JP2005256053A - Aluminum alloy sheet having excellent bending workability and press formability - Google Patents

Aluminum alloy sheet having excellent bending workability and press formability Download PDF

Info

Publication number
JP2005256053A
JP2005256053A JP2004067537A JP2004067537A JP2005256053A JP 2005256053 A JP2005256053 A JP 2005256053A JP 2004067537 A JP2004067537 A JP 2004067537A JP 2004067537 A JP2004067537 A JP 2004067537A JP 2005256053 A JP2005256053 A JP 2005256053A
Authority
JP
Japan
Prior art keywords
plate
aluminum alloy
alloy
alloy plate
cube orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004067537A
Other languages
Japanese (ja)
Other versions
JP4588338B2 (en
Inventor
Haruyuki Konishi
晴之 小西
Tetsuya Masuda
哲也 増田
康夫 ▲高▼木
Yasuo Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004067537A priority Critical patent/JP4588338B2/en
Publication of JP2005256053A publication Critical patent/JP2005256053A/en
Application granted granted Critical
Publication of JP4588338B2 publication Critical patent/JP4588338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Al-Mg-Si-based Al alloy sheet which has excellent bending workability, such as hem processing, and press formability, and has other characteristics required at the time of panel formation, such as low-temperature aging hardenability, in combination. <P>SOLUTION: The Al-Mg-Si-based aluminum alloy sheet controlled in cube orientation distribution density and anisotropy of an (r) value is formed of such a structure that the cube orientation distribution density of the aluminum alloy sheet ranges from 10 to 30 and that Δr ranges from 0.2 to 1.4. The aluminum alloy sheet is thereby provided with the bending workability and the press formability or is provided with the other characteristics required at the time of panel formation in combination as well. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、板製造後に室温時効が進んだ場合でも、特にヘム加工などの曲げ加工性に優れ、プレス成形性や低温時効硬化能などのパネル化に際して要求される他の諸特性にも優れたAl-Mg-Si系アルミニウム合金板(以下、アルミニウムを単にAlとも言う)に関するものである。   The present invention is excellent in bending workability such as hem processing even when room temperature aging has progressed after manufacturing the plate, and is excellent in other properties required for forming panels such as press formability and low temperature aging hardening ability. The present invention relates to an Al-Mg-Si aluminum alloy plate (hereinafter, aluminum is also simply referred to as Al).

従来から、自動車、船舶あるいは車両などの輸送機、家電製品、建築、構造物の部材や部品用として、成形加工性 (以下、単に成形性と言う) に優れたAl-Mg 系のAA乃至JIS 規格に規定された (規格を満足する)5000 系や、成形性や焼付硬化性に優れたAl-Mg-Si系のAA乃至JIS 6000系 (以下、単に5000系乃至6000系と言う) のAl合金材(圧延板材、押出形材、鍛造材などの各アルミニウム合金展伸材を総称する)が使用されている。   Conventionally, Al-Mg-based AA to JIS with excellent processability (hereinafter simply referred to as formability) for automobiles, ships, vehicles and other transport equipment, home appliances, buildings, and structural members and parts. 5000 series (satisfying the standard) specified in the standard, Al-Mg-Si series AA to JIS 6000 series (hereinafter simply referred to as 5000 series to 6000 series) with excellent formability and bake hardenability Alloy materials (a general term for each aluminum alloy wrought material such as a rolled plate material, an extruded shape material, and a forged material) are used.

近年、排気ガス等による地球環境問題に対して、自動車などの輸送機の車体の軽量化による燃費の向上が追求されている。このため、特に、自動車の車体に対し、従来から使用されている鋼材に代わって、より軽量なAl合金材の適用が増加しつつある。   In recent years, with respect to global environmental problems caused by exhaust gas and the like, improvement in fuel efficiency has been pursued by reducing the weight of the body of a transport aircraft such as an automobile. For this reason, in particular, the application of lighter Al alloy materials instead of steel materials that have been used in the past is increasing for automobile bodies.

このAl合金材の中でも、自動車のフード、フェンダー、ドア、ルーフ、トランクリッドなどのパネル構造体の、アウタパネル (外板) やインナパネル( 内板) 等のパネルには、薄肉でかつ高強度Al合金板として、過剰Si型の6000系のAl合金板の使用が検討されている。   Among these Al alloy materials, panels such as the outer panel (outer plate) and inner panel (inner plate) of panel structures such as automobile hoods, fenders, doors, roofs, and trunk lids are thin and high-strength Al. As an alloy plate, use of an excess Si type 6000 series Al alloy plate has been studied.

この過剰Si型の6000系Al合金板は、基本的には、Si、Mgを必須として含み、かつSi/Mg が質量比で 1以上であるAl-Mg-Si系アルミニウム合金板である。そしてこの過剰Si型6000系Al合金板は優れた時効硬化能を有しているため、プレス成形や曲げ加工時には低耐力化により成形性を確保するとともに、成形後のパネルの塗装焼付処理などの、比較的低温の人工時効処理時の加熱により時効硬化して耐力が向上し、必要な強度を確保できる時効硬化能がある。   This excess Si type 6000 series Al alloy sheet is basically an Al—Mg—Si series aluminum alloy sheet containing Si and Mg as essential elements and having a Si / Mg mass ratio of 1 or more. And since this excess Si type 6000 series Al alloy plate has excellent age-hardening ability, it secures formability by reducing the yield strength during press molding and bending processing, and paint baking treatment of the panel after molding etc. It is age-hardened by heating at the time of relatively low-temperature artificial aging treatment to improve proof stress, and has age-hardening ability that can secure the required strength.

また、これら過剰Si型6000系Al合金板は、Mg量などの合金量が多い、他の5000系のAl合金などに比して、合金元素量が比較的少ない。このため、これら6000系Al合金板のスクラップを、Al合金溶解材 (溶解原料) として再利用する際に、元の6000系Al合金鋳塊が得やすく、リサイクル性にも優れている。   Further, these excess Si type 6000 series Al alloy plates have a relatively small amount of alloy elements as compared with other 5000 series Al alloys having a large amount of alloy such as Mg. For this reason, when the scraps of these 6000 series Al alloy sheets are reused as an Al alloy melting material (melting raw material), the original 6000 series Al alloy ingot is easily obtained and the recyclability is also excellent.

一方、前記自動車などのアウタパネルでは、Al合金板を張出や絞りあるいはトリム等のプレス成形してアウタパネル化した後、アウタパネルの縁を折り曲げて (180 度折り返して) インナパネルの縁との接合を行う、ヘム( ヘミングの別称) 加工と呼ばれる厳しい曲げ加工が複合して施される。   On the other hand, in the outer panel of the automobile, etc., an Al alloy plate is formed by press forming such as overhanging, drawing or trim to form an outer panel, and then the edge of the outer panel is bent (folded 180 degrees) to join the edge of the inner panel. A severe bending process called a hem (other name for hemming) process is performed in combination.

ただ、Al合金アウタパネルのフラットヘム加工においては、従来の鋼板パネルのフラットヘム加工に比して、形成されるフラットヘムの縁曲部 (ヘム部、折り曲げ部) には、肌荒れ、微小な割れ、比較的大きな割れ等の不良が生じ易くなる。そして、これらの不良が生じた場合、アウタパネルとしての適用ができなくなる。   However, in flat hem processing of Al alloy outer panels, compared to conventional flat hem processing of steel plate panels, the edge of the flat hem formed (hem portion, bent portion) has rough skin, minute cracks, Defects such as relatively large cracks are likely to occur. And when these defects arise, application as an outer panel becomes impossible.

このようなAl合金アウタパネルのフラットヘム加工に対し、従来から、フラットヘム加工工程側や、Al合金板の素材側で、前記縁曲部の不良発生を防止して、フラットヘム加工性乃至曲げ加工性を改善する技術が種々提案されている。   In contrast to the flat hem processing of such an Al alloy outer panel, it has been conventionally possible to prevent the occurrence of defects at the edge curved portion on the flat hem processing process side or the material side of the Al alloy plate, and to perform flat hem processing or bending processing. Various techniques for improving the performance have been proposed.

この内、過剰Si型を含む6000系Al合金板のフラットヘムなどの曲げ加工性を向上させる課題に対して、集合組織におけるキューブ方位分布密度を制御することが提案されている。これらは、隣接する結晶粒の方位差が15°以下の結晶粒界の占める割合を20% 以上とするか、あるいは隣接する結晶粒の方位差が20°以下の結晶粒界長さを20% 以上とするものである(特許文献1、2参照)。   Among them, it has been proposed to control the cube orientation distribution density in the texture in order to improve the bending workability such as flat hem of a 6000 series Al alloy plate containing excess Si type. These account for the proportion of crystal grain boundaries where the orientation difference between adjacent crystal grains is 15 ° or less or 20% or more, or the grain boundary length where the orientation difference between adjacent crystal grains is 20 ° or less is 20%. This is the above (see Patent Documents 1 and 2).

常法による製造方法では、通常、6000系Al合金板の結晶粒組織は等方性を有する。これに対し、上記技術は、特定の結晶方位を極度に集積させ,曲げ加工中の粒界への転位蓄積を軽減、あるいは/および粒界エネルギー低下により粒界析出が抑制されることに伴う粒界割れの抑制により、特に、自動車などのアウタパネルに特有の、フラットヘム (ヘミング) 加工による厳しい曲げ加工性を改善しようとするものである。
特開2003-171726 号公報 特開2003-166029 号公報
In a conventional manufacturing method, the crystal grain structure of a 6000 series Al alloy sheet is usually isotropic. On the other hand, the above-mentioned technique is a method in which specific crystal orientations are extremely accumulated to reduce the accumulation of dislocations at the grain boundaries during bending and / or grain boundary precipitation is suppressed due to grain boundary energy reduction. It is intended to improve severe bending workability by flat hem (hemming) processing, which is peculiar to outer panels of automobiles, etc., by suppressing boundary cracking.
JP 2003-171726 A JP2003-166029

6000系Al合金板で上記技術で規定する組織を得る手法として、キューブ方位を集積させるのが一般的と考えられる。しかし、キューブ方位を有する結晶粒の割合を多くした場合、結晶方位自身の異方性により、材料特性に強い異方性が生じてしまう。   It is generally considered that cube orientations are accumulated as a technique for obtaining a structure defined by the above technique with a 6000 series Al alloy plate. However, when the proportion of crystal grains having a cube orientation is increased, a strong anisotropy occurs in material characteristics due to the anisotropy of the crystal orientation itself.

材料特性に強い異方性を持つ場合、フラットヘム加工などの曲げ加工性は改善されるものの、アウタパネルへの、張出成形などのプレス成形性が低下してしまう。即ち、曲げ加工性とプレス成形性との両者を向上させることができない。なお、上記従来技術でも、一応エリクセン試験などによるプレス成形性評価を行ない、プレス成形性も良好としている。ただ、このような小試験片による評価方法では、実際の6000系Al合金板のアウタパネルなどへの張出成形性評価としては不十分であり、小試験片による評価が良くても、実際のパネルへの張出成形時には問題が生じるなど、両者の結果が対応しない場合が多々生じる。   When the material properties have strong anisotropy, bending workability such as flat hem processing is improved, but press formability such as bulging to the outer panel is lowered. That is, both bending workability and press formability cannot be improved. In the above prior art, the press formability is evaluated by an Erichsen test etc., and the press formability is also good. However, such an evaluation method using small test pieces is not sufficient as an evaluation of the formability of an actual 6000 series Al alloy plate on an outer panel or the like. There are many cases where the results of both do not correspond, for example, a problem occurs during overhang forming.

これは、実際のアウタパネルなどのプレス成形条件やフラットヘム加工条件が近年益々厳しく、かつ難しくなる傾向にあることにもよる。張出成形されるアウタパネル形状は、張出高さや張出面積などが大型化し、しかも形状が、伸びフランジ変形を伴うような湾曲部位を有するなど複雑化する傾向にある。このため、割れ、肌荒れなどの成形不良がより生じ易い。   This is due to the fact that press molding conditions and flat hem processing conditions for actual outer panels and the like tend to become increasingly severe and difficult in recent years. The outer panel shape formed by overhanging tends to be complicated, such as the overhang height and the overhang area being increased, and the shape has a curved portion with stretched flange deformation. For this reason, molding defects such as cracks and rough skin are more likely to occur.

このように、プレス成形性とヘム加工性の向上は、相矛盾する技術課題であって、両立させることは中々難しい。例えば、Al合金板の耐力を下げてフラットヘム加工性を改善した場合、プレス成形性が低下したり、低温での人工時効硬化処理後の耐力が不足するなどの問題を生じる。このため、従来から種々提案されている晶出物や析出物の制御技術や、Cuなどを多量に添加する技術をもってしても、プレス成形性とフラットヘム加工性の特性を同時に達成することはかなり難しい技術課題となる。   Thus, improvement of press formability and hemmability is a technical problem that contradicts each other, and it is difficult to achieve both. For example, when flat hem workability is improved by reducing the proof strength of an Al alloy plate, problems such as reduced press formability and insufficient proof strength after artificial age hardening at low temperatures occur. For this reason, it is possible to achieve both press formability and flat hemmability characteristics at the same time, even with various techniques for controlling crystallized matter and precipitates that have been proposed in the past and techniques for adding a large amount of Cu and the like. This is a very difficult technical issue.

本発明はこの様な事情に着目してなされたものであって、その目的は、ヘム加工などの曲げ加工性とプレス成形性とに優れるとともに、低温時効硬化能などのパネル化に際して要求される他の特性も兼備したAl-Mg-Si系Al合金板を提供しようとするものである。   The present invention has been made by paying attention to such circumstances, and its purpose is excellent in bending workability such as hem processing and press formability, and is required for paneling such as low-temperature age-hardening ability. The aim is to provide an Al-Mg-Si Al alloy sheet having other characteristics.

この目的を達成するために、本発明アルミニウム合金板の要旨は、キューブ方位分布密度と r値の異方性とを制御したAl-Mg-Si系アルミニウム合金板であって、このアルミニウム合金板の表面から板厚の1/4 深さ部分における結晶方位分布関数解析によるキューブ方位分布密度が10〜30の範囲であり、かつ、このアルミニウム合金板の、圧延方向に対して平行方向の r値r0と、圧延方向に対して直角方向の r値r90 と、圧延方向に対して45度方向の r値r45 との、r0とr90 に対するr45 の異方性を示す指標である (r0+r90 −2 ×r45)/2が0.2 〜1.4 の範囲であることとする。 In order to achieve this object, the gist of the aluminum alloy sheet of the present invention is an Al-Mg-Si aluminum alloy sheet in which the cube orientation distribution density and the anisotropy of the r value are controlled. The cube orientation distribution density by the crystal orientation distribution function analysis in the 1/4 depth part of the plate thickness from the surface is in the range of 10-30, and the r value r in the direction parallel to the rolling direction of this aluminum alloy plate 0 is the index indicating the perpendicular direction of r value r 90 to the rolling direction, the direction of 45 degrees r value r 45 to the rolling direction, the anisotropy of r 45 for r 0 and r 90 (r 0 + r 90 −2 × r 45 ) / 2 is in the range of 0.2 to 1.4.

なお、本発明で言うAl合金板とは、冷間圧延後、調質処理を施した後に室温時効した板 (圧延板) を言う。したがって、上記各要件も、調質処理直後 (板製造直後) ではなく、調質処理後 (板製造後) からプレス成形乃至曲げ加工されるまでの任意の期間 (例えば板製造後から 1カ月以上経過後) における、充分室温時効したAl合金板の状態をさして言う。また、ここで言う調質処理とは、主として溶体化および焼き入れ処理を言うが、その後の任意の熱処理、例えば、後述する予備時効処理や、更に必要により施す時効処理などの種々の調質処理を含めたものを示す。   The Al alloy sheet referred to in the present invention refers to a sheet (rolled sheet) aged at room temperature after being subjected to a tempering treatment after cold rolling. Therefore, each of the above requirements is not immediately after the tempering treatment (immediately after the plate production), but any period from the tempering treatment (after the plate production) to the press molding or bending (for example, one month or more after the plate production). This refers to the state of an Al alloy plate sufficiently aged at room temperature. In addition, the tempering treatment referred to here mainly refers to solution treatment and quenching treatment, but various tempering treatments such as a subsequent arbitrary heat treatment, for example, a pre-aging treatment described later, and an aging treatment further applied as necessary. Indicates that includes.

なお、以下の説明は、特に過剰Si型6000系Al合金板を中心に行う。本発明は過剰Si型以外のAl-Mg-Si系乃至6000系のAl合金板にも、課題としては過剰Si型ほど厳しくないものの、効果はあるため、本発明範囲に含みうる。また、同じく、以下の曲げ加工性の説明は、特にフラットヘムなどのヘム加工を中心に行うが、ヘム加工性が良好であれば、加工 (変形) の機構が共通する、他のハット型曲げ加工や90度曲げ加工などの曲げ加工性も良好となる。したがって、本発明は、ヘム加工以外の曲げ加工にも適用でき、本発明範囲に含みうる。   The following description will be focused on an excess Si type 6000 series Al alloy plate. In the present invention, Al—Mg—Si to 6000 series Al alloy plates other than the excess Si type are not as severe as the problem, but can be included in the scope of the present invention. Similarly, the following description of bending workability will be made mainly on hem processing such as flat hem. However, if the hem workability is good, other hat-type bends that have the same processing (deformation) mechanism are used. Bending workability such as processing and 90 degree bending is also improved. Therefore, the present invention can be applied to bending processing other than hem processing and can be included in the scope of the present invention.

本発明によれば、過剰Si型6000系Al合金板の室温時効自体は抑制されることが好ましいが、例え、Al合金板の製造後に室温時効したとしても、プレス成形性およびフラットヘムなどの曲げ加工に優れた過剰Si型6000系Al合金板を得ることができる。   According to the present invention, it is preferable that the room temperature aging itself of the excess Si type 6000 series Al alloy plate is suppressed, but even if it is aged at room temperature after the production of the Al alloy plate, the press formability and bending of flat hem, etc. An excess Si type 6000 series Al alloy plate excellent in processing can be obtained.

このために、本発明者らは、プレス成形性およびヘム加工性と、過剰Si型6000系Al合金板のキューブ方位を有する結晶粒組織 (材料特性の異方性) との関係について改めて検討した。この結果、材料特性の異方性を高めるほど、フラットヘムなどの曲げ加工は向上するが、後述する図1 の通り、材料特性の異方性を少し高めるだけで、フラットヘムなどの曲げ加工は急激に向上することを知見した。そして、この材料特性の異方性を少し高めることが、張出成形などのプレス成形性に悪影響を及ぼさないことを知見した。   For this purpose, the inventors have reexamined the relationship between press formability and hem workability and the crystal grain structure (anisotropy of material properties) having the cube orientation of the excess Si-type 6000 series Al alloy plate. . As a result, the higher the material property anisotropy, the better the bending of flat hem, etc. It was found that it improved rapidly. They have also found that slightly increasing the anisotropy of the material properties does not adversely affect press formability such as stretch forming.

言い換えると、従来のキューブ方位に着目した集合組織制御は、この事実に気づかず、フラットヘムなどの曲げ加工向上のために、キューブ方位を集積しすぎていた (異方性を高めすぎていた) ために、張出成形などのプレス成形性を低下させていたものである。   In other words, the conventional texture control focusing on the cube orientation did not realize this fact, and accumulated the cube orientation too much to improve the bending process such as flat hem (too much anisotropy). For this reason, press formability such as stretch forming has been reduced.

本発明では、この知見に基づき、結晶粒組織のキューブ方位 (異方性) の制御範囲をより低めに行い、フラットヘムなどの曲げ加工を向上させるとともに、張出成形などのプレス成形性を低下させない。そして、結晶粒組織のキューブ方位 (異方性) の程度を、結晶方位分布関数解析によるキューブ方位分布密度により規定する。   In the present invention, based on this knowledge, the control range of the cube orientation (anisotropic) of the crystal grain structure is made lower to improve the bending process of flat hem and the like and to reduce the press formability such as stretch forming. I won't let you. Then, the degree of cube orientation (anisotropic) of the grain structure is defined by the cube orientation distribution density by the crystal orientation distribution function analysis.

一方、張出成形などのプレス成形性をより向上させるためには、張出成形時のしわを抑制する必要がある。本発明のような異方性を有する過剰Si型6000系Al合金板では、成形される板の0 度、45度、90度の方向の材料流入量が異なるため、張出成形の早い段階から「しわ」が発生しやすくなる。そして、異方性を有するほど、しわが深くなる傾向にあり、このしわを抑制するために、プレス成形時のしわ押さえ力 (板の金型への押しつけ力) を強くするなどの対策が必要となる。しかし、しわ押さえ力を強くしすぎると、逆に、プレス成形時に割れが発生しやすくなるという問題が新たに生じる。   On the other hand, in order to further improve press formability such as stretch forming, it is necessary to suppress wrinkles during stretch forming. In an excess Si type 6000 series Al alloy plate having anisotropy as in the present invention, since the amount of material inflow in the directions of 0 °, 45 °, and 90 ° of the formed plate is different, from the early stage of overhang forming “Wrinkles” are likely to occur. And the more anisotropic, the deeper the wrinkle tends to be, and in order to suppress this wrinkle, it is necessary to take measures such as increasing the wrinkle pressing force during pressing (pressing the plate against the mold). It becomes. However, if the wrinkle holding force is too strong, a new problem arises that cracks are likely to occur during press molding.

このため、本発明では、プレス成形における前記「しわ」の発生を抑制し、プレス成形性をより向上させるために、圧延方向に対して直角方向の r値r90 と圧延方向に対して平行方向の r値r0に対する、圧延方向に対して45度方向の r値r45 の差、言い換えると、圧延方向に対して45度方向の r値r45 の異方性 (前記r45 の前記r90 やr0に対する異方性) を制御する。 Therefore, in the present invention, in order to suppress the occurrence of the “wrinkles” in press forming and further improve press formability, the r value r 90 in the direction perpendicular to the rolling direction and the direction parallel to the rolling direction The difference of the r value r 45 in the 45 degree direction with respect to the rolling direction with respect to the r value r 0 of the rolling direction, in other words, the anisotropy of the r value r 45 in the 45 degree direction with respect to the rolling direction (the r of the r 45 Control anisotropy with respect to 90 and r 0 .

具体的には、前記r90 と板の圧延方向に対して平行方向の r値r0との平均値に対する、板の圧延方向に対して45度方向の r値r45 の差を示し、r45 のr90 やr0に対する異方性の指標である、(r0 +r90 −2 ×r45)/2を0.2 〜1.4 の範囲として、過剰Si型6000系Al合金板における r値の異方性を制御する。なお、この r値の異方性制御は、板の結晶粒組織の異方性の制御という点では、上記キューブ方位制御と共通するため、勿論、フラットヘム加工などの曲げ加工性を向上させる。 Specifically, the difference between the r 90 and the r value r 45 in the direction of 45 degrees relative to the rolling direction of the sheet, with respect to the average value of r 90 and the r value r 0 in the direction parallel to the rolling direction of the sheet, r The difference of the r value in the excess Si type 6000 series Al alloy sheet, with (r 0 + r 90 −2 × r 45 ) / 2 in the range of 0.2 to 1.4, which is an anisotropy index of 45 to r 90 and r 0 Control the direction. This anisotropy control of the r value is common with the above-mentioned cube orientation control in terms of controlling the anisotropy of the crystal grain structure of the plate, and of course improves the bending workability such as flat hem processing.

本発明では、このような制御したキューブ方位と r値の異方性とを過剰Si型6000系Al合金板に持たせることで、過剰Si型6000系Al合金板が製造後に室温時効したとしても、張出成形性とフラットヘム加工性の両者とも改善する。なお、この張出成形性とフラットヘム加工の改善によって、更に、絞りなどの他のプレス成形性やロープドヘムなどの他のヘム加工をも改善しうる。   In the present invention, even if the excess Si type 6000 series Al alloy plate is aged at room temperature after production by giving such controlled cube orientation and r value anisotropy to the excess Si type 6000 series Al alloy plate. Both the stretch formability and flat hem workability are improved. It should be noted that this press formability and flat hem processing can further improve other press formability such as drawing and other hem processing such as roped hem.

以下に、本発明Al合金板の実施態様につき、具体的に説明する。
先ず、本発明Al合金板の組織の要件につき説明する。
(キューブ方位分布密度)
本発明では、前記した通り、Al合金板のフラットヘム加工性を向上させ、張出成形などのプレス成形性を低下させないために、Al合金板の表面から板厚の1/4 深さ部分における結晶方位分布関数解析によるキューブ方位分布密度を10〜30の範囲とする。
Hereinafter, embodiments of the Al alloy plate of the present invention will be specifically described.
First, the structural requirements of the Al alloy sheet of the present invention will be described.
(Cube orientation distribution density)
In the present invention, as described above, in order to improve the flat hem workability of the Al alloy plate and not reduce the press formability such as the overhang forming, in the portion having a depth of 1/4 of the plate thickness from the surface of the Al alloy plate. The cube orientation distribution density by the crystal orientation distribution function analysis is set in the range of 10-30.

上記キューブ方位分布密度が10未満であれば、Al合金板のフラットヘム加工性が向上しない。一方、上記キューブ方位分布密度が30を越えた場合、張出成形などのプレス成形性が低下する。   If the cube orientation distribution density is less than 10, the flat hem workability of the Al alloy plate is not improved. On the other hand, when the cube orientation distribution density exceeds 30, press formability such as stretch forming is lowered.

本発明では、キューブ方位分布密度を規定するに際し、結晶集合組織の測定精度がより正確な、結晶方位分布関数解析 (以下、ODF 解析と言う) によるキューブ方位分布密度で規定する。   In the present invention, when defining the cube orientation distribution density, the cube orientation distribution density is defined by a crystal orientation distribution function analysis (hereinafter referred to as ODF analysis), which is more accurate in measuring the crystal texture.

ODF 解析によるキューブ方位分布密度は、キューブ方位をランダム方位 (標準サンプルの無配向性のAl粉末試料) からの比 (無次元) で表すため、広い範囲を定量的に表現できる。このため、上記積分強度によるキューブ方位測定のような傾向が無く、より正確にキューブ方位分布を測定できる。これに対し、他の積分強度などによるキューブ(Cube)方位の測定では、割合計算のため、高い積分強度割合のところでは、各試料間の差が非常に小さくなる傾向がある。また、面内(100面) の回転方位を分離できないため、純粋なキューブ方位だけを抽出できない傾向もある。   The cube orientation distribution density by ODF analysis can express a wide range quantitatively because the cube orientation is expressed by the ratio (dimensionalless) from the random orientation (non-oriented Al powder sample of the standard sample). For this reason, there is no tendency like the cube orientation measurement by the integrated intensity, and the cube orientation distribution can be measured more accurately. On the other hand, in the measurement of the Cube orientation using other integral intensities, the difference between the samples tends to be very small at a high integral intensity ratio because of the ratio calculation. Also, since the rotational orientation in the plane (100 planes) cannot be separated, there is a tendency that only pure cube orientation cannot be extracted.

このAl合金板表面から板厚の1/4 深さ部分における、ODF 解析によるキューブ方位分布密度の測定は、例えば、株式会社リガクのX 線回折装置 [型式「リガクRAD-rX 」(Ru-200B) ] を用い、Al合金板の表面から板厚の1/4 の深さ部分まで研削して、この部分を計測することで行なう。上記X 線回折装置は不完全極点図によるODF 解析が可能である。即ち、schluzの反射法により、{100 }面、{111 }面の不完全極点図を作成し、Bunge の反復級数展開法(positivity 法) を適用してODF 解析を実施し、キューブ方位分布密度を求めることができる。   The cube orientation distribution density measured by ODF analysis from the Al alloy plate surface to a depth of 1/4 of the plate thickness can be measured, for example, by Rigaku Corporation's X-ray diffractometer [Model “Rigaku RAD-rX” (Ru-200B )] Is used to grind from the surface of the Al alloy plate to a depth of 1/4 of the plate thickness and measure this portion. The above X-ray diffractometer can perform ODF analysis with an incomplete pole figure. In other words, incomplete pole figures of {100} plane and {111} plane are created by Schluz's reflection method, ODF analysis is performed by applying Bunge's iterative series expansion method (positivity method), and cube orientation distribution density Can be requested.

なお、フラットヘム加工での板 (プレス成形後の板) の曲げ方向とキューブ方位 (配行方向) との関係について、板のキューブ方位が板の曲げ方向と平行になるように (板の曲げ加工方向を素材板の圧延方向と平行あるいは直角にして) 曲げ加工した場合に、変形中のキューブ方位が安定となり、良好なフラットヘム加工性は得られる。板のキューブ方位は90度回転しても同一の構造であるため、0 度、90度の区別が無い。このため、板の曲げ加工方向を素材板の圧延方向と平行あるいは直角としても、キューブ方位は同じ構造となり、良好なフラットヘム加工性が得られる。ただ、素材板の圧延方向が板の曲げ方向と45度の方向になるなど、上記二つの方向以外の板の曲げ方向と板のキューブ方位 (配行方向) との関係では、キューブ方位は変形中に回転し、結晶方位がランダム化して、フラットヘム加工性が劣る可能性があり、フラットヘム加工における板の曲げ方向は、上記二つの方向とすることが好ましい。   Regarding the relationship between the bending direction of the plate (plate after press molding) and the cube orientation (distribution direction) in flat hem processing, make sure that the plate's cube orientation is parallel to the bending direction of the plate (bending of the plate). When bending is performed (with the processing direction parallel or perpendicular to the rolling direction of the blank), the cube orientation during deformation becomes stable, and good flat hem workability is obtained. Even if the cube orientation of the plate is rotated 90 degrees, it has the same structure, so there is no distinction between 0 degrees and 90 degrees. For this reason, even if the bending direction of the plate is parallel or perpendicular to the rolling direction of the material plate, the cube orientation becomes the same structure, and good flat hem workability is obtained. However, depending on the relationship between the bending direction of the plate other than the above two directions and the cube orientation (distribution direction) of the plate, such as the rolling direction of the material plate is 45 degrees with the bending direction of the plate, the cube orientation is deformed. There is a possibility that the crystal orientation is randomized and the flat hem workability is inferior, and the bending direction of the plate in the flat hem processing is preferably the above two directions.

( r値の異方性)
本発明では、Al合金板のフラットヘム加工などの曲げ加工性と、張出成形などのプレス成形性とを向上させるために、更に、Al合金板の圧延方向に対して平行方向の r値r0と、圧延方向に対して直角方向の r値r90 と、圧延方向に対して45度方向の r値r45 との、r0とr90 に対するr45 の異方性を示す指標である (r0+r90 −2 ×r45)/2 [以下、Δr とも言う] が0.2 〜1.4 の範囲とする。
(r-value anisotropy)
In the present invention, in order to improve bending workability such as flat hem processing of Al alloy sheet and press formability such as stretch forming, r value r parallel to the rolling direction of Al alloy sheet is further provided. 0 is the index indicating the perpendicular direction of r value r 90 to the rolling direction, the direction of 45 degrees r value r 45 to the rolling direction, the anisotropy of r 45 for r 0 and r 90 (r 0 + r 90 −2 × r 45 ) / 2 [hereinafter also referred to as Δr] is in the range of 0.2 to 1.4.

上記Δr が0.2 未満では、板の圧延方向に対して平行方向、45度方向、90度方向の各々の各機械的性質をできるだけ均一とした、通常乃至常法によるAl合金板の等方性組織と大差がなくなり、前記キューブ方位分布密度を10以上とすることができない。したがって、板製造後に室温時効した際の、曲げ加工性の向上効果がない。   If the above Δr is less than 0.2, the mechanical properties of each of the parallel, 45 ° and 90 ° directions of the plate in the rolling direction of the plate are made as uniform as possible. And the cube orientation distribution density cannot be 10 or more. Therefore, there is no effect of improving the bending workability when aged at room temperature after manufacturing the plate.

一方、このΔr が1.4 を越えた場合、キューブ方位の集積により、異方性が高まり、フラットヘムなどの曲げ加工は向上する。しかし、キューブ方位が集積しすぎ (異方性を高めすぎ) ているために、プレス成形される板の0 度、45度、90度の方向の材料流入量が大きく異なる。この結果、プレス成形における早い段階から「しわ」が発生しやすくなる。そして、このしわを抑制するために、しわ押さえ力を通常よりも強めてプレス成形する必要があり、この強いしわ押さえ力に起因する割れが逆に発生しやすくなる。   On the other hand, when Δr exceeds 1.4, anisotropy increases due to accumulation of cube orientation, and bending work such as flat hem improves. However, since the cube orientation is accumulated too much (anisotropy is increased too much), the material inflow in the directions of 0 °, 45 ° and 90 ° of the press-molded plate is greatly different. As a result, “wrinkles” are likely to occur from an early stage in press molding. And in order to suppress this wrinkle, it is necessary to press-mold with a wrinkle pressing force stronger than usual, and cracks due to this strong wrinkle pressing force tend to occur on the contrary.

ここで、板のr 値自体はプレス成形性の評価に汎用されている。r 値は、板幅方向ひずみ (εw ) と板厚方向のひずみ (εt ) との比εw/εt で定義される。したがって、このr 値は、引張試験における、log(W0/W)/log(W0l/l0W)によって算出できる。但し、W0: 引張変形前の幅(mm)、W:引張変形後の幅(mm)、l0: 引張変形前の長さ(mm)、l:引張変形後の長さ(mm)である。 Here, the r value itself of the plate is widely used for evaluation of press formability. The r value is defined as the ratio ε w / ε t of the strain in the plate width direction (ε w ) and the strain in the plate thickness direction (ε t ). Therefore, this r value can be calculated by log (W 0 / W) / log (W 0 l / l 0 W) in the tensile test. Where, W 0 : width before tensile deformation (mm), W: width after tensile deformation (mm), l 0 : length before tensile deformation (mm), l: length after tensile deformation (mm) is there.

(キューブ方位分布密度と r値異方性との関係)
上記したキューブ方位分布密度と r値異方性との、曲げ加工性との関係を図1 に示す。図1 において、横軸はキューブ方位分布密度(0〜150)、左の縦軸はヘム加工性(0.0〜4.0 までの0.5 刻みの9 段階評価: 評価方法は実施例にて後述する) 、右の縦軸はr0とr90 に対するr45 の異方性を示す指標(r0 +r90 −2 ×r45)/2である (0.0 〜1.6)。
(Relationship between cube orientation distribution density and r-value anisotropy)
Figure 1 shows the relationship between the above-mentioned cube orientation distribution density and r-value anisotropy and the bending workability. In FIG. 1, the horizontal axis is cube orientation distribution density (0 to 150), the left vertical axis is hemmability (9-step evaluation in 0.5 increments from 0.0 to 4.0: the evaluation method will be described later in the examples), right The vertical axis of is an index (r 0 + r 90 −2 × r 45 ) / 2 indicating the anisotropy of r 45 with respect to r 0 and r 90 (0.0 to 1.6).

図1 において、斜線で示した範囲が本発明範囲であり、キューブ方位分布密度が10〜30の範囲であり、かつ、Δr である(r0 +r90 −2 ×r45)/2が0.2 〜1.4 の範囲である。 In FIG. 1, the hatched range is the range of the present invention, the cube orientation distribution density is in the range of 10 to 30, and Δr (r 0 + r 90 −2 × r 45 ) / 2 is 0.2 to The range is 1.4.

図1 において、曲線A はフラットヘム加工性とキューブ方位分布密度との関係を示し、キューブ方位分布密度を変えて試作した各過剰Si型6000系Al合金板のフラットヘム加工性データを外挿したものである。また、曲線B はフラットヘム加工性とΔr との関係を示し、Δr を変えて試作した各過剰Si型6000系Al合金板のフラットヘム加工性データを外挿したものである。ここで、曲線A は右上がりであり、キューブ方位分布密度が高くなるほど、フラットヘム加工性が向上することが分かる。一方、曲線B は右下がりであり、Δr が高くなるほど、フラットヘム加工性が低下することが分かる。   In Fig. 1, curve A shows the relationship between flat hem workability and cube orientation distribution density, and extrapolated flat hem workability data for each excess Si type 6000 series Al alloy sheet produced by changing the cube orientation distribution density. Is. Curve B shows the relationship between flat hem workability and Δr, and is an extrapolation of flat hem workability data of each excess Si type 6000 series Al alloy plate produced by changing Δr. Here, the curve A rises to the right, and it can be seen that the flat hem workability improves as the cube orientation distribution density increases. On the other hand, curve B has a downward slope, and it can be seen that the flat heme workability decreases as Δr increases.

この図1 の通り、キューブ方位分布密度を10〜30の範囲で、少し高めるだけで、フラットヘムなどの曲げ加工性は4.0 から3.5 以上へと急激に向上する。そして、この範囲であれば、張出成形などのプレス成形性に悪影響を及ぼさない。これに対して、キューブ方位分布密度が30を越えた場合、フラットヘムなどの曲げ加工性は2.0 から0.5 以上へと向上するが、張出成形などのプレス成形性が著しく低下する。   As shown in Fig. 1, just by slightly increasing the cube orientation distribution density in the range of 10 to 30, the bending workability of flat hem and the like is drastically improved from 4.0 to 3.5 or more. And if it is this range, it will not have a bad influence on press moldability, such as overhang forming. On the other hand, when the cube orientation distribution density exceeds 30, bending workability such as flat hem is improved from 2.0 to 0.5 or more, but press formability such as stretch forming is remarkably lowered.

また、図1 の通り、Δr を0.2 〜1.4 の範囲とすることでフラットヘムなどの曲げ加工性を0.5 〜3.5 とすることができる。なお、図1 において、キューブ方位分布密度が10未満、Δr が1.5 以下のものが、常法による等方性を持ったAl合金板であり、フラットヘムなどの曲げ加工性が著しく劣る4.0 レベルとなる。   Further, as shown in FIG. 1, by making Δr in the range of 0.2 to 1.4, bending workability such as flat hem can be set to 0.5 to 3.5. In Fig. 1, the one with a cube orientation distribution density of less than 10 and Δr of 1.5 or less is an Al alloy plate having isotropicity by a conventional method, and the 4.0 level where bending workability such as flat hem is remarkably inferior. Become.

(平均結晶粒径)
なお、これら結晶粒組織の規定に際して、前提として、Al合金板の平均結晶粒径を50μm 以下の微細化させることが好ましい。結晶粒径をこの範囲に細かく乃至小さくすることによって、フラットヘム加工性やプレス成形性が確保乃至向上される。結晶粒径が50μm を越えて粗大化した場合、フラットヘム加工性や張出などのプレス成形性が著しく低下し、ヘム部での割れなどの不良や、プレス成形時の割れや肌荒れなどの不良が生じ易い。
(Average crystal grain size)
In defining these crystal grain structures, as a premise, it is preferable that the average crystal grain size of the Al alloy plate is refined to 50 μm or less. By making the crystal grain size fine or small within this range, flat hem workability and press formability are ensured or improved. When the crystal grain size exceeds 50μm and becomes coarse, press formability such as flat hem workability and overhang deteriorates significantly, and defects such as cracks in the hem part and defects such as cracks and rough surfaces during press molding occur. Is likely to occur.

なお、ここで言う結晶粒径とは板の長手(L) 方向の結晶粒の最大径である。この結晶粒径は、Al合金板を0.05〜0.1mm 機械研磨した後電解エッチングした表面を、光学顕微鏡を用いて観察し、前記L 方向に、ラインインターセプト法で測定する。1 測定ライン長さは0.95mmとし、1 視野当たり各3 本で合計5 視野を観察することにより、全測定ライン長さを0.95×15mmとする。   The crystal grain size referred to here is the maximum diameter of crystal grains in the longitudinal (L) direction of the plate. The crystal grain size is measured by a line intercept method in the L direction by observing the surface of the Al alloy plate that has been mechanically polished by 0.05 to 0.1 mm and then electrolytically etched using an optical microscope. 1 The measurement line length is 0.95mm, and the total measurement line length is 0.95 x 15mm by observing a total of 5 fields with 3 lines per field.

(化学成分組成)
次に、本発明Al合金板の化学成分組成の実施形態につき、以下に説明する。
本発明Al合金板の基本組成は、上記組織などの規定、またアウタパネルなどとして必要な、成形性、強度、溶接性、耐食性などの諸特性を確保するために、Al-Mg-Si系(6000 系)Al 合金とする。Al-Mg-Si系(6000 系)Al 合金の範囲でなければ、本発明で規定する上記r 値の規定範囲や組織などにならず、また、前記諸特性が発揮されない。
(Chemical composition)
Next, an embodiment of the chemical composition of the Al alloy sheet of the present invention will be described below.
The basic composition of the Al alloy plate of the present invention is Al-Mg-Si (6000) in order to ensure various characteristics such as formability, strength, weldability, corrosion resistance, etc. required for the above-mentioned structure and the outer panel. System) Al alloy. If it is not within the range of the Al-Mg-Si (6000 series) Al alloy, the specified range and structure of the r value specified in the present invention will not be achieved, and the above characteristics will not be exhibited.

また、上記必要諸特性を確保するために、Si:0.4〜1.3%、Mg:0.2〜1.2%、Mn:0.01 〜0.65% 、Cu:0.001〜1.0%を含み、かつSi/Mg が質量比で1 以上とした過剰Si型のAl-Mg-Si系Al合金とすることが好ましい。そして、上記組織の規定や諸特性を確保するために、より厳密には、前記規定各成分以外の残部を、Alおよび不可避的不純物とすることが好ましい。なお、本発明での化学成分組成の% 表示は、前記請求項の% 表示も含めて、全て質量% の意味である。   In addition, in order to ensure the above required characteristics, Si: 0.4 to 1.3%, Mg: 0.2 to 1.2%, Mn: 0.01 to 0.65%, Cu: 0.001 to 1.0%, and Si / Mg in mass ratio It is preferable to use an excess Si type Al—Mg—Si-based Al alloy of 1 or more. In order to ensure the definition and various characteristics of the structure, more strictly, the remainder other than the specified components is preferably Al and inevitable impurities. In the present invention, the percentage display of the chemical component composition means the mass%, including the percentage display in the above claims.

上記合金元素以外の、Cr、Zr、Ti、B 、Fe、Zn、Ni、V など、その他の合金元素は、基本的には不純物元素である。しかし、リサイクルの観点から、溶解材として、高純度Al地金だけではなく、6000系合金やその他のAl合金スクラップ材、低純度Al地金などを溶解原料として使用して、本発明Al合金組成を溶製する場合には、これら他の合金元素は必然的に含まれることとなる。したがって、本発明では、目的とする本発明効果を阻害しない範囲で、これら他の合金元素が含有されることを許容する。   In addition to the above alloy elements, other alloy elements such as Cr, Zr, Ti, B, Fe, Zn, Ni, and V are basically impurity elements. However, from the viewpoint of recycling, not only high-purity Al ingots but also 6000 series alloys and other Al alloy scrap materials, low-purity Al ingots, etc. are used as melting raw materials as melting materials. In the case of melting, these other alloy elements are necessarily included. Accordingly, the present invention allows these other alloy elements to be contained within a range not impairing the intended effect of the present invention.

各元素の好ましい含有範囲と意義、あるいは許容量について以下に説明する。 Si:0.4〜1.3%。
Siは、固溶強化と、塗装焼き付け処理などの、前記低温短時間での人工時効処理時に、MgとともにGPゾーンなどの化合物相を形成して、時効硬化能を発揮し、板として170MPa以上の必要強度を得るための必須の元素である。したがって、6000系Al合金板にあって、プレス成形性、ヘム加工性などの諸特性を兼備させるための最重要元素である。
The preferable content range and significance of each element, or the allowable amount will be described below. Si: 0.4 to 1.3%.
Si forms a compound phase such as GP zone together with Mg at the time of artificial aging treatment at low temperature and short time, such as solid solution strengthening and paint baking treatment, and exhibits age-hardening ability. It is an essential element for obtaining the required strength. Therefore, in the 6000 series Al alloy plate, it is the most important element for combining various properties such as press formability and hem workability.

また、前記低温短時間での人工時効処理時 (板への成形後の塗装焼き付け処理、評価試験としては2%ストレッチ付与後160 ℃×20分の低温時効処理) 時の耐力を170MPa以上という、優れた低温時効硬化能を発揮させるためにも、Si/Mg を質量比で1.0 以上とし、SiをMgに対し過剰に含有させた過剰Si型6000系Al合金組成とすることが好ましい。   In addition, the proof stress at the time of artificial aging treatment at the low temperature and short time (paint baking treatment after forming on a plate, as an evaluation test, 160 ° C. × 20 minutes low temperature aging treatment after applying 2% stretch) is 170 MPa or more, In order to exhibit excellent low-temperature age-hardening ability, it is preferable to have an excess Si type 6000-based Al alloy composition in which Si / Mg is 1.0 or more by mass and Si is excessively contained with respect to Mg.

Si量が0.4%未満では、前記時効硬化能、更には、各用途に要求される、プレス成形性、ヘム加工性などの諸特性を兼備することができない。一方、Siが1.3%を越えて含有されると、特にヘム加工性や曲げ加工性が著しく阻害される。更に、溶接性を著しく阻害する。したがって、Siは0.4 〜1.3%の範囲とするのが好ましい。なお、アウタ板では、ヘム加工性が特に重視されるため、プレス成形性などの他の特性を低下させずに、フラットヘム加工性をより向上させるために、Si含有量を0.6 〜1.0%と、より低めの範囲とすることが好ましい。   When the Si content is less than 0.4%, the age-hardening ability and further various properties such as press formability and hemmability required for each application cannot be obtained. On the other hand, when Si exceeds 1.3%, heme workability and bending workability are significantly impaired. Furthermore, weldability is significantly impaired. Therefore, Si is preferably in the range of 0.4 to 1.3%. In the outer plate, hem workability is particularly emphasized, so that the Si content is 0.6 to 1.0% in order to further improve flat hem workability without degrading other properties such as press formability. The lower range is preferable.

Mg:0.2〜1.2%。
Mgは、固溶強化と、塗装焼き付け処理などの前記人工時効処理時に、SiとともにGPゾーンなどの化合物相を形成して、時効硬化能を発揮し、板としての170MPa以上の必要強度を得るための必須の元素である。
Mg: 0.2-1.2%.
Mg forms a compound phase such as GP zone together with Si during solid tempering and artificial aging treatment such as paint baking treatment, to show age hardening ability and to obtain the required strength of 170 MPa or more as a plate Is an essential element.

Mgの0.2%未満 (質量% 、以下同じ) の含有では、絶対量が不足するため、人工時効処理時に前記化合物相を形成できず、時効硬化能を発揮できない。このため板として必要な前記必要強度が得られない。   If the Mg content is less than 0.2% (mass%, the same applies hereinafter), the absolute amount is insufficient, so that the compound phase cannot be formed during the artificial aging treatment, and the age hardening ability cannot be exhibited. For this reason, the said required intensity | strength required as a board cannot be obtained.

一方、Mgが1.2%を越えて含有されると、プレス成形性や曲げ加工性 (ヘム加工性) 等の成形性が著しく阻害される。したがって、Mgの含有量は、0.2 〜1.2%の範囲で、かつSi/Mg が1.0 以上となるような量とする。また、フラットヘム加工性をより向上させるために、Si含有量を前記0.6 〜1.0%のより低めの範囲とする場合には、これに対応して過剰Si型6000系Al合金組成とするために、Mg含有量も0.2 〜0.8%と低めの範囲とすることが好ましい。   On the other hand, if the Mg content exceeds 1.2%, moldability such as press formability and bending workability (hem workability) is remarkably impaired. Therefore, the Mg content is in the range of 0.2 to 1.2% and Si / Mg is 1.0 or more. In order to further improve the flat heme workability, when the Si content is set to a lower range of 0.6 to 1.0%, in order to obtain an excess Si type 6000 series Al alloy composition correspondingly, Further, the Mg content is preferably set to a low range of 0.2 to 0.8%.

Cu:0.001〜1.0%
Cuは、本発明の比較的低温短時間の人工時効処理の条件で、Al合金材組織の結晶粒内へのGPゾーンなどの化合物相の析出を促進させる効果がある。また、時効処理状態で固溶したCuは成形性を向上させる効果もある。Cu含有量が0.001%未満ではこの効果がない。一方、1.0%を越えると、耐応力腐食割れ性や、塗装後の耐蝕性の内の耐糸さび性、また溶接性を著しく劣化させる。このため、自動車アウタパネル用などの板用途などの場合には、耐糸さび性の発現が顕著となる0.1%以下の量とすることが好ましい。
Cu: 0.001 to 1.0%
Cu has the effect of promoting precipitation of a compound phase such as a GP zone in the crystal grains of the Al alloy material structure under the conditions of artificial aging treatment at a relatively low temperature and short time of the present invention. Moreover, Cu dissolved in the aging treatment state also has an effect of improving formability. This effect is not obtained when the Cu content is less than 0.001%. On the other hand, if it exceeds 1.0%, the stress corrosion cracking resistance, the thread rust resistance of the corrosion resistance after coating, and the weldability are significantly deteriorated. For this reason, in the case of plate applications such as for automobile outer panels, the amount is preferably 0.1% or less where the expression of yarn rust resistance becomes significant.

Mn:0.01 〜0.65%
Mnには、均質化熱処理時に分散粒子 (分散相) を生成し、これらの分散粒子には再結晶後の粒界移動を妨げる効果があるため、微細な結晶粒を得ることができる効果がある。前記した通り、本発明Al合金板のプレス成形性やヘム加工性はAl合金組織の結晶粒が微細なほど向上する。この点、Mn含有量が0.01% 未満ではこれらの効果が無い。
Mn: 0.01 to 0.65%
Mn produces dispersed particles (dispersed phase) during the homogenization heat treatment, and these dispersed particles have the effect of preventing grain boundary movement after recrystallization, so that fine crystal grains can be obtained. . As described above, the press formability and hem workability of the Al alloy plate of the present invention improve as the crystal grains of the Al alloy structure become finer. In this respect, when the Mn content is less than 0.01%, these effects are not obtained.

一方、Mn含有量が多くなった場合、溶解、鋳造時に粗大なAl-Fe-Si-(Mn、Cr、Zr) 系の金属間化合物や晶析出物を生成しやすく、破壊の起点となり易いため、Al合金板の機械的性質を低下させる原因となる。また、特に、前記複雑形状や薄肉化、あるいはインナ板端部とアウタ板縁曲部内面との間の隙間の存在などによって、加工条件が厳しくなったフラットヘム加工では、Mn含有量が0.25% を越えた場合、ヘム加工性が低下する。このため、Mnは0.01〜0.65% の範囲とし、加工条件が厳しくなったフラットヘム加工では、より好ましくは0.01〜0.25% の範囲とする。   On the other hand, if the Mn content increases, coarse Al-Fe-Si- (Mn, Cr, Zr) -based intermetallic compounds and crystal precipitates are likely to be generated during melting and casting, which is likely to be the starting point of fracture. This causes a decrease in the mechanical properties of the Al alloy sheet. In particular, in flat hem processing where the processing conditions are severe due to the complicated shape and thinning, or the existence of a gap between the inner plate end and the inner edge of the outer plate edge, the Mn content is 0.25%. If it exceeds the range, hemmability will be reduced. For this reason, Mn is set in the range of 0.01 to 0.65%, and more preferably in the range of 0.01 to 0.25% in the flat hem processing in which the processing conditions are severe.

Cr 、Zr。
これらCr、Zrの遷移元素には、Mnと同様、均質化熱処理時に分散粒子 (分散相) を生成し、微細な結晶粒を得ることができる効果がある。しかし、Cr、Zrも、0.15% を越える含有では、前記加工条件が厳しくなったフラットヘム加工ではヘム加工性が低下する。したがって、Cr、Zrの含有量も0.15% 以下に規制することが好ましい。
Cr, Zr.
Similar to Mn, these Cr and Zr transition elements have the effect of producing dispersed particles (dispersed phase) during homogenization heat treatment and obtaining fine crystal grains. However, if Cr and Zr are contained in an amount exceeding 0.15%, the hemmability is lowered in flat hem processing in which the processing conditions are severe. Therefore, the Cr and Zr contents are preferably regulated to 0.15% or less.

Ti 、B 。
Ti、B は、Ti:0.1% 、B:300ppmを各々越えて含有すると、粗大な晶出物を形成し、成形性を低下させる。但し、Ti、B には微量の含有で、鋳塊の結晶粒を微細化し、プレス成形性を向上させる効果もある。したがって、Ti:0.1% 以下、B:300ppm以下までの含有は許容する。
Ti, B.
When Ti and B are contained in amounts exceeding Ti: 0.1% and B: 300 ppm, coarse crystallized substances are formed and formability is lowered. However, Ti and B are contained in a very small amount, and have the effect of reducing the crystal grains of the ingot and improving the press formability. Therefore, the content of Ti: 0.1% or less and B: 300ppm or less is allowed.

Fe。
溶解原料から混入して、不純物として含まれるFeは、Al7Cu2Fe、Al12(Fe,Mn)3Cu2 、(Fe,Mn)Al6などの晶出物を生成する。これらの晶出物は再結晶粒の核となり、Feが0.08% 以上含まれた場合に、結晶粒の粗大化を阻止して、結晶粒を50μm 以下の微細粒とする役割を果たす。しかし、一方で、これらの晶出物は、破壊靱性および疲労特性、更には、前記加工条件が厳しくなったフラットヘム加工性およびプレス成形性を著しく劣化させる。これらの劣化特性は、Feの含有量が0.50% を越えると顕著になる。このため、含有させる場合のFeの含有量は、0.08〜0.50% とすることが好ましい。
Fe.
Fe mixed in from the melting raw material and contained as impurities produces crystallized products such as Al 7 Cu 2 Fe, Al 12 (Fe, Mn) 3 Cu 2 , and (Fe, Mn) Al 6 . These crystallized substances serve as nuclei of recrystallized grains, and when Fe is contained in an amount of 0.08% or more, the crystal grains are prevented from coarsening and the crystal grains are reduced to a fine grain of 50 μm or less. However, on the other hand, these crystallized materials significantly deteriorate the fracture toughness and fatigue characteristics, and further, the flat hem workability and press formability in which the processing conditions are severe. These deterioration characteristics become significant when the Fe content exceeds 0.50%. For this reason, the content of Fe when contained is preferably 0.08 to 0.50%.

Zn。
Znは0.5%を越えて含有されると、耐蝕性が顕著に低下する。したがって、Znの含有量は好ましくは0.5%以下とすることが好ましい。
Zn.
When Zn exceeds 0.5%, the corrosion resistance is remarkably lowered. Therefore, the Zn content is preferably 0.5% or less.

(成形加工)
本発明Al合金板が対象とするヘム加工は、特にフラットヘム加工を意図している。具体的なフラットヘム加工方法を例示すると、アウタ板の縁をポンチなどの工具により90°に近い角度まで折り曲げるダウンフランジ工程、アウタ板の縁を更に約135 °まで内側に折り曲げるプリヘム工程を経て、インナ板端部をアウタ板の折り曲げ部内に収容 (挿入) し、アウタ板の縁を工具により更に180 °の角度まで内側に折り曲げてフラットヘムが形成される。このフラットヘムでは、インナ板と、アウタ板の180 度折り曲げ部とが接合、密着され、フラットな曲げ部形状を有する。
(Molding)
The hemming targeted by the Al alloy sheet of the present invention is particularly intended for flat hemming. Explaining a specific flat hem processing method, through a down flange process of bending the edge of the outer plate to an angle close to 90 ° with a tool such as a punch, and a prehem process of bending the edge of the outer plate further inward to about 135 °, The end portion of the inner plate is accommodated (inserted) in the bent portion of the outer plate, and the edge of the outer plate is further bent inward to an angle of 180 ° with a tool to form a flat hem. In this flat hem, the inner plate and the 180-degree bent portion of the outer plate are joined and brought into close contact with each other to have a flat bent portion shape.

しかし、本発明Al合金板は厳しい条件であるフラットヘム加工性に優れるので、それよりも一段緩い条件である、前記折り曲げ部が円弧状に膨らんだロープ状の断面形状を有しいるロープヘムなどの加工性にも当然優れる。また、加工 (変形) の機構が共通する、前記他のハット型曲げ加工や90度曲げ加工などの曲げ加工性や、あるいは、一般的にV 曲げ、U 曲げ、端曲げ、波曲げ、引張曲げなどと称される曲げ加工性にも優れる。したがって、本発明は、他のロープヘムなどのヘム加工も対象とし、ヘム加工以外の曲げ加工も対象とする。   However, since the Al alloy sheet of the present invention is excellent in flat hem workability, which is a severe condition, the condition is one step looser than that, such as a rope hem having a rope-like cross-sectional shape in which the bent portion swells in an arc shape. Naturally, it is excellent in workability. In addition, the other work-type (deformation) mechanisms, such as the above-mentioned hat-shaped bending and 90-degree bending, and other bending workability, or in general, V-bending, U-bending, end bending, wave bending, tensile bending, etc. It is also excellent in bending workability called Therefore, the present invention is also intended for hem processing such as other rope hems, and also for bending processing other than hem processing.

なお、フラットヘムなどのヘム加工が、本発明Al合金板の4 周囲に対して全て行われるか、選択される辺 (側縁部) のみに対して行われか、また、ヘム加工されるアウタ板の端部形状が直線形状か、円弧形状やあるいは角部を有するような複雑形状かは、アウタ板などの部材設計に応じて、適宜選択される。   It should be noted that hem processing such as flat hem is performed on all four sides of the Al alloy plate of the present invention, or only on the selected side (side edge portion), and the hem processing is performed on the outer side. Whether the end shape of the plate is a linear shape, an arc shape, or a complicated shape having corners is appropriately selected according to the design of the member such as the outer plate.

本発明Al合金板は、また、ヘム加工性と同時に、上記張出などのプレス成形を対象とする。そして、プレス成形の中でも、特に、アウタ板などにおける、前記した形状が大型化、複雑化した際の張出成形を対象とする。ただ、これらの張出成形性に優れることは、加工条件が比較的緩やかな、他の絞りなどの成形性に優れることを意味する。したがって、本発明Al合金板は、特に張出成形、また張出成形で代表できる他のプレス成形をも対象とする。   The Al alloy sheet of the present invention is also intended for press forming such as the above-described overhanging as well as hem workability. In press molding, in particular, the above-described shape of the outer plate or the like is applied to overhanging when the size is increased and complicated. However, these excellent stretch-formability means that the processing conditions are relatively gentle and that other drawability is excellent. Therefore, the Al alloy sheet of the present invention is also intended for particularly stretch forming and other press forming that can be represented by stretch forming.

(製造方法)
以上の本発明Al合金板の製造方法について説明する。
6000系Al合金板に対し、前記した、本発明キューブ方位分布密度と r値異方性とを持つ組織を得るためには、上記成分組成などの他に、下記の冷間圧延での加工率を制御する。この点、常法で得られる通常のAl合金板は、前記した通り、基本的に本発明のようなキューブ方位分布密度と r値異方性はないし、また得られない。
(Production method)
The manufacturing method of the above Al alloy plate of the present invention will be described.
In order to obtain the structure having the cube orientation distribution density and r-value anisotropy of the present invention for the 6000 series Al alloy sheet, in addition to the above component composition, the processing rate in the following cold rolling To control. In this respect, a normal Al alloy plate obtained by a conventional method basically has neither cube orientation distribution density nor r-value anisotropy as in the present invention, and cannot be obtained.

本発明キューブ方位分布密度と r値異方性とを持つ組織を得るためには、圧下率を70% 以上の高い圧下率で冷間圧延する。冷間圧延での圧下率を高くすることで、冷間圧延板に十分な歪みエネルギーを蓄積できる。この結果、後述する焼鈍や溶体化を含む調質処理で、前記キューブ方位分布密度とr値の異方性を有する組織を得ることができる。冷間圧延での圧下率が低いと、常法材と変わりなくなり、後述する調質処理で、前記組織が蓄積できない。一方、冷間圧延での圧下率を80% 以上に高くしすぎても、キューブ方位分布密度と r値異方性とが過度となり、プレス成形性を却って以下させる。したがって、冷間圧延での圧下率は70〜80% とすることが好ましい。   In order to obtain a structure having cube orientation distribution density and r-value anisotropy of the present invention, cold rolling is performed at a high reduction ratio of 70% or more. By increasing the reduction ratio in cold rolling, sufficient strain energy can be accumulated in the cold rolled sheet. As a result, a structure having the cube orientation distribution density and the anisotropy of the r value can be obtained by tempering treatment including annealing and solution treatment described later. If the rolling reduction in cold rolling is low, it will not be different from ordinary materials, and the structure cannot be accumulated by the tempering treatment described later. On the other hand, even if the reduction ratio in cold rolling is increased to 80% or more, the cube orientation distribution density and the r-value anisotropy become excessive, and the press formability is reduced to the following. Therefore, the rolling reduction in cold rolling is preferably 70 to 80%.

その他の工程条件は常法で可であるが、アウタ板などとしての、フラットヘム加工性や他の特性を向上させるための好ましい条件もあり、以下に説明する。   Other process conditions can be used in a conventional manner, but there are also preferable conditions for improving the flat hem workability and other characteristics of the outer plate and the like, which will be described below.

先ず、溶解、鋳造工程では、本発明成分規格範囲内に溶解調整されたAl合金溶湯を、連続鋳造圧延法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。   First, in the melting and casting process, an Al alloy molten metal adjusted to be within the component specification range of the present invention is appropriately selected from ordinary melting and casting methods such as a continuous casting rolling method and a semi-continuous casting method (DC casting method). Cast.

次いで、このAl合金鋳塊に均質化熱処理を施した後、熱間圧延、および前記高い圧下率での冷間圧延を行い、コイル状、板状などの板形状に加工する。その際、熱間圧延後に冷間圧延に先立つ焼鈍を行なって、キューブを集積させない方向に (キューブ方位分布密度を小さくする方向) に制御することができる。   Next, the Al alloy ingot is subjected to a homogenization heat treatment, followed by hot rolling and cold rolling at the high reduction rate, and processing into a plate shape such as a coil shape or a plate shape. At that time, after the hot rolling, annealing prior to the cold rolling can be performed to control the direction in which the cubes are not accumulated (the direction in which the cube orientation distribution density is reduced).

加工後のAl合金板は、調質処理として、先ず、必須に溶体化および焼入れ処理される。溶体化および焼入れ処理は、後の塗装焼き付け硬化処理などの人工時効硬化処理によりGPゾーンなどの化合物相を十分粒内に析出させるために重要な工程である。この効果を出すための溶体化処理条件は、500 〜560 ℃の温度範囲で行うのが好ましい。   The processed Al alloy plate is first subjected to solution treatment and quenching treatment as a tempering treatment. The solution treatment and quenching treatment are important steps for sufficiently depositing the compound phase such as the GP zone in the grains by an artificial age hardening treatment such as a subsequent paint bake hardening treatment. The solution treatment conditions for producing this effect are preferably performed in a temperature range of 500 to 560 ° C.

従来、フラットヘム加工性が特に重視される板用の場合には、あるいは前記厳しいフラットヘム加工条件用の場合には、前記溶体化処理温度を500 〜530 ℃のより低温側としていた。しかし、本発明では、前記した通り、従来のように、Al合金板の0.2%耐力を140MPa以下の低強度とせずとも、特にフラットヘムなどのヘム加工性やプレス成形性が優れる。   Conventionally, in the case of a plate for which flat hemmability is particularly important, or in the case of the severe flat hemming condition, the solution treatment temperature is set to a lower temperature side of 500 to 530 ° C. However, in the present invention, as described above, the hem workability such as flat hem and the press formability are particularly excellent even if the 0.2% proof stress of the Al alloy plate is not as low as 140 MPa or less as in the prior art.

このため、溶体化処理温度を530 〜560 ℃の範囲の高温側で行い、Al合金板の0.2%耐力を140MPaを越える高強度にして、後の板成形後の板の人工時効硬化処理によりGPゾーンなどの化合物相を十分粒内に析出させるようにし、成形後の塗装工程などにおける前記低温短時間の人工時効硬化処理でも170MPaを越えるような高強度の板とすることが好ましい。   For this reason, the solution treatment temperature is set on the high temperature side in the range of 530 to 560 ° C, and the 0.2% proof stress of the Al alloy plate is set to a high strength exceeding 140 MPa. It is preferable that a compound phase such as a zone is sufficiently precipitated in the grains, and a high-strength plate exceeding 170 MPa is obtained even in the low-temperature and short-time artificial age hardening treatment in the coating process after molding.

溶体化処理後の焼入れの際、冷却速度は50℃/ 分以上の急冷とすることが好ましい。冷却速度が50℃/ 分未満の遅い場合には、焼入れ後の強度が低くなり、時効硬化能が不足し、前記低温短時間の低温での人工時効処理により170MPa以上の高耐力を確保できない。   In quenching after the solution treatment, the cooling rate is preferably 50 ° C./min or higher. When the cooling rate is slow at less than 50 ° C./min, the strength after quenching is low, the age hardening ability is insufficient, and the high proof stress of 170 MPa or more cannot be ensured by the artificial aging treatment at a low temperature for a short time.

また、粒界上にSi、MgSiなどが析出しやすくなり、プレス成形やフラットヘム加工時の割れの起点となり易く、これら成形性が低下する。この冷却速度を確保するために、焼入れ処理は、ファンなどの空冷でもよいが冷却速度が遅くなる可能性が大きく、ミスト、スプレー、浸漬等の水冷手段から選択して行うことが好ましい。   In addition, Si, MgSi and the like are likely to precipitate on the grain boundaries, which is likely to be the starting point of cracks during press molding and flat hem processing, and these moldability is reduced. In order to ensure this cooling rate, the quenching process may be air cooling such as a fan, but there is a high possibility that the cooling rate will be slow, and it is preferable to perform the quenching process by selecting from water cooling means such as mist, spray, and immersion.

本発明では、前記した通り、室温時効自体は許容するものの、室温時効を抑制しても良い。即ち、溶体化焼入れ処理後、室温時効の原因となるクラスターの生成を抑制し、GPゾーンの析出を促進するために、予備時効処理をしても良い。この予備時効処理は、50〜100 ℃、好ましくは60〜90℃の温度範囲に、1 〜24時間の必要時間保持することが好ましい。また、予備時効処理後の冷却速度は、1 ℃/hr 以下であることが好ましい。   In the present invention, as described above, room temperature aging itself is allowed, but room temperature aging may be suppressed. That is, after the solution hardening treatment, a preliminary aging treatment may be performed to suppress the formation of clusters that cause room temperature aging and promote the precipitation of the GP zone. This preliminary aging treatment is preferably held in a temperature range of 50 to 100 ° C., preferably 60 to 90 ° C., for a required time of 1 to 24 hours. The cooling rate after the pre-aging treatment is preferably 1 ° C./hr or less.

この予備時効処理として、溶体化処理後の焼入れ終了温度を50〜100 ℃と高くした後に、直ちに再加熱乃至そのまま保持して行う。あるいは、溶体化処理後常温までの焼入れ処理の後に、直ちに50〜100 ℃に再加熱して行う。   As the preliminary aging treatment, the quenching end temperature after the solution treatment is increased to 50 to 100 ° C., and then immediately reheated or kept as it is. Alternatively, it is immediately reheated to 50 to 100 ° C. after quenching to room temperature after solution treatment.

また、連続溶体化焼入れ処理の場合には、前記予備時効の温度範囲で焼入れ処理を終了し、そのままの高温でコイルに巻き取るなどして行う。なお、コイルに巻き取る前に再加熱しても、巻き取り後に保温しても良い。また、常温までの焼入れ処理の後に、前記温度範囲に再加熱して高温で巻き取るなどしてもよい。   Further, in the case of continuous solution quenching, the quenching process is completed within the temperature range of the preliminary aging, and the coil is wound around a coil at the same high temperature. In addition, you may reheat before winding up to a coil, and you may heat-retain after winding. Moreover, after the quenching process to room temperature, it may be reheated to the above temperature range and wound at a high temperature.

更に、室温時効抑制のために、前記予備時効処理後に、時間的な遅滞無く、比較的低温での亜時効処理を行い、GPゾーンを生成させても良い。前記時間的な遅滞があった場合、予備時効処理後でも、時間の経過とともに室温時効 (自然時効) が生じ、この室温時効が生じた後では、亜時効処理による効果が発揮しにくくなる。   Furthermore, in order to suppress aging at room temperature, a GP zone may be generated by performing sub-aging treatment at a relatively low temperature without time delay after the preliminary aging treatment. When the time delay is present, room temperature aging (natural aging) occurs with time even after the preliminary aging treatment, and after this room temperature aging occurs, the effect of the sub-aging treatment is hardly exhibited.

これらの効果を得るためには、Al合金材の前記組成範囲において、時効処理温度を80〜120 ℃の亜時効処理範囲とし、時効処理時間は必要時間、好ましくは1 〜24時間の範囲とし、この範囲の中から、前記組成に応じて、時効処理効果が得られる温度と時間を選択することが好ましい。また、この亜時効処理後の冷却速度は、1 ℃/hr 以下であることが好ましい。時効処理温度が80℃未満では、また、保持時間が短過ぎると、GPゾーンを生成させることができない。このため、室温時効抑制効果や低温時効硬化能が得られない。一方、120 ℃を越える温度では通常の時効処理と大差なくなり、β" 相も析出して時効が進み過ぎ、強度が高くなりすぎる。この点は、時効処理の保持時間が長過ぎても同じである。なお、前記予備時効処理温度を、後述する時効処理並に高めとし、時効処理と合わせた乃至連続した熱処理としても良い。   In order to obtain these effects, in the composition range of the Al alloy material, the aging treatment temperature is set to a sub-aging treatment range of 80 to 120 ° C., and the aging treatment time is set to a necessary time, preferably 1 to 24 hours, From this range, it is preferable to select a temperature and a time at which an aging treatment effect is obtained according to the composition. The cooling rate after the sub-aging treatment is preferably 1 ° C./hr or less. If the aging treatment temperature is less than 80 ° C. and the holding time is too short, the GP zone cannot be generated. For this reason, the room temperature aging inhibitory effect and the low temperature age hardening ability cannot be obtained. On the other hand, when the temperature exceeds 120 ° C, it is not much different from the normal aging treatment, the β "phase is precipitated and aging progresses too much, and the strength becomes too high. This is the same even if the aging treatment holding time is too long. The preliminary aging treatment temperature may be set as high as the aging treatment described later, or a heat treatment combined with or continuous with the aging treatment.

この他、用途や必要特性に応じて、更に高温の時効処理や安定化処理を行い、より高強度化などを図ることなども勿論可能である。   In addition to this, it is of course possible to further increase the strength by performing aging treatment or stabilization treatment at a higher temperature according to the application or required characteristics.

次に、本発明の実施例を説明する。表1 に示す各6000系組成範囲のAl合金板について、材料特性の異方性を制御するために、表2 に示すように、熱間圧延後の焼鈍の有無と、冷間圧延の圧下率などを種々変えて、厚さ1.0mm のAl合金板を作成し、プレス成形性およびヘム加工性を評価した。   Next, examples of the present invention will be described. In order to control the anisotropy of material properties for each 6000 series compositional range Al alloy plate shown in Table 1, as shown in Table 2, the presence or absence of annealing after hot rolling and the reduction rate of cold rolling Various changes were made to produce 1.0 mm thick Al alloy plates, and the press formability and hem workability were evaluated.

熱間圧延後の焼鈍の有無と、冷間圧延の圧下率以外のAl合金板の作製条件は、下記冷間圧延の圧下率を変化させるための熱間圧延板の板厚を除き、ほぼ同じ条件で行った。即ち、表1 に示す各組成範囲の400mm 厚の鋳塊を、DC鋳造法により溶製後、540 ℃×4 時間の均質化熱処理を施し、終了温度300 ℃で厚さ2.3 〜8mmtまで板厚を種々変えて熱間圧延した。この熱間圧延板を、キューブ方位分布密度と r値異方性とを制御するために、350 ℃×5 時間のバッチ焼鈍を選択的に行なった後に、更に、厚さ1.0mm まで、圧下率を種々変えて冷間圧延した。   The presence or absence of annealing after hot rolling and the production conditions of the Al alloy sheet other than the cold rolling reduction ratio are almost the same except for the thickness of the hot rolled sheet for changing the rolling reduction ratio of the following cold rolling. Performed under conditions. In other words, 400mm-thick ingots of each composition range shown in Table 1 were melted by DC casting method and then subjected to homogenization heat treatment at 540 ° C x 4 hours to a thickness of 2.3-8mmt at an end temperature of 300 ° C. Were hot rolled with various changes. In order to control cube orientation distribution density and r-value anisotropy, this hot-rolled sheet was selectively subjected to batch annealing at 350 ° C for 5 hours, and then the rolling reduction was further reduced to a thickness of 1.0 mm. Was subjected to cold rolling.

次に、これら冷延板を以下の条件で調質処理した。冷延板を570 ℃に保持した空気炉に投入し、板が550 ℃の溶体化処理温度に到達した時点で (保持時間 0秒) 、70℃の温水に焼き入れする処理を行った。前記焼入れ処理の際の冷却速度は200 ℃/ 秒とし、焼入れ終了温度 (焼入れ温度) は共通して70℃とし、焼入れ後にこの温度で2 時間保持する予備時効処理 (保持後は冷却速度0.6 ℃/hr で徐冷) を行った。   Next, these cold-rolled sheets were tempered under the following conditions. The cold-rolled plate was put into an air furnace maintained at 570 ° C., and when the plate reached a solution treatment temperature of 550 ° C. (holding time 0 second), a process of quenching in hot water at 70 ° C. was performed. The cooling rate during the quenching process is 200 ° C / second, the quenching end temperature (quenching temperature) is 70 ° C in common, and pre-aging treatment is held at this temperature for 2 hours after quenching (cooling rate 0.6 ° C after holding) (Slow cooling at / hr).

そして、調質処理後に十分室温時効したAl合金板がプレス成形およびヘム加工されることを想定および考慮して、調質処理後のAl合金板を、調質処理後 4カ月間 (120 日間) の室温時効 (室温放置) させた。   Assuming and taking into account that Al alloy sheets aged sufficiently at room temperature after tempering are press-formed and hemmed, the tempered Al alloy sheets are treated for 4 months (120 days) after tempering. Were allowed to age at room temperature.

これら室温時効後のAl合金板から供試板や試験片を必要枚数切り出し、各供試板の、圧延方向に平行な引張強さ (σB ) および耐力 (σ0.2)と、伸び(%) 、そして、前記r90 、r45 、r0の各方向の r値を各々測定した。そして、前記Δr を求めた。これらの結果を表2 に示す。なお、室温時効後の供試板について, 前記した方法で結晶粒径を測定した結果、発明例と比較例ともに全て、結晶粒径は全て50μm 以下であった。 Cut out the required number of test plates and specimens from these Al alloy plates after aging at room temperature, and tensile strength (σ B ) and proof stress (σ 0.2 ) and elongation (%) of each test plate parallel to the rolling direction. Then, r values in the respective directions of the r 90 , r 45 , and r 0 were measured. The Δr was determined. These results are shown in Table 2. As a result of measuring the crystal grain size of the test plates after aging at room temperature by the above-described method, all the crystal grain sizes were 50 μm or less in both the inventive examples and the comparative examples.

なお、引張試験はJIS Z 2201にしたがって行うとともに、試験片形状はJIS 5 号試験片で行った。また、クロスヘッド速度は5mm/分で、試験片が破断するまで一定の速度で行った。   The tensile test was performed according to JIS Z 2201 and the shape of the test piece was a JIS No. 5 test piece. The crosshead speed was 5 mm / min, and the test piece was run at a constant speed until the test piece broke.

更に、これら室温時効したAl合金板が、自動車パネルとしてプレス成形やヘム加工されることを模擬して、前記室温時効後の供試板を成形試験した。より具体的には、張出成形試験、張出成形後のフラットヘム加工試験を行い、成形性を評価した。これらの結果も表2 に示す。   Further, the test plate after the room temperature aging was subjected to a molding test by simulating that the Al alloy plate aged at room temperature was subjected to press molding or hem processing as an automobile panel. More specifically, a stretch forming test and a flat hem processing test after the stretch forming were performed to evaluate the formability. These results are also shown in Table 2.

張出成形試験の条件は、前記室温時効後の供試板から一辺が1000mmの正方形の供試板 (ブランク) を複数枚切り出して、メカプレスにより、ビード付き金型を用いて張出成形した。成形品の形状は、中央部に一辺が500mm で、高さが50mmと高い角筒状の張出部と、この張出部の四周囲に平坦なフランジ部を有したハット型のものとした。   The conditions of the stretch forming test were that a plurality of 1000 mm square test plates (blanks) were cut out from the test plate after aging at room temperature and stretched using a die with a bead by a mechanical press. The shape of the molded product was a hat type with a square tube-like overhang part with a side of 500 mm at the center and a height of 50 mm, and flat flanges around the four sides of the overhang part. .

張出成形試験は、しわ押さえ力は490kN 、潤滑油は一般防錆油、成形速度は20mm/ 分の同じ条件で3 回行った。評価は、前記角部割れと、前記フランジ (端部) 割れについて別々に行い、3 回とも成形ハット型板の角部割れが発生していない例を〇、1 回でも角部割れが生じたものを×として評価した。   The overhang forming test was performed three times under the same conditions as the wrinkle holding force of 490 kN, the lubricating oil as a general rust preventive oil, and the forming speed as 20 mm / min. The evaluation was performed separately for the corner crack and the flange (end) crack, and the corner crack of the molded hat mold plate did not occur three times. Things were evaluated as x.

また、この張出成形の際に、割れにかかわり無く、発生した「しわ」の最大高さ(mm)を測定し、3 回の成形の際の前記しわ高さの平均が1.0mm 以下のものを○、1.0mm を越え2.0mm 以下のものを△、2.0mm を越えるものを×と評価した。   In addition, the maximum height (mm) of the generated `` wrinkle '' was measured regardless of cracking during this stretch forming, and the average of the wrinkle height during the three moldings was 1.0 mm or less. Was evaluated as ◯, when exceeding 1.0 mm and not more than 2.0 mm, Δ and when exceeding 2.0 mm as ×.

次に、フラットヘム加工試験は以下の通りとした。前記プレス成形されたAl合金板を、アウター板としてヘム加工されることを模擬して、板の前記平坦なフランジ部の一つの端部全面を以下の条件でフラットヘム加工した。   Next, the flat hem processing test was as follows. The press-molded Al alloy plate was simulated to be hemmed as an outer plate, and the entire surface of one end of the flat flange portion of the plate was flat-hemmed under the following conditions.

まず、Al合金板のフラットヘム加工代 (ヘム加工後の板の内側に折り曲げられた端部から折り曲げ部の端部までの距離) を12mmとして、ダウンフランジ工程を模擬し、Al合金板の縁を90度の角度となるまで折り曲げた。この際、Al合金板の90°曲げ半径は0.8 とした。次に、プリヘム工程模擬して、Al合金板の縁を更に135 °の角度まで内側に折り曲げた。   First, the flat hemming allowance of the Al alloy plate (distance from the end folded inside the plate after the hemming to the end of the bent portion) is set to 12 mm, and the down flange process is simulated to simulate the edge of the Al alloy plate. Was bent to a 90 degree angle. At this time, the 90 ° bending radius of the Al alloy plate was set to 0.8. Next, by simulating the prehem process, the edge of the Al alloy plate was further bent inward to an angle of 135 °.

その後、より厳しいフラットヘム加工条件を模擬して、インナ板を前記Al合金板の折り曲げ部に挿入せずに、折り曲げ部を更に内側に180 度折り曲げ、板面に密着させるフラットヘム加工を行った。   After that, simulating stricter flat hemming conditions, the inner plate was not inserted into the bent portion of the Al alloy plate, but the bent portion was further bent 180 degrees inward, and flat hem processing was performed to adhere to the plate surface. .

そして、このフラットヘムの縁曲部の、肌荒れ、微小な割れ、大きな割れの発生などの表面状態を目視観察した。評価は、0.0:肌荒れや微小な割れも無く表面状態が良好、1.0:若干の肌荒れが部分的に発生しているもの、2.0:肌荒れが全面的に発生しているものの、微小なものを含めた割れはないもの、3.0:微小な割れが部分的に発生しているもの、4.0:比較的大きな割れが発生しているもの、の各段階で行い、これに、各段階の中間の状態のものも加え、合計9 段階の評価を加えた。この評価において、ヘム加工性が良好あるいはヘム加工条件を変えるなどしてヘム加工に使用可と判断されるのは3.5 段階までで、4.0 段階はヘム加工条件を変えてもヘム加工に使用できない。   Then, the surface state of the flat hem, such as rough skin, minute cracks, and large cracks, was visually observed. Evaluation is as follows: 0.0: Surface condition is good with no rough skin or minute cracks, 1.0: Some rough skin occurs partially, 2.0: Although rough skin occurs entirely, including fine ones This is performed at each stage of 3.0: No cracks are generated, 3.0: Small cracks are partially generated, and 4.0: Relatively large cracks are generated. A total of 9 grades were added. In this evaluation, it is judged that hemmability is good or can be used for hem processing by changing hem processing conditions, etc., up to 3.5 stages, and 4.0 stage cannot be used for hem processing even if hem processing conditions are changed.

更に、低温時効硬化能 (塗装焼き付け硬化性) を調査するため、前記プレス成形されたAl合金板から供試板を採取して、160 ℃×20分の低温短時間の人工時効硬化処理し、処理後の各供試板の (元のAl合金板の) 圧延方向に平行な(L方向の) 引張強さ (ABσB ) と、耐力 (ABσ0.2)、を測定した。これらの結果も表2 に示す。 Furthermore, in order to investigate low-temperature age-hardening ability (paint bake hardenability), a test plate was collected from the press-formed Al alloy plate and subjected to artificial age-hardening treatment at a low temperature of 160 ° C for 20 minutes, The tensile strength (ABσ B ) parallel to the rolling direction (of the original Al alloy plate) (ABσ B ) and the proof stress (ABσ 0.2 ) of each test plate after the treatment were measured. These results are also shown in Table 2.

表1 、2 から明らかな通り、本発明合金組成範囲内であって、キューブ方位分布密度が10〜30の範囲であり、かつ、Δr が0.2 〜1.4 の範囲である発明例1 〜7 は、前記 4カ月間 (120 日間) の室温時効後で、調質直後に比して耐力が高くなり、成形性や時効硬化性に不利となった条件でも、フラットヘム加工が可能であり、また、割れの発生がなく、しわの発生量が少ないため、張出成形性にも優れ、更に人工時効硬化能も優れている。   As is apparent from Tables 1 and 2, Invention Examples 1 to 7 in the alloy composition range of the present invention, the cube orientation distribution density is in the range of 10 to 30, and Δr is in the range of 0.2 to 1.4. After aging at room temperature for the above 4 months (120 days), the yield strength is higher than immediately after tempering, and flat hem processing is possible even under conditions that are disadvantageous to moldability and age hardening, Since there is no generation of cracks and the amount of wrinkles generated is small, it has excellent stretch formability and also has excellent artificial age hardening ability.

しかも、前記プレス成形性とフラットヘム加工性の試験条件と評価は、自動車アウタ板などの実際の厳しい加工条件の評価につながるものである。したがって、発明例1 〜7 は、前記プレス成形性とフラットヘム加工性とを兼備し、張出成形などのプレス成形で、張出高さや張出面積などが大型化しても、しわの発生量が少なく張出成形性が優れ、実際の自動車アウタ板にも十分適用できることを示している。   Moreover, the test conditions and evaluation of the press formability and flat hem workability lead to the evaluation of actual severe processing conditions such as automobile outer plates. Therefore, Invention Examples 1 to 7 have both the above press formability and flat hemmability, and the amount of wrinkles generated even when the overhang height, the overhang area, etc. are increased by press forming such as overhang forming. It shows that it has less stretchability and is excellent in formability and can be applied to actual automobile outer plates.

一方、比較例8 、9 、11、13は、常法により製造された板と言え、r 値の異方性が殆ど無い従来相当材である。したがって、各々発明例と対応する同じ合金組成であるにも関わらず、キューブ方位分布密度が10未満で、Δr も0.1 程度であり、本発明範囲から低めに外れた結果となっている。このため、比較例8 、9 、11、13は、フラットヘム加工性が発明例に比して著しく劣る。   On the other hand, Comparative Examples 8, 9, 11, and 13 can be said to be plates produced by a conventional method, and are conventional equivalent materials having almost no r value anisotropy. Therefore, despite the same alloy composition corresponding to each of the invention examples, the cube orientation distribution density is less than 10 and Δr is about 0.1, which is a result that deviates slightly from the scope of the present invention. For this reason, Comparative Examples 8, 9, 11, and 13 are significantly inferior in flat hem processability to the inventive examples.

更に、比較例10、12、14は、材料特性に強い異方性を持つ場合であり、キューブ方位分布密度が30を超え、Δr も1.4 を超えており、本発明範囲から高めに外れた結果となっている。この結果、フラットヘム加工性は発明例に比して優れるものの、張出成形が著しく低下している。   Further, Comparative Examples 10, 12, and 14 are cases where the material properties have strong anisotropy, the cube orientation distribution density exceeds 30, and Δr exceeds 1.4, which is a result that deviates from the scope of the present invention. It has become. As a result, the flat hem workability is superior to that of the invention example, but the stretch forming is remarkably reduced.

Figure 2005256053
Figure 2005256053

Figure 2005256053
Figure 2005256053

本発明によれば、ヘム加工などの曲げ加工性とプレス成形性とに優れるとともに、低温時効硬化能などのパネル化に際して要求される他の特性も兼備したAl-Mg-Si系Al合金板を提供することができる。したがって、Al合金板の板用途への拡大を図ることができる点で、多大な工業的な価値を有するものである。   According to the present invention, an Al-Mg-Si-based Al alloy sheet that has excellent bending workability such as hem processing and press formability, and also has other characteristics required for forming a panel such as low-temperature age-hardening ability. Can be provided. Therefore, it has a great industrial value in that the Al alloy plate can be expanded to plate applications.

Al合金板における、キューブ方位分布密度と r値異方性との、曲げ加工性との関係を示す説明図である。FIG. 5 is an explanatory diagram showing the relationship between cube orientation distribution density and r-value anisotropy and bending workability in an Al alloy plate.

Claims (4)

キューブ方位分布密度と r値の異方性とを制御したAl-Mg-Si系アルミニウム合金板であって、このアルミニウム合金板の表面から板厚の1/4 深さ部分における結晶方位分布関数解析によるキューブ方位分布密度が10〜30の範囲であり、かつ、このアルミニウム合金板の、圧延方向に対して平行方向の r値r0と、圧延方向に対して直角方向の r値r90 と、圧延方向に対して45度方向の r値r45 との、r0とr90 に対するr45 の異方性を示す指標である (r0+r90 −2 ×r45)/2が0.2 〜1.4 の範囲であることを特徴とする曲げ加工性とプレス成形性に優れたアルミニウム合金板。 An Al-Mg-Si aluminum alloy plate with controlled cube orientation distribution density and r-value anisotropy, and crystal orientation distribution function analysis at 1/4 depth from the surface of the aluminum alloy plate The cube orientation distribution density by the range of 10 to 30, and the aluminum alloy plate, r value r 0 in the direction parallel to the rolling direction, r value r 90 in the direction perpendicular to the rolling direction, (R 0 + r 90 −2 × r 45 ) / 2 is an index indicating the anisotropy of r 45 with respect to r 0 and r 90 , with an r value r 45 in the direction of 45 degrees with respect to the rolling direction. An aluminum alloy plate excellent in bending workability and press formability, characterized by being in the range. 前記アルミニウム合金板が、Si:0.4〜1.3%、Mg:0.2〜1.2%、Mn:0.01 〜0.65% 、Cu:0.001〜1.0%を含み、かつSi/Mg が質量比で1 以上であり、残部がAlおよび不可避的不純物である組成からなる請求項1に記載の曲げ加工性とプレス成形性に優れたアルミニウム合金板。   The aluminum alloy plate contains Si: 0.4 to 1.3%, Mg: 0.2 to 1.2%, Mn: 0.01 to 0.65%, Cu: 0.001 to 1.0%, and Si / Mg is 1 or more by mass, and the balance The aluminum alloy sheet excellent in bending workability and press formability according to claim 1, comprising a composition in which is Al and inevitable impurities. 前記アルミニウム合金板が張出成形後にヘム加工される請求項1または2に記載の曲げ加工性とプレス成形性に優れたアルミニウム合金板。   The aluminum alloy plate excellent in bending workability and press formability according to claim 1 or 2, wherein the aluminum alloy plate is hemmed after stretch forming. 前記アルミニウム合金板が自動車アウタパネル用である請求項1乃至3のいずれか1項に記載の曲げ加工性とプレス成形性に優れたアルミニウム合金板。
The aluminum alloy plate according to any one of claims 1 to 3, wherein the aluminum alloy plate is for an automobile outer panel.
JP2004067537A 2004-03-10 2004-03-10 Aluminum alloy sheet with excellent bending workability and press formability Expired - Fee Related JP4588338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067537A JP4588338B2 (en) 2004-03-10 2004-03-10 Aluminum alloy sheet with excellent bending workability and press formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067537A JP4588338B2 (en) 2004-03-10 2004-03-10 Aluminum alloy sheet with excellent bending workability and press formability

Publications (2)

Publication Number Publication Date
JP2005256053A true JP2005256053A (en) 2005-09-22
JP4588338B2 JP4588338B2 (en) 2010-12-01

Family

ID=35082085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067537A Expired - Fee Related JP4588338B2 (en) 2004-03-10 2004-03-10 Aluminum alloy sheet with excellent bending workability and press formability

Country Status (1)

Country Link
JP (1) JP4588338B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111002A1 (en) * 2006-03-29 2007-10-04 The Furukawa Electric Co., Ltd. High-formability aluminum material
JPWO2007111002A1 (en) * 2005-04-19 2009-08-06 古河電気工業株式会社 High formability aluminum material
CN104093868A (en) * 2012-02-10 2014-10-08 株式会社神户制钢所 Aluminum alloy sheet for connecting components and manufacturing process therefor
JP2015067857A (en) * 2013-09-27 2015-04-13 株式会社Uacj Al-Mg-Si-BASED ALUMINUM ALLOY SHEET FOR AUTOMOBILE PANEL AND MANUFACTURING METHOD THEREFOR
CN104093868B (en) * 2012-02-10 2016-11-30 株式会社神户制钢所 Connection member aluminium alloy plate and manufacture method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226926A (en) * 2001-11-30 2003-08-15 Toyota Motor Corp Aluminum alloy sheet having excellent bending workability and production method thereof
JP2003277869A (en) * 2002-03-20 2003-10-02 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet having excellent bending workability and hardenability in coating/baking, and production method thereof
JP2003321754A (en) * 2002-04-26 2003-11-14 Kobe Steel Ltd Method for manufacturing aluminum alloy sheet with excellent bendability
JP2004010982A (en) * 2002-06-07 2004-01-15 Kobe Steel Ltd Aluminum alloy sheet having excellent bending workability and press formability
JP2004027253A (en) * 2002-06-21 2004-01-29 Furukawa Sky Kk Aluminum alloy sheet for molding, and method of producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226926A (en) * 2001-11-30 2003-08-15 Toyota Motor Corp Aluminum alloy sheet having excellent bending workability and production method thereof
JP2003277869A (en) * 2002-03-20 2003-10-02 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet having excellent bending workability and hardenability in coating/baking, and production method thereof
JP2003321754A (en) * 2002-04-26 2003-11-14 Kobe Steel Ltd Method for manufacturing aluminum alloy sheet with excellent bendability
JP2004010982A (en) * 2002-06-07 2004-01-15 Kobe Steel Ltd Aluminum alloy sheet having excellent bending workability and press formability
JP2004027253A (en) * 2002-06-21 2004-01-29 Furukawa Sky Kk Aluminum alloy sheet for molding, and method of producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007111002A1 (en) * 2005-04-19 2009-08-06 古河電気工業株式会社 High formability aluminum material
WO2007111002A1 (en) * 2006-03-29 2007-10-04 The Furukawa Electric Co., Ltd. High-formability aluminum material
CN104093868A (en) * 2012-02-10 2014-10-08 株式会社神户制钢所 Aluminum alloy sheet for connecting components and manufacturing process therefor
CN104093868B (en) * 2012-02-10 2016-11-30 株式会社神户制钢所 Connection member aluminium alloy plate and manufacture method thereof
JP2015067857A (en) * 2013-09-27 2015-04-13 株式会社Uacj Al-Mg-Si-BASED ALUMINUM ALLOY SHEET FOR AUTOMOBILE PANEL AND MANUFACTURING METHOD THEREFOR

Also Published As

Publication number Publication date
JP4588338B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
US10501833B2 (en) Aluminum alloy for producing semi-finished products or components for motor vehicles, method for producing an aluminium alloy strip from said aluminium alloy, and aluminium alloy strip and uses therefore
JP4495623B2 (en) Aluminum alloy plate excellent in stretch flangeability and bending workability and method for producing the same
JP5918158B2 (en) Aluminum alloy sheet with excellent properties after aging at room temperature
JP2007169740A (en) Aluminum alloy sheet having excellent formability and its production method
JP4939088B2 (en) Manufacturing method of aluminum alloy sheet with excellent ridging mark property during forming
JP4939091B2 (en) Manufacturing method of aluminum alloy plate with excellent bending workability
JP6190307B2 (en) Aluminum alloy sheet with excellent formability and bake hardenability
JP5148896B2 (en) Aluminum alloy blank with excellent press forming
JP5643479B2 (en) Al-Mg-Si aluminum alloy plate with excellent bendability
JP3833574B2 (en) Aluminum alloy sheet with excellent bending workability and press formability
JP4944474B2 (en) Aluminum alloy plate excellent in stretch flangeability and manufacturing method thereof
JP2006257505A (en) Aluminum alloy sheet having excellent extension flange formability
JP3740086B2 (en) A method for producing an aluminum alloy plate that is excellent in hemmability after aging at room temperature and is hemmed after stretch forming
JP4515363B2 (en) Aluminum alloy plate excellent in formability and method for producing the same
JP4164453B2 (en) Forming method of aluminum alloy material
JP4238019B2 (en) Aluminum alloy panel for flat hem processing
CN108884524B (en) Aluminum alloy sheet and method for producing aluminum alloy sheet
WO2017170835A1 (en) Aluminum alloy sheet and aluminum alloy sheet manufacturing method
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JP4588338B2 (en) Aluminum alloy sheet with excellent bending workability and press formability
JP2004124213A (en) Aluminum alloy sheet for panel forming, and its manufacturing method
JP2008101239A (en) Method for manufacturing aluminum alloy sheet superior in bendability, and aluminum alloy sheet
JP3766334B2 (en) Aluminum alloy plate with excellent bending workability
JP4694770B2 (en) Aluminum alloy plate with excellent bending workability
JP2003247040A (en) Aluminum alloy sheet having excellent flat hem workability and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100602

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Ref document number: 4588338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees