 30000, the material composition is stable. Therefore, the tensile strength (MPa) × total elongation (%) ≧ 30000 is limited. In the component system 2), since workability is an important component on the premise that temper rolling is not performed, it is preferable to satisfy tensile strength (MPa) × total elongation (%) ≧ 40000.
The upper limit of tensile strength (MPa) × total elongation (%) is not particularly defined, and the effect of the present invention can be obtained, so the upper limit is not defined.
[0033]
Next, the invention 5 ) will be described.
The magnitude of work hardening due to work-induced transformation of austenitic stainless steel is attributed to the stability of austenite. By adjusting the addition amount of Cr and Ni and reducing the austenite stability moderately, when subjected to processing force at room temperature, the work-induced transformation that transforms the austenite phase in the metal structure to the martensite phase is moderate. This can be used to secure a high dynamic deformation stress. The stability of austenite can be calculated based on the calculation formula shown in the formula (1).
[0034]
The austenite stability M d30 shown in the formula (1) expresses a work-induced transformation in which the austenite phase in the metal structure is transformed into the martensite phase when subjected to working force and impact force at room temperature, and high dynamic deformation stress. In order to ensure this, the temperature is set to 0 ° C. or higher, and preferably 10 ° C. or higher in consideration of the processing temperature. In order to prevent cracking during deformation due to excessive work hardening, the austenite stability shown in the formula (1) is set to 60 ° C. or lower, preferably 40 ° C. or lower.
[0035]
Excellent impact absorption performance by casting steel with such components and directly or heating the obtained hot piece slab or hot piece billet, or by reheating the cold piece and hot rolling, hot extrusion, etc. Austenitic stainless steel materials are manufactured. In addition, about the invention of said 1), temper rolling is given.
In addition to the above, the steel of the present invention can contain 0.03% by mass or less of one or more of Al, Nb, Mo, Ti and the like.
[0036]
【Example】
The present invention will be specifically described below with reference to examples and comparative examples for selecting an austenitic stainless steel used for the impact absorbing member of the present invention, but the technical scope of the present invention is not limited to this example.
Austenitic stainless steels with various chemical components shown below were produced by casting and hot rolling with actual machines.
[Steel Type 1] By mass% C: 0.030%, Si: 1.00%, Mn: 2.00%,
P: 0.045%, S: 0.030%, Ni: 7.00%,
Cr: 17.00%, N: 0.20%
The balance is Fe and inevitable impurities (3 to 10% average stress static difference: 138 MPa, tensile strength: 1106 MPa)
[Steel Type 2] By mass% C: 0.080%, Si: 1.00%, Mn: 2.00%,
P: 0.045%, S: 0.030%, Ni: 9.50%,
Cr: 19.00%
The balance is Fe and inevitable impurities (3 to 10% average stress static difference: 125 MPa, tensile strength: 716 MPa)
[0037]
A static tensile test and a dynamic tensile test were carried out using a JIS No. 5 test piece using the above steel type plate-like test pieces. FIG. 1 shows a stress strain curve at a strain rate of 10 −3 (s −1 ) and a stress strain curve at a strain rate of 10 3 (s −1 ). -3 (s -1 ) stress strain curve and strain rate 10 3
The stress-strain curve in (s <-1> ) is shown.
[0038]
When the stress strain diagram of steel type 1 in FIG. 1 is analyzed in detail, the quasi-static deformation strength σ s in an equivalent strain range of 3 to 10% at a strain rate of 10 −3 (s −1 ) and 10 3 (s The difference (σ d −σ s ) from the dynamic deformation strength σ d in the equivalent strain range of 3 to 10% at the strain rate of −1 ) is 138 MPa, and the deformation is performed at the strain rate of 10 −3 (s −1 ). The maximum static strength σ s max in the equivalent strain range of 3 to 10% and the maximum dynamic strength σ in the equivalent strain range of 3 to 10% when deformed in the strain rate range of 10 3 (s −1 ) The static ratio expressed by the ratio σ d max / σ s max of the d max is 1.2, and the work hardening index in the equivalent strain range of 3 to 10% at the strain rate of 10 −3 (s −1 ) is 0. The tensile strength (MPa) × total elongation (%) at a strain rate of 10 −3 (s −1 ) was 43,000.
[0039]
On the other hand, when the stress strain diagram of steel type 2 in FIG. 2 is analyzed in detail, the quasi-static deformation strength σ s in the equivalent strain range of 3 to 10% at a strain rate of 10 −3 (s −1 ) and 10 3 The difference (σ d −σ s ) from the dynamic deformation strength σ d in the equivalent strain range of 3 to 10% at the strain rate of (s −1 ) is 125 MPa, and the strain rate of 10 −3 (s −1 ). Maximum static strength σ s max in the equivalent strain range of 3 to 10% when deformed at a maximum dynamic range in the equivalent strain range of 3 to 10% when deformed in the strain rate range of 10 3 (s −1 ) The static ratio represented by the ratio σ d max / σ s max of the strength σ d max is 1.26, and the work hardening index in the equivalent strain range of 3 to 10% at a strain rate of 10 −3 (s −1 ) is obtained. The tensile strength (MPa) × the total elongation (%) at a strain rate of 10 −3 (s −1 ) was 46000. Both show high dynamic strength.
[0040]
Incidentally, FIG. 3 is a diagram comparing the dynamic strength of conventional high-strength steels including austenitic stainless steel according to the present invention and TRIP (Transformation-induced Plasticity) steel. The components of TRIP steel are shown in Table 1, and the components of conventional steel are shown in Table 2.
[0041]
Static difference (σ d) which is the difference between dynamic stress and static stress s ) That is, the strain rate dependence of stress generally tends to decrease with increasing static strength of steel, but steel grade 1 and grade 2 are vehicle structural members with high static strength and static difference. The ideal steel was selected .
[0042]
In addition, in order to confirm the impact absorption energy performance, a rectangular tube member 11 shown in FIG. 4 is manufactured using the steel material 1 and TRIP steel (quoting No. 1 in Table 1), and the length direction of the member (the direction of the arrow 10). A drop weight crush test analysis was performed in which a weight of 400 kg was collided at a speed of 15 m / sec. FIG. 5 is a load-displacement diagram plotting the reaction force and deformation amount of the rectangular tube member in the buckling deformation process during the crushing test, and FIG. 6 is the accumulated absorbed energy amount at each deformation time point in the buckling deformation process. It is the absorbed energy-displacement diagram which plotted.
In FIG. 5, steel type 1 maintains a higher load value than TRIP steel after the maximum load elapses, and in FIG. 6, steel type 1 shows an absorption energy about 1.2 times that of TRIP steel in each displacement process. It was found that the austenitic stainless steel of the present invention has high absorbed energy performance.
[0043]
[Table 1]
Figure 0004334113
[0044]
[Table 2]
Figure 0004334113
[0045]
【The invention's effect】
As described above, according to the present invention, the austenitic stainless steel excellent as a collision absorbing member can be provided as a collision absorbing member for a vehicle including a railway vehicle, and at the same time, by the austenitic stainless steel of the present invention, It has made possible the collision absorption design of railway vehicles, which has not been considered before.
[Brief description of the drawings]
FIG. 1 shows a stress strain curve of a steel type 1 at a strain rate of 10 −3 (s −1 ) and a stress strain curve at a strain rate of 10 3 (s −1 ).
FIG. 2 shows a stress strain curve of steel type 2 at a strain rate of 10 −3 (s −1 ) and a stress strain curve at a strain rate of 10 3 (s −1 ).
FIG. 3 is a diagram comparing the dynamic strength of conventional high-strength steels including austenitic stainless steel according to the present invention and TRIP (Transformation-induced Plasticity) steel.
FIG. 4 is a view showing a rectangular tube member for a drop weight crushing test.
FIG. 5 is a load-displacement diagram in which reaction force and deformation amount of a rectangular tube member in a buckling deformation process during a crush test are plotted.
FIG. 6 is an absorption energy-displacement diagram in which accumulated absorption energy amounts at respective deformation points in the buckling deformation process are plotted.
[Explanation of symbols]
10 Square tube member 11 Crush direction arrow

Claims (5)

質量%で
C :0.020〜0.030%、
Si:0.500〜1.00%、
Mn:1.00〜2.00%、
P :0.045%以下、
S :0.030%以下、
Ni:6.00〜8.00%、
Cr:16.00〜18.00%、
N :0.20%以下
を含み、残部がFeおよび不可避的不純物からなる鋼であって、5×10−4〜5×10−2(s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における準静的変形強度σ と、5×10 〜5×10 (s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における動的変形強度σd との差(σ−σ )、及び、5×10−4〜5×10−2(s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における最大静的強度σ max と5×10 〜5×10 (s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における最大動的強度σd maxの比σd max /σ max で表わす静動比を材料特性の指標とし、前記(σ−σ )が120MPa以上、また前記(σd max /σ max)が1.2以上を満足するオーステナイト系ステンレス鋼を選定することを特徴とする衝撃吸収部材として用いるオーステナイト系ステンレス鋼を選定する方法。
C: 0.020 to 0.030% in mass%,
Si: 0.500 to 1.00%,
Mn: 1.00 to 2.00%,
P: 0.045% or less,
S: 0.030% or less,
Ni: 6.00 to 8.00%,
Cr: 16.00-18.00%,
N: steel containing 0.20% or less, the balance being Fe and inevitable impurities, 3 when deformed in a strain rate range of 5 × 10 −4 to 5 × 10 −2 (s −1 ) Quasi-static deformation strength σ s in the equivalent strain range of -10% And 5 × 10 2 ~ 5 × 10 3 Difference (σ d −σ s) from the dynamic deformation strength σd in the equivalent strain range of 3 to 10% when deformed in the strain rate range of (s −1 ) ), And the maximum static strength in 3-10% of equivalent strain range when deformed at a strain rate range of 5 × 10 -4 ~5 × 10 -2 (s -1) σ s max And 5 × 10 2 ~ 5 × 10 3 Ratio σ d max / σ s of maximum dynamic strength σ d max in the equivalent strain range of 3 to 10% when deformed in the strain rate range of (s −1 ) max d −σ s) ) Is 120 MPa or more, and the above (σ d max / σ s A method for selecting an austenitic stainless steel used as an impact absorbing member, wherein an austenitic stainless steel satisfying max ) of 1.2 or more is selected.
質量%で
C :0.040%〜0.080%、
Si:0.40〜1.00%、
Mn:0.90〜2.00%、
P :0.045%以下、
S :0.030%以下、
Ni:8.00〜10.50%、
Cr:18.00〜20.00%、
を含み、残部がFeおよび不可避的不純物からなる鋼であって、5×10−4〜5×10−2(s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における準静的変形強度σ と、5×10 〜5×10 (s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における動的変形強度σd との差(σ−σ )、及び、5×10−4〜5×10−2(s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における最大静的強度σ max と5×10 〜5×10 (s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における最大動的強度σd maxの比σd max /σ max で表わす静動比を材料特性の指標とし、前記(σ−σ )が100MPa以上、また前記(σ−σ )が120MPa以上、また前記(σd max/σ max)が1.2以上を満足するオーステナイト系ステンレス鋼を選定することを特徴とする衝撃吸収部材として用いるオーステナイト系ステンレス鋼を選定する方法。
C: 0.040% to 0.080% in mass%,
Si: 0.40 to 1.00%,
Mn: 0.90 to 2.00%
P: 0.045% or less,
S: 0.030% or less,
Ni: 8.00 to 10.50%,
Cr: 18.00 to 20.00%,
In which the balance is Fe and inevitable impurities, and the equivalent strain range of 3 to 10% when deformed in the strain rate range of 5 × 10 −4 to 5 × 10 −2 (s −1 ) Quasi-static deformation strength σ s in And 5 × 10 2 ~ 5 × 10 3 Difference (σ d −σ s) from the dynamic deformation strength σd in the equivalent strain range of 3 to 10% when deformed in the strain rate range of (s −1 ) ), And the maximum static strength in 3-10% of equivalent strain range when deformed at a strain rate range of 5 × 10 -4 ~5 × 10 -2 (s -1) σ s max And 5 × 10 2 ~ 5 × 10 3 Ratio σ d max / σ s of maximum dynamic strength σ d max in the equivalent strain range of 3 to 10% when deformed in the strain rate range of (s −1 ) max d −σ s) ) Is 100 MPa or more, and the above (σ d −σ s ) Is 120 MPa or more, and the above (σ d max / σ s A method for selecting an austenitic stainless steel used as an impact absorbing member, wherein an austenitic stainless steel satisfying max ) of 1.2 or more is selected.
5×10−4〜5×10−2(s−1)の歪速度範囲で変形した時の3〜10%の相当歪範囲における加工硬化指数が0.3以上を満足するオーステナイト系ステンレス鋼を選定することを特徴とする請求項1または2に記載の衝突吸収部材として用いるオーステナイト系ステンレス鋼を選定する方法。An austenitic stainless steel satisfying a work hardening index of 0.3 or more in an equivalent strain range of 3 to 10% when deformed in a strain rate range of 5 × 10 −4 to 5 × 10 −2 (s −1 ). The method for selecting an austenitic stainless steel used as a collision absorbing member according to claim 1 or 2. 5×10−4〜5×10−2(s−1)の歪速度範囲で変形した時の引張強度(MPa)×全伸び(%)≧30000を満足するオーステナイト系ステンレス鋼を選定することを特徴とする請求項1乃至3の何れか1項に記載の衝突吸収部材として用いるオーステナイト系ステンレス鋼を選定する方法。 Select an austenitic stainless steel that satisfies tensile strength (MPa) × total elongation (%) ≧ 30000 when deformed in a strain rate range of 5 × 10 −4 to 5 × 10 −2 (s −1 ). A method for selecting an austenitic stainless steel used as a collision absorbing member according to any one of claims 1 to 3. 下記(1)式に示すオーステナイト安定度Md30 が0℃〜60℃の範囲にあるオーステナイト系ステンレス鋼を選定することを特徴とする請求項1乃至4の何れか1項に記載の衝突吸収部材として用いるオーステナイト系ステンレス鋼を選定する方法。
d30 =413−462・(%C+%N)−9.2・%Si−8.1・%Mn
−13.7・%Cr−9.5・%Ni−18.5・%Mo ……(1)
Austenite stability M d30 shown in the following formula (1) The method for selecting austenitic stainless steel used as a collision absorbing member according to any one of claims 1 to 4, wherein an austenitic stainless steel having a temperature of 0 to 60 ° C is selected.
M d30 = 413-462 · (% C +% N) −9.2 ·% Si−8.1 ·% Mn
-13.7% Cr-9.5% Ni-18.5% Mo (1)
JP2000203746A 2000-07-05 2000-07-05 Method for selecting austenitic stainless steel to be used as a collision absorbing member Expired - Lifetime JP4334113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000203746A JP4334113B2 (en) 2000-07-05 2000-07-05 Method for selecting austenitic stainless steel to be used as a collision absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000203746A JP4334113B2 (en) 2000-07-05 2000-07-05 Method for selecting austenitic stainless steel to be used as a collision absorbing member

Publications (2)

Publication Number Publication Date
JP2002020843A JP2002020843A (en) 2002-01-23
JP4334113B2 true JP4334113B2 (en) 2009-09-30

Family

ID=18701115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000203746A Expired - Lifetime JP4334113B2 (en) 2000-07-05 2000-07-05 Method for selecting austenitic stainless steel to be used as a collision absorbing member

Country Status (1)

Country Link
JP (1) JP4334113B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001216B4 (en) * 2006-05-17 2013-12-05 National Institute For Materials Science Steel plate coil
JP5165236B2 (en) * 2006-12-27 2013-03-21 新日鐵住金ステンレス株式会社 Stainless steel plate for structural members with excellent shock absorption characteristics
JP5388589B2 (en) 2008-01-22 2014-01-15 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet for structural members with excellent workability and shock absorption characteristics and method for producing the same
JP2014001422A (en) * 2012-06-18 2014-01-09 Nippon Steel & Sumitomo Metal Austenitic stainless steel plate and manufacturing method for the same
JP6029662B2 (en) * 2013-12-09 2016-11-24 新日鐵住金株式会社 Austenitic stainless steel sheet and manufacturing method thereof
CN112268794B (en) * 2020-09-29 2021-08-31 中国科学院金属研究所 Method for determining optimal anti-armor-piercing microstructure state of metal material

Also Published As

Publication number Publication date
JP2002020843A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
JP5388589B2 (en) Ferritic / austenitic stainless steel sheet for structural members with excellent workability and shock absorption characteristics and method for producing the same
JP5856002B2 (en) Collision energy absorbing member for automobiles excellent in impact energy absorbing ability and method for manufacturing the same
JP5597006B2 (en) High strength and high ductility austenitic stainless steel sheet for structural members and method for producing the same
JP5165236B2 (en) Stainless steel plate for structural members with excellent shock absorption characteristics
JP3793350B2 (en) Dual-phase high-strength cold-rolled steel sheet with excellent dynamic deformation characteristics and manufacturing method thereof
JP4692259B2 (en) High-strength steel sheet with excellent formability and shape freezeability
JP5544633B2 (en) Austenitic stainless steel sheet for structural members with excellent shock absorption characteristics
JP5605310B2 (en) Steel and shock absorbing members
KR20100133349A (en) Method of manufacturing automobile high-strength electric resistance welded steel pipe with excellent low-temperature impact properties
EP1449933B1 (en) Power transmission belt
JP3492176B2 (en) Good workability high-strength steel sheet having high dynamic deformation resistance and method for producing the same
JP6628561B2 (en) Stainless steel sheet for structural member excellent in workability and method for producing the same
JP5220311B2 (en) Stainless steel plate for structural members with excellent shock absorption characteristics
US20070125454A1 (en) High-strength duplex/triplex steel for lightweight construction and use thereof
JP4334113B2 (en) Method for selecting austenitic stainless steel to be used as a collision absorbing member
JP3958842B2 (en) Work-induced transformation-type high-strength steel sheet for absorbing automobile collision energy with excellent dynamic deformation characteristics
JP2003253385A (en) Cold-rolled steel sheet superior in high-velocity deformation characteristic and bending characteristic, and manufacturing method therefor
JP5421615B2 (en) Ni-saving stainless steel automotive parts
JP3781344B2 (en) Manufacturing method of hot-rolled steel sheet with excellent burring workability and fatigue characteristics
JP3530353B2 (en) High-strength cold-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and manufacturing method thereof
JP3530354B2 (en) High-workability high-strength hot-rolled steel sheet with high dynamic deformation resistance for impact absorption at impact and manufacturing method thereof
JP2000290745A (en) High strength steel sheet for working, excellent in fatigue characteristic and safety against collision, and its manufacture
JP4287976B2 (en) High-strength hot-rolled steel sheet having high dynamic deformation resistance and good formability and manufacturing method thereof
JP3530356B2 (en) Good workability high-strength cold-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and method for producing the same
JP4237912B2 (en) High strength cold-rolled steel sheet having high dynamic deformation resistance and good formability and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4334113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term