JP4164453B2 - Forming method of aluminum alloy material - Google Patents

Forming method of aluminum alloy material Download PDF

Info

Publication number
JP4164453B2
JP4164453B2 JP2004049830A JP2004049830A JP4164453B2 JP 4164453 B2 JP4164453 B2 JP 4164453B2 JP 2004049830 A JP2004049830 A JP 2004049830A JP 2004049830 A JP2004049830 A JP 2004049830A JP 4164453 B2 JP4164453 B2 JP 4164453B2
Authority
JP
Japan
Prior art keywords
alloy material
aluminum alloy
hem
bending
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004049830A
Other languages
Japanese (ja)
Other versions
JP2005240083A (en
Inventor
和秀 松元
隆 稲葉
繁信 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004049830A priority Critical patent/JP4164453B2/en
Publication of JP2005240083A publication Critical patent/JP2005240083A/en
Application granted granted Critical
Publication of JP4164453B2 publication Critical patent/JP4164453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、室温時効硬化して成形性が低下した6000系アルミニウム合金材の成形性を回復させる、アルミニウム合金材(以下、アルミニウムを単にAlとも言う)の成形方法に関するものである。   The present invention relates to a method for forming an aluminum alloy material (hereinafter, aluminum is also simply referred to as Al), which recovers the formability of a 6000 series aluminum alloy material that has been age-hardened at room temperature and has reduced formability.

従来から、自動車、船舶、航空機あるいは車両などの輸送機、機械、電気製品、建築、構造物、光学機器、器物の部材や部品用として、成形性や焼付硬化性に優れたAl合金材が使用されている。   Conventionally, Al alloy materials with excellent formability and bake hardenability have been used for transportation equipment such as automobiles, ships, aircraft or vehicles, machinery, electrical products, architecture, structures, optical equipment, and components and parts of equipment. Has been.

特に、自動車などの輸送機の車体分野では、近年、排気ガス等による地球環境問題に対して、軽量化による燃費の向上が追求されている。このため、自動車の車体に対し、従来から使用されている鋼材に代わって、圧延板や押出形材など、より軽量なAl合金材適用が増加しつつある。   In particular, in the field of the body of a transport device such as an automobile, in recent years, improvement in fuel consumption has been pursued by reducing the weight in response to global environmental problems caused by exhaust gas. For this reason, the application of lighter Al alloy materials such as rolled plates and extruded shapes instead of steel materials conventionally used for automobile bodies is increasing.

この内、自動車のフード、フェンダー、ドア、ルーフ、トランクリッドなどのパネル構造体の、アウタパネル (外板) やインナパネル( 内板) 等のパネルには、Al-Mg-Si系のAA乃至JIS 6000系 (以下、単に6000系と言う) のAl合金板の使用が検討されている。   Of these, panels such as outer panels (outer panels) and inner panels (inner panels) of panel structures such as automobile hoods, fenders, doors, roofs, and trunk lids are made of Al-Mg-Si AA to JIS. The use of 6000 series (hereinafter simply referred to as 6000 series) Al alloy sheets is being studied.

6000系Al合金材は、基本的には、Si、Mgを必須として含み、優れた時効硬化能を有しているため、プレス成形や曲げ加工時には低耐力化により成形性を確保するとともに、成形後のパネルの塗装焼付処理などの、比較的低温の人工時効( 硬化) 処理時の加熱により時効硬化して耐力が向上し、必要な強度を確保できるBH性 (ベークハード性、人工時効硬化能、塗装焼付硬化性) がある。   6000 series Al alloy material basically contains Si and Mg as essential, and has excellent age-hardening ability, so it secures formability by reducing the yield strength during press molding and bending, and molding BH properties (bake hardness, artificial age hardening ability) that can ensure the required strength by age hardening by heating at the time of processing, such as paint baking treatment of the subsequent panel, and heat resistance during treatment. Paint bake hardenability).

また、6000系Al合金材は、Mg量などの合金量が多い、他の5000系のAl合金などに比して、合金元素量が比較的少ない。このため、これら6000系Al合金板のスクラップを、Al合金溶解材 (溶解原料) として再利用する際に、元の6000系Al合金鋳塊が得やすく、リサイクル性にも優れている。   Further, the 6000 series Al alloy material has a relatively small amount of alloy elements as compared with other 5000 series Al alloys and the like having a large amount of alloy such as Mg. For this reason, when the scraps of these 6000 series Al alloy sheets are reused as an Al alloy melting material (melting raw material), the original 6000 series Al alloy ingot is easily obtained and the recyclability is also excellent.

一方、前記自動車パネル構造体の用途分野では、Al合金板を張出や絞りあるいはトリム等のプレス成形してパネル化する。近年、Al合金板の自動車パネルへの採用に伴い、形状がより複雑な、成形が難しいパネルへの適用も多くなってきている。例えば、張出成形されるパネル形状は、張出高さや張出面積などが大型化し、しかも形状が伸びフランジ変形を伴うような湾曲部位を有するなど複雑化する傾向にある。このため、成形時の割れ、肌荒れなどの成形不良がより生じ易い。   On the other hand, in the application field of the automotive panel structure, an Al alloy plate is formed into a panel by press forming such as overhanging, drawing or trimming. In recent years, with the adoption of Al alloy plates for automobile panels, the application to panels with more complex shapes and difficult to form has increased. For example, the panel shape to be stretch-formed tends to be complicated, such as the height and the area of the stretch are increased, and the shape has a curved portion that stretches and undergoes flange deformation. For this reason, molding defects such as cracking and rough skin during molding are more likely to occur.

そして、前記自動車パネルの内、外板 (アウタパネル) では、上記プレス成形の後に、内板 (インナパネル) と接合してパネル構造体とするために、加工条件の厳しいフラットヘム加工と呼ばれる180 °曲げ加工等の厳しい曲げ成形が複合して施される。このフラットヘム加工は、アウタパネルの縁を折り曲げて (180 度折り返して) インナパネルの縁との接合を行うヘム( ヘミングの別称) 加工と呼ばれる厳しい曲げ加工である。   Of the automotive panels, the outer panel (outer panel) is joined to the inner panel (inner panel) after the press molding to form a panel structure, which is called 180 ° called flat hem processing, which has severe processing conditions. A severe bending process such as bending is applied in combination. This flat hem processing is a severe bending process called a hem (alternative name for hemming) process in which the edge of the outer panel is bent (folded 180 degrees) and joined to the edge of the inner panel.

これに対して、6000系Al合金材は、その優れた時効硬化能ゆえに、Al合金材自体の製造後、前記各用途に使用されるまでの間に、室温( 常温) 時効硬化が生じやすく、常温安定性に欠けるという大きな問題があった。このような室温時効が生じた場合、製造直後には、6000系Al合金材が前記各用途の要求特性を満足したとしても、一定時間の経過後に、実際の用途に使用される際に、要求特性を満足せずに、パネル材であれば、前記プレス成形性やヘム加工性、更には、前記BH性 (人工時効硬化性) を著しく低下させることとなる。   On the other hand, the 6000 series Al alloy material, due to its excellent age-hardening ability, after the production of the Al alloy material itself, before being used for each of the above applications, room temperature (room temperature) age hardening is likely to occur, There was a big problem of lacking room temperature stability. When such room temperature aging occurs, immediately after manufacturing, even if the 6000 series Al alloy material satisfies the required characteristics of each application, it is required when used for actual applications after a certain period of time. If it is a panel material without satisfying the characteristics, the press formability and hem workability, and further, the BH property (artificial age hardening) will be remarkably lowered.

特に、上記Al合金アウタパネルのフラットヘム加工においては、室温時効硬化が生じた場合、形成されるフラットヘムの縁曲部 (ヘム部、折り曲げ部) には、比較的大きな割れ等の不良が生じ易くなる。   In particular, in flat hem processing of the above-mentioned Al alloy outer panel, when room temperature age hardening occurs, the edge of the formed flat hem (hem part, bent part) is likely to have defects such as relatively large cracks. Become.

これら6000系Al合金材の室温時効抑制の課題に対しては、素材の製造側で、6000系Al合金材の溶体化および焼入れ処理などの調質処理後に、室温放置中において形成されるMg-Si クラスターなどの組織を制御する等の冶金的な改善が行なわれている。しかし、冶金的な室温時効抑制は、前記BH性を低下させることにも繋がるため、これにても限界がある。   For the problem of room temperature aging control of these 6000 series Al alloy materials, Mg-- formed at room temperature after tempering treatment such as solution treatment and quenching treatment of 6000 series Al alloy materials on the material production side Metallurgical improvements such as controlling the structure of Si clusters have been made. However, the metallurgical suppression of room temperature aging also leads to a decrease in the BH property, and this is also limited.

このため、成形加工側においても、6000系Al合金材を加熱しつつ成形加工する技術が、従来から提案されている。アルミニウム合金板の分野では、難加工形状のパネルに成形するために、アルミニウム合金板を加熱して、460 〜550 ℃の高温領域で高い伸びの特性を生じさせて高成形性を得るような、高速超塑性成形やホットプレス法などの高温成形方法が種々検討されている。例えば、溶体化処理などが施されていない6000系アルミニウム合金板を、500 ℃程度の溶体化処理に必要な温度でブロー成形を行い、その後成形品に焼き戻し処理を施して、200MPa以上の高耐力を得ることも提案されている (特許文献1参照)。   For this reason, a technique for forming a 6000 series Al alloy material while heating has been proposed on the forming side. In the field of aluminum alloy plates, in order to form difficult-to-process panels, the aluminum alloy plates are heated to produce high elongation characteristics in a high temperature region of 460 to 550 ° C. Various high-temperature forming methods such as high-speed superplastic forming and hot pressing have been studied. For example, a 6000 series aluminum alloy sheet that has not been subjected to a solution treatment or the like is blow-molded at a temperature required for a solution treatment of about 500 ° C., and then the tempered product is subjected to a tempering process to obtain a high pressure of 200 MPa or more. It has also been proposed to obtain proof stress (see Patent Document 1).

また、板の曲げ加工に関し、板のヘム加工部位を250 〜500 ℃で加熱、急冷して、ヘム加工性を改善することも提案されている (特許文献2参照)。更に、ヘム加工金型のワーク受けやヘミングエッジなどに電熱ヒータ等の加熱手段を設けて、200 ℃前後に加熱してヘム加工性を改善することも提案されている (特許文献3参照)。更に、板や形材、管材などの曲げ加工においても、Al合金材の曲げ加工中に、高周波加熱コイルなどを用いて、6000系Al合金材の曲げ加工部分を加熱して焼きなまし、温間あるいは熱間にて曲げ加工することが開示されている(特許文献4参照)。
特開2001-58221号公報 (請求項、図1 、第1 〜3 頁) 特許3431924 号公報 (請求項、図2 、第1 〜4 頁) 特許3390479 号公報 (請求項、図1 、第1 〜3 頁) 特開平6-277764 号公報 (請求項3 、図1 、第1 〜3 頁)
In addition, regarding bending of a plate, it has also been proposed to improve the hemmability by heating and quenching the hemming portion of the plate at 250 to 500 ° C. (see Patent Document 2). Furthermore, it has also been proposed to improve the hem workability by providing a heating means such as an electric heater on the work receiver or hemming edge of the hem machining die and heating it to around 200 ° C. (see Patent Document 3). Furthermore, even in bending of plates, shapes, pipes, etc., during bending of Al alloy material, using a high-frequency heating coil etc., the bending portion of 6000 series Al alloy material is heated and annealed, warm or It is disclosed that bending is performed hot (see Patent Document 4).
Japanese Patent Laid-Open No. 2001-58221 (claims, FIG. 1, pages 1 to 3) Japanese Patent No. 3343924 (Claims, Fig. 2, pages 1 to 4) Japanese Patent No. 3390479 (Claims, Fig. 1, pages 1 to 3) JP-A-6-277764 (Claim 3, FIG. 1, pages 1 to 3)

しかし、これら、6000系Al合金材を加熱しつつ、温間あるいは熱間で、金型成形加工する技術では、Al合金材加工部分の伸びを向上させる、あるいは焼きなますために、最低でも200 ℃以上の温度に加熱している。また、6000系Al合金材の加工部分の伸びを向上させる、あるいは焼きなますためには、最低でも200 ℃以上の温度に加熱する必要がある、というのも冶金的な常識であった。   However, with these technologies that heat or heat mold these 6000 series Al alloy materials, it is possible to improve the elongation of the processed portion of Al alloy materials or anneal them at least 200 times. Heated to a temperature of ℃ or higher. In addition, it was a metallurgical common sense that in order to improve the elongation of the processed part of the 6000 series Al alloy material or to anneal it, it is necessary to heat it to a temperature of 200 ° C. or more at least.

このため、6000系Al合金材の加熱部分の強度が低下するなど、機械的な性質が部分的にせよ変化してしまい、強度部材などとして使用された場合の信頼性に欠ける問題がある。   For this reason, there is a problem in that the mechanical properties change partly, such as the strength of the heated portion of the 6000 series Al alloy material is lowered, and the reliability when used as a strength member is lacking.

また、前記高速超塑性成形などの高温成形では、6000系Al合金材などでは特に、通常の常温における成形性とは異なる性質を示し、新たな成形上の問題が生じて、却って、成形性が低下するなどの問題がある。   Also, in high temperature forming such as the above-mentioned high-speed superplastic forming, especially in the case of 6000 series Al alloy material, it exhibits different properties from the normal formability at normal temperature, and a new forming problem arises. There are problems such as lowering.

そして、これらの問題は室温時効硬化した6000系アルミニウム合金材にも同様に、あるいは、より顕著に生じる。このため、室温時効硬化した6000系アルミニウム合金材に対する有効でかつ実用的な成形加工方法は、これまで無く、成形形状などの設計変更や、工程や時間などの効率化を犠牲にして成形加工条件を緩和する、等の手段を採用していたのが実情である。   These problems occur in the same manner or more significantly in a 6000 series aluminum alloy material that has been age-hardened at room temperature. For this reason, there has never been an effective and practical molding method for 6000 series aluminum alloy materials age-hardened at room temperature. Molding conditions have been sacrificed at the expense of design changes such as molding shape and efficiency in process and time. The fact is that measures such as mitigation were adopted.

本発明はこの様な事情に着目してなされたものであって、その目的は、室温時効硬化して成形性が低下した6000系アルミニウム合金材の成形性を回復させることが可能なアルミニウム合金材の成形方法を提供しようとするものである。   The present invention has been made paying attention to such a situation, and the purpose thereof is an aluminum alloy material capable of recovering the formability of a 6000 series aluminum alloy material whose formability is reduced by age hardening at room temperature. It is intended to provide a molding method.

この目的を達成するために、本発明のアルミニウム合金材の成形方法の要旨は、6000系アルミニウム合金材に対し、1%以上の加工歪みを予め与えた後に50〜150 ℃の温度に加熱する時効硬化回復処理を行なって成形することである。   In order to achieve this object, the gist of the aluminum alloy material forming method of the present invention is that aging is performed by applying a processing strain of 1% or more to a 6000 series aluminum alloy material in advance and then heating it to a temperature of 50 to 150 ° C. It is to perform the curing recovery process and mold.

なお、本発明で言うアルミニウム合金材とは、圧延された板、あるいは、この板をプレス成形したパネル、また、押出された形材、管材などを含むものである。   The aluminum alloy material referred to in the present invention includes a rolled plate, a panel obtained by press-forming this plate, an extruded shape member, a tube material, and the like.

本発明では、室温時効硬化して、製造直後の材料に比べて、成形性が低下した6000系Al合金材に対し、1%以上の加工歪みを予め与えた後に50〜150 ℃の温度に加熱する時効硬化回復処理を行なえば、6000系Al合金材の成形性が回復することを知見した。   In the present invention, a 6000 series Al alloy material which has been age-hardened at room temperature and deteriorated in formability compared to a material immediately after production is subjected to a processing strain of 1% or more in advance and heated to a temperature of 50 to 150 ° C. It was found that the formability of the 6000 series Al alloy material is recovered by performing age hardening recovery treatment.

通常では、加工歪みを予め加えずに、単に上記50〜150 ℃の温度に加熱しても、常識的にも、室温時効硬化した6000系Al合金材の機械的な性質、特に、成形性は変化しない。しかし、上記加工歪みを予め与えた上で、このような低温に加熱すると、室温時効硬化した6000系Al合金材の成形性が回復する現象が生じる。   Normally, the mechanical properties of the 6000 series Al alloy material that has been age-hardened at room temperature, even if it is simply heated to the above-mentioned temperature of 50 to 150 ° C. without applying processing strain in advance, especially the formability is It does not change. However, when the processing strain is applied in advance and heating to such a low temperature, a phenomenon occurs in which the formability of the 6000 series Al alloy material age-hardened at room temperature is restored.

本発明の回復処理は、加工歪みを予め与えないと成形性の回復が発現しない点が特異であって、前記した6000系Al合金材を最低でも200 ℃以上の温度に加熱して成形加工する温間あるいは熱間成形技術と、基本的な冶金的メカニズムを異にすることが、このことからも分かる。   The recovery treatment of the present invention is unique in that the recovery of formability does not appear unless processing strain is given in advance, and the above-mentioned 6000 series Al alloy material is heated to a temperature of at least 200 ° C. and molded. This also shows that the basic metallurgical mechanism differs from warm or hot forming technology.

このような特異な現象の冶金的メカニズムの詳細は不明であるが、上記加工歪みを予め加えることで、6000系Al合金材に加工硬化が加わり、一旦室温時効により析出硬化されていたAl合金組織の軟化乃至伸びの増加が生じ、大幅に成形性が回復するものと推考される。   Details of the metallurgical mechanism of such a unique phenomenon are unknown, but by adding the above processing strain in advance, work hardening was added to the 6000 series Al alloy material, and the Al alloy structure once precipitated and hardened by room temperature aging It is assumed that the softening or the increase in elongation occurs, and the moldability is significantly recovered.

しかも、上記50〜150 ℃のような温度に加熱しても、6000系Al合金材の他の引張強度、耐力などの大幅な低下は一切無い。また、BH性を低下させる影響もなく、成形後のパネルや成形部材の、塗装焼き付け処理などの人工時効硬化処理によって、耐デント性など、必要な強度を確保できる。   Moreover, even when heated to a temperature of 50 to 150 ° C., there is no significant decrease in other tensile strength, proof stress, etc. of the 6000 series Al alloy material. In addition, the necessary strength such as dent resistance can be secured by artificial age hardening treatment such as paint baking treatment of the molded panel or molded member without the effect of lowering the BH property.

このため、6000系Al合金材としての他の必要特性を犠牲にせずに、板の絞りや張出などのプレス成形、板のHAT 曲げや90度曲げなどの曲げ加工、板をプレス成形した後のパネルのヘム加工などの曲げ加工、押出された形材、管材などの曲げ加工等、主として金型を用いた成形性を、大幅に向上させることができる。   For this reason, without sacrificing other necessary properties as a 6000 series Al alloy material, press forming such as drawing and overhanging of the plate, bending processing such as HAT bending and 90 degree bending of the plate, after pressing the plate Formability using mainly a mold can be greatly improved, such as bending processing such as hem processing of the panel, bending processing of extruded shape members, pipe materials, and the like.

しかも、予め与える1%以上の加工歪みも比較的軽い加工であり、また、50〜150 ℃の加熱温度も比較的低い温度であるので、前記した高温成形の従来技術のような。成形工程における大幅な設備改造や工程の大幅な変更を行なわずも実施することができる利点もある。   Moreover, the processing strain of 1% or more given in advance is a relatively light processing, and the heating temperature of 50 to 150 ° C. is also a relatively low temperature. There is also an advantage that it can be carried out without significant equipment remodeling or process change in the molding process.

以下に、本発明Al合金板の実施態様につき具体的に説明する。
(加工歪み)
本発明の時効硬化回復処理 (以下、単に回復処理とも言う) では、室温時効硬化した6000系Al合金材に対し、先ず、1%以上の加工歪みを与える。加工歪みが1%未満では、前記したような、加工歪みを予め加えない、通常の単なる加熱処理と変わりなくなって、50〜150 ℃の温度に加熱しても、室温時効硬化した6000系Al合金材の成形性は回復しない。このため、予め与える加工歪みは最低でも1%以上であることが必要である。
Hereinafter, embodiments of the Al alloy plate of the present invention will be specifically described.
(Processing distortion)
In the age hardening recovery treatment of the present invention (hereinafter also simply referred to as recovery treatment), first, a work strain of 1% or more is imparted to a 6000 series Al alloy material that has been age hardened at room temperature. If the processing strain is less than 1%, the 6000 series Al alloy that has been age-hardened at room temperature even when heated to a temperature of 50 to 150 ° C. is not different from ordinary heat treatment without adding processing strain in advance as described above. The formability of the material does not recover. For this reason, it is necessary that the processing strain given in advance be at least 1%.

但し、あまり大きい加工歪みを与える必要はない。大きい加工歪みを与え過ぎると、却って、6000系Al合金材の変形や厚みの減少、あるいは、そのための新たな設備が必要となるなどの種々の不都合も生じる。好ましい加工歪みの上限は、室温時効硬化の程度や6000系Al合金材の形状や加工の履歴 (板、パネル、形材、時効硬化度) にもよるが、板、パネルなどの場合20% 程度、形材などの場合50% 程度である。したがって、好ましい加工歪みは、板、パネルの場合3 〜20% の範囲、形材の場合3 〜50% の範囲である。   However, it is not necessary to give a very large processing strain. On the other hand, if a large processing strain is applied too much, various disadvantages such as deformation of the 6000 series Al alloy material, reduction in thickness, or the need for new equipment for that purpose arise. The upper limit of preferred work strain depends on the degree of age-hardening at room temperature, the shape of the 6000 series Al alloy material, and the processing history (plates, panels, profiles, age hardening), but about 20% for plates, panels, etc. In the case of shape materials, it is about 50%. Accordingly, the preferred processing strain is in the range of 3 to 20% for plates and panels and in the range of 3 to 50% for profiles.

(加熱)
本発明の時効硬化回復処理では、上記1%以上の加工歪みを与えた6000系Al合金材を50〜150 ℃、好ましくは80〜130 ℃の温度に加熱する。加熱温度が50℃未満では、大きい加工歪みを与えても、室温時効硬化した6000系Al合金材の成形性は回復しない。また、加熱温度が80℃未満では、小さい加工歪みを与えた場合に、室温時効硬化した6000系Al合金材の成形性は回復しない可能性がある。
(heating)
In the age hardening recovery treatment of the present invention, the above-mentioned 6000 series Al alloy material imparted with a work strain of 1% or more is heated to a temperature of 50 to 150 ° C, preferably 80 to 130 ° C. When the heating temperature is less than 50 ° C., the formability of the 6000 series Al alloy material age-hardened at room temperature does not recover even when a large processing strain is applied. In addition, when the heating temperature is less than 80 ° C., the formability of the 6000 series Al alloy material age-hardened at room temperature may not be recovered when a small processing strain is applied.

一方、加熱温度が150 ℃を超えて高くなった場合も、事前の加工歪み量に依らず、室温時効硬化した6000系Al合金材の成形性は回復しない。また、加熱温度が130 ℃を超えて高くなった場合も、加工歪み量によっては、室温時効硬化した6000系Al合金材の成形性は回復しない可能性がある。なお、6000系Al合金材の最適加熱温度は、6000系Al合金材の形状や加工の履歴 (板、パネル、形材、時効硬化度) 、事前に与える加工歪み量、などとの関係で選択する。   On the other hand, even when the heating temperature exceeds 150 ° C., the formability of the room temperature age-hardened 6000 series Al alloy material does not recover regardless of the amount of processing strain in advance. Even when the heating temperature is higher than 130 ° C., the formability of the room temperature age-hardened 6000 series Al alloy material may not be recovered depending on the amount of processing strain. The optimum heating temperature for 6000 series Al alloy material is selected in relation to the shape of 6000 series Al alloy material, processing history (plate, panel, profile, age hardening), amount of processing strain applied in advance, etc. To do.

加熱時間も、6000系Al合金材の板厚などにもよるが、室温時効硬化した6000系Al合金材の実体温度が、上記加熱温度範囲になれば、安全を見て、最低でも30秒〜1 分程度のごく短時間の保持時間で良い。したがって、本発明の回復処理では、加熱時間を長くとる必要は無い。   Although the heating time also depends on the thickness of the 6000 series Al alloy material, etc., if the actual temperature of the 6000 series Al alloy material that has been age-hardened at room temperature is within the above heating temperature range, at least 30 seconds to see safety A very short holding time of about 1 minute is sufficient. Therefore, in the recovery process of the present invention, it is not necessary to take a long heating time.

本発明の回復処理は、この加熱温度が比較的低い点も特異であって、前記した6000系Al合金材を最低でも200 ℃以上の温度に加熱して成形加工する温間あるいは熱間成形技術とは、その基本的な冶金的メカニズムを異にすることが、このことからも分かる。また、本発明の回復処理が、上記した短時間で成形性回復効果が生じることも特異な点である。   The recovery treatment of the present invention is also unique in that the heating temperature is relatively low, and the above-described 6000 series Al alloy material is heated to a temperature of 200 ° C. or more at least to form by warm or hot forming technology. It is clear from this that the basic metallurgical mechanism is different. In addition, the recovery treatment of the present invention is also unique in that the formability recovery effect occurs in the short time described above.

本発明の回復処理は、加工歪みを与えて加熱するこれら一連の回復処理を行いさえすれば、加熱後一旦冷却された後でも、成形性が回復するし、その効果は持続する。仮に、本発明の回復処理後に、長期保管などで、再び、6000系Al合金材が室温時効して成形性が低下しても、再度本発明の回復処理を行なえば良い。したがって、後述する種々の成形は常温で可能である。即ち、成形加工時に、後述する、本発明の回復処理のために加熱する以外は、成形加工を高温で行なう必要は全く無い。   As long as the recovery process of the present invention is performed by a series of recovery processes in which processing distortion is applied and heating is performed, the moldability is recovered and the effect is maintained even after cooling once after the heating. Even if the 6000-series Al alloy material is aged again at room temperature due to long-term storage or the like after the recovery process of the present invention, the recovery process of the present invention may be performed again. Therefore, various molding described below can be performed at room temperature. That is, it is not necessary to perform the molding process at a high temperature except for heating for the recovery process of the present invention described later.

(回復処理の方法)
6000系Al合金材の回復処理方法として、板の場合について説明する。
先ず、前記自動車パネルなどの用途分野における、Al合金板を張出や絞りあるいはトリム等のプレス成形してパネル化する工程、更には、外板 (アウタパネル) として、更に、フラットヘムなどのヘム加工のような曲げ加工工程を想定する。この場合、上記板をパネル化するプレス成形の際の成形を回復する場合と、ヘム加工のような曲げ加工性を回復する場合とがある。
(Recovery method)
The case of a plate will be described as a method for recovering the 6000 series Al alloy material.
First, in the field of application such as the above-mentioned automobile panel, a process of forming an aluminum alloy plate by press forming such as overhanging, drawing or trimming, and further, as an outer plate (outer panel), further hem processing such as flat hem A bending process like the following is assumed. In this case, there are a case where the forming at the time of press forming for forming the panel into a panel is recovered and a case where the bending workability such as hem processing is recovered.

(プレス成形性の回復)
上記板をプレス成形してパネル化する際の成形性を回復する場合、素材板を全面的に回復処理しても良く、あるいは、パネル形状がより複雑な部位、伸びフランジ変形を伴うような湾曲部位などの成形が難しい部位、等を選択して回復処理しても良い。
(Recovery of press formability)
When recovering formability when press forming the above plate into a panel, the material plate may be fully recovered, or the panel shape may be more complicated, curved to cause deformation of the stretch flange A recovery process may be performed by selecting a part that is difficult to form, such as a part.

具体的には、プレス成形金型に設置する前の板に、ロールや引張 (テンションレベラ) などの矯正機や金型等を利用して、張力などを与えて、前記加工歪みを予め与えても良い。また、プレス成形金型に設置した板に、プレス成形金型によって、あるいは別の手段によって、板に張力を与えて、前記加工歪みを与えても良い。これらは、現状の設備状況に応じて、合理的な方法や設備が適宜選択される。   Specifically, using a straightening machine such as a roll or tension (tension leveler) or a mold, etc., to the plate before being installed in the press mold, the tension is applied and the processing strain is applied in advance. Also good. Further, the processing strain may be applied to a plate installed in the press mold by applying tension to the plate by a press mold or by another means. For these, a rational method and equipment are appropriately selected according to the current equipment situation.

そして、その後の加熱も、板全体、あるいは, 成形加工部分のみを行なっても良い。また、プレス成形金型に設置する前の板を、加熱手段や炉にて前記低温温度に加熱しても良く、また、プレス成形金型を前記低温温度に加熱して、プレス成形前あるいはプレス成形中に、板を前記低温温度に加熱しても良い。この際、プレス成形に用いる金型に、前記回復処理用の加熱手段を設けても良いが、前記従来技術のような200 ℃以上の高温に加熱する手段は不要であるし、却って回復処理の効果を損なう。   Then, the subsequent heating may be performed on the entire plate or only on the forming portion. In addition, the plate before being placed in the press molding die may be heated to the low temperature by a heating means or a furnace, and the press molding die is heated to the low temperature before pressing or pressing. During molding, the plate may be heated to the low temperature. At this time, the mold used for press molding may be provided with a heating means for the recovery process, but a means for heating to a high temperature of 200 ° C. or higher as in the prior art is unnecessary, and the recovery process is performed instead. The effect is impaired.

このような本発明の回復処理によって、室温時効硬化した6000系Al合金板の、例えば、張出成形性、絞り成形性、伸びフランジ変形性等が回復 (向上) し、プレス成形時の割れ、肌荒れなどの成形不良が生じにくくなる。   By such a recovery treatment of the present invention, room temperature age-hardened 6000 series Al alloy plate recovers (improves), for example, stretch formability, draw formability, stretch flange deformability, and cracks during press molding, Molding defects such as rough skin are less likely to occur.

(曲げ加工性の回復)
上記板あるいはパネルの、HAT 曲げ、90度曲げ、ヘムなどの曲げ加工性を回復する場合、また、形材を曲げ加工する場合に、これら曲げ加工素材を全面的に回復処理しても良い。あるいは、曲げ加工素材の曲げ加工部分や曲げ加工が難しい部位などを選択し、例えば、板の曲げ加工部分であれば、曲げ外周縁形状が直線的か、あるいは直線的ではなく、円弧状などのより曲げ加工が難しい部位等を選択して回復処理しても良い。
(Recovery of bending workability)
When restoring the bending workability of the plate or panel, such as HAT bending, 90 ° bending, and hem, or when bending the shape material, these bending materials may be fully recovered. Alternatively, select a bent portion of the bending material or a portion that is difficult to be bent. For example, if it is a bent portion of a plate, the bending outer peripheral shape is linear or not linear, but an arc shape, etc. A portion that is more difficult to be bent may be selected and recovered.

具体的には、曲げ加工金型に設置する前の曲げ加工素材に、ロールや引張 (テンションレベラ) などの矯正機や金型などを利用して、張力を与えて、前記加工歪みを与えても良い。また、曲げ加工金型に設置した曲げ加工素材に、曲げ加工金型によって、あるいは別の手段によって、張力などを与えて、前記加工歪みを与えても良い。これらは、現状の設備状況に応じて、合理的な方法や設備が適宜選択される。   Specifically, the bending material before being installed in the bending mold is given a tension using a straightening machine such as a roll or tension (tension leveler) or a mold, and the processing distortion is applied. Also good. Further, the bending distortion may be applied to the bending material installed in the bending die by applying tension or the like by a bending die or by another means. For these, a rational method and equipment are appropriately selected according to the current equipment situation.

そして、その後の加熱も曲げ加工素材全体、あるいは曲げ加工部分のみを行なっても良い。具体的には、曲げ加工金型に設置する前の曲げ加工素材を、加熱手段や炉にて前記低温温度に加熱しても良く、また、曲げ加工金型を前記低温温度に選択的に加熱して、成形前あるいは成形中の曲げ加工素材を前記低温温度に加熱しても良い。この際、曲げ加工金型に、前記回復処理用の加熱手段を設けても良いが、前記従来技術のような200 ℃以上の高温に加熱する手段は不要であるし、却って回復処理の効果を損なう。   And the subsequent heating may also be performed on the entire bent material or only the bent portion. Specifically, the bending material before being installed in the bending mold may be heated to the low temperature by a heating means or a furnace, and the bending mold is selectively heated to the low temperature. Then, the bending material before or during molding may be heated to the low temperature. At this time, the bending die may be provided with a heating means for the recovery process, but the means for heating to a high temperature of 200 ° C. or higher as in the prior art is not necessary, and the effect of the recovery process is rather reversed. To lose.

(ヘム加工性の回復)
この曲げ加工の中でも、特に、フラットヘム加工性を回復する場合を以下に説明する。プレス成形後のパネル (板) の一般的なフラットヘム加工の概要を図1(a)〜(c) に示す。同図に示す通り、フラットヘム加工は、図1(a)のダウンフランジ工程、図1(b)のプリヘム工程を経て、図1(c)のフラットヘム工程により、金型を用いて、基本的に行われる。
(Recover heme workability)
Among these bending processes, the case where flat hem workability is restored will be described below. Figures 1 (a) to 1 (c) show the general flat hem processing of panels (plates) after press molding. As shown in the figure, the flat hem processing is performed by using the die by the flat flange process of FIG. 1 (c) through the down flange process of FIG. 1 (a) and the pre-hem process of FIG. 1 (b). Done.

まず、図1(a)では、ダイス101 と板押さえ102 により固定した、プレス成形加工後のアウタパネル1 を示している。そして、アウタパネル1 の点線で示した外縁部1aに対し、ポンチ100 により、図の矢印で力のかかる方向を示す通り、アウタパネル1 に直交する方向 (図の上方に向かって) に力を加えて、外縁部1aを直角(90 °) に近い角度まで折り曲げ、折り曲げ部1bを形成する。   First, FIG. 1 (a) shows the outer panel 1 after press forming, which is fixed by a die 101 and a plate presser 102. Then, a force is applied to the outer edge 1a indicated by the dotted line of the outer panel 1 in the direction orthogonal to the outer panel 1 (upward in the figure) as indicated by the arrow in the figure by the punch 100. Then, the outer edge portion 1a is bent to an angle close to a right angle (90 °) to form a bent portion 1b.

次に、図1(b)では、同じく、ダイス104 と板押さえ102 により固定した、上記ダウンフランジ工程後のアウタパネル1 を示している。そして、このプリヘム工程では、アウタパネル1 の点線で示した外縁部1aを、ポンチ103 により、更に約135 °までパネル内側に折り曲げた、折り曲げ部1bを形成する。この際、上方より、ポンチ103 により、図の2 方向の矢印で力のかかる方向を示す通り、直角に折り曲げられた点線で示す外縁部1aに対しては、アウタパネル1 に直交する方向 (図の下方に向かって) およびアウタパネル1 に平行な方向 (図の横方向) の二つの方向に力が加えられる。   Next, FIG. 1 (b) similarly shows the outer panel 1 after the down flange process, which is fixed by a die 104 and a plate presser 102. In this pre-hem step, a bent portion 1b is formed by bending the outer edge portion 1a indicated by the dotted line of the outer panel 1 further to the inside of the panel to about 135 ° by the punch 103. At this time, the punch 103 causes the outer edge 1a indicated by a dotted line bent at a right angle to be perpendicular to the outer panel 1 (as shown in the figure) as indicated by the two arrows in the figure by the punch 103. Forces are applied in two directions: (downward) and parallel to the outer panel 1 (lateral direction in the figure).

更に、図1(c)のフラットヘム工程では、絞り工程やトリム工程等の成形加工後のインナパネル2 の外縁部2aを、上記プリヘム工程後のアウタパネル1 の折り曲げ部1b内に挿入 (収容) する。そして、アウタパネル1 およびインナパネル2 とを、板押さえ (図示せず) とダイス102 により固定するとともに、アウタパネル1 の外縁部1aを、ポンチ105 により、更に180 °の角度までパネル内側に折り曲げ、フラットヘムを形成する。このようにして、インナパネル2 の外縁部2aと、アウタパネル1 のフラットヘム部(180 度折り曲げ部) とが接触して、両者が端部同士において接合されるとともに密着される。   Further, in the flat hem process of FIG. 1 (c), the outer edge portion 2a of the inner panel 2 after the molding process such as the drawing process and the trim process is inserted (accommodated) into the bent portion 1b of the outer panel 1 after the pre-hem process. To do. Then, the outer panel 1 and the inner panel 2 are fixed by a plate presser (not shown) and a die 102, and the outer edge 1a of the outer panel 1 is further bent inside the panel by a punch 105 to an angle of 180 ° to be flat. Form a hem. In this way, the outer edge portion 2a of the inner panel 2 and the flat hem portion (180-degree bent portion) of the outer panel 1 come into contact with each other and are bonded together at the end portions.

なお、ロープドヘム加工の場合にも、図1(a)、(b) の工程はフラットヘム加工と同じであり、ただ、図1(c)の工程を、折り曲げ部1bが、フラットなヘムでは無く、円弧状に (ロープ状に) 外方に膨らんだ曲げ形状とする。このため、フラットヘムに比して、シャープなヘム形状ではなく、外観性も良くない。また、アウタパネルとインナパネルとの接触面積が少なく接合性や密着性に欠ける等の問題もある。このため、特に、外観や美観を重視する自動車部品などにおいては、ヘム加工の最終工程を、厳しい曲げ加工となる、図1(c)のフラットヘム工程により行うことが通常となっている。   In the case of roped hem processing, the steps of FIGS. 1 (a) and (b) are the same as the flat hem processing, except that the bent portion 1b is not a flat hem. A bent shape that bulges outward in a circular arc shape (in a rope shape). For this reason, compared with a flat hem, it is not a sharp hem shape and its appearance is not good. In addition, there is a problem that the contact area between the outer panel and the inner panel is small and the bonding property and adhesion are lacking. For this reason, in particular, in automotive parts and the like that place importance on the appearance and aesthetics, the final process of hem processing is usually performed by the flat hem process of FIG. 1 (c), which is a severe bending process.

このようなフラットヘム加工の場合に、前記加工歪みを与える方法は、前工程となるプレス成形時に、回復処理に必要な加工歪みを与えれば、余分な工程を必要とせずに好ましい。プレス成形時の加工歪みを補完するために、あるいは、新たに加工歪みを与えるために、ヘム加工金型に設置する前のパネルのヘム加工部分に、予め加工歪みを与えても良い。
ただ、この方法は、ヘム加工のような複数段の工程にわたる曲げ加工が施される場合には、最初の工程である上記ダウンフランジ工程などにおける成形性回復のみに有効である。ヘム加工のような複数段の工程において、これに続く後段のプリヘム工程やフラットヘム工程での加工条件がより厳しくなり、割れなどが発生しやすくなる。
In the case of such flat hem processing, the method of imparting the processing strain is preferable without requiring an extra step as long as the processing strain necessary for the recovery process is applied at the time of press forming as the previous step. In order to supplement the processing distortion at the time of press molding or to newly add processing distortion, the processing distortion may be applied in advance to the hem processing portion of the panel before being installed in the hem processing mold.
However, this method is effective only for recovering formability in the down flange process, which is the first process, when bending is performed over a plurality of stages such as hem processing. In a multi-stage process such as hem processing, the processing conditions in the subsequent pre-hem process and flat hem process become more severe, and cracks are likely to occur.

したがって、これに続く後段のプリヘム工程やフラットヘム工程の成形性を更に回復させることが重要で、この場合には、前段のダウンフランジ工程の曲げ加工工程において付与される加工歪みを、本発明回復処理に必要な加工歪みとして利用する。そして、ダウンフランジ工程後であってプリヘム工程前の中間に、あるいはプリヘム工程やフラットヘム工程の曲げ加工中に、回復処理に必要な加熱を行なって、後段であるプリヘム工程やフラットヘム工程などの曲げ加工工程の成形性を各々選択的に回復させることが好ましい。この方法は、ダウンフランジ工程金型にセットされて加工されたパネルが、プリヘムおよびフラットヘム工程金型にセットし直されることが多い、通常のヘム工程に則した形で、本発明回復処理を行なうことができる点でも好ましい。   Therefore, it is important to further recover the formability of the subsequent pre-hem process and flat hem process, and in this case, the processing strain applied in the bending process of the previous down-flange process is recovered by the present invention. Used as processing distortion required for processing. And after the down flange process and before the pre-hem process, or during the bending process of the pre-hem process and the flat hem process, the heating necessary for the recovery process is performed, and the pre-hem process and the flat hem process, which are subsequent stages, are performed. It is preferable to selectively recover the formability of the bending process. In this method, the panel processed in the down-flange process mold is often reset to the pre-hem and flat-hem process molds. It is also preferable in that it can be performed.

加工歪みを与える方法は、ロールや引張 (テンションレベラ) などの矯正機を利用して、張力などを与えても良い。また、上記したダウンフランジ工程自体によって加工歪みを与えるには、ヘム加工金型に設置したパネルに対し、例えば、図1(a)のダイス101 と板押さえ102 、ポンチ100 などの協働により、前記加工歪みを与える。ただ、これらも、現状の設備状況に応じて、合理的な方法や設備が適宜選択される。   As a method for imparting processing distortion, tension may be applied using a straightening machine such as a roll or tension (tension leveler). In addition, in order to give processing distortion by the above-mentioned down flange process itself, for example, by cooperation of the die 101, the plate presser 102, the punch 100, etc. in FIG. The processing distortion is given. However, in these cases, a rational method and equipment are appropriately selected according to the current equipment situation.

そして、その後の加熱もパネル全体、あるいはヘム加工部分のみを行なっても良い。具体的には、ヘム加工金型に設置する前のパネルを、加熱手段や炉にて前記低温温度に加熱しても良く、また、上記各ヘム加工工程における金型を前記低温温度に選択的に加熱して、ヘム加工前あるいはヘム加工中の板を前記低温温度に加熱しても良い。この際、上記各ヘム加工工程における金型に、選択的に前記した回復処理用の低温の加熱手段を設けても良い。   Then, the subsequent heating may be performed on the entire panel or only on the hemming portion. Specifically, the panel before being installed in the hem processing mold may be heated to the low temperature by a heating means or a furnace, and the mold in each of the hem processing steps is selectively set to the low temperature. The plate before hemming or during hemming may be heated to the low temperature. At this time, a low-temperature heating means for the above-described recovery treatment may be selectively provided in the mold in each hem processing step.

このような本発明の回復処理によって、室温時効硬化した6000系Al合金材の、フラットヘムなどの曲げ加工性が回復 (向上) し、板の曲げ部やヘム部などに生じやすい割れや肌荒れ、あるいは型材の曲げ部などに生じやすい割れやしわなどの成形不良が生じにくくなる。   Such recovery treatment of the present invention recovers (improves) the bending workability such as flat hem of the 6000 series Al alloy material that has been age-hardened at room temperature, and cracks and rough skin that are likely to occur in the bent portion and hem portion of the plate, Alternatively, molding defects such as cracks and wrinkles that are likely to occur in the bent portion of the mold material are less likely to occur.

(化学成分組成)
次に、本発明が対象とする6000系Al合金材の化学成分組成について説明する。本発明が対象とする6000系Al合金材は、前記した自動車材などとして、優れた成形性やBH性、強度、溶接性、耐食性などの諸特性が要求される。このような要求を満足するために、Al合金材の基本組成は、質量% で、Mg:0.2〜2.0%、Si:0.3〜2.0%を含有するアルミニウム合金材が好ましい。なお、本発明での化学成分組成の% 表示は、請求項の% 表示も含めて、全て質量% の意味である。
(Chemical composition)
Next, the chemical component composition of the 6000 series Al alloy material targeted by the present invention will be described. The 6000 series Al alloy material targeted by the present invention is required to have excellent properties such as formability, BH property, strength, weldability, and corrosion resistance as the above-mentioned automobile material. In order to satisfy such requirements, the basic composition of the Al alloy material is preferably an aluminum alloy material containing Mg: 0.2 to 2.0% and Si: 0.3 to 2.0% by mass%. In the present invention, “%” for the chemical component composition means “% by mass”, including “%” in claims.

また、本発明が対象とする6000系Al合金材は、その優れたBH性ゆえに室温での時効硬化が問題となり、本発明回復処理を必要とする。この点、6000系Al合金の中でも、本発明回復処理は、BH性がより優れるゆえに、室温での時効硬化がより問題となる、Si/Mg が質量比で1 以上の所謂Si過剰型の6000系Al合金材に適用されて好ましい。このような6000系Al合金材としては、例えば、自動車材としてのアウタパネル用の板などがあり、組成としては、Mg:0.2〜2.0%、Si:0.3〜2.0%、Mn:0.01 〜0.65% 、Cu:0.001〜1.0%を含有し、かつSi/Mg が質量比で1 以上であり、残部Alおよび不可避的不純物からなるものが好ましい。   Further, the 6000 series Al alloy material targeted by the present invention has a problem of age-hardening at room temperature due to its excellent BH property, and requires the recovery treatment of the present invention. In this respect, among the 6000 series Al alloys, the recovery treatment of the present invention has a better BH property, so that age hardening at room temperature becomes more problematic, so-called Si-rich 6000 having a Si / Mg mass ratio of 1 or more. It is preferable to be applied to a system Al alloy material. As such a 6000 series Al alloy material, for example, there is a plate for an outer panel as an automobile material, and the composition is Mg: 0.2 to 2.0%, Si: 0.3 to 2.0%, Mn: 0.01 to 0.65%, It is preferable to contain Cu: 0.001 to 1.0%, Si / Mg is 1 or more by mass, and the balance is Al and inevitable impurities.

なお、その他の元素は、AA乃至JIS 規格などに沿った各不純物レベルの含有量 (許容量) とする。その他の合金元素とは、具体的には、Fe:1.0% 以下、Mn:1.0% 以下、Cr:0.3% 以下、Zr:0.3% 以下、V:0.3%以下、Ti:%以下、の内の1 種または2 種以上を選択的に含んでも良い。また、これらに加えて、あるいは、これらの代わりに、更に、Ag:0.2% 以下、Zn:1.0% 以下、の内の1 種または2 種以上を選択的に含んでも良い。   For other elements, the content (allowable amount) of each impurity level in accordance with AA or JIS standards. Specifically, the other alloy elements include Fe: 1.0% or less, Mn: 1.0% or less, Cr: 0.3% or less, Zr: 0.3% or less, V: 0.3% or less, Ti:% or less. One type or two or more types may be selectively included. In addition to or instead of these, one or more of Ag: 0.2% or less and Zn: 1.0% or less may be selectively contained.

上記合金元素以外のその他の合金元素やガス成分は不純物である。しかし、リサイクルの観点から、溶解材として、高純度Al地金だけではなく、6000系合金やその他のAl合金スクラップ材、低純度Al地金などを溶解原料として使用して、本発明Al合金組成を溶製する場合には、これら他の合金元素は必然的に含まれることとなる。したがって、本発明では、目的とする本発明効果を阻害しない範囲で、これら不純物元素が含有されることを許容する。   Other alloy elements and gas components other than the above alloy elements are impurities. However, from the viewpoint of recycling, not only high-purity Al ingots but also 6000 series alloys and other Al alloy scrap materials, low-purity Al ingots, etc. are used as melting raw materials as melting materials. In the case of melting, these other alloy elements are necessarily included. Accordingly, the present invention allows these impurity elements to be contained within a range that does not impair the intended effect of the present invention.

上記6000系Al合金における、各元素の好ましい含有範囲と意義、あるいは許容量について以下に説明する。   The preferable content range and significance of each element in the 6000 series Al alloy, or the allowable amount will be described below.

Si:0.2〜2.0%
Siは、固溶強化と、成形後の塗装焼き付け処理などの、比較的低温短時間での人工時効処理時に、Mgとともに化合物相 (β")を形成して、時効硬化能を発揮し、板としての必要強度を得るための必須の元素である。したがって、プレス成形性など、パネルとしての必要諸特性を兼備させるための最重要元素である。Si量が0.2%未満では、前記時効硬化能、更には、各用途に要求される、プレス成形性などの諸特性を兼備することができない。一方、Siが2.0%を越えて含有されると、プレス成形性や曲げ加工性が著しく阻害される。更に、溶接性を著しく阻害する。したがって、Siは0.2 〜2.0%の範囲とする。
Si: 0.2-2.0%
Si forms a compound phase (β ") together with Mg during solid-solution strengthening and artificial aging treatment at relatively low temperatures, such as paint baking after molding, and exhibits age-hardening ability. Therefore, it is an indispensable element for obtaining the necessary strength as an element, and is therefore the most important element for combining the necessary properties as a panel, such as press formability. Furthermore, it cannot combine various properties required for each application, such as press formability, etc. On the other hand, if Si exceeds 2.0%, press formability and bending workability are significantly hindered. In addition, the weldability is significantly hindered, so Si should be in the range of 0.2 to 2.0%.

Mg:0.2〜2.0%
Mgは、固溶強化と、塗装焼き付け処理などの前記人工時効処理時に、Siとともに化合物相を形成して、時効硬化能を発揮し、前記パネルとしての必要強度を得るための必須の元素である。Mgの0.2%未満の含有では、絶対量が不足するため、人工時効処理時に前記化合物相を形成できず、時効硬化能を発揮できない。このため、板として必要な前記必要強度が得られない。一方、Mgが2.0%を越えて含有されると、プレス成形性や曲げ加工性等の成形性が著しく阻害される。したがって、Mgの含有量は、0.2 〜2.0%の範囲とする。
Mg: 0.2-2.0%
Mg is an indispensable element for forming the compound phase together with Si during the artificial aging treatment such as solid solution strengthening and paint baking treatment, to exhibit age hardening ability and to obtain the required strength as the panel . If the Mg content is less than 0.2%, the absolute amount is insufficient, so that the compound phase cannot be formed during the artificial aging treatment, and the age hardening ability cannot be exhibited. For this reason, the said required intensity | strength required as a board cannot be obtained. On the other hand, if the Mg content exceeds 2.0%, the formability such as press formability and bending workability is significantly inhibited. Therefore, the Mg content is in the range of 0.2 to 2.0%.

Cu:0.001〜1.0%
Cu は、6000系Al合金において、時効硬化速度を向上させるのに有用である。即ち、塗装焼き付け工程などの人工時効 (硬化) 処理の条件で、Al合金材組織の結晶粒内へのGPゾーンなどの化合物相の析出を促進させる効果がある。また、人工時効処理状態で固溶したCuなどは成形性を向上させる効果もある。Cuの含有量が0.001%未満では、これらの効果が不足する。但し、Cu含有量が1.0%を超えて大きすぎると、粗大な化合物を形成して成形性が劣化する可能性が高い。また、自動車アウタパネルとして必要な、耐糸錆性などの耐食性も劣化する可能性が高い。したがって、Cu含有量の上限は1.0%以下とすることが好ましい。
Cu: 0.001 to 1.0%
Cu is useful for improving the age hardening rate in 6000 series Al alloys. That is, it has the effect of promoting the precipitation of a compound phase such as a GP zone into the crystal grains of the Al alloy material structure under the conditions of artificial aging (hardening) treatment such as a paint baking process. Moreover, Cu dissolved in the artificial aging treatment state also has an effect of improving formability. If the Cu content is less than 0.001%, these effects are insufficient. However, if the Cu content exceeds 1.0% and is too large, there is a high possibility that a coarse compound is formed and the moldability is deteriorated. In addition, there is a high possibility that the corrosion resistance such as yarn rust resistance required for an automobile outer panel will deteriorate. Therefore, the upper limit of the Cu content is preferably 1.0% or less.

Mn:0.01 〜0.65%
Mnは、結晶粒の微細化に有用であり、成形性を向上できる。Mnは均質化熱処理時に分散粒子 (分散相) を生成し、これらの分散粒子には再結晶後の粒界移動を妨げる効果がある。但し、各々含有量が大きすぎると、粗大な化合物を形成し、破壊の起点となり、成形性が却って劣化する。したがって、Mnは0.01〜0.65% の範囲で含有させることが好ましい。
Mn: 0.01 to 0.65%
Mn is useful for refining crystal grains and can improve moldability. Mn generates dispersed particles (dispersed phase) during the homogenization heat treatment, and these dispersed particles have an effect of hindering grain boundary movement after recrystallization. However, if each content is too large, a coarse compound is formed, which becomes a starting point of destruction, and the moldability deteriorates instead. Therefore, it is preferable to contain Mn in the range of 0.01 to 0.65%.

(平均結晶粒径)
なお、これら組織の規定に際して、Al合金板の平均結晶粒径を50μm 以下の微細化させることが好ましい。結晶粒径をこの範囲に細かく乃至小さくすることによって、曲げ加工性やプレス成形性が確保乃至向上される。結晶粒径が50μm を越えて粗大化した場合、曲げ加工性や張出などのプレス成形性が著しく低下し、成形時の割れや肌荒れなどの不良が生じ易い。
(Average crystal grain size)
In defining these structures, it is preferable to refine the average grain size of the Al alloy plate to 50 μm or less. By making the crystal grain size fine or small within this range, bending workability and press formability can be ensured or improved. When the crystal grain size becomes larger than 50 μm, the press formability such as bending workability and overhang is remarkably deteriorated, and defects such as cracking and rough skin are easily generated.

なお、ここで言う結晶粒径とは板の長手(L) 方向の結晶粒の最大径である。この結晶粒径は、Al合金板を0.05〜0.1mm 機械研磨した後電解エッチングした表面を、光学顕微鏡を用いて観察し、前記L 方向に、ラインインターセプト法で測定する。1 測定ライン長さは0.95mmとし、1 視野当たり各3 本で合計5 視野を観察することにより、全測定ライン長さを0.95×15mmとする。   The crystal grain size referred to here is the maximum diameter of crystal grains in the longitudinal (L) direction of the plate. The crystal grain size is measured by a line intercept method in the L direction by observing the surface of the Al alloy plate that has been mechanically polished by 0.05 to 0.1 mm and then electrolytically etched using an optical microscope. 1 The measurement line length is 0.95mm, and the total measurement line length is 0.95 x 15mm by observing a total of 5 fields with 3 lines per field.

(製造方法)
Al合金材の製造は、形状に応じた常法で可能である。Al合金の溶解、鋳造工程では、本発明成分規格範囲内に溶解調整されたAl合金溶湯を、連続鋳造圧延法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。次いで、常法により、このAl合金鋳塊に均質化熱処理を施した後、熱間圧延、熱間押出、されて、コイル状、板状、形材、管材などの製品材とするか、更に、必要に応じて中間焼鈍を行なって冷間圧延を行い、コイル状、板状などの製品冷延板に加工する。これら加工後のAl合金材は、調質処理として、必須に溶体化および焼入れ処理で調質されて製品板とされる。用途や必要特性に応じて、更に高温での時効処理や安定化処理などの調質処理を付加して行うことも勿論可能である。
(Production method)
The production of the Al alloy material is possible by a conventional method according to the shape. In the melting and casting process of Al alloy, select a normal melting and casting method such as continuous casting and rolling, semi-continuous casting (DC casting), etc. And cast. Then, after subjecting this Al alloy ingot to homogenization heat treatment by a conventional method, it is hot-rolled and hot-extruded to obtain a product material such as a coil shape, a plate shape, a shape material, a pipe material, If necessary, intermediate annealing is performed, cold rolling is performed, and the product is rolled into a product cold-rolled sheet such as a coil or plate. These processed Al alloy materials are tempered by solution treatment and quenching as a tempering treatment, and are used as product plates. Of course, it is possible to add a tempering treatment such as an aging treatment or a stabilization treatment at a higher temperature according to the use and required characteristics.

次に、本発明の実施例を説明する。室温時効したAl合金板を本発明の回復処理を施した後で、プレス成形性、ヘム加工性を評価した。   Next, examples of the present invention will be described. After the Al alloy plate aged at room temperature was subjected to the recovery treatment of the present invention, the press formability and hem workability were evaluated.

即ち、表1 に示すA の過剰Si型の組成の6000系Al合金板について、室温で4 カ月間放置し、室温時効させた。この室温時効させたAl合金板の引張試験特性は、調質処理後( 製造直後) のAl合金板のAs0.2%耐力が128MPa、As伸びが30% に比して、時効後の0.2%耐力が163MPaとΔ耐力で35MPa 増加し、時効後の伸びが25% とΔ伸びで5%低下していた。なお、上記室温時効後のAl合金板の前記結晶粒径測定方法による平均結晶粒径は30μm であった。   That is, the 6000 series Al alloy plate having an excess Si type composition of A shown in Table 1 was allowed to stand at room temperature for 4 months and aged at room temperature. The tensile test characteristics of this Al alloy sheet aged at room temperature are 0.2% after aging compared to the As0.2% proof stress of 128MPa and As elongation of 30% for the Al alloy sheet after tempering treatment (immediately after production). The yield strength increased by 163 MPa and 35 MPa with the Δ yield strength, and the elongation after aging decreased by 25% and the Δ elongation by 5%. The average grain size of the Al alloy plate after aging at room temperature was 30 μm according to the grain size measurement method.

この引張試験特性は、Al合金板の圧延方向に平行な(L方向の) 耐力 (σ0.2)を、As耐力(MPa) として測定した。なお、引張試験はJIS Z 2201にしたがって行うとともに、試験片形状はJIS 5 号試験片で行った。また、クロスヘッド速度は5mm/分で、試験片が破断するまで一定の速度で行った。 This tensile test characteristic was measured by using the yield strength (σ 0.2 ) parallel to the rolling direction of the Al alloy sheet (σ 0.2 ) as the As yield strength (MPa). The tensile test was performed according to JIS Z 2201 and the shape of the test piece was a JIS No. 5 test piece. The crosshead speed was 5 mm / min, and the test piece was run at a constant speed until the test piece broke.

なお、試験材のAl合金板の製造条件は以下の通りである。表1 に示す各組成の400mm 厚の鋳塊を、DC鋳造法により溶製後、550 ℃で均質化熱処理を施し、終了温度300 ℃で厚さ5mmtまで熱間圧延した。この熱間圧延板を、バッチ式の熱処理設備で400 ℃×4hr の中間焼鈍を施した後に、80% の冷延率で冷間圧延し、厚さ1.0mm の冷延板を得た。そして、この冷延板を、連続式の熱処理設備で、510 ℃で溶体化処理を行った後に室温まで焼入れ、この焼入れ後30分以内に、70℃×1 時間の予備時効処理を行った。   In addition, the manufacturing conditions of the Al alloy plate of the test material are as follows. 400 mm thick ingots having the respective compositions shown in Table 1 were melted by the DC casting method, subjected to homogenization heat treatment at 550 ° C., and hot rolled to a thickness of 5 mm at an end temperature of 300 ° C. This hot-rolled sheet was subjected to intermediate annealing at 400 ° C. for 4 hours in a batch-type heat treatment facility, and then cold-rolled at a cold rolling rate of 80% to obtain a cold-rolled sheet having a thickness of 1.0 mm. The cold-rolled sheet was subjected to a solution treatment at 510 ° C. in a continuous heat treatment facility, and then quenched to room temperature, and within 30 minutes after the quenching, a pre-aging treatment at 70 ° C. × 1 hour was performed.

上記室温時効した同一の板を、表2 に示す種々の条件で回復処理した後で、各々、自動車パネル材としてプレス成形やヘム加工されることを模擬して、プレス成形性とヘム加工性とを評価した。これらの結果も表2 に示す。   The same plate aged at room temperature was subjected to recovery treatment under various conditions shown in Table 2 and then simulated to be press-molded and hem-processed as automobile panel materials. Evaluated. These results are also shown in Table 2.

なお、この際の回復処理は、プレス成形試験やヘム加工試験の前に、予め、試験材のAl合金板に対して、共通して行ない、この回復処理後、室温まで冷却 (放冷) 後の板に対して各成形試験を行なった。また、各回復処理条件におけるプレス成形試験とヘム加工試験のための供試材は、同じ回復処理条件となるように行なった。具体的には、試験材のAl合金板に対して、テンションレベラ矯正機により張力を与えて、加工歪みを与えた。そして、この加工歪みを与えたAl合金板を加熱炉にて、各所定温度に加熱して、その温度に1 分間保持した。加熱後の板は室温まで放冷して、成形した。   In this case, the recovery process is performed in common for the Al alloy plate of the test material in advance before the press molding test and the hem processing test, and after this recovery process, after cooling (cooling) to room temperature. Each molding test was performed on the plate. Moreover, the test material for the press molding test and the hem processing test under each recovery treatment condition was performed so that the same recovery treatment condition was obtained. Specifically, an Al alloy plate as a test material was subjected to tension by a tension leveler straightening machine to give processing strain. Then, the Al alloy plate imparted with the processing strain was heated to each predetermined temperature in a heating furnace and held at that temperature for 1 minute. The heated plate was allowed to cool to room temperature and molded.

プレス成形性は、平面ひずみ張出高さ(LDH0)試験で評価し、試験条件は、幅100mm ×長さ180mm の採取試験片を用い、試験片長手方向が圧延方向と直角方向に一致するように作製した。そして、常温にて、パンチ (玉頭、100mm φ) とダイス (ビード付き) を用い、しわ押さえ力200kN 、潤滑油R-303 、成形速度20mm/ 分、の条件で3 回行い、最も低い張出高さをLDH0値(mm)とした。なお、試験中、1 回でも破断した試験材はLDH0値を求めなかった。 The press formability is evaluated by the plane strain overhang height (LDH 0 ) test, and the test conditions are 100 mm wide × 180 mm long sampled specimens, and the longitudinal direction of the specimen coincides with the direction perpendicular to the rolling direction. It produced as follows. Then, at room temperature, using a punch (ball head, 100mmφ) and a die (with beads), it was performed 3 times under the conditions of wrinkle holding force 200kN, lubricating oil R-303, molding speed 20mm / min. The protruding height was defined as LDH 0 value (mm). During the test, the LDH 0 value was not obtained for the test material that was broken even once.

ヘム加工性は、前記プレス成形後フラットヘム加工されることを模擬して、常温にて、試験材に10% のストレッチを行った後、曲げ試験を行い評価した。試験片条件は、JIS Z 2204に規定される3 号試験片 (幅30mm×長さ200mm)を用い、試験片長手方向が圧延方向と一致するように作製した。曲げ試験は、JIS Z 2248に規定されるVブロック法により、フラットヘム加工を模擬して、先端半径0.3mm 、曲げ角度60度の押金具で60度に曲げた後、更に、180 度に曲げた。この際、例えば、アウタパネルのヘム加工ではインナパネルが曲げ部内に挟み込まれるが、条件を厳しくするために、このようなのAl合金板を挟み込まないで180 度に曲げた。試験後の曲げ部 (湾曲部) の割れの発生状況を観察し、曲げ部表面に割れや肌荒れなどの以上が無いものを○、割れは無いが肌荒れが生じているものを△、割れがあるものを×と評価した。   Hem workability was evaluated by performing a bending test after 10% stretching of the test material at room temperature, simulating the flat hem processing after the press molding. The test specimen conditions were No. 3 test specimen (width 30 mm × length 200 mm) defined in JIS Z 2204, and the specimen was prepared so that the longitudinal direction of the specimen coincided with the rolling direction. The bending test was performed by simulating flat hem processing using the V-block method specified in JIS Z 2248, bending it to 60 degrees with a clamp with a tip radius of 0.3 mm and a bending angle of 60 degrees, and then bending to 180 degrees. It was. At this time, for example, in the hem processing of the outer panel, the inner panel is sandwiched in the bent portion, but in order to make the conditions strict, it was bent at 180 degrees without sandwiching such an Al alloy plate. Observe the occurrence of cracks in the bent part (curved part) after the test, ○ if there is no crack or rough skin on the bent part surface, △ if there is no crack but rough skin, Things were rated as x.

先ず、表2 に示す通り、比較例1 は、室温時効して成形性が低下した過剰Si型の組成の6000系Al合金板であり、本発明回復処理を行なわずに、上記各成形を行なった場合を示す従来例に相当する。この場合、当然ながら、プレス成形にても破断が生じ、ヘム加工にても曲げ部に割れが生じ、この室温時効した状態では、成形が困難なことを示している。   First, as shown in Table 2, Comparative Example 1 is a 6000 series Al alloy plate having an excess Si type composition that has been aged at room temperature and has reduced formability. This corresponds to the conventional example showing the case. In this case, as a matter of course, breakage occurs even in press molding, and cracks occur in the bent portion even in hem processing, which indicates that molding is difficult in this state aged at room temperature.

これに対して、本発明条件範囲で回復処理を行なった発明例8 〜14は、室温時効して成形性が低下していた過剰Si型の組成の6000系Al合金板であるにもかかわらず、プレス成形性とヘム加工性とが向上乃至回復している。したがって、本発明の回復処理による成形性向上乃至回復効果が裏付けられる。   In contrast, Invention Examples 8 to 14, which were subjected to a recovery treatment within the range of the present invention, were 6000 series Al alloy plates with an excess Si type composition that had been aged at room temperature and had a reduced formability. The press formability and hemmability are improved or recovered. Therefore, the moldability improvement or recovery effect by the recovery process of the present invention is supported.

また、加熱しているものの加工歪みを予め与えていない比較例2 も、加工歪みを予め与えたものの加熱していない比較例3 も、プレス成形にても破断が生じ、ヘム加工にても曲げ部に割れが生じている。したがって、本発明の回復処理における、加工歪み付与と加熱との組み合わせの意義が裏付けられる。   In addition, both Comparative Example 2 that was heated but not preliminarily applied with processing strain, and Comparative Example 3 that was preliminarily applied with processing strain and not heated were also broken in press molding and bent in hem processing. There is a crack in the part. Therefore, the significance of the combination of processing strain application and heating in the recovery process of the present invention is supported.

更に、回復処理の加工歪み量が0.8%と、本発明回復処理の加工歪み量の下限1.0%から外れる比較例4 や、回復処理の加熱温度が45℃と、本発明回復処理の加熱温度の下限50℃から外れる比較例5 も、プレス成形性とヘム加工性とが発明例に比して、劣る。また、発明例の中でも、回復処理の加工歪み量が下限に近い発明例8 、回復処理の加熱温度が下限に近い発明例13、回復処理の加熱温度が上限に近い発明例14は、他の発明例9 〜12に比して、プレス成形性とヘム加工性とが比較低劣る。したがって、これらの結果から、本発明回復処理の加工歪み量条件と加熱温度条件との臨界的な意義も分かる。   Furthermore, the processing strain amount of the recovery treatment is 0.8%, which is out of the lower limit 1.0% of the processing strain amount of the recovery processing of the present invention, and the heating temperature of the recovery processing is 45 ° C. In Comparative Example 5 that deviates from the lower limit of 50 ° C., press moldability and hemmability are inferior to those of the inventive examples. Among invention examples, Invention Example 8 in which the amount of processing strain in the recovery process is close to the lower limit, Invention Example 13 in which the heating temperature in the recovery process is close to the lower limit, Invention Example 14 in which the heating temperature in the recovery process is close to the upper limit Compared to Invention Examples 9 to 12, press formability and hemmability are relatively low. Therefore, from these results, the critical significance of the processing strain amount condition and the heating temperature condition in the recovery process of the present invention can be understood.

次に、自動車アウタパネルとして、実施例1 と同じAl合金板を、プレス成形後に、このパネルが放置されて室温時効し、その後ヘム加工されることを模擬して、フラットヘム加工性を評価した。これらの結果を表3 に示す。   Next, as an automotive outer panel, the same Al alloy plate as in Example 1 was evaluated by simulating that the panel was left to age at room temperature after press molding and then hemmed. These results are shown in Table 3.

プレス成形は、製造直後の室温時効していないAl合金板から一辺が500mm の正方形の供試板 (ブランク) を複数枚切り出し、中央部に一辺が300mm で、高さが30mmと高い角筒状の張出部と、この張出部の四周囲に平坦なフランジ部 (幅30mm) を有するハット型のパネルに、メカプレスにより、ビード付き金型を用いて張出成形した。しわ押さえ力は49kN、潤滑油は一般防錆油、成形速度は20mm/ 分の同じ条件で行った。   In press molding, a square test plate (blank) with a side of 500 mm is cut out from an Al alloy plate that has not been aged at room temperature immediately after production, and a square tube shape with a side of 300 mm and a height of 30 mm. A hat-shaped panel having a protruding portion and a flat flange portion (width 30 mm) around the four portions of the protruding portion was stretch-formed by a mechanical press using a die with a bead. The wrinkle holding force was 49 kN, the lubricating oil was general rust preventive oil, and the molding speed was 20 mm / min under the same conditions.

この成形ハット型パネルを4 カ月間放置して室温時効させた。この室温時効させた成形パネルの引張試験特性は、前記した調質処理後( 製造直後) のAl合金板のAs0.2%耐力が128MPa、As伸びが30% に比して、時効後の0.2%耐力が169MPaとΔ耐力で41MPa 増加し、時効後の伸びが22% とΔ伸びで8%低下していた。なお、この引張試験特性測定条件は実施例1 と同じである。   The molded hat panel was left for 4 months and allowed to age at room temperature. The tensile test characteristics of this molded panel aged at room temperature are 0.2% after aging compared to the As 0.2% proof stress of 128MPa and As elongation of 30% for the Al alloy sheet after tempering treatment (immediately after production). % Proof stress was 169MPa and Δ proof stress was increased by 41MPa, and elongation after aging was 22% and DELTA elongation was 8% lower. The conditions for measuring the tensile test characteristics are the same as in Example 1.

そして、この成形ハット型パネルにおける前記平坦なフランジ部をフラットヘム加工試験した。フラットヘム加工代 (ヘム加工後のパネルの内側に折り曲げられた端部から折り曲げ部の端部までの距離) を12mmとして、ダウンフランジ工程を模擬し、Al合金パネルの縁を90度の角度となるまで折り曲げた。この際、Al合金パネルの90°曲げ半径は0.8 とした。次に、プリヘム工程を模擬して、Al合金パネルの縁を更に135 °の角度まで内側に折り曲げた。   And the flat hem processing test was carried out on the flat flange part in this forming hat type panel. The flat hem processing allowance (distance from the end folded to the end of the panel after hem processing to the end of the bent portion) is set to 12 mm, the down flange process is simulated, and the edge of the Al alloy panel is set at an angle of 90 degrees. Bent until. At this time, the 90 ° bend radius of the Al alloy panel was set to 0.8. Next, the pre-hem process was simulated, and the edge of the Al alloy panel was further bent inward to an angle of 135 °.

その後、厳しいフラットヘム工程条件を模擬して、敢えてインナパネルを前記Al合金パネルの折り曲げ部に挿入せずに、折り曲げ部を内側に180 度折り曲げ、パネル面に密着させるフラットヘム加工を行った。なお、フラットヘム加工方向は、元のAl合金板の圧延方向と一致するようにした。   After that, simulating severe flat hem process conditions, flat hem processing was performed in which the inner panel was not inserted into the bent part of the Al alloy panel, but the bent part was bent inward by 180 degrees and adhered to the panel surface. The flat hem processing direction was made to coincide with the rolling direction of the original Al alloy sheet.

そして、このフラットヘムの縁曲部の、肌荒れ、微小な割れ、大きな割れの発生などの表面状態を目視観察した。評価は、試験後の曲げ部 (湾曲部) の割れの発生状況を観察し、曲げ部表面に割れや肌荒れなどの以上が無いものを○、割れは無いが肌荒れが生じているものを△、割れがあるものを×と評価した。   Then, the surface state of the flat hem, such as rough skin, minute cracks, and large cracks, was visually observed. Evaluation was made by observing the occurrence of cracks in the bent part (curved part) after the test, ◯ if there was no more cracks or rough skin on the surface of the bent part, △ if there was no crack but rough skin occurred, The thing with a crack was evaluated as x.

なお、このヘム加工の際の時効硬化回復処理は、前記成形されたハット型パネルの平坦なフランジ部に対し、先ず、上記ダウンフランジ工程を行なって、本発明回復処理である10.0% の加工歪みを予め与えた。   Note that the age hardening recovery process at the time of hem processing is performed by first performing the above-described down flange process on the flat flange portion of the molded hat panel, and the 10.0% processing strain of the present invention recovery process. Was given in advance.

そして、このダウンフランジ加工を与えたパネルを、プリヘムおよびフラットヘム工程金型にセットし直す間に、ヒータにより、フランジ部を中間的に加熱して、本発明回復処理の内の加熱処理を行なった。その後、これら回復処理を行なったパネルをプリヘムおよびフラットヘム工程金型にセットして、プリヘム工程、フラットヘム工程を順次行なった。   And while setting the panel which gave this down flange process to a prehem and a flat hem process metal mold again, a flange part is heated with a heater intermediately, and heat processing of this invention recovery processing is performed. It was. Then, the panel which performed these recovery processes was set to the prehem and flat hem process metal mold | die, and the prehem process and the flat hem process were performed in order.

この際、表3 に示すように、発明例19は、上記中間的な加熱を80℃で行い、続く、プリヘム工程、フラットヘム工程では加熱せず、常温で成形した。発明例20は、上記中間的な加熱を80℃で行い、続く、プリヘム工程、フラットヘム工程でも、80℃に加熱しつつ成形した。発明例21は、上記中間的な加熱を100 ℃で行い、続く、プリヘム工程、フラットヘム工程では加熱せず、常温で成形した。   At this time, as shown in Table 3, in Invention Example 19, the intermediate heating was performed at 80 ° C., and the subsequent pre-hem step and flat-hem step were not heated, and were molded at room temperature. In Invention Example 20, the intermediate heating was performed at 80 ° C., and molding was performed while heating to 80 ° C. in the subsequent prehem step and flat hem step. In Invention Example 21, the intermediate heating was performed at 100 ° C., and the subsequent pre-hem step and flat-hem step were not heated but molded at room temperature.

また、比較のために、上記本発明回復処理の内の中間的な加熱を施さない比較例も各々フラットヘム加工試験した。比較例15は、続く、プリヘム工程、フラットヘム工程でも、加熱せず常温で成形した。比較例16は、続く、プリヘム工程、フラットヘム工程では、本発明範囲を外れる200 ℃に加熱して成形した。比較例17は、上記中間的な加熱を本発明範囲を外れる200 ℃に加熱して、続く、プリヘム工程、フラットヘム工程は、加熱せず常温で成形した。比較例18は、上記中間的な加熱を本発明範囲を外れる200 ℃に加熱して、続く、プリヘム工程、フラットヘム工程でも、200 ℃に加熱して成形した。   For comparison, each of the comparative examples not subjected to intermediate heating in the recovery treatment of the present invention was also tested for flat hem processing. Comparative Example 15 was molded at room temperature without heating even in the subsequent pre-hem step and flat-hem step. In Comparative Example 16, in the subsequent pre-hem step and flat-hem step, molding was performed by heating to 200 ° C. outside the scope of the present invention. In Comparative Example 17, the intermediate heating was heated to 200 ° C. outside the range of the present invention, and the subsequent prehem step and flathem step were molded at room temperature without heating. In Comparative Example 18, the intermediate heating was heated to 200 ° C. outside the range of the present invention, and the subsequent pre-hem step and flat hem step were also heated to 200 ° C. for molding.

表3 に示す通り、比較例15は、室温時効して成形性が低下した過剰Si型の組成の6000系Al合金からなる成形ハット型パネルであり、本発明回復処理を行なわずに、上記ヘム加工を行なった場合を示す従来例に相当する。この場合、当然ながら、ヘム加工にて曲げ部に割れが生じ、この室温時効したパネルの状態では、成形が困難であることを示している。   As shown in Table 3, Comparative Example 15 is a molded hat-type panel composed of a 6000 series Al alloy having an excess Si type composition that has been aged at room temperature and has reduced formability. This corresponds to a conventional example showing the case of processing. In this case, as a matter of course, the bent portion is cracked by the hem processing, which indicates that molding is difficult in the state of the panel aged at room temperature.

これに対して、本発明条件範囲で回復処理を行なった発明例19〜21は、室温時効して成形性が低下していた過剰Si型の組成の6000系Al合金からなる成形ハット型パネルであるにもかかわらず、ヘム加工性とが向上乃至回復している。したがって、本発明の回復処理による成形性向上乃至回復効果が裏付けられる。   In contrast, Invention Examples 19 to 21, which were subjected to a recovery treatment within the scope of the present invention, were formed hat-type panels made of an excess Si-type composition 6000 series Al alloy that had been aged at room temperature and had reduced formability. Despite being, heme workability is improved or recovered. Therefore, the moldability improvement or recovery effect by the recovery process of the present invention is supported.

一方、本発明条件範囲で回復処理を行なっていない比較例16、17、18もヘム加工にて曲げ部に割れが生じている。   On the other hand, in Comparative Examples 16, 17, and 18 in which the recovery treatment was not performed within the range of the present invention, the bent portion was cracked by the hem processing.

したがって、本発明の回復処理における、成形後のパネルのヘム加工に対する、加工歪み付与と加熱との組み合わせや条件の意義が裏付けられる。   Therefore, the significance of the combination and conditions of applying the processing strain and heating for the hem processing of the molded panel in the recovery processing of the present invention is supported.

次に、室温時効したAl合金押出中空形材を本発明の回復処理を施した後で、曲げ加工性を評価した。   Next, after subjecting the Al alloy extruded hollow profile aged at room temperature to the recovery treatment of the present invention, the bending workability was evaluated.

具体的には、前記した表1に示すBの各6000系成分組成のアルミニウム合金ビレットをDC鋳造により溶製し、480 ℃×4hr の均質化熱処理を行い、480 ℃の押出温度で押出加工を行い、押出直後にオンラインで各々水冷による直接焼入れを行った。ついで、これらの押出材に対し、共通して190 ℃×3 時間の時効処理を施した。押出速度は5m/ 分、押出比は61、直接焼入れの際の冷却速度は350 ℃/ 秒とした。   Specifically, aluminum alloy billets of each 6000 series component composition of B shown in Table 1 are melted by DC casting, homogenized heat treatment at 480 ° C. × 4 hr, and extrusion processing is performed at an extrusion temperature of 480 ° C. Immediately after extrusion, each was directly quenched by water cooling online. Subsequently, these extruded materials were commonly subjected to aging treatment at 190 ° C. × 3 hours. The extrusion rate was 5 m / min, the extrusion ratio was 61, and the cooling rate during direct quenching was 350 ° C./second.

この押出中空形材は、長手方向に均一な矩形 (口形) 断面であり、矩形断面の長辺は100mm 、短辺は70mm、肉厚は1.5mm であった。   This extruded hollow section had a uniform rectangular (mouth shape) cross section in the longitudinal direction. The long side of the rectangular cross section was 100 mm, the short side was 70 mm, and the wall thickness was 1.5 mm.

この押出中空形材を4 カ月間放置して室温時効させた。この室温時効させた押出中空形材の引張試験特性は、前記した時効処理後( 製造直後) のAl合金押出中空形材のAs0.2%耐力が206MPa、As伸びが16.1% に比して、時効後の0.2%耐力が230MPaとΔ耐力で24MPa 増加し、時効後の伸びが14.0% とΔ伸びで2.1%低下していた。この引張試験特性測定条件は実施例1 と同じである。なお、上記室温時効後のAl合金押出形材の前記結晶粒径測定方法による平均結晶粒径は40μm であった。   The extruded hollow profile was left to age for 4 months at room temperature. The tensile test characteristics of this extruded hollow profile aged at room temperature are as follows: As 0.2% proof stress of 206 MPa and As elongation of Al alloy extruded hollow profile after aging treatment (immediately after production) The 0.2% proof stress after aging increased by 230MPa and ΔMP by 24MPa, and the post-aging elongation decreased by 14.0% and by Δ% by 2.1%. The tensile test characteristic measurement conditions are the same as in Example 1. The average crystal grain size of the Al alloy extruded shape after the room temperature aging was 40 μm according to the crystal grain size measuring method.

上記室温時効した同一の押出中空形材を、表4 に示す種々の条件で回復処理した後で、各々、自動車のフレームやバンパ補強材の部材などとして曲げ加工されることを模擬して、曲げ加工性を評価した。これらの結果も表4 に示す。   The same extruded hollow shape material aged at room temperature was subjected to recovery treatment under various conditions shown in Table 4, and then bent as a member of an automobile frame or a bumper reinforcement member. Processability was evaluated. These results are also shown in Table 4.

なお、この際の回復処理は、試験材の押出中空形材を曲げ加工に使用した汎用ドローベンダーに設置後、押出中空形材の曲げ部分に対して、ドローベンダーにより、表4 に示す曲げ加工歪みを予め与えた。そして、この加工歪みを与えた押出中空形材の曲げ部分を、ドローベンダー近傍からヒーターにて、各所定温度に加熱して、その温度に1 分間保持した。そして、この保持後、引き続き、ドローベンダーにより曲げ加工を行なった。   In this case, the recovery treatment was performed by using the draw bender shown in Table 4 for the bent portion of the extruded hollow profile after installing it on a general-purpose draw bender that used the extruded hollow profile of the test material for bending. Strain was applied in advance. Then, the bent portion of the extruded hollow profile imparted with the processing strain was heated from the vicinity of the draw bender to each predetermined temperature with a heater and held at that temperature for 1 minute. And after this holding | maintenance, bending was continuously performed with the drawbender.

曲げ加工試験は、長さ2000 mm の供試材を用い、曲げ加工に汎用されるドローベンダーによる曲げ加工試験を行なった。曲げ内側半径Rは300mm とした。曲げ加工の際の、機械的なクリアランスは0.1mm とした。   In the bending test, a specimen with a length of 2000 mm was used, and a bending test using a draw bender that was widely used for bending was performed. The bending inner radius R was 300 mm. The mechanical clearance during bending was set to 0.1 mm.

曲げ加工後のサンプルの曲げ外側となる形材面の割れや、曲げ内側となる形材面面のしわの発生状況を目視にて評価した。曲げ加工後のサンプルに、割れやしわの発生していないものを曲げ加工性が優れるとして○、微小な割れやしわのの発生したものを△、開口割れの発生したものを曲げ加工性が劣るとして×と、各々評価した。   Visual observation evaluated the generation | occurrence | production state of the crack of the profile surface used as the bending outer side of the sample after a bending process, and the wrinkle of the profile surface surface used as a bending inner side. Bending samples with no cracks or wrinkles are considered to be excellent in bending workability, △ are those with minute cracks or wrinkles, and those with opening cracks are inferior in bending workability As x, each was evaluated.

先ず、表4 に示す通り、比較例22は、室温時効して成形性が低下した過剰Si型組成の6000系Al合金押出形材であり、本発明回復処理を行なわずに、曲げ加工を行なった場合を示す従来例に相当する。この場合、当然ながら、曲げ加工にても割れやしわが生じ、この室温時効した状態では、曲げ加工が困難であることを示している。   First, as shown in Table 4, Comparative Example 22 is a 6000 series Al alloy extruded material with an excess Si type composition that was aged at room temperature and reduced formability, and was subjected to bending without performing the recovery treatment of the present invention. This corresponds to the conventional example showing the case. In this case, as a matter of course, cracks and wrinkles are generated even in the bending process, which indicates that the bending process is difficult in this state aged at room temperature.

これに対して、本発明条件範囲で回復処理を行なった発明例29〜35は、室温時効して曲げ加工性が低下していた過剰Si型の組成の6000系Al合金押出形材であるにもかかわらず、曲げ加工性が向上乃至回復している。したがって、本発明の回復処理による曲げ加工性向上乃至回復効果が裏付けられる。   On the other hand, Invention Examples 29 to 35 which were subjected to the recovery treatment within the range of the present invention were 6000 series Al alloy extruded shapes having an excess Si type composition that had been aged at room temperature and had reduced bending workability. Nevertheless, the bending workability is improved or recovered. Therefore, the improvement of bending workability or the recovery effect by the recovery process of the present invention is supported.

また、加熱しているものの加工歪みを予め与えていない比較例23も、加工歪みを予め与えたものの加熱していない比較例24も、曲げ加工にて割れやしわが生じている。したがって、押出形材においても、本発明の回復処理における、加工歪み付与と加熱との組み合わせの意義が裏付けられる。   In addition, both Comparative Example 23, which was heated but not given processing strain in advance, and Comparative Example 24, which was provided with processing strain in advance but not heated, were cracked or wrinkled by bending. Therefore, the significance of the combination of processing strain application and heating in the recovery processing of the present invention is also supported in the extruded profile.

更に、回復処理の加工歪み量が0.8%と、本発明回復処理の加工歪み量の下限1.0%から外れる比較例25や、回復処理の加熱温度が45℃と、本発明回復処理の加熱温度の下限50℃から外れる比較例26も、曲げ加工性が発明例に比して、劣る。また、発明例の中でも、回復処理の加工歪み量が下限に近い発明例29、回復処理の加熱温度が下限に近い発明例34、回復処理の加熱温度が上限に近い発明例35は、他の発明例30〜33に比して、曲げ加工性が比較低劣る。したがって、これらの結果から、押出形材における、本発明回復処理の加工歪み量条件と加熱温度条件との臨界的な意義も分かる。   Furthermore, the amount of processing strain in the recovery process is 0.8%, a comparative example 25 that deviates from the lower limit 1.0% of the amount of processing strain in the recovery process of the present invention, and the heating temperature of the recovery process is 45 ° C. Comparative Example 26, which deviates from the lower limit of 50 ° C., is also inferior in bending workability to the inventive examples. Among invention examples, invention example 29 in which the amount of processing distortion in the recovery process is close to the lower limit, invention example 34 in which the heating temperature in the recovery process is close to the lower limit, invention example 35 in which the heating temperature in the recovery process is close to the upper limit, Compared to Invention Examples 30 to 33, the bending workability is relatively low. Therefore, from these results, the critical significance of the processing strain amount condition and the heating temperature condition of the recovery treatment of the present invention in the extruded shape is also understood.

本発明によれば、室温時効硬化して成形性が低下した6000系アルミニウム合金材の成形性を回復させることが可能なアルミニウム合金材の成形方法を提供できる。この結果、自動車、船舶、航空機あるいは車両などの輸送機、機械、電気製品、建築、構造物、光学機器、器物の部材や部品用として、また、特に、自動車などの輸送機の部材に、Al合金材の適用を拡大できる。   ADVANTAGE OF THE INVENTION According to this invention, the shaping | molding method of the aluminum alloy material which can recover the moldability of the 6000 series aluminum alloy material in which formability fell by age-hardening at room temperature can be provided. As a result, for transportation equipment such as automobiles, ships, aircraft or vehicles, machinery, electrical products, architecture, structures, optical equipment, equipment parts and parts, and in particular, for transportation equipment parts such as automobiles, Al The application of alloy materials can be expanded.

Al合金板のヘム加工を示す説明図である。It is explanatory drawing which shows hem processing of an Al alloy plate.

Claims (10)

6000系アルミニウム合金材に対し、1%以上の加工歪みを予め与えた後に50〜150 ℃の温度に加熱する時効硬化回復処理を行なって成形することを特徴とするアルミニウム合金材の成形方法。   A method for forming an aluminum alloy material, comprising subjecting a 6000 series aluminum alloy material to an age hardening recovery treatment in which a processing strain of 1% or more is preliminarily applied and then heated to a temperature of 50 to 150 ° C. 前記成形がプレス成形加工である請求項1に記載のアルミニウム合金材の成形方法。   The method for forming an aluminum alloy material according to claim 1, wherein the forming is press forming. 前記成形が曲げ加工である請求項1に記載のアルミニウム合金材の成形方法。   The method for forming an aluminum alloy material according to claim 1, wherein the forming is bending. 前記曲げ加工が複数の工程からなり、前記時効硬化回復処理を、この複数の工程において選択的に行なう請求項3に記載のアルミニウム合金材の成形方法。   The method for forming an aluminum alloy material according to claim 3, wherein the bending process includes a plurality of steps, and the age hardening recovery process is selectively performed in the plurality of steps. 前記アルミニウム合金材が、アルミニウム合金板またはアルミニウム合金板をプレス成形後のパネルである請求項3または4に記載のアルミニウム合金材の成形方法。   The method for forming an aluminum alloy material according to claim 3 or 4, wherein the aluminum alloy material is an aluminum alloy plate or a panel after the aluminum alloy plate is press formed. 前記曲げ加工がヘミング加工である請求項3乃至5のいずれか1項に記載のアルミニウム合金材の成形方法。   The method for forming an aluminum alloy material according to claim 3, wherein the bending process is a hemming process. 前記ヘミング加工がアルミニウム合金板をプレス成形後のパネルに対して施されるものである請求項6に記載のアルミニウム合金材の成形方法。   The method for forming an aluminum alloy material according to claim 6, wherein the hemming is performed on a panel after press-molding an aluminum alloy plate. 前記パネルが自動車アウタパネル用である請求項7に記載のアルミニウム合金材の成形方法。   The method for forming an aluminum alloy material according to claim 7, wherein the panel is for an automobile outer panel. 前記成形に用いる金型に前記時効硬化回復処理用の加熱手段を設けた請求項1乃至8のいずれか1項に記載のアルミニウム合金材の成形方法。   The method for forming an aluminum alloy material according to any one of claims 1 to 8, wherein a heating means for the age hardening recovery treatment is provided in a mold used for the forming. 前記6000系アルミニウム合金材が、質量% で、Mg:0.2〜2.0%、Si:0.3〜2.0%、Mn:0.01 〜0.65% 、Cu:0.001〜1.0%を含有し、かつSi/Mg が質量比で1 以上であり、残部Alおよび不可避的不純物からなる請求項1乃至9のいずれか1項に記載のアルミニウム合金材の成形方法。
The 6000 series aluminum alloy material contains, by mass%, Mg: 0.2 to 2.0%, Si: 0.3 to 2.0%, Mn: 0.01 to 0.65%, Cu: 0.001 to 1.0%, and Si / Mg is a mass ratio. The method for forming an aluminum alloy material according to any one of claims 1 to 9, comprising at least 1 and comprising the balance Al and inevitable impurities.
JP2004049830A 2004-02-25 2004-02-25 Forming method of aluminum alloy material Expired - Fee Related JP4164453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049830A JP4164453B2 (en) 2004-02-25 2004-02-25 Forming method of aluminum alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049830A JP4164453B2 (en) 2004-02-25 2004-02-25 Forming method of aluminum alloy material

Publications (2)

Publication Number Publication Date
JP2005240083A JP2005240083A (en) 2005-09-08
JP4164453B2 true JP4164453B2 (en) 2008-10-15

Family

ID=35022122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049830A Expired - Fee Related JP4164453B2 (en) 2004-02-25 2004-02-25 Forming method of aluminum alloy material

Country Status (1)

Country Link
JP (1) JP4164453B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4933788B2 (en) * 2006-02-13 2012-05-16 本田技研工業株式会社 Bulge molding method and hollow molded body
JP5329746B2 (en) * 2006-07-13 2013-10-30 株式会社神戸製鋼所 Aluminum alloy sheet for warm forming
JP2008246508A (en) * 2007-03-29 2008-10-16 Kobe Steel Ltd Bending method of aluminum alloy material
JP5499847B2 (en) * 2009-05-29 2014-05-21 新日鐵住金株式会社 Manufacturing method of panel assembly
JP5852534B2 (en) * 2012-09-19 2016-02-03 株式会社神戸製鋼所 Aluminum alloy sheet with excellent bake hardenability
JP5918186B2 (en) * 2013-09-06 2016-05-18 株式会社神戸製鋼所 Aluminum alloy sheet with excellent bake hardenability
DE202014105862U1 (en) 2014-12-04 2016-03-03 Kuka Systems Gmbh Folding tool and folding device
CN111715828A (en) * 2020-06-04 2020-09-29 安徽英力电子科技股份有限公司 Stamping forging forming process for side wall peripheral inverted step
CN111715783B (en) * 2020-07-15 2022-07-19 安徽英力电子科技股份有限公司 Rounding forming process for side wall of metal shell
CN112246937B (en) * 2020-09-28 2022-03-08 昆山鼎国精密模具有限公司 Anti-cracking rounding forming process for notebook shell

Also Published As

Publication number Publication date
JP2005240083A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
US9453273B2 (en) Aluminum alloy sheet with excellent paint-bake hardenability
JP4495623B2 (en) Aluminum alloy plate excellent in stretch flangeability and bending workability and method for producing the same
JP4939088B2 (en) Manufacturing method of aluminum alloy sheet with excellent ridging mark property during forming
JP5671422B2 (en) Method for producing high strength 7000 series aluminum alloy member and high strength 7000 series aluminum alloy member
CN107709590B (en) Sheet metal for motor vehicle bodies having high mechanical strength
JP2010159489A (en) Method for molding 7,000 series aluminum alloy material, and formed product molded by the same
KR20090061604A (en) Aluminum alloy sheet for cold press forming, method of manufacturing the same, and cold press forming method for aluminum alloy sheet
JP4939091B2 (en) Manufacturing method of aluminum alloy plate with excellent bending workability
CN100429330C (en) Shaping method of aluminium alloy section
JP4912877B2 (en) Automotive body exterior member made of Al-Si-Mg alloy plate fixed to steel structure
JP2016160516A (en) Aluminum alloy sheet
JP4164453B2 (en) Forming method of aluminum alloy material
JP4383039B2 (en) Method for producing aluminum alloy sheet with excellent bending workability
JP4944474B2 (en) Aluminum alloy plate excellent in stretch flangeability and manufacturing method thereof
JP3833574B2 (en) Aluminum alloy sheet with excellent bending workability and press formability
JP2006257505A (en) Aluminum alloy sheet having excellent extension flange formability
JP4515363B2 (en) Aluminum alloy plate excellent in formability and method for producing the same
JP3740086B2 (en) A method for producing an aluminum alloy plate that is excellent in hemmability after aging at room temperature and is hemmed after stretch forming
KR100722060B1 (en) Method for molding aluminum alloy material
JP5839588B2 (en) Press forming method for automotive panel material
JP3766334B2 (en) Aluminum alloy plate with excellent bending workability
JP2008101239A (en) Method for manufacturing aluminum alloy sheet superior in bendability, and aluminum alloy sheet
JP2014147958A (en) High strength 7000 aluminum alloy member and method for manufacturing the same
JP2008246508A (en) Bending method of aluminum alloy material
JP2012152780A (en) Molding working method for aluminum alloy plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4164453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees