JP2014147958A - High strength 7000 aluminum alloy member and method for manufacturing the same - Google Patents

High strength 7000 aluminum alloy member and method for manufacturing the same Download PDF

Info

Publication number
JP2014147958A
JP2014147958A JP2013018525A JP2013018525A JP2014147958A JP 2014147958 A JP2014147958 A JP 2014147958A JP 2013018525 A JP2013018525 A JP 2013018525A JP 2013018525 A JP2013018525 A JP 2013018525A JP 2014147958 A JP2014147958 A JP 2014147958A
Authority
JP
Japan
Prior art keywords
bending
aluminum alloy
restoration
extruded
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013018525A
Other languages
Japanese (ja)
Other versions
JP6005539B2 (en
Inventor
Masatoshi Yoshida
正敏 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013018525A priority Critical patent/JP6005539B2/en
Publication of JP2014147958A publication Critical patent/JP2014147958A/en
Application granted granted Critical
Publication of JP6005539B2 publication Critical patent/JP6005539B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high strength 7000 aluminum alloy member manufacturing method that can improve moldability itself even after natural aging and can greatly improve strength by subsequent artificial aging curing treatment, and to provide a high strength 7000 aluminum alloy member.SOLUTION: A high strength 7000 aluminum alloy member manufacturing method is characterized by conducting extremely partial restoration processing of 7000 system aluminum alloy extrusions, for example, under particular conditions like shown in Fig. 1, without artificial refining other than natural aging, after manufacturing the extrusions; and manufacturing the high strength 7000 aluminum alloy member by performing molding in a short time to form a member after the restoration processing and performing the refining to the member.

Description

本発明は高強度7000系アルミニウム合金部材および高強度7000系アルミニウム合金部材の製造方法に関するものである。本発明で言うアルミニウム合金部材とは、素材としての押出形材を製品形状(使用形状)に成形加工したものを言う。   The present invention relates to a high-strength 7000 series aluminum alloy member and a method for producing a high-strength 7000 series aluminum alloy member. The aluminum alloy member referred to in the present invention refers to a material obtained by molding an extruded shape as a material into a product shape (use shape).

7000系アルミニウム合金部材は、周知の通り、素材の押出形材の組成として、主成分であるZn、MgやCuなどの合金元素量を調整し、その時効硬化性を利用した人工時効処理(人工時効硬化処理)などの調質によって、必要な高強度を確保している。主な用途例としては、バンパ補強材(バンパリィンホース)、ドアビームなどの自動車用補強部材あるいは航空機用などの構造部材があり、薄肉化による軽量化のためにも、より高強度化が求められ、0.2%耐力で300MPa以上の高強度が要求される。   As is well known, the 7000 series aluminum alloy member is an artificial aging treatment (artificial aging treatment) using the age hardening property by adjusting the amount of alloying elements such as Zn, Mg and Cu as main components as the composition of the extruded shape of the material. The required high strength is ensured by tempering such as age hardening. Examples of main applications include bumper reinforcements (bumperin hoses), automotive reinforcement members such as door beams, and structural members such as aircraft, and higher strength is also required to reduce weight by reducing the thickness. , 0.2% proof stress and high strength of 300 MPa or more are required.

ただ、7000系アルミニウム合金部材は前記合金元素量が多いために、他の合金系に比して、耐SCC性(耐応力腐食割れ性)が低いことが知られている。   However, it is known that the 7000 series aluminum alloy member has a low SCC resistance (stress corrosion cracking resistance) as compared with other alloy series because of the large amount of the alloy elements.

また、7000系アルミニウム合金部材は、周知の通り、その時効硬化性ゆえに、素材としての押出形材として製造されたあと、自然時効硬化(以下、自然時効あるいは室温時効とも言う)によって大きく硬化する。例えば、熱間押出直後は0.2%耐力で150MPa程度であった強度が、自然時効(室温時効)20日経過後には、0.2%耐力で240MPa程度まで硬化してしまう。   As is well known, the 7000 series aluminum alloy member is hardened by natural age hardening (hereinafter also referred to as natural aging or room temperature aging) after being manufactured as an extruded shape as a raw material because of its age hardening. For example, the strength which was about 150 MPa at 0.2% proof stress immediately after hot extrusion is cured to about 240 MPa at 0.2% proof stress after 20 days of natural aging (room temperature aging).

このように自然時効した素材押出形材は、曲げ加工、断面の潰し加工(プレス加工)、打抜き加工から選択される成形加工(塑性加工)、あるいはこれらが組み合わされた成形加工の際に、成形性が極端に低下してしまう。そして、更に、自然時効が進展した場合、押出形材の均一伸びや局部伸びが低下し、部材への成形性や成形精度が更に低下する。これに対して、製品への成形側あるいは成形製品の使用側からは、設計自由度の拡大を目的に、現状よりも加工限界を向上できる素材や加工方法が要求されている、この点で、特に小Rでの曲げ加工や、張出量の大きいプレス加工などが要求されるようになってきている。   Such naturally aged material extruded shapes are formed during bending, cross-section crushing (pressing), molding selected from stamping (plastic processing), or a combination of these. Sexually decreases. And when natural aging progresses further, the uniform elongation and local elongation of an extrusion shape material will fall, and the moldability to a member and shaping accuracy will fall further. On the other hand, from the side of molding to the product or the side of using the molded product, for the purpose of expanding the degree of design freedom, materials and processing methods that can improve the processing limit than the current situation are required, In particular, bending with a small radius and pressing with a large overhang have been required.

ちなみに、このような問題は、製造された素材押出形材に対して、別途に再加熱して溶体化処理(溶体化および焼入れ処理)を施した後でも同様で、このような調質を施した後に、成形されるまでの時間が経過するほど、自然時効が進展する。   Incidentally, such a problem is the same even after the manufactured material extruded shape is reheated separately and subjected to solution treatment (solution treatment and quenching treatment). After that, natural aging progresses as the time until molding elapses.

また、前記成形加工が可能であっても、素材押出形材が製造されてから成形加工されるまでの時間の違い、すなわち自然時効硬化の程度(進行)の違いによって、押出形材同士の強度が異なる、すなわち押出形材同士の強度がばらつくために、前記成形加工時のスプリングバック量がばらつき、成形精度が劣るという問題もある。   In addition, even if the molding process is possible, the strength of the extruded profiles depends on the difference in time from the production of the extruded material to the molding process, that is, the degree of natural age hardening (progress). However, since the strength of the extruded shapes varies, there is also a problem that the amount of spring back varies during the molding process and the molding accuracy is inferior.

更に、前記した、曲げ加工、断面の潰し加工、打抜き加工から選択される、塑性加工を伴う部材への成形加工では、残留応力が付加されやすく、この付加される残留応力が高いほど、その成形部位における耐SCC性が著しく低下するという問題もある。   Further, in the forming process to the member accompanied by plastic working, which is selected from the bending process, the crushing process of the cross section, and the punching process as described above, the residual stress is likely to be added. There is also a problem that the SCC resistance at the site is significantly reduced.

このため、自然時効した押出形材の成形性の改善のために、従来から、成形加工に先立ち、自然時効した押出形材を予め熱処理して、前記耐力などの強度を低下させる回復処理が行われている。   For this reason, in order to improve the formability of naturally aged extruded shapes, conventionally, prior to molding, a naturally aged extruded shape is heat-treated in advance to perform a recovery process to reduce the strength such as the proof stress. It has been broken.

例えば、特許文献1では、航空機用フレームなどの製造方法が記載されている。そして、7000系アルミニウム合金素材の押出形材あるいは板材の全体につき、これを溶体化処理後に塑性加工する部品の成形方法において、成形直前に、加熱温度:150〜350℃で、加熱時間:30秒〜5分間(急速加熱ができる場合は170〜200℃×20秒〜3分間)の復元処理を行なっている。これによって前記溶体化処理後の自然時効によって硬化した材料を軟化させて成形性を確保し、自然時効の進度の違いによるスプリングバック量のばらつきを解消したのち成形している。   For example, Patent Document 1 describes a method for manufacturing an aircraft frame or the like. And in the molding method of the part which plastically processes the extruded shape member or the plate member of the 7000 series aluminum alloy material after the solution treatment, immediately before the molding, the heating temperature is 150 to 350 ° C., and the heating time is 30 seconds. Restoration treatment is performed for ˜5 minutes (170 to 200 ° C. × 20 seconds to 3 minutes when rapid heating is possible). As a result, the material cured by the natural aging after the solution heat treatment is softened to ensure moldability, and the variation in springback due to the difference in the progress of natural aging is eliminated before molding.

特許文献2では、スピニング加工工程と該スピニング加工されたパイプを人工時効処理する高強度アルミニウム合金パイプの製造方法が記載されている。そして、溶体化処理後に自然時効された、素材の7000系高硬度アルミニウム合金押出パイプ全体を、スピニング加工による摩擦発熱や塑性変形による発熱などを利用して、150℃〜250℃の温度範囲に局部的に短時間で昇温および降温する復元処理を行った後に、スピニング加工している。   Patent Document 2 describes a spinning process and a method for producing a high-strength aluminum alloy pipe by artificially aging the spun pipe. Then, the entire 7000 series high hardness aluminum alloy extruded pipe, which is naturally aged after solution treatment, is locally applied to a temperature range of 150 ° C. to 250 ° C. using frictional heat generated by spinning or heat generated by plastic deformation. Spinning is performed after a restoration process in which the temperature is raised and lowered in a short time.

特許文献3では、長期の自然時効をしても優れた拡管加工性をそなえた自動二輪車のアウターチューブ材としての7000系高力アルミニウム合金押出管の製造方法が記載されている。そして、アルミニウム合金押出管をT4調質した後、その全体を105℃〜250℃の温度で30秒〜180分間熱処理するに際して、100℃から熱処理温度までの昇温速度を1℃/秒未満とする復元処理を行なうことが提案されている。その実施例では、2段時効後の引張強さ、耐力、伸びに優れ、応力腐食割れ寿命も優れるとしている。   Patent Document 3 describes a method for producing a 7000 series high-strength aluminum alloy extruded tube as an outer tube material of a motorcycle having excellent tube expansion workability even after long-term natural aging. And after T4 tempering the aluminum alloy extruded tube, when the whole is heat treated at a temperature of 105 ° C. to 250 ° C. for 30 seconds to 180 minutes, the heating rate from 100 ° C. to the heat treatment temperature is less than 1 ° C./second. It has been proposed to perform restoration processing. In the examples, the tensile strength, proof stress and elongation after two-stage aging are excellent, and the stress corrosion cracking life is also excellent.

特許文献4は、同じくアウターチューブ用高力アルミニウム合金押出管の耐応力腐食割れ性を向上させるために、7000系高力アルミニウム合金押出管を溶体化処理および焼入れし、室温で100時間以上の時間自然時効させたのち、150〜250℃の温度で30秒〜10分間熱処理し、100℃から熱処理温度までの昇温速度を1℃/秒以上とした復元処理を行ない、最後に人工時効処理を行う手法が提案されている。   Patent Document 4 discloses that, in order to improve the stress corrosion cracking resistance of a high strength aluminum alloy extruded tube for an outer tube, the 7000 type high strength aluminum alloy extruded tube is subjected to solution treatment and quenching, and the time of 100 hours or more at room temperature. After natural aging, heat treatment is performed at a temperature of 150 to 250 ° C. for 30 seconds to 10 minutes, and a restoration treatment is performed with a rate of temperature increase from 100 ° C. to the heat treatment temperature being 1 ° C./second or more. Finally, an artificial aging treatment is performed. A technique to do this has been proposed.

また、押出形材分野ではないが、特許文献5、6には、プレス成形性の向上のために、アルミニウム合金板に対して部分的に前記復元処理を施すことが開示されている。   Although not in the extruded shape field, Patent Documents 5 and 6 disclose that the restoration treatment is partially performed on an aluminum alloy plate in order to improve press formability.

特開平7−305151号公報Japanese Patent Laid-Open No. 7-305151 特開2005−194620号公報JP 2005-194620 A 特開2007−119853号公報JP 2007-119853 A 特開平10−168553号公報JP-A-10-168553 特開2011−111657号公報JP 2011-111657 A 特開2009−161851号公報JP 2009-161851 A

これら従来の復元処理は、特許文献2の条件を除き、素材全体である、素材の長手方向や幅方向全体に対して一律に行うものである。このため、特に押出形材で特徴的な長尺な部品に適用する場合、比較的大型の熱処理設備が必要になる。しかし、このような大型設備では、装置自体のコストアップに伴い、加工コストが高くなるという問題がある。また、様々な断面形状が容易に得られることを利点としている押出形材に適用することを考慮すると、断面形状が異なる場合にも容易に適用できる汎用性の高い熱処理方法が望まれる。   These conventional restoration processes are performed uniformly over the entire material in the longitudinal direction and the entire width direction, except for the conditions of Patent Document 2. For this reason, a relatively large heat treatment facility is required particularly when applied to long parts characteristic of extruded profiles. However, such a large-scale facility has a problem that the processing cost increases with the cost increase of the apparatus itself. Further, considering application to an extruded profile that has the advantage of easily obtaining various cross-sectional shapes, a highly versatile heat treatment method that can be easily applied even when the cross-sectional shapes are different is desired.

特許文献2の事例は、スピニング加工によるローラと素材パイプとの摩擦発熱とパイプの塑性変形による発熱を利用することで、スピニング加工部のみを部分的に復元処理しているといえる。しかし、本手法では、前述したようにアルミニウム合金パイプに素材形状が限定され、押出形材などに汎用的には適用できない。また、スピニング加工によるローラと素材パイプとの摩擦発熱とパイプの塑性変形による発熱の利用では、復元処理条件の制御が困難で条件のばらつきが大きくなる。このため、素材の必要部位を、正確にかつ均一に熱処理することが難しいという問題も生じる.   In the example of Patent Document 2, it can be said that only the spinning processed part is partially restored by utilizing the frictional heat generation between the roller and the material pipe by the spinning process and the heat generation by the plastic deformation of the pipe. However, in this method, as described above, the shape of the material is limited to the aluminum alloy pipe, and it cannot be applied to an extruded shape or the like for general purposes. In addition, when the frictional heat generated between the roller and the material pipe by spinning and the heat generated by plastic deformation of the pipe are used, it is difficult to control the restoration processing condition, and the variation of the condition becomes large. For this reason, there is a problem that it is difficult to accurately and uniformly heat the necessary part of the material.

また、前述したように、アルミニウム合金形材の適用範囲拡大のためには、より小Rでの曲げ加工や断面を長手方向に形状を変化させる変断面加工も望まれるようになっている。前記したように、成形加工前に復元処理を追加することで、アルミニウム合金形材素材の加工限界は向上し、これに応じて部品の加工限界も向上するが、ユーザからは、さらに設計自由度が広くなるように、小Rでの曲げ加工や潰し加工限界を向上できる手法も望まれている。   In addition, as described above, in order to expand the application range of the aluminum alloy profile, bending processing with a smaller R and variable cross-section processing that changes the shape of the cross-section in the longitudinal direction are desired. As described above, by adding a restoration process before forming processing, the processing limit of the aluminum alloy shape material is improved, and the processing limit of the parts is improved accordingly. Therefore, there is a demand for a technique that can improve the limit of bending and crushing with a small R.

更に、これら従来の復元処理は、その加熱温度や、保持時間の長さなどの条件から推測すると、全て完全なO材処理になりやすい。すなわち、O材処理にならないようにためには、後述する本発明の復元処理のように、特定の加熱速度による急熱、7000系アルミニウム合金押出形材などの素材の特定の実体温度、特定のごく短時間の保持などの諸条件を満足することが必要である。しかし、これら従来の多くの復元処理には、これらの条件の開示がなく、完全なO材処理になる可能性が高くなる。このため、復元処理によって耐力を一旦低下させたあとで、調質処理を施しても、その人工時効硬化処理によって向上させられる強度には大きな限界がある。ちなみに、これら従来の復元処理温度の記載は、通常の炉の雰囲気温度であって、実体温度ではないことが多い。このため、炉の構造や性能、素材の形状などの影響で、実体温度が異なることが多く、これも復元処理後の素材特性が安定しない要因になっていた。   Furthermore, these conventional restoration processes are all likely to be a complete O material treatment when estimated from conditions such as the heating temperature and the length of holding time. That is, in order to avoid the O material treatment, as in the restoration processing of the present invention described later, rapid heating by a specific heating rate, a specific actual temperature of a material such as a 7000 series aluminum alloy extruded shape, a specific It is necessary to satisfy various conditions such as holding for a very short time. However, many of these conventional restoration processes do not disclose these conditions, and the possibility of a complete O material process increases. For this reason, even if the tempering treatment is performed after the yield strength is once lowered by the restoration treatment, there is a great limit to the strength that can be improved by the artificial age hardening treatment. Incidentally, the description of these conventional restoration processing temperatures is an ordinary furnace atmosphere temperature, and not an actual temperature in many cases. For this reason, the actual temperature is often different due to the influence of the structure and performance of the furnace, the shape of the material, and the like, and this also becomes a factor that the material characteristics after the restoration process are not stabilized.

また、特許文献5、6の、プレス成形性の向上のためのアルミニウム合金板に対する部分的な復元処理も、板の場合には板厚が薄いために、復元処理の熱膨張の影響で、素材板が熱変形することが大きな問題になる。このため、金型により素材の表裏を拘束して復元処理を行う必要があるが、煩雑である。しかも同じ合金系であっても、圧延板で成形性向上に有効な復元処理が、圧延板とはその製法や組織が異なる押出形材でも有効であるとは限らない。   In addition, the partial restoration process for the aluminum alloy plate in Patent Documents 5 and 6 for improving the press formability is also affected by the thermal expansion of the restoration process because the plate thickness is thin in the case of the plate. A big problem is that the plate is thermally deformed. For this reason, it is necessary to perform the restoration process by restraining the front and back of the material with a mold, but it is complicated. Moreover, even with the same alloy system, the restoration process effective for improving the formability of the rolled sheet is not necessarily effective even with an extruded shape having a different manufacturing method and structure from the rolled sheet.

本発明は、かかる問題に鑑みなされたもので、塑性加工を伴う部材への成形加工前の復元処理を行うにあたり、より低コストで加工限界向上効果が見込める復元処理を施した、高強度7000系アルミニウム合金部材および高強度7000系アルミニウム合金部材の製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and in performing restoration processing before forming processing to a member accompanied by plastic working, a high-strength 7000 series subjected to restoration processing that can be expected to improve the working limit at a lower cost. It aims at providing the manufacturing method of an aluminum alloy member and a high-strength 7000 series aluminum alloy member.

上記目的を達成するため、本発明の高強度7000系アルミニウム合金部材の要旨は、押出加工によって製造後に調質処理されることなく自然時効したのみの状態で、長手方向あるいは幅方向の一部分だけに予め復元処理が施された7000系アルミニウム合金押出形材の、前記復元処理部分あるいは前記復元処理部分とその周縁部分において成形加工が施されたアルミニウム合金部材であって、前記復元処理が前記押出形材の実体温度で200〜500℃の範囲に加熱されるとともに、この温度範囲に0.1秒以上、20秒未満の短時間だけ保持された後に冷却される条件で行われ、この復元処理の冷却終了後から100分以内の時間内に前記成形加工したことである。   In order to achieve the above-mentioned object, the gist of the high-strength 7000 series aluminum alloy member of the present invention is only a part in the longitudinal direction or the width direction in a state of natural aging without being tempered after production by extrusion. 7000 series aluminum alloy extruded profile that has been subjected to a restoration process in advance, the restoration process part or an aluminum alloy member that has been molded at the restoration process part and the peripheral part thereof, wherein the restoration process is performed by the extrusion The material is heated in the range of 200 to 500 ° C. at the actual temperature of the material, and is kept under this temperature range for 0.1 seconds or more and less than 20 seconds and then cooled, and this restoration process is performed. The molding process was performed within a time of 100 minutes after the end of cooling.

また、上記目的を達成するための本発明の高強度7000系アルミニウム合金部材の製造方法の要旨は、押出加工によって製造後に調質処理されることなく自然時効したのみの状態で、長手方向あるいは幅方向の一部分だけに予め復元処理を施した7000系アルミニウム合金押出形材を、前記復元処理部分あるいは前記復元処理部分とその周縁部分において成形加工を施す、アルミニウム合金部材の製造方法であって、前記復元処理を、前記押出形材の実体温度で200〜500℃の範囲に加熱するとともに、この温度範囲に0.1秒以上、20秒未満の短時間だけ保持された後に冷却する条件で行い、この復元処理の冷却終了後から100分以内の時間内に前記成形加工を行うことである。   Moreover, the summary of the manufacturing method of the high-strength 7000 series aluminum alloy member of the present invention for achieving the above-mentioned object is that the longitudinal direction or the width in the longitudinal direction or the width in the state of being naturally aged without being tempered after manufacturing by extrusion. A method for producing an aluminum alloy member, comprising subjecting a 7000 series aluminum alloy extruded profile that has been subjected to a restoration process to only a part of a direction, to the restoration process part or the restoration process part and a peripheral part thereof, The restoration process is performed under the condition of heating to the actual temperature of the extruded shape member in the range of 200 to 500 ° C. and cooling in this temperature range for 0.1 seconds or more and being held only for a short time of less than 20 seconds, The forming process is performed within 100 minutes after the cooling of the restoration process is completed.

本発明では、その実体温度が比較的高温で、かつ絶対的に短時間などの特定条件での復元処理を、押出加工によって製造後に調質処理されることなく自然時効のみの状態での7000系アルミニウム合金押出形材に対して、従来の復元処理とは全く異なり、その長手方向あるいは幅方向の一部分だけ、あるいは押出形材断面の一部分だけに行う。そして、この部分的な復元処理の領域(部分)のみか、この部分的な復元処理部分の周縁部を含む領域か、この周縁部のみの領域にて成形加工を行う。   In the present invention, the actual temperature of the 7000 system is relatively high, and the restoration process under a specific condition such as a short time is absolutely natural aging without being tempered after production by extrusion. The aluminum alloy extruded shape is completely different from the conventional restoration process, and is performed only on a part in the longitudinal direction or the width direction, or only on a part of the cross section of the extruded shape. Then, molding is performed only in the region (part) of the partial restoration process, the region including the peripheral portion of the partial restoration processing portion, or the region of only the peripheral portion.

これによって、7000系アルミニウム合金素材が長尺の押出形材であっても、比較的小型設備で、簡便で安定した復元処理が可能となる。また、押出形材に、熱処理しない残りの大部分を残すため、押出形材全体に亘り均一に施す従来の復元処理やO材処理とは異なり、成形後の人工時効硬化処理で必要な部材強度を確保できる。   Accordingly, even if the 7000 series aluminum alloy material is a long extruded shape, a simple and stable restoration process can be performed with a relatively small facility. Also, in order to leave most of the extruded shape without heat treatment, unlike the conventional restoration processing and O material treatment that are uniformly applied to the entire extruded shape, the member strength required for post-molding artificial age hardening treatment Can be secured.

特に押出形材に施されることが多い曲げ加工の場合、曲げ加工部のみに部分的に前記復元処理を施すことで、素材の低耐力化、高n値化により加工(破断)限界曲げ半径を低減、すなわち、より小Rで曲げ加工することが可能になる。同時に、前記復元処理による部分的な耐力低減効果により、スプリングバック低減による形状精度の向上、残留応力の低減に伴う耐SCC(応力腐食割れ)性の向上を図ることができる。   Especially in the case of bending, which is often performed on extruded profiles, the processing (breaking) limit bending radius is achieved by lowering the material's yield strength and increasing the n-value by applying the restoration process only to the bent part. , That is, bending can be performed with a smaller R. At the same time, the partial yield strength reducing effect by the restoration process can improve the shape accuracy by reducing the spring back and improve the SCC (stress corrosion cracking) resistance accompanying the reduction of the residual stress.

さらに、この復元処理を長手方向に部分的のみならず、断面内で部分的に行うことで、曲げ加工限界をさらに向上させることも可能である。   Furthermore, it is possible to further improve the bending limit by performing this restoration process not only partially in the longitudinal direction but also partially in the cross section.

曲げ中立軸の内側のみを復元処理した本発明の態様を示し、押出形材が曲げ加工された後の円弧状の曲げ加工(曲げ変形)部分のみを示す平面図である。It is a top view which shows the aspect of this invention which restored only the inner side of the bending neutral axis | shaft, and shows only the arc-shaped bending process (bending deformation | transformation) part after an extruded shape member is bent. 曲げ中立軸の外側のみを復元処理した本発明の態様を示し、押出形材が曲げ加工された後の円弧状の曲げ加工(曲げ変形)部分のみを示す平面図である。It is a top view which shows the aspect of this invention which restored only the outer side of the bending neutral axis | shaft, and shows only the circular arc-shaped bending process (bending deformation) part after an extruded shape member is bent. 曲げ中立軸の外側のみで、かつ曲げ加工部の周縁部を復元処理した本発明の態様を示し、押出形材が曲げ加工された後の円弧状の曲げ加工(曲げ変形)部分のみを示す平面図である。The plane which shows only the outer side of a bending neutral axis | shaft, and the aspect of this invention which restored the peripheral part of the bending process part, and shows only the circular arc-shaped bending process (bending deformation) part after an extruded profile is bent. FIG. 図3と同じく、曲げ中立軸の外側のみで、かつ曲げ加工部の周縁部を復元処理した本発明の態様を示す平面図である。FIG. 4 is a plan view showing an embodiment of the present invention in which only the outer side of the bending neutral axis and the peripheral portion of the bent portion are restored as in FIG. 3. 図3、4における最大ひずみの低減効果を示す説明図である。It is explanatory drawing which shows the reduction effect of the largest distortion in FIG. 実施例1における曲げ破断限界の向上効果を示す説明図である。It is explanatory drawing which shows the improvement effect of the bending fracture limit in Example 1. FIG. 実施例1における曲げ破断限界の向上効果を示す説明図である。It is explanatory drawing which shows the improvement effect of the bending fracture limit in Example 1. FIG. 実施例2における曲げ加工試験条件を示す説明図である。It is explanatory drawing which shows the bending process test conditions in Example 2. FIG. 実施例3における潰し加工性の向上効果を示す説明図である。It is explanatory drawing which shows the improvement effect of crushing workability in Example 3. FIG. 実施例3における潰し加工試験体を示す断面図である。It is sectional drawing which shows the crushing processing test body in Example 3. FIG. 実施例3における潰し加工試験条件を示す説明図である。FIG. 10 is an explanatory diagram showing crushing processing test conditions in Example 3.

以下に、本発明の実施の形態につき、順に要件ごとに具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described in order for each requirement.

(復元処理)
本発明の復元処理は、押出加工によって製造された7000系アルミニウム合金押出形材であって、その製造(押出加工)後に、本発明の復元処理に先立って、溶体化および焼入れ処理や人工時効硬化処理などの調質処理を予め施されることなく、自然時効(自然時効硬化、室温時効硬化)したのみの状態での押出形材を対象とする。言い換えると、押出加工によって製造後に、前記調質処理されることなく、自然時効(室温時効、常温時効)したのみの状態の7000系アルミニウム合金押出形材素材に対して、本発明の復元処理を施す。これによって始めて、この復元処理を施された押出形材を成形加工した後の人工時効処理などの調質処理で、7000系アルミニウム合金部材の強度を0.2%耐力で300MPa以上の高強度に確保できる効果が得られる。
(Restore process)
The restoration process of the present invention is a 7000 series aluminum alloy extruded shape produced by extrusion, and after its production (extrusion process), prior to the restoration process of the present invention, solution treatment and quenching treatment or artificial age hardening Extruded shapes that have been subjected to natural aging (natural aging hardening, room temperature aging hardening) without being subjected to any tempering treatment such as treatment are intended. In other words, the restoration process of the present invention is applied to a 7000 series aluminum alloy extruded shape material that has been subjected to natural aging (room temperature aging, room temperature aging) without being subjected to the tempering treatment after manufacturing by extrusion. Apply. For the first time, the 7000 series aluminum alloy member has a strength of 0.2% proof stress and a high strength of 300 MPa or higher by tempering treatment such as artificial aging treatment after molding the extruded shape subjected to the restoration treatment. The effect which can be ensured is acquired.

これに対して、その製造(押出加工)後に、溶体化および焼入れ処理や人工時効硬化処理などの調質処理を予め施した7000系アルミニウム合金押出形材に、本発明の復元処理を施しても、その効果は発揮されない。本発明の復元処理は、後述する復元処理条件の通り、通常の軟質化のためのO材処理とは異なり、一旦調質処理された7000系アルミニウム合金押出形材組織をキャンセルする(キャンセルできる)ものではないからである。   On the other hand, even after the manufacturing (extrusion process), the 7000 series aluminum alloy extruded shape which has been subjected to a tempering process such as solution treatment and quenching process or artificial age hardening process may be subjected to the restoration process of the present invention. , The effect is not demonstrated. Unlike the normal O material treatment for softening, the restoration processing of the present invention cancels the tempered 7000 series aluminum alloy extruded shape structure (can be canceled), unlike normal O material treatment for softening. It is not a thing.

(復元処理条件)
本発明における部分的な復元処理の条件も、復元処理による効果発現のために重要である。この条件として、本発明の部分的な復元処理は、押出形材の実体温度で200〜500℃の範囲に加熱されるとともに、この温度範囲に0.1秒以上、20秒未満の短時間だけ保持された後に冷却される条件で行われ、この復元処理の冷却終了後から100分以内の時間内に成形加工する。本発明では、押出形材の実体温度が500℃近傍の再溶体化領域であっても、前記短時間での保持や保持後の冷却などの条件を全て含めて、その目的から「復元処理」と称している。
(Restore processing conditions)
The conditions for the partial restoration process in the present invention are also important for the effect expression by the restoration process. As this condition, the partial restoration process of the present invention is heated to a range of 200 to 500 ° C. at the actual temperature of the extruded profile, and within this temperature range only for a short time of 0.1 second or more and less than 20 seconds. It is performed under the condition of being cooled after being held, and is molded within a time of 100 minutes after the completion of the cooling of the restoration process. In the present invention, even if the actual temperature of the extruded profile is in the re-solubilized region near 500 ° C., including all the conditions such as holding in the short time and cooling after holding, the “restoration process” is performed for that purpose. It is called.

復元処理の際の7000系アルミニウム合金押出形材素材の実体温度が200℃未満では、復元処理が不十分となって、特に、成形加工性が向上せず、付与される残留応力も高くなる。一方、実体温度を500℃を超えて高温とする必要は無く、これ以上の高温では、昇温に要する時間なども含めて熱処理時間が長くなりすぎて、完全なO材処理(焼きなまし処理)となる可能性が生じ、成形加工後の人工時効処理後の強度が0.2%耐力で300MPa以上に向上しない可能性が生じる。   When the actual temperature of the extruded material of the 7000 series aluminum alloy at the time of the restoration process is less than 200 ° C., the restoration process becomes insufficient. In particular, the formability is not improved and the applied residual stress is also increased. On the other hand, it is not necessary that the substantial temperature exceeds 500 ° C., and if the temperature is higher than this, the heat treatment time including the time required for the temperature rise becomes too long, and the complete O material treatment (annealing treatment) The strength after the artificial aging treatment after the molding process may not be improved to 300 MPa or more with a 0.2% proof stress.

この際、0.5℃/秒以上の加熱速度による急速加熱(急熱)によって、7000系アルミニウム合金押出形材素材の実体温度を200〜500℃の範囲まで加熱することが好ましい。加熱速度が0.5℃/秒未満と遅いと、温間あるいは高温状態での保持時間が長くなって、完全なO材処理(焼きなまし処理)となる可能性が生じ、前記成形加工後の人工時効処理後の強度が0.2%耐力で300MPa以上に向上しない可能性が生じる。   At this time, it is preferable to heat the substantial temperature of the 7000 series aluminum alloy extruded shape material to a range of 200 to 500 ° C. by rapid heating (rapid heating) at a heating rate of 0.5 ° C./second or more. If the heating rate is as low as less than 0.5 ° C./second, the holding time in a warm or high temperature state becomes long, and there is a possibility of complete O material treatment (annealing treatment). There is a possibility that the strength after the aging treatment is not improved to 300 MPa or more at 0.2% proof stress.

次に、上記温度範囲での加熱保持時間も重要で、復元処理における加熱処理時間は、押出形材素材の実体の温度が200℃以上、500℃以下の温度範囲にあるのが瞬間的な短時間であっても、素材の実体の温度がこの温度域にあれば効果がある。例えば、後述するように加熱体を直接、押出形材に接触させて直ちに離するような、瞬間的な保持(時間)の目安である0.1秒程度であっても、素材の実体の温度がこの温度域にあれば効果がある。一方で、この保持時間が20秒以上を超えて長すぎると、温度条件にもよるが、この復元処理によるベークハード性に寄与する微小析出物Bを再固溶や、反対に析出が進んでしまうことになる。また、保持時間が長すぎると、完全なO材処理(焼きなまし処理)ともなりやすい。これらの結果、成形加工後の人工時効処理によっても、強度が0.2%耐力で300MPa以上に高くできない。このため、加熱保持時間は前記した0.1秒以上、20秒未満とする。   Next, the heating and holding time in the above temperature range is also important, and the heat treatment time in the restoration process is instantaneously short when the temperature of the extruded shape material is in the temperature range of 200 ° C. or more and 500 ° C. or less. Even if it is time, it is effective if the temperature of the material is within this temperature range. For example, as will be described later, even if the heating body is in direct contact with the extruded profile and immediately separated, the temperature of the material substance is about 0.1 seconds, which is a measure of instantaneous holding (time). Is effective in this temperature range. On the other hand, if the holding time is longer than 20 seconds or more, depending on the temperature condition, the fine precipitate B that contributes to the bake hardness due to the restoration process is re-dissolved, or conversely, precipitation proceeds. It will end up. Further, if the holding time is too long, it is likely to be a complete O material treatment (annealing treatment). As a result, the strength cannot be increased to 300 MPa or more with a 0.2% proof stress even by the artificial aging treatment after molding. For this reason, the heating and holding time is set to 0.1 seconds or more and less than 20 seconds as described above.

前記温度範囲に0.1秒以上、20秒未満のごく短時間だけ保持するために、この保持後直ちに、室温まで0.5℃/秒以上の冷却速度で、強制的に急冷(空冷、水冷、ミスト冷却)することが好ましい。この際、本発明で言う室温とは、数℃、0℃あるいは0℃以下などの、いわゆる18〜25℃程度の室温以下の温度(への冷却)を含みうる。   In order to hold the temperature within the above temperature range for a very short time of not less than 0.1 seconds and less than 20 seconds, immediately after this holding, forced cooling (air cooling, water cooling) to room temperature at a cooling rate of 0.5 ° C./second or more is performed. Mist cooling). At this time, the room temperature referred to in the present invention may include a temperature of room temperature or less (cooling to about 18 to 25 ° C.) such as several degrees C., 0 ° C. or 0 ° C. or less.

(復元処理の形材への部分適用)
本発明では、押出形材の成形加工される領域(部分)や、成形加工される領域(部分)の周縁部を含む領域(部分)、成形加工される領域の周縁部のみの領域を、押出形材の長手方向あるいは幅方向の一部分だけに前記条件の復元処理を部分的に施すことを特徴とする。
(Partial application to the shape of restoration process)
In the present invention, a region (part) where the extruded shape material is processed, a region (part) including the peripheral portion of the region (part) to be processed, and a region including only the peripheral portion of the region to be processed are extruded. The condition restoration process is partially performed only on a part in the longitudinal direction or the width direction of the profile.

従来の復元処理は、押出形材の長手方向あるいは幅方向の全体に亘って、一律あるいは均一に復元処理を施す。これに対して、本発明は、これら従来の復元処理やO材処理などの調質処理とは異なり、既定する条件の復元処理を施された領域(部分)以外の、押出形材の他の大部分の領域(部分)は、復元処理自体を施さずに、前記自然時効したままの組織として残すことが特徴である。   In the conventional restoration process, the restoration process is uniformly or uniformly performed over the entire length or width of the extruded profile. On the other hand, the present invention is different from the tempering process such as the conventional restoration process and the O material process, in addition to the region (part) subjected to the restoration process of the predetermined condition. Most regions (portions) are characterized in that they remain as the natural aged tissue without being subjected to the restoration process itself.

そして、この部分的な復元処理をした状態の押出形材を、復元処理した部分、あるいは復元処理をした部分とその周縁部を含む部分において、曲げ加工、プレス加工、打抜き加工から選択され、これらを組み合わせた加工も含む、成形加工を行う。ここで、成形加工を行う、復元処理した部分あるいは前記復元処理部分の周縁部分とは、復元処理した全部分、復元処理した部分の一部分、復元処理した部分の全部か一部分と復元処理した部分の周縁部分(周辺の隣接部分)を含む部分、あるいはこれら復元処理部分を含まない周縁部分(周辺の隣接部分)のことを言う。   Then, the extruded shape in a state of partial restoration processing is selected from bending processing, pressing processing, and punching processing in the restored processing portion or the restoration processing portion and the portion including the peripheral portion thereof, and these Forming processing is also performed, including processing combining the above. Here, the restoration processing portion or the peripheral portion of the restoration processing portion to be molded is the whole restoration portion, a part of the restoration processing portion, all or part of the restoration processing portion and the restoration processing portion. It refers to a portion including a peripheral portion (peripheral adjacent portion) or a peripheral portion (peripheral adjacent portion) not including these restoration processing portions.

このような、本発明の押出形材の部分的な復元処理によって、7000系アルミニウム合金素材がたとえ長尺の押出形材であっても、既存の比較的小型の設備や冶具のみを用いて、操作が簡便でしかも安定した熱処理が可能となる。そして、押出形材を前記のように成形加工した後の人工時効硬化処理で、部材としての必要強度を確保できる。   By such a partial restoration process of the extruded shape of the present invention, even if the 7000 series aluminum alloy material is a long extruded shape, using only existing relatively small equipment and jigs, The operation is simple and stable heat treatment is possible. And the required intensity | strength as a member is securable by the artificial age-hardening process after shaping | molding an extruded shape material as mentioned above.

また、特に押出形材に施されることが多い曲げ加工の場合に、押出形材の曲げ加工部分のみに、部分的に前記復元処理を施すことによって、復元処理部分のみの部分的な低耐力化、高n値化が図れる。このため、曲げ加工の加工(破断)限界曲げ半径を低減でき、より小さな曲げ半径(小R)によって曲げ加工することが可能になる。同時に、復元処理による耐力低減効果により、スプリングバック低減による形状精度の向上や、残留応力の低減に伴う耐SCC(応力腐食割れ)性の向上を図ることもできる。   In particular, in the case of bending, which is often applied to extruded profiles, by applying the restoration process only to the bent portion of the extruded profile, the partial low strength of only the restored part And high n-value can be achieved. For this reason, the bending (breaking) limit bending radius of bending can be reduced, and bending can be performed with a smaller bending radius (small R). At the same time, the strength reduction effect by the restoration process can improve the shape accuracy by reducing the spring back, and can improve the SCC (stress corrosion cracking) resistance accompanying the reduction of the residual stress.

これらの復元処理する領域(部分)の平面的な広さは、成形加工時に押出形材が変形する部分の平面的な広さに対して、復元処理の成形加工性向上の実効的な効果発揮と、それ以上の領域の復元処理は不要であることの兼ね合いから決まる。そして、この範囲から、復元処理を施す前記部分的な部位と、素材7000系アルミニウム合金押出形材の組成や製法からくる材料特性や、製造後の自然時効の進み具合(強度の上昇程度)、そして、その押出材の成形加工条件の関係などを勘案して設定される。   The area of the area (part) to be restored is effective for improving the processability of the restoration process compared to the area of the area where the extruded shape deforms during molding. Further, it is determined based on the balance that the restoration process of the area beyond that is unnecessary. And from this range, the partial site to be restored, the material properties coming from the composition and manufacturing method of the material 7000 series aluminum alloy extruded shape, the progress of natural aging after manufacture (strength increase), And it sets in consideration of the relationship of the molding process conditions of the extruded material.

(押出形材への復元処理の部分的な適用の仕方)
押出形材の部分的な復元処理は、前記した通り、押出形材の長手方向あるいは幅方向の一部分だけに施される。このように、復元処理を長手方向に部分的のみならず、押出形材の幅方向すなわち押出形材の断面内でも部分的に行うことで、成形加工限界をさらに向上させることができる。
(How to apply partial restoration processing to extruded profiles)
As described above, the partial restoration process of the extruded profile is performed only on a part of the extruded profile in the longitudinal direction or the width direction. In this way, by performing the restoration process not only partially in the longitudinal direction but also partially in the width direction of the extruded profile, that is, in the cross section of the extruded profile, the molding process limit can be further improved.

曲げ加工の場合:
特に押出形材に施されることが多い曲げ加工は、押出形材の長手方向を円周方向とする曲げ加工である。このような曲げ加工の場合には、前記押出形材の部分的な復元処理として、押出形材の曲げ加工部(曲げ変形部)に相当する領域の一部あるいは全部(全領域)、さらには、曲げ加工部を含み隣接する直辺部まで含めた領域の全領域あるいはその一部領域を事前に予め部分的に本発明の復元処理してから曲げ加工する。この場合に、本発明の復元処理を、押出形材の長手方向のみならず、押出形材の幅方向すなわち押出形材の断面内でも部分的に行うことで、曲げ加工限界をさらに向上させることが可能である。
For bending:
In particular, the bending process that is often performed on the extruded profile is a process in which the longitudinal direction of the extruded profile is the circumferential direction. In the case of such a bending process, as a partial restoration process of the extruded profile, part or all of the area corresponding to the bent part (bending deformation part) of the extruded profile (the entire area), and further Then, the entire region including the bent portion and the region including the adjacent straight side portion or a part of the region is partially subjected to the restoration processing of the present invention in advance and then bent. In this case, the bending process limit is further improved by partially performing the restoration process of the present invention not only in the longitudinal direction of the extruded profile but also in the width direction of the extruded profile, that is, in the cross section of the extruded profile. Is possible.

そして、このような復元処理部分あるいは復元処理部分とその周縁部を含む部分において押出形材の前記曲げ加工が施される。   Then, the bending of the extruded shape member is performed in such a restoration processing portion or a portion including the restoration processing portion and the peripheral portion thereof.

プレス加工、打抜き加工の場合:
押出形材の一部の断面形状を長手方向に変化させるプレス加工(形材断面の部分的な潰し加工)や、押出形材に穴を設ける打抜き加工から選択される成形加工の場合にも、事前に予め部分的に本発明の復元処理をしてから成形加工する。すなわち、押出形材の、これらの成形加工部(加工変形部)に相当する部分の一部あるいは全部の領域か、また、これらの成形加工部(加工変形部)周縁部に相当する部分を含めた前記成形加工部に相当する領域の全領域もしくは一部領域を、成形加工前に、事前に予め部分的に本発明の復元処理を施す。この場合に、本発明の復元処理を、押出形材の長手方向のみならず、押出形材の幅方向すなわち押出形材の断面内でも部分的に行うことで、成形加工限界をさらに向上させることが可能である。
For press working and punching:
Even in the case of a molding process selected from a press process (partial crushing of a cross section of a profile) that changes the cross-sectional shape of a part of the extruded profile in the longitudinal direction and a punching process that provides a hole in the extruded profile, Molding is performed in advance after partially performing the restoration process of the present invention in advance. That is, a part or all of the portion of the extruded profile corresponding to the molding portion (processing deformation portion) or the portion corresponding to the peripheral portion of the molding processing portion (processing deformation portion) is included. In addition, the entire region or a partial region of the region corresponding to the molding processing part is partially subjected to the restoration processing of the present invention in advance before the molding processing. In this case, by performing the restoration process of the present invention not only in the longitudinal direction of the extruded profile but also partially in the width direction of the extruded profile, that is, in the cross section of the extruded profile, the molding process limit is further improved. Is possible.

そして、このような復元処理部分あるいは復元処理部分とその周縁部を含む部分において押出形材の前記プレス加工や打抜き加工が施される。一例として、押出形材に施される成形加工が、形材の一部の断面形状を長手方向に変化させるために行うプレス加工の場合、このプレス加工部(プレス加工変形部)の一部や全部(全領域)、あるいは、このプレス加工部の近傍に位置し、成形加工時にパンチや金型と接触しない直辺部を含めて、事前に部分的に本発明の復元処理する。   Then, the pressing process or the punching process of the extruded shape material is performed in such a restoration processing portion or a portion including the restoration processing portion and the peripheral portion thereof. As an example, in the case where the forming process applied to the extruded profile is a press process performed to change the cross-sectional shape of a part of the profile in the longitudinal direction, a part of this press processed part (press processed deformed part) The restoration processing of the present invention is partially performed in advance including the entire side (all areas) or in the vicinity of the press-processed portion and including a straight side portion that does not come into contact with the punch or the mold during the molding process.

押出形材の一部の断面形状を長手方向に変化させるプレス加工例として、口型、日型、目型などの長手方向に均一な矩形断面を有する押出形材の、両端部や一部を部分的に潰し加工する事例がある。このような潰し加工は、設計上の形状制約の確保や、また、他部品との取り付け部を確保するために行われる。例えば、特開2008-120110号の事例では、ドアインパクトバーやタワーバーなどのエネルギ吸収部品への適用も示唆されており、端部側スペースの制約が厳しいバンパ補強材などへの適用も期待される。このような場合に本発明を用いれば、バンパ補強材全体を復元処理せずとも、この両端部の潰し加工部、あるいは潰し加工部とその周縁部を含む部分を部分的に復元処理するだけで、バンパ補強材自体の強度や衝突エネルギ吸収特性を低下させずに、この両端部の潰し加工を行うことができる。また、復元処理のための大きな炉や装置も不要である。   As an example of pressing that changes the cross-sectional shape of a part of the extruded shape in the longitudinal direction, both ends and part of the extruded shape having a uniform rectangular cross-section in the longitudinal direction, such as a mouth mold, a die, and an eye shape. There is an example of partial crushing. Such a crushing process is performed in order to secure a shape restriction on design and to secure an attachment portion with other parts. For example, in the case of Japanese Patent Application Laid-Open No. 2008-120110, application to energy absorbing parts such as door impact bars and tower bars is also suggested, and application to bumper reinforcements with severe end-side space restrictions is also expected. The If the present invention is used in such a case, it is only necessary to partially restore the crushed portion of the both ends or the portion including the crushed portion and the peripheral portion without restoring the entire bumper reinforcement. Further, the both ends can be crushed without deteriorating the strength and impact energy absorption characteristics of the bumper reinforcement itself. In addition, a large furnace and apparatus for the restoration process are not necessary.

押出形材断面内で復元処理条件を異ならせる:
特に押出形材を曲げ加工する場合には、押出形材の曲げ変形部の曲げ中立軸の内側と外側とに相当する部分同士か、または、この曲げ中立軸の内側と外側とに相当する部分と、この曲げ変形部の周縁とに相当する部分同士で、異なる条件の本発明復元処理を行っても良い。このように押出形材断面内で、互いに異なる条件の本発明復元処理を行うことで、前記曲げ中立軸の曲げ内側と外側との素材に、強度などの特性の差を設けることができ、かえって成形性を向上させることができる。ここで、これら異なる条件の復元処理とは、前記いずれかの側を本発明の復元処理をしないことを含む。
Different restoration conditions within the extruded profile:
Especially when bending extruded shapes, the portions corresponding to the inside and outside of the bending neutral axis of the bending deformation portion of the extruded shape, or the portions corresponding to the inside and outside of the bending neutral shaft And the present invention restoration processing under different conditions may be performed between portions corresponding to the peripheral edge of the bending deformation portion. Thus, by performing the present invention restoration process under different conditions within the cross section of the extruded profile, it is possible to provide a difference in properties such as strength on the material inside and outside the bending neutral shaft, Formability can be improved. Here, the restoration process of these different conditions includes not performing the restoration process of the present invention on either side.

図1、2、3、4は各々この、曲げ中立軸の曲げ内側と外側とのいずれかの側を復元処理し、他方の側を復元処理しない、本発明の態様を示している。図1〜3は、復元処理する部分と曲げ加工との関係を分かりやすく説明するために、素材である押出形材が曲げ加工された後の部材の、円弧状の曲げ加工(曲げ変形)した部分のみを平面的に示している。ここで、この素材押出形材乃至曲げ加工された部材の断面が、丸棒や角棒などの中実形状か、中空部を有する断面が口形、田形の中空形状かは問わない。言い換えると、中実であっても中空であっても、本発明復元処理の作用効果は同じである。   1, 2, 3, and 4 each show an aspect of the present invention in which either the bending inner side or the outer side of the bending neutral shaft is restored and the other side is not restored. 1-3, in order to easily understand the relationship between the portion to be restored and the bending process, the member after the extruded shape material is bent is subjected to an arc-shaped bending process (bending deformation). Only the portion is shown in a plan view. Here, it does not matter whether the cross section of the extruded material or the bent member is a solid shape such as a round bar or a square bar, or a cross section having a hollow portion is a mouth shape or a square shape. In other words, whether it is solid or hollow, the effect of the restoration process of the present invention is the same.

図1、2は、円弧状の曲げ加工(曲げ変形)部において、一点鎖線で示す、部材の長手方向(押出形材の押出方向)に延在する円弧状の曲げ中立軸N0に対して、部材の外側領域の変形部(加工部)全部か一部、あるいは部材の内側領域の変形部(加工部)全部か一部、のいずれか一方のみを復元処理した態様を示している。すなわち、前記押出形材でいうと、円弧状の曲げ変形部の曲げ中立軸の内側と外側とに相当する部分の全部か一部の、いずれか一方のみを復元処理した態様を示している。   1 and 2, in the arc-shaped bending (bending deformation) portion, the arc-shaped bending neutral axis N0 extending in the longitudinal direction of the member (extrusion direction of the extruded profile) indicated by a one-dot chain line, A mode is shown in which only one or all of the deformed portion (processed portion) in the outer region of the member or all or part of the deformed portion (processed portion) in the inner region of the member is restored. That is, in the case of the extruded shape member, a state is shown in which only one or all of the portions corresponding to the inner side and the outer side of the bending neutral axis of the arc-shaped bending deformation portion are restored.

図1は、円弧状の曲げ加工(曲げ変形)部において、部材(押出形材)の中立軸N0(図の下側に位置)の内側の変形部(加工部)の全域を復元処理した態様を示している。図1において点線で四角に囲んだ領域が、部材(押出形材)の中立軸N0の内側の変形部(加工部)全域である。この場合、図の中立軸N0の上側に位置する、外側の変形部(加工部)の側は本発明の復元処理をしていない。   FIG. 1 shows a state in which the entire region of a deformed portion (processed portion) inside a neutral axis N0 (positioned on the lower side of the figure) of a member (extruded profile) is restored in an arc-shaped bending process (bending deformation) portion. Is shown. In FIG. 1, a region enclosed by a dotted line in a square is the entire deformed portion (processed portion) inside the neutral axis N0 of the member (extruded profile). In this case, the side of the outer deformed portion (processed portion) located above the neutral axis N0 in the figure is not subjected to the restoration processing of the present invention.

一方、図2は、円弧状の曲げ加工(曲げ変形)部において、図の上側に位置する中立軸N0の外側領域の変形部(加工部)の、全部(全域)ではなく、点線で四角に囲んだ一部のみを復元処理した態様を示している。この場合、図の中立軸の下側に位置する押出形材の内側領域の変形部(加工部)の側は、本発明の復元処理をしていない。   On the other hand, FIG. 2 shows the arcuate bending (bending deformation) part as a square with dotted lines, not all (all areas) of the deformation part (working part) in the outer region of the neutral axis N0 located on the upper side of the figure. The mode which restored only the part enclosed is shown. In this case, the side of the deformed portion (processed portion) in the inner region of the extruded profile located on the lower side of the neutral axis in the figure is not subjected to the restoration process of the present invention.

図1において、この内側領域を復元処理した場合、円弧状の一点鎖線で示す平行な2本の曲げ中立軸N0、N1のうち、復元処理前の(元の)押出形材の幅方向中央の(図の内側の)方の曲げ中立軸N0{中立軸(通常)と記載}が、復元処理によって、左右2本の上向きの矢印で示す通り、図の外側の曲げ中立軸N1{中立軸(復元処理適用)と記載}へと移動する。これは、押し出したままの直線状の素材押出形材としてみた場合の、円弧状の曲げ変形部の曲げ中立軸N0の内側と外側とに相当する部分の、いずれか一方のみを復元処理した態様に共通した作用効果である。したがって、復元処理を図1のように、曲げ中立軸N0の内側の全部(全領域)ではなく、曲げ中立軸N0の内側の一部(一部の領域)とした場合でも同様の効果が生じる。   In FIG. 1, when this inner region is restored, two parallel bending neutral axes N0 and N1 indicated by the one-dot chain line in the arc shape are at the center in the width direction of the (original) extruded profile before restoration. The bending neutral axis N0 {denoted as neutral axis (usually)} (inside of the figure) is converted into the bending neutral axis N1 {neutral axis (outside of the figure) as indicated by two upward and downward arrows by the restoration process. Move to “describe restoration process application)”. This is a mode in which only one of the portions corresponding to the inner side and the outer side of the bending neutral axis N0 of the arc-shaped bending deformed portion when viewed as an extruded straight material extruded shape is restored. This is a common effect. Therefore, the same effect is produced even when the restoration process is not all of the inside of the bending neutral axis N0 (all areas) but part of the inside of the bending neutral axis N0 (partial area) as shown in FIG. .

このため、曲げ加工の際のひずみ量を示す2本の平行な斜めの縦線(実線)S0、S1のうち、復元処理前の(元の)右側に示すS0が、4本の左斜め上方に向いた小さな矢印で示す通り、左側に示すS1へと移動し、曲げ加工時に曲げ外側表面に発生する引張ひずみ量は小さく、逆に、曲げ内側に発生する圧縮ひずみ量は増加することになる。このため、特に曲げ加工時に破断が問題になるような部品を曲げ加工する場合に有効である。   For this reason, of two parallel diagonal vertical lines (solid lines) S0 and S1 indicating the strain amount during bending, S0 shown on the right side (original) before the restoration process is four diagonally upper left corners. As shown by the small arrow pointing to the left, it moves to S1 shown on the left side, and the amount of tensile strain generated on the outer surface of the bend during bending is small, and conversely, the amount of compressive strain generated on the inner side of the bend increases. . For this reason, it is particularly effective when bending a part in which breakage becomes a problem during bending.

また、この図1の場合には、内側領域の復元処理によって、押出形材の内側領域の曲げ加工(曲げ変形)部分の部分的な低耐力化、高n値化が図れている。中立軸の移動に伴い曲げ内側への圧縮ひずみは増加するものの、前記材料特性の変化により、しわなどの形状不良も生じにくいという利点が得られる。   Further, in the case of FIG. 1, the lowering of the yield strength and the increase of the n value of the bending process (bending deformation) portion of the inner region of the extruded profile are achieved by the restoring process of the inner region. Although the compressive strain toward the inside of the bending increases with the movement of the neutral axis, there is an advantage that shape defects such as wrinkles are less likely to occur due to the change in the material characteristics.

図2において、この内側領域の一部のみを復元処理した場合、円弧状の一点鎖線で示す平行な2本の曲げ中立軸N0、N1のうち、復元処理前の(元の)曲げ中立軸N0が、復元処理によって、左右2本の下向きの矢印で示す通り、図の内側の曲げ中立軸N1へと移動する。これは、前記図1の場合と同様、押し出したままの直線状の素材押出形材としてみた場合の、円弧状の曲げ変形部の曲げ中立軸N0の内側と外側とに相当する部分の、いずれか一方のみを復元処理した態様に共通した作用効果である。したがって、復元処理を図2のように曲げ中立軸N0の外側の一部(一部の領域)ではなく、曲げ中立軸N0の内側の全部(全領域)とした場合でも同様である。   In FIG. 2, when only a part of this inner region is restored, the (original) bend neutral axis N0 before the restoration process among the two parallel bend neutral axes N0 and N1 indicated by the one-dot chain line in the arc shape. However, as indicated by two downward arrows on the left and right, the restoration process moves to the bending neutral axis N1 inside the drawing. This is the same as in the case of FIG. 1 described above, in the portion corresponding to the inner side and the outer side of the bending neutral axis N0 of the arc-shaped bending deformed portion when viewed as an extruded straight material extruded shape. This is an effect common to the mode in which only one of them is restored. Therefore, the same applies to the case where the restoration process is performed not on a part (partial region) outside the bending neutral axis N0 as shown in FIG.

この場合、曲げ加工の際のひずみ量を示す2本の斜めの縦線(実線)S0、S1のうち、復元処理前の(元の)左側に示すS0が、右側に示すS1へと移動し、曲げ加工時に曲げ内側に発生する圧縮ひずみ量が低減されることになり、特に曲げ内側でのしわ抑制が課題になる部品の曲げ加工に好適である。   In this case, of the two oblique vertical lines (solid lines) S0 and S1 indicating the amount of strain at the time of bending, S0 shown on the left side before the restoration process moves to S1 shown on the right side. The amount of compressive strain generated inside the bend during bending is reduced, and this is particularly suitable for bending a part in which wrinkle suppression is a problem.

この図2の場合、曲げ外側に発生する引張ひずみ量は増加することになるが、曲げ外側領域の素材特性は復元処理によって、低耐力化、高n値化が図れていることで、復元処理を適用していない通常の素材に比べて破断限界は高くなっており、破断自体も生じにくいといえる。   In the case of FIG. 2, the amount of tensile strain generated on the outside of the bend increases, but the material properties in the outside of the bend are restored by reducing the yield strength and increasing the n-value by the restoration process. The fracture limit is higher than that of a normal material that does not apply, and it can be said that the fracture itself is less likely to occur.

もちろん、曲げ加工を受ける領域について長手方向に部分的に復元処理しただけでも、前述したように、復元処理による低耐力化、高n値化効果により、成形性は向上する。これは、これによる破断限界の向上や、座屈しわの発生限界向上、さらにはスプリングバック低減により、所定の製品形状を得るための加工度を低減することができることによる効果である。
そして、前記したように、復元処理を押出形材の長手方向に部分的のみならず、断面内でも部分的に行うことで、曲げ加工限界をさらに向上させることが可能である。すなわち、前記したように、復元処理を施す位置や領域を選択、設計するによって、曲げ加工時の中立軸Nの位置を自由に変更できる効果を利用し、積極的にこの曲げ中立軸Nの位置をコントロールして、曲げ加工の加工限界を制御することが可能となる。より中立軸Nの位置を大きく変化させたい場合には、勿論、曲げ内側と外側とで、復元処理の温度や加熱時間条件を互いに変えて行うことも可能であるが、前記図1、2の通り、曲げ内側もしくは外側のどちらか一方にのみ熱処理を施すことでも、大きな効果が得られる。
Of course, even if the region subjected to the bending process is only partially restored in the longitudinal direction, as described above, the formability is improved by the low yield strength and high n-value effect by the restoration process. This is an effect of being able to reduce the degree of processing for obtaining a predetermined product shape by improving the breaking limit, improving the buckling wrinkle generation limit, and reducing the spring back.
As described above, the bending process limit can be further improved by performing the restoration process not only partially in the longitudinal direction of the extruded profile but also partially in the cross section. That is, as described above, the position and region of the bending neutral axis N is positively utilized by utilizing the effect that the position of the neutral axis N during bending can be freely changed by selecting and designing the position and region where the restoration process is performed. It is possible to control the processing limit of bending by controlling. When it is desired to change the position of the neutral axis N more greatly, it is of course possible to change the temperature of the restoration process and the heating time condition between the inside and outside of the bend. Even if the heat treatment is performed only on one of the inside and the outside of the bend, a great effect can be obtained.

図3は、円弧状の曲げ加工(曲げ変形)部において、曲げ加工部(曲げ変形部)のみを、軟化領域1として復元処理する場合を示している。また、図4は、これに加えてこの曲げ加工部のAで示す境界よりも外側にある(離れた)形材の周縁部(直線部)領域の曲げ中立軸に対する曲げ外側領域を軟化領域2として復元処理した態様を示している。この図4の場合は押し出したままの直線状の素材押出形材としてみた場合に、この曲げ加工部のAで示す境界よりも外側にある形材の周縁領域まで含めて、曲げ中立軸の外側に相当する部分のみを復元処理した態様となる。   FIG. 3 shows a case where only the bent portion (bending deformation portion) is restored as the softened region 1 in the arc-shaped bending processing (bending deformation) portion. In addition to this, in FIG. 4, the bending outer region with respect to the bending neutral axis in the peripheral portion (straight portion) region of the shape member located outside (away from) the boundary indicated by A of the bent portion is softened region 2. As shown in FIG. In the case of FIG. 4, when viewed as an extruded straight material extruded shape, including the peripheral region of the shape outside the boundary indicated by A of the bent portion, the outside of the bending neutral axis Only the portion corresponding to is restored.

図5に、これら図3、4の場合の、曲げ加工時のひずみ量の低減効果を示す。図5において、縦軸がひずみ量ε、横軸が前記図3の点線で示す曲げ中心軸からの、形材の曲げ外側領域の距離Sを示す。図5の、ひずみ量εと、曲げ中心軸からの形材曲げ外側領域の距離Sとの関係において、周縁部を含めて曲げ加工しない図3の場合のひずみ分布は、上側の細い実線のようになり、曲げ加工部のAで示す境界までは一定の高いひずみ量εとなって、Aで示す境界以降は急激に低下している。   FIG. 5 shows the effect of reducing the strain amount during bending in the cases of FIGS. In FIG. 5, the vertical axis indicates the strain amount ε, and the horizontal axis indicates the distance S of the bending outer region of the profile from the bending center axis indicated by the dotted line in FIG. 3. In the relationship between the strain amount ε in FIG. 5 and the distance S of the outer shape bending area from the bending center axis, the strain distribution in the case of FIG. Thus, a constant high strain amount ε is obtained up to the boundary indicated by A in the bent portion, and the value decreases sharply after the boundary indicated by A.

これに対して、図4の場合には、図5の下側の太い実線で示すように、周縁部まで含めて復元処理した曲げ加工部のAで示す境界までは一定のひずみ量だが、周縁部を含まない場合に比べて、絶対値が低くなるとともに、曲げ加工部の境界Aを越えた右側領域まで広い範囲でひずみが発生していることがわかる。このひずみ量の低減は、周縁部の復元処理による低耐力化の影響で、変形領域が広がるためである。   On the other hand, in the case of FIG. 4, as shown by the thick solid line on the lower side of FIG. It can be seen that the absolute value is lower than that in the case where the portion is not included, and strain is generated in a wide range up to the right region beyond the boundary A of the bent portion. This reduction in the amount of strain is because the deformation region widens due to the effect of lowering the proof stress due to the peripheral area restoration process.

図4に示すように、曲げ加工部の前記周縁領域まで含めて復元処理することで、素材低耐力化および高n値かの影響で変形範囲が広くなり、広い範囲で均一にひずみを受け持つことで、曲げ加工時のひずみ量が低減される。これは、円弧状の曲げ加工(曲げ変形)部において、曲げ加工部を含む前記周縁領域を復元処理した態様に共通した作用効果である。したがって、曲げ内側領域側を復元処理した場合、あるいは断面内の全領域を復元処理した場合でも同様の効果を得ることができる。このため、曲げ加工における破断あるいはしわなどの形状精度不良が抑制しやすくなり、加工限界曲げ半径を低減でき、より小さな曲げ半径(小R)によって曲げ加工することが可能になる。同時に、復元処理による耐力低減効果により、スプリングバック低減による形状精度の向上や、残留応力の低減に伴う耐SCC(応力腐食割れ)性の向上を図ることもできる。   As shown in FIG. 4, by performing restoration processing including the peripheral region of the bent portion, the deformation range is widened due to the influence of low material strength and high n value, and the strain is uniformly affected over a wide range. Thus, the amount of strain during bending is reduced. This is an effect common to the aspect in which the peripheral region including the bent portion is restored in the arc-shaped bent portion (bending deformation) portion. Therefore, the same effect can be obtained even when the bending inner region side is restored or when the entire region in the cross section is restored. For this reason, it becomes easy to suppress shape accuracy defects, such as a fracture | rupture or a wrinkle in a bending process, a process limit bending radius can be reduced, and it becomes possible to bend with a smaller bending radius (small R). At the same time, the strength reduction effect by the restoration process can improve the shape accuracy by reducing the spring back, and can improve the SCC (stress corrosion cracking) resistance accompanying the reduction of the residual stress.

ちなみに、図1〜3においても、これらの復元処理する領域の広さは、その素材7000系アルミニウム合金押出形材の組成や製法からくる材料特性や、製造後の自然時効の進み具合(強度の上昇程度)、そして、その押出材の成形加工条件の関係などを勘案して、その効果が生じる範囲から、経験的あるいは試行錯誤的に設定される。   By the way, also in FIGS. 1 to 3, the size of the region to be restored is determined by the composition of the material 7000 series aluminum alloy extruded shape, the material characteristics resulting from the manufacturing method, and the progress of natural aging after manufacture (strength of strength). It is set empirically or by trial and error from the range in which the effect occurs in consideration of the relationship of the molding processing conditions of the extruded material.

(押出形材の復元処理手段)
本発明のように、前記押出形材の成形加工される部分、あるいは成形加工される部分を含む部分のみの、長手方向あるいは幅方向の一部分だけに前記条件の復元処理を施すためには、この復元処理を、通常の押出形材の熱処理に用いる加熱炉で行うことは無理である。通常の押出形材の熱処理に用いる加熱炉は、押出形材全体に対して均一に熱処理することを目的としており、押出形材の部分的な加熱には不適である。
(Extruded shape restoration processing means)
As in the present invention, in order to perform the restoration process of the above condition only on a part in the longitudinal direction or the width direction of only the part including the part to be processed or molded part of the extruded shape member, It is impossible to perform the restoration process in a heating furnace used for heat treatment of a normal extruded profile. A heating furnace used for heat treatment of a normal extruded profile is intended to uniformly heat the entire extruded profile, and is not suitable for partial heating of the extruded profile.

したがって、前記復元処理を、押出形材への復元処理の前記した種々の部分的な適用場所に応じて、しかも前記した温度、短時間の最適条件で行うためには、所定の温度に熱した冶具を前記押出形材の長手方向あるいは幅方向の一部分だけに押し当て、この押し当てた部分を急速に加熱することによって行うことが好ましい。   Therefore, in order to perform the restoration process according to the various partial application places of the restoration process to the extruded profile, and to perform the above-described temperature at the optimum conditions for a short time, the restoration process was heated to a predetermined temperature. It is preferable to press the jig against only a part in the longitudinal direction or the width direction of the extruded profile, and rapidly heat the pressed part.

このような冶具は、金属工具あるいはIHヒータが好適であって、これらの冶具を、少なくとも片側から押出形材(素材)に押し当て、前記した強制的な急冷手段と組み合わせることで、押出形材の部分的にのみ、かつ前記した温度、短時間の最適条件で、かつ、押出形材への復元処理の前記した種々の部分的な適用場所に応じて、復元処理することができる。   Such a jig is preferably a metal tool or an IH heater, and these jigs are pressed against an extruded shape (material) from at least one side and combined with the above-mentioned forced quenching means to obtain an extruded shape. The restoration process can be carried out only in part, under the above-mentioned temperature and optimum conditions for a short time, and in accordance with the various partial application places of the restoration process to the extruded profile.

なお、このような高温の冶具を素材に押し当てる方法は、前記したアルミニウム合金の薄板では熱変形が問題となるが、厚肉の形材ゆえに剛性が比較的高い押出形材では、断面外側(片側)からの加熱でも、熱変形は殆ど問題とならない。   In addition, the method of pressing such a high-temperature jig against the material causes a problem of thermal deformation in the above-described aluminum alloy thin plate, but in the extruded shape having a relatively high rigidity due to the thick profile, the outer side of the cross section ( Even with heating from one side), thermal deformation hardly poses a problem.

(成形加工)
以上説明したような復元処理が施された7000系アルミニウム合金押出形材の、前記復元処理部分あるいは前記復元処理部分を含む部分において、成形加工を施してアルミニウム合金部材とする。この成形加工は、前記した曲げ加工、プレス加工、打抜き加工から選択され、これらの各成形加工単独か、これらの各成形加工を適宜組み合わせた成形加工が、製品としての部材形状に応じて選択される。
(Molding)
In the 7000 series aluminum alloy extruded shape subjected to the restoration processing as described above, the restoration processing portion or the portion including the restoration processing portion is subjected to forming to obtain an aluminum alloy member. This forming process is selected from the bending process, the press process, and the punching process described above, and each of these forming processes alone or a forming process appropriately combining these forming processes is selected according to the shape of the member as a product. The

押出形材に施されることが多い曲げ加工は、押出形材(あるいは部材)の長手方向を円周方向とする曲げ加工である。押出形材に施されることが多いプレス加工は、パンチや金型を用いて、押出形材(あるいは部材)の一部の断面形状を長手方向に変化させる、形材断面の部分的な潰し加工である。)や、押出形材に施されることが多いプレス加工は、押出形材(あるいは部材)の所定位置に、所定の大きさ(径)や個数だけ、他部材や締結具との嵌合、締結用の穴を設ける打抜き加工である。これらは、残留応力の発生を伴う、塑性加工としての部材形状への成形加工である。   The bending process that is often performed on the extruded profile is a bending process in which the longitudinal direction of the extruded profile (or member) is the circumferential direction. Press work, which is often performed on extruded profiles, uses a punch or die to change the cross-sectional shape of a part of the extruded profile (or member) in the longitudinal direction, partially crushing the profile section. It is processing. ) And press work that is often applied to extruded profiles, and fitting with other members and fasteners at a predetermined size (diameter) and number of pieces at a predetermined position of the extruded profile (or member), This is a punching process in which a hole for fastening is provided. These are forming processes into a member shape as plastic working accompanied by generation of residual stress.

成形加工までの経過時間:
但し、本発明の復元処理の効果を発揮させるためには、前記復元処理の冷却終了後から100分以内の短時間内に成形加工を開始することが必要である。前記復元処理の冷却終了後から成形加工の開始が、100分を超えた場合、高合金化組成の7000系アルミニウム合金は、自然時効が進んで、本発明の復元処理の効果が薄れてしまう。すなわち、この復元処理効果を成形加工において発現させるためには、復元処理(冷却)後に、自然時効が進まないうちに、あるいは自然時効が進んでも微小なうちに、なるべく早く(遅滞なく)成形加工を開始する必要がある。
Elapsed time to molding:
However, in order to exert the effect of the restoration process of the present invention, it is necessary to start the molding process within a short time within 100 minutes after the completion of the cooling of the restoration process. When the start of the forming process after the completion of the cooling of the restoration process exceeds 100 minutes, the 7000 series aluminum alloy having a high alloying composition is naturally aged and the effect of the restoration process of the present invention is diminished. In other words, in order to express this restoration processing effect in the molding process, after the restoration process (cooling), the molding process is performed as soon as possible (with no delay) before the natural aging progresses or while the natural aging progresses. Need to start.

この目安としては、勿論、7000系アルミニウム合金押出形材の組成や製造条件、あるいは前記した本発明の復元処理条件にもよるが、これらを押しなべて決定すると、前記復元処理の急冷直後から、成形加工を開始するまでの(所要)時間を100分以内とする。100分を超えると、高強度な7000系アルミニウム合金押出形材素材では、その組成からして、前記した通り自然時効が進みすぎて、成形性が著しく低下し、復元処理する意義が失われる。   As a guideline, of course, it depends on the composition and manufacturing conditions of the 7000 series aluminum alloy extruded shape, or the restoration processing conditions of the present invention described above. The (required) time to start is within 100 minutes. If it exceeds 100 minutes, the high-strength 7000 series aluminum alloy extruded shape material has a natural aging that is excessively advanced as described above due to its composition, so that the formability is remarkably lowered and the significance of the restoration treatment is lost.

すなわち、7000系アルミニウム合金押出形材の自然時効(強度増加)は短時間で進み、言い換えると、自然時効の初期の段階で、時効程度(強度増加)が大きく進む。このため、前記復元処理によって、成形加工部分やその近傍を低耐力化、高n値化しても、前記復元処理の急冷直後から成形加工開始までの時間が長くなった場合、自然時効が進みすぎる。この結果、勿論、成形加工開始までの時間にも勿論よるが、本発明の復元処理の効果が前記成形加工において充分に発現されない。   That is, the natural aging (increased strength) of the extruded 7000 series aluminum alloy proceeds in a short time, in other words, the degree of aging (increased strength) greatly progresses at the initial stage of natural aging. For this reason, even if the molding process and its vicinity are reduced in yield strength and increased in n value by the restoration process, if the time from immediately after the restoration process is rapidly cooled to the start of the molding process becomes long, the natural aging is too advanced. . As a result, of course, the effect of the restoration process of the present invention is not sufficiently exhibited in the molding process, although it depends on the time until the molding process starts.

ここで、勿論、規定する100分という経過時間は、合金量や組成や押出加工条件などによっても異なる自然時効硬化量増加の明確な臨界的境界点を示すものではない。しかし、後述する好ましい7000系アルミニウム合金の組成範囲と、前記した本発明の復元処理条件との関係において、自然時効によって本発明の復元処理の効果が薄れる、汎用的で再現性の良い目安となりうる。   Here, of course, the specified elapsed time of 100 minutes does not indicate a clear critical boundary point for an increase in the natural age hardening amount which varies depending on the alloy amount, composition, extrusion processing conditions, and the like. However, in the relationship between the composition range of a preferable 7000 series aluminum alloy to be described later and the above-described restoration processing conditions of the present invention, it can be a general purpose and good reproducible measure that the effect of the restoration processing of the present invention is reduced by natural aging. .

成形加工後の調質:
本発明では、前記した成形加工後の部材(7000系アルミニウム合金押出形材製部材)に人工時効硬化処理を行い、部材として必要とされる強度まで高めることが好ましい。本発明では、押出直後(押出機の出側で)の押出工程上で連続してオンラインにて行われる急冷あるいは焼入れ処理以外は、押出形材に対して、前記した通り、調質処理を行わない。したがって、部材として必要とされる強度に、強度を高めるためには、前記した成形加工後に、人工時効硬化処理を行うことが好ましい。
Tempering after molding:
In the present invention, it is preferable to perform an artificial age hardening treatment on the above-described member (7000-series aluminum alloy extruded profile member) to increase the strength required for the member. In the present invention, as described above, the tempering treatment is performed on the extruded shape material except for the quenching or quenching treatment that is continuously performed online on the extrusion process immediately after extrusion (on the exit side of the extruder). Absent. Therefore, in order to increase the strength required for the member, it is preferable to perform an artificial age hardening treatment after the above-described molding process.

この人工時効硬化処理は、部材の機械的特性を向上させるために、好ましくは、加熱による100〜200℃での人工時効処理を、好ましくは12〜36時間(hr)行う。   In order to improve the mechanical properties of the member, the artificial aging treatment is preferably performed by heating at 100 to 200 ° C., preferably for 12 to 36 hours (hr).

本発明の復元処理によれば、成形加工後の部材の人工時効硬化処理との組み合わせで、自然時効した高強度の7000系アルミニウム合金押出形材であっても、この人工時効硬化処理による調質後の部材の0.2%耐力を300MPa以上とできる。   According to the restoration process of the present invention, even in the case of a naturally-aged and high-strength 7000 series aluminum alloy extruded shape in combination with an artificial age hardening process of a molded member, the tempering by this artificial age hardening process The 0.2% proof stress of the later member can be 300 MPa or more.

(7000系アルミニウム合金押出形材の製造)
組成:
本発明における7000系アルミニウム合金押出形材(素材)は、JIS規格およびAA規格を含むAl−Zn−Mg系組成あるいはAl−Zn−Mg-Cu系組成である。但し、部材としての要求される高強度を満たすためには、前記成形加工後の人工時効処理条件の範囲で、この人工時効処理後の部材強度を0.2%耐力で300MPa以上、好ましくは400MPa以上とすることが好ましい。
(Manufacture of 7000 series aluminum alloy extrusions)
composition:
The 7000 series aluminum alloy extruded profile (raw material) in the present invention has an Al—Zn—Mg series composition or an Al—Zn—Mg—Cu series composition including JIS standards and AA standards. However, in order to satisfy the required high strength as a member, the strength of the member after the artificial aging treatment is 300 MPa or more at a 0.2% proof stress, preferably 400 MPa within the range of the artificial aging treatment conditions after the molding. The above is preferable.

このための好ましい7000系アルミニウム合金押出形材(素材)組成は、質量%で、Zn:3.0〜8.0%、Mg:0.4〜2.5%、Cu:0.05〜2.0%、Ti:0.005〜0.2%を含有し、さらに、Mn:0.01〜0.3%、Cr:0.01〜0.3%、Zr:0.01〜0.3%の1種又は2種以上を含有し、残部がアルミニウムおよび不可避的不純物からなる組成とする。元素量の%表示は全て質量%の意味である。   The preferable 7000 series aluminum alloy extruded shape (material) composition for this purpose is, in mass%, Zn: 3.0-8.0%, Mg: 0.4-2.5%, Cu: 0.05-2. 0.0%, Ti: 0.005-0.2%, Mn: 0.01-0.3%, Cr: 0.01-0.3%, Zr: 0.01-0. It is set as the composition which contains 3% of 1 type or 2 types or more, and the balance consists of aluminum and inevitable impurities. The% display of the element amount means the mass%.

ここで、成形性や耐食性あるいは溶接性などの素材あるいは部材としての諸特性を低下させないために、前記不可避的不純物として、溶解原料としての地金やスクラップなどから必然的に混入するFe、Siなどは、Fe:0.35%以下、Si:0.3%以下に、経済的な範囲で少なくすることが好ましい。   Here, in order not to deteriorate various properties as a material or member such as formability, corrosion resistance, or weldability, Fe, Si, etc., which are inevitably mixed in from ingots and scraps as melting raw materials as the inevitable impurities Is preferably reduced to Fe: 0.35% or less and Si: 0.3% or less in an economical range.

Znは強度を向上させる主要元素であり、その好ましい含有範囲は3.0〜8.0%である。下限未満では強度が不十分になり、上限を超えて含有されると耐SCC性(耐応力腐食割れ性)の顕著な低下を招く。さらに好ましい含有範囲は6.2〜6.8%である。   Zn is a main element for improving the strength, and its preferable content range is 3.0 to 8.0%. If the content is less than the lower limit, the strength becomes insufficient. If the content exceeds the upper limit, the SCC resistance (stress corrosion cracking resistance) is significantly lowered. A more preferable content range is 6.2 to 6.8%.

Mgも強度を向上させる主要元素であり、その好ましい含有範囲は0.4〜2.5%である。下限未満では強度が不十分になり、上限を超えて含有されると耐SCC性の低下を招く。さらに好ましい含有範囲は0.6〜1.5%である。   Mg is also a main element for improving the strength, and the preferred content range is 0.4 to 2.5%. If it is less than the lower limit, the strength becomes insufficient, and if it exceeds the upper limit, the SCC resistance is lowered. A more preferable content range is 0.6 to 1.5%.

Cuは強度も向上させる主要元素であり、その好ましい含有範囲は0.05〜2.0%である。下限未満では強度が不十分になり、上限を超えて含有されると押出加工性の低下を招く。さらに好ましい含有範囲は0.08〜0.2%である。   Cu is a main element that also improves the strength, and its preferred content range is 0.05 to 2.0%. If it is less than the lower limit, the strength becomes insufficient, and if it exceeds the upper limit, the extrusion processability is lowered. A more preferable content range is 0.08 to 0.2%.

Tiは7000系アルミニウム合金の鋳造時に結晶粒を微細化して、押出形材の成形性(潰し加工性)を向上させる作用があり、0.005%以上含有させる。一方、0.2%を越えるとその作用が飽和し、かつ粗大な金属間化合物が晶出して、かえって成形性を低下させる。   Ti has the effect of refining crystal grains during casting of a 7000 series aluminum alloy and improving the formability (crushing workability) of the extruded profile, and is contained in an amount of 0.005% or more. On the other hand, if it exceeds 0.2%, the action is saturated, and a coarse intermetallic compound is crystallized, which deteriorates the formability.

Mn、Cr、Zrは選択的に含有される元素であり、一種または二種以上を含有することで、いずれも素材の結晶組織を微細化あるいは繊維状にし、耐SCC性を向上させる。それぞれ好ましい含有範囲は、Mn:0.01〜0.3%、Cr:0.01〜0.3%、Zr:0.01〜0.3%である。いずれも上限を超えて含有されると粗大な金属間化合物を形成し、延性が低下するとともに成形性の低下を招く。   Mn, Cr, and Zr are elements that are selectively contained, and by containing one or two or more of them, any of them makes the crystal structure of the material finer or fibrous and improves the SCC resistance. The preferable content ranges are Mn: 0.01 to 0.3%, Cr: 0.01 to 0.3%, and Zr: 0.01 to 0.3%, respectively. When both are contained exceeding the upper limit, a coarse intermetallic compound is formed, resulting in a decrease in ductility and a decrease in moldability.

押出形材の製造方法:
7000系アルミニウム合金押出形材(成形素材)の製造方法を以下に説明する。なお、熱処理における記載温度は全て実体温度であって、炉の雰囲気温度ではない。
Extruded shape manufacturing method:
A method for producing a 7000 series aluminum alloy extruded shape (molding material) will be described below. Note that all described temperatures in the heat treatment are actual temperatures, not the furnace atmosphere temperature.

溶解、鋳造;
先ず、溶解、鋳造工程では、上記7000系成分組成範囲内に溶解調整されたアルミニウム合金溶湯を、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造してビレットとする。
Melting, casting;
First, in the melting and casting process, a molten aluminum alloy melt-adjusted within the above-mentioned 7000 series component composition range is cast by appropriately selecting a normal melting casting method such as a semi-continuous casting method (DC casting method). And

均質化熱処理:
熱間押出に先立って、鋳造されたアルミニウム合金ビレット(鋳塊)を470〜565℃の範囲で均質化熱処理(均熱処理)し、組織の均質化(鋳塊組織中の結晶粒内の偏析をなくすなど)を行う。均熱処理温度は470〜565℃の範囲、均質化時間は2時間以上の範囲から選択される。この均熱処理温度が高すぎると、形材組織中の分散粒子が粗大化し、結晶粒を微細化、高強度化できない。一方、この均熱処理温度が低すぎても、ビレット組織の均質化ができない。
Homogenization heat treatment:
Prior to hot extrusion, the cast aluminum alloy billet (ingot) is subjected to homogenization heat treatment (soaking) in the range of 470 to 565 ° C. to homogenize the structure (segregation within crystal grains in the ingot structure). Etc.). The soaking temperature is selected from the range of 470 to 565 ° C., and the homogenization time is selected from the range of 2 hours or more. If the soaking temperature is too high, the dispersed particles in the shape structure become coarse, and the crystal grains cannot be refined and strengthened. On the other hand, even if the soaking temperature is too low, the billet structure cannot be homogenized.

熱間押出:
この均質化後の7000系アルミニウム合金ビレットを熱間押出(直接押出、間接押出)するが、押出形材の再結晶粒層を抑制し、組織を微細化、均質化させる条件にて熱間押出することが好ましい。ビレットの押出開始温度は好ましくは350〜450℃とする。
Hot extrusion:
This homogenized 7000 series aluminum alloy billet is hot-extruded (direct extrusion or indirect extrusion), but it is hot-extruded under conditions that suppress the recrystallized grain layer of the extruded shape and refine and homogenize the structure. It is preferable to do. The extrusion start temperature of the billet is preferably 350 to 450 ° C.

また、これら熱間押出直後の冷却については、溶体化域の温度(溶体化温度)での押出(押出機)出側温度から、空冷さらには水冷などの急冷(オンライン焼入れ)することが、押出形材組織の表面の再結晶組織や、内部の加工組織の結晶粒粗大化防止の点で好ましい。ちなみに、このような押出直後に(押出機の出側で)押出工程上で連続してオンラインにて行われる急冷あるいは焼入れ処理は、本発明では行わない。したがって、本発明でいう、自然時効による硬化以外は、溶体化処理などの調質することなく復元処理を行うとは、押出工程とは別途のオフラインにて、押出形材素材を再加熱して行われる溶体化および焼入れ処理などの調質することなく、復元処理を行うことである。   As for the cooling immediately after the hot extrusion, it is possible to carry out rapid cooling (on-line quenching) such as air cooling and water cooling from the extrusion (extruder) outlet temperature at the temperature of the solution zone (solution temperature). This is preferable in terms of preventing recrystallization structure on the surface of the shape material structure and coarsening of crystal grains in the internal processing structure. Incidentally, the quenching or quenching process that is performed on-line continuously on the extrusion process immediately after the extrusion (on the exit side of the extruder) is not performed in the present invention. Therefore, in the present invention, except for curing by natural aging, the restoration process is performed without tempering such as a solution treatment, and the extruded shape material is reheated off-line separate from the extrusion process. The restoration process is performed without any tempering such as solution treatment and quenching process.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではない。例えば、素材として、押出形材だけでなく、前記各条件や下記実施例条件を、押出から圧延に置き換えれば、圧延板材へ適用することも可能であり、本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not restrict | limited by the following Example from the first. For example, if the above-mentioned conditions and the following example conditions are replaced from extrusion to rolling as well as an extruded profile, it can be applied to a rolled sheet as a material, and is included in the technical scope of the present invention.

次に、本発明の実施例を説明する。表1に示す各7000系アルミニウム合金からなる中空押出形材(素材)を、押出終了後に、自然時効以外は人工的に調質することなく、種々の条件で復元処理を行って、その成形性を調査、評価した。   Next, examples of the present invention will be described. The extrusion process (raw material) made of each 7000 series aluminum alloy shown in Table 1 is subjected to a restoration treatment under various conditions after completion of extrusion, without artificial tempering except for natural aging. Was investigated and evaluated.

実施例1は、先ず、適正な復元処理条件を確認する(本発明で規定する有効な復元処理条件範囲を裏付ける)ためのものである。すなわち、前記中空押出形材より平板状の小試験片を採取して、この試験片全体(全面)を、表2に示す種々の条件で復元処理を行って、復元処理による前記押出形材素材の、引張特性の変化および曲げ破断限界の向上効果を調査した。この結果を表2と、図6、7とに示す。   The first embodiment is for confirming an appropriate restoration processing condition (supporting an effective restoration processing condition range defined in the present invention). That is, a flat small test piece is collected from the hollow extruded shape member, and the entire test piece (entire surface) is subjected to a restoration process under various conditions shown in Table 2 to obtain the extruded shape material by the restoration process. The changes in tensile properties and the effect of improving the bending fracture limit were investigated. The results are shown in Table 2 and FIGS.

実施例2は、本発明の部分的な復元処理による前記中空押出形材の曲げ加工性の向上効果を調査した。この結果を表3に、曲げ加工試験条件を図8に各々示す。   Example 2 investigated the effect of improving the bending workability of the hollow extruded profile by the partial restoration process of the present invention. The results are shown in Table 3, and the bending test conditions are shown in FIG.

実施例3は、本発明の部分的な復元処理によるプレス加工性(潰し加工性)の向上効果を調査した。この結果を表4、図9に、プレス加工試験条件を図10に各々示す。この潰し加工試験は、押出形材素材を前記したバンパ補強材などに部材化する際の、前記両端部の断面の潰し加工を模擬している。   Example 3 investigated the improvement effect of press workability (crushing workability) by the partial restoration process of the present invention. The results are shown in Table 4 and FIG. 9, and the press working test conditions are shown in FIG. This crushing test simulates the crushing of the cross-sections at both ends when the extruded shape material is made into a member such as a bumper reinforcement.

(共通条件)
各実施例とも共通して、中空押出形材(素材)の製造条件は、先ず、表1に示す各7000系アルミニウム合金からなるビレット(丸棒鋳塊)に鋳造後した。このビレットを、各例とも同じく、500℃×10時間の均質化熱処理し、ついで押出開始温度440℃、押出機の出側にて、温度500℃から水冷(急冷)する直接熱間押出し、部材として略矩形の日形断面からなる中空押出形材(長尺材)を得た。ちなみに、この中空押出形材について、製造条件は同じで、同じ日形断面からなっていても、各実施例によってその寸法は若干異なる。また、表1の合金番号1、2のアルミニウム合金は本発明成分組成範囲内である。
(Common conditions)
In common with each example, the manufacturing conditions of the hollow extruded shape (raw material) were first cast into billets (round bar ingots) made of each 7000 series aluminum alloy shown in Table 1. The billet was subjected to a homogenization heat treatment at 500 ° C. for 10 hours in the same manner as in each of the examples, followed by direct hot extrusion that was water-cooled (rapidly cooled) from a temperature of 500 ° C. at the extrusion start temperature of 440 ° C. As a result, a hollow extruded shape (long material) having a substantially rectangular shape in a cross section was obtained. By the way, the manufacturing conditions are the same for this hollow extruded shape, and the dimensions are slightly different depending on each embodiment, even though they have the same daily cross section. Moreover, the aluminum alloy of the alloy numbers 1 and 2 of Table 1 is in this invention component composition range.

前記熱間押出後、各実施例とも共通して、適当な長さに切断後、20日間の自然時効(室温時効)後に(この自然時効以外は人工的に調質することなく)、硝石炉への投入あるいは後述する鋼製の治具を押出形材に部分的に押し当てることで、各表に示す種々の加熱、保持温度(実体温度)、保持時間、冷却条件で、前記復元処理を行った。   After the hot extrusion, in common with each example, after cutting to an appropriate length, after natural aging (room temperature aging) for 20 days (without artificial tempering other than this natural aging), a nitrite furnace Or by partially pressing a steel jig, which will be described later, onto the extruded profile, the restoration process is performed under various heating, holding temperature (substance temperature), holding time, and cooling conditions shown in each table. went.

この復元処理の終了後(室温までの急冷終了後)、各実施例とも共通して、各表に示す種々の時間(成形までの所要時間)経過後に、この復元処理以外は人工的に調質することなく、残留応力の発生を伴う前記各成形加工を行って部材化した。   After completion of this restoration process (after completion of rapid cooling to room temperature), in common with each example, after various times shown in each table (required time until molding) have passed, artificial tempering is performed except for this restoration process. Without performing the above, each molding process accompanied by generation of residual stress was performed to form a member.

前記中空押出形材の断面内を部分的に復元処理する場合、復元処理の加熱温度に応じて加熱した鋼製の冶具を前記押出形材の前記一方の側の復元処理部分だけに押し当て、この押し当てた部分を急速に所定時間加熱し、同じく冷却用の鋼製の冶具を前記一方の側の復元処理部分だけに押し当てて急冷することによって行った。押出形材の実体温度は、市販の接触式温度計を直接押出形材の復元処理部分に接触させて計った。   When partially restoring the cross-section of the hollow extruded profile, press the steel jig heated according to the heating temperature of the restoration process only to the restoration process part on the one side of the extruded profile, This pressed portion was rapidly heated for a predetermined time, and the steel jig for cooling was also pressed only on the restoration processing portion on the one side and rapidly cooled. The actual temperature of the extruded profile was measured by bringing a commercially available contact thermometer into direct contact with the restored portion of the extruded profile.

(実施例1)
実施例1として、復元処理による曲げ破断限界ひずみ量(%)の変化の調査結果を、表2と、図6、7とに示す。図6は表3を横軸の復元処理の形材実体温度(℃)と、縦軸の形材の0.2%耐力(MPa)、破断伸び(%)、曲げ破断限界ひずみ量(%)とに、整理し直したグラフである。また、図7は表3を成形(曲げ試験)開始までの所要時間(min)と、縦軸の形材の0.2%耐力(MPa)、破断伸び(%)、曲げ破断限界ひずみ量(%)とに、整理し直したグラフである。
Example 1
As Example 1, the investigation results of the change in the bending fracture limit strain (%) due to the restoration process are shown in Table 2 and FIGS. FIG. 6 shows the shape actual temperature (° C) of the restoration process on the horizontal axis in Table 3, 0.2% proof stress (MPa), elongation at break (%), and bending fracture limit strain (%) on the vertical axis. And it is a rearranged graph. FIG. 7 shows the time required to start forming (bending test) in Table 3 (min), 0.2% proof stress (MPa), elongation at break (%), and bending fracture limit strain ( %) Is a rearranged graph.

この際、押出形材素材の0.2%耐力の経時変化として、前記熱間押出にて製造後20日間の自然時効後での復元処理直前(T1調質材)と、この復元処理における急冷後(復元処理材)との、押出形材素材の機械的な性質を後述する引張試験要領により測定した。   At this time, as the time-dependent change in the 0.2% proof stress of the extruded shape material, immediately after the natural aging for 20 days after the production by the hot extrusion (T1 tempered material) and the rapid cooling in the restoration process The mechanical properties of the extruded shape material after and after (restoration treatment material) were measured according to the tensile test procedure described later.

引張特性:
前記部材の押出方向に任意の位置から採取したJIS4号引張試験片を用い、JISZ2241に規定する金属材料試験方法に準じ、耐力を測定した。なお、これらの測定値は、各例とも3つの採取試験片の測定値の平均値とした。
Tensile properties:
Using a JIS No. 4 tensile test piece taken from an arbitrary position in the extrusion direction of the member, the proof stress was measured according to the metal material test method specified in JISZ2241. In addition, these measured values were made into the average value of the measured value of three collection test pieces in each example.

曲げ破断限界ひずみは、幅25mm×長さ40mmの平板状素材を用い、先端曲げ半径の異なるV字状パンチ(先端角度60DEG)で押出方向に曲げ試験し、破断が生じなかったサンプルについては、その後さらに180度の折り曲げ加工を行い、破断時の曲げ先端部外側のひずみ量を調査した。   Bending fracture limit strain is a 25 mm wide × 40 mm long plate-like material, bent in the extrusion direction with a V-shaped punch (tip angle 60 DEG) having a different bending radius at the tip, and for samples where no breakage occurred. Thereafter, bending was further performed at 180 degrees, and the amount of strain outside the bending tip at the time of fracture was investigated.

表1の合金番号1、2のアルミニウム合金を用いた、表2の各発明例の押出形材は、復元処理を前記した好ましい条件範囲内で行っている。この結果、各発明例は表2に示すとおり、T1調質時に220MPaの中強度材から、310MPaの高強度材まで、復元処理後の曲げ破断限界ひずみ量(%)が各々向上しており、前記復元処理の効果を確実に発揮させることができている。   The extruded shape members of the invention examples in Table 2 using the aluminum alloys of Alloy Nos. 1 and 2 in Table 1 are subjected to the restoration treatment within the preferable condition range described above. As a result, as shown in Table 2, each example of the invention improved the bending fracture limit strain (%) after the restoration process from a medium strength material of 220 MPa to a high strength material of 310 MPa during T1 tempering, The effect of the restoration process can be surely exhibited.

これに対して、表2の各比較例の押出形材は、復元処理を前記好ましい条件から外れた範囲で行っている。比較例1、16、17は復元処理の実体温度が低すぎる。比較例8、15、19、30は復元処理終了後(室温までの冷却後)から成形開始までの所要時間がかかりすぎている(長すぎる)。この結果、各比較例は、表2に示すとおり、曲げ破断限界ひずみ量(%)は向上しているものの、その向上レベルは発明例よりは著しく低い。   On the other hand, the extruded shapes of the comparative examples in Table 2 are subjected to a restoration process within a range that is out of the preferable conditions. In Comparative Examples 1, 16, and 17, the actual temperature of the restoration process is too low. In Comparative Examples 8, 15, 19, and 30, it takes too long (too long) from the end of the restoration process (after cooling to room temperature) to the start of molding. As a result, as shown in Table 2, each comparative example has an improved bending fracture limit strain amount (%), but the improvement level is significantly lower than that of the inventive example.

また、この表2から破断限界ひずみ量(%)との関係で、復元処理を前記した好ましい条件範囲内で行うことの意義が裏付けられる。更に、図6、7の結果のうち、特に縦軸の曲げ破断限界ひずみ量(%)との関係から、復元処理における、押出形材の実体温度200〜500℃の範囲の加熱や、この復元処理の室温までの冷却終了後から100分以内の時間内に成形加工することの意義が裏付けられる。   Moreover, the significance of performing the restoration process within the above-described preferable condition range is supported by the relationship with the fracture limit strain amount (%) from Table 2. Further, among the results shown in FIGS. 6 and 7, particularly in relation to the bending fracture limit strain amount (%) on the vertical axis, heating in the range of the actual temperature of the extruded profile in the restoring process is 200 to 500 ° C. The significance of molding within 100 minutes after the end of cooling to room temperature is confirmed.

さらには、好ましい条件範囲で復元処理した押出形材素材では、前記曲げ破断限界ひずみの向上だけでなく、表2の通り、引張変形時の破断伸びの増加や、0.2%耐力の低減も確認でき、中空形材の曲げ加工での破断限界向上や、耐力低減による形状凍結性の向上、残留応力の低減などの効果が期待できることがわかる。   Furthermore, in the extruded shape material restored in the preferable condition range, not only the above-mentioned bending fracture limit strain is improved, but as shown in Table 2, the elongation at break during tensile deformation and the 0.2% proof stress are reduced. It can be confirmed that it is possible to expect effects such as improvement of the fracture limit in bending of the hollow shape member, improvement of shape freezing property by reduction of proof stress, and reduction of residual stress.

(実施例2)
実施例2として、復元処理による、実際の形材の曲げ加工における、曲げ加工性の向上効果の調査結果を表3に、曲げ加工試験条件を図8に各々示す。
(Example 2)
As Example 2, the investigation results of the improvement effect of the bending workability in the bending process of the actual shape material by the restoring process are shown in Table 3, and the bending work test conditions are shown in FIG.

図8では、図の左上側に曲げ型と形材との曲げ加工(試験)の態様を平面視で示す。図の左下側に曲げ型と形材との曲げ加工(試験)の態様を断面で示す。形材の曲げ加工は、平面視で図示する通り、形材の右端側をクランプして固定した上で、曲げ型中心に対して回転変位(回転引き曲げ)し、形材の長手方向に円弧状に曲がる永久変形を与えた。図8の右上側には、曲げ加工する日型断面形材の形状(大きさ)を示す。また、図8の右下には、四角の枠内に、前記形材断面の曲げ加工時に、断面形状の変形防止のために、その日型断面の二つの閉空間内に各々挿入する芯金の形状を示す。   In FIG. 8, the aspect of the bending process (test) of a bending die and a shape material is shown by planar view on the upper left side of the figure. In the lower left side of the figure, the mode of bending (testing) between the bending die and the profile is shown in cross section. As shown in the plan view, the shape is bent by clamping the right end of the shape and fixing it, and then rotationally displacing (rotating and bending) the center of the shape of the shape. Permanent deformation that gives an arc shape was given. In the upper right side of FIG. 8, the shape (size) of the daily cross-section material to be bent is shown. Further, in the lower right of FIG. 8, in the rectangular frame, when bending the cross section of the profile, the core bars inserted respectively in the two closed spaces of the cross section of the die to prevent deformation of the cross section. Show shape.

この曲げ加工に先立つ復元処理をした押出形材の処理範囲(領域)は以下の通りとした。
表3の処理する成形相当部位が「曲げ内外両側」で、かつ処理範囲が「変形部全域」の場合は、前記曲げ半径30mmに合わせて、曲げ中立軸の内側と外側との両方に相当する部分として、押出形材の曲げ変形相当部分の幅方向全域で、クランプ部から長手方向に80mmに亘る長さとした。
表3の処理する成形相当部位が図1の「曲げ内側のみ」で、かつ処理範囲が「変形部全域」の場合は、前記曲げ半径30mmに合わせて、曲げ中立軸の内側フランジに前記熱した鋼製の冶具を押し当てて、この部分の曲げ加工部に相当する長さ部分のみを復元処理した。
表3の処理する成形相当部位が図2の「曲げ外側のみ」で、かつ処理範囲が「変形部全域」の場合は、逆に曲げ外側フランジのみに前記熱した鋼製の冶具を押し当てて、ここの部分の曲げ加工部に相当する長さ部分のみを復元処理した。
表3の処理する成形相当部位が図3の「曲げ外側のみ」で、かつ処理範囲が「変形周縁のみ」の場合は、曲げ角度15DEG.の加工終了時に略直辺部となるクランプ部から10〜30mm部分(曲げ周縁部)の曲げ外側フランジのみに前記熱した鋼製の冶具を押し当てて、ここの部分の曲げ加工部に相当する長さ部分のみを復元処理した。
The processing range (region) of the extruded profile subjected to the restoration process prior to the bending process was as follows.
In the case where the part corresponding to molding in Table 3 is “both inside and outside the bending” and the processing range is “entire deformation area”, it corresponds to both the inside and outside of the bending neutral axis in accordance with the bending radius of 30 mm. As a part, it was set as the length over 80 mm from a clamp part to the longitudinal direction in the width direction whole region of the bending deformation equivalent part of an extrusion shape member.
In the case where the forming equivalent part to be processed in Table 3 is “only the bending inner side” in FIG. 1 and the processing range is “the entire deformed part”, the inner flange of the bending neutral shaft is heated in accordance with the bending radius of 30 mm. A steel jig was pressed to restore only the length corresponding to the bent portion.
When the forming equivalent part to be processed in Table 3 is “only the bent outer side” in FIG. 2 and the processing range is “the entire deformed part”, conversely, the heated steel jig is pressed only on the bent outer flange. Only the length portion corresponding to the bent portion of this portion was restored.
When the forming equivalent part to be processed shown in Table 3 is “only the bending outer side” in FIG. 3 and the processing range is “only the deformed peripheral edge”, it is 10 from the clamp part which becomes a substantially straight side part at the end of processing at the bending angle of 15 DEG. The heated steel jig was pressed against only the bent outer flange of the ˜30 mm portion (bending peripheral portion), and only the length portion corresponding to the bent portion of this portion was restored.

表3の各発明例の押出形材は、表1の合金番号1のアルミニウム合金を用い、復元処理を前記した好ましい条件範囲内で行っている。表3の破断判定の基準は、○は破断やネッキングが無いこと、△は破断には至っていないものの顕著なネッキングが発生していること、×は破断が生じたことを示している。また、しわ判定の基準は、発生したしわの深さによって「大」「中」「小」と区分けし、顕著な凹凸が見られない場合を「無」とした、4段階で評価している。   The extruded profile of each invention example in Table 3 uses the aluminum alloy of Alloy No. 1 in Table 1, and the restoration treatment is performed within the above-described preferable condition range. The criteria for determination of breakage in Table 3 are that ◯ indicates no breakage or necking, Δ indicates that breakage has not occurred, but significant necking has occurred, and x indicates that breakage has occurred. The criteria for wrinkle evaluation are divided into “large”, “medium”, and “small” according to the depth of the wrinkles that occur, and is evaluated in four levels, where no noticeable irregularities are seen. .

まず、曲げ内外両側で、かつ該変形部全域を復元処理した発明例34、35の場合、引張変形での破断伸びの増加効果により、一般的なT1調質材(比較例31〜33)に比べて、より曲げ角度が厳しい条件でも、破断が生じずに曲げ加工が可能になっている。同時に、曲げ内側フランジが低耐力化されることで、この部位に発生するしわ自体も小さくなっている。ただ、この発明例34、35の場合、曲げ内外両側を復元処理しているので、曲げ内側か、曲げ外側かのいずれか片方を復元処理する場合とは違い、前記図1、2で示したような、復元処理前の(元の)曲げ中立軸N0が、復元処理によって、曲げ中立軸N1へと移動することがない。この結果、破断が生じずに曲げ加工が可能な曲げ角度は、曲げ内側か、曲げ外側かのいずれか片方を、変形部全域で復元処理している、発明例36〜40に比べれば劣る。ただ、復元処理をしない比較例31〜33に比べれば格段に優れているので、この曲げ内外両側を復元処理する手法は、曲げ加工の際の破断としわの両方を抑制したい場合に有用である。   First, in the case of Invention Examples 34 and 35 in which the entire deformation portion is restored on both the inner and outer sides of the bend, due to the effect of increasing elongation at break in tensile deformation, a general T1 tempered material (Comparative Examples 31 to 33) is used. In comparison, even under conditions where the bending angle is stricter, bending can be performed without breaking. At the same time, since the bending inner flange has a reduced yield strength, the wrinkles generated in this portion are also reduced. However, in the case of the inventive examples 34 and 35, since both the inner side and the outer side of the bending are restored, the case shown in FIGS. 1 and 2 is different from the case where either the inner side of the bending or the outer side of the bending is restored. Thus, the (original) bending neutral axis N0 before the restoration process is not moved to the bending neutral axis N1 by the restoration process. As a result, the bending angle at which bending can be performed without causing breakage is inferior to Invention Examples 36 to 40 in which either the inner side of the bending or the outer side of the bending is restored throughout the entire deformed portion. However, since it is remarkably superior to Comparative Examples 31 to 33 that do not perform restoration processing, this technique for restoring both the inside and outside of the bending is useful when it is desired to suppress both fracture and wrinkle during bending. .

次に、曲げ内側フランジのみ復元処理した発明例36〜38の場合、破断限界となる曲げ角度は、発明例38のようにさすがに75度までは無理だが、発明例37のように60度までは可能という具合に、大幅に向上している。すなわち、一般的なT1調質材(比較例31〜33)に比べて、破断限界が著しく向上している。また、しわの発生状態についても、曲げ角度が大きく厳しい条件であるにもかかわらず、T1調質材と同等程度にとどめられている。したがって、この曲げ内側のみを復元処理する手法は、曲げ角度が大きい場合の曲げ加工の破断を抑制したい場合に特に有用である。   Next, in the case of the inventive examples 36 to 38 in which only the bending inner flange is restored, the bending angle as the breaking limit is impossible to 75 degrees as in the inventive example 38, but up to 60 degrees as in the inventive example 37. Is significantly improved, as possible. That is, the fracture limit is remarkably improved as compared with a general T1 tempered material (Comparative Examples 31 to 33). In addition, the wrinkle generation state is limited to the same level as that of the T1 tempered material, although the bending angle is a severe condition. Therefore, the method of restoring only the inside of the bend is particularly useful when it is desired to suppress the bending breakage when the bend angle is large.

また、曲げ外側フランジのみ復元処理した発明例39〜41の場合、破断限界自体は、一般的なT1調質材(比較例31〜33)と同等レベルであるが、曲げ内側のしわの発生が大幅に低減されている。したがって、この曲げ外側のみを復元処理する手法は曲げ加工のしわの発生を抑制したい場合に特に有用である。   In the case of Invention Examples 39 to 41 in which only the bending outer flange is restored, the fracture limit itself is the same level as that of a general T1 tempered material (Comparative Examples 31 to 33), but wrinkles on the inner side of the bending occur. It is greatly reduced. Therefore, this method of restoring only the outside of the bend is particularly useful when it is desired to suppress the generation of wrinkles in the bending process.

そして、発明例41は、他の発明例に比べて、変形周縁部のみという、非常に狭い範囲を復元処理を施しているが、同じ曲げ角度の比較例32と比べると、破断の程度が大きく改善されている。この発明例から、成形加工の際の変形周縁部など、最も破断が生じやすい部位のみ復元することで、曲げ加工性を向上できることが分かる。この効果は、破断限界の向上効果と、曲げ加工部周縁部の低耐力化に応じて変形が生じる領域が広くなることで破断が生じにくくなる効果との複合効果による。また、この発明例は、発明例36、37ほどの大きな破断限界向上効果はみられないものの、復元処理の装置自体も小さくて済み、コストも低減できるという点で好ましく、必要に応じて、復元処理の適用範囲を選定すればよい。   Inventive Example 41 is subjected to a restoration process for a very narrow range of only the deformed peripheral edge compared to the other inventive examples, but the degree of breakage is larger than Comparative Example 32 having the same bending angle. It has been improved. From this example of the invention, it can be seen that the bending workability can be improved by restoring only the portion where the fracture is most likely to occur, such as the deformed peripheral edge during the molding process. This effect is due to the combined effect of the effect of improving the breaking limit and the effect of making it difficult for breakage to occur by widening the region where deformation occurs in accordance with the reduction in the yield strength of the peripheral portion of the bent portion. In addition, this invention example is preferable in that it does not have the effect of improving the fracture limit as much as Invention Examples 36 and 37, but the restoration processing apparatus itself is small and the cost can be reduced. What is necessary is just to select the application range of a process.

これらの事実から、復元処理を部分的に施す場合、成形加工の種類と目的とする効果との関係で、その処理する部位や範囲を制御することで、前記した破断とこれと相反するしわとの抑制を、その効果の程度を含めて制御あるいは選択することが可能であることが分かる。例えば、しわが問題になるような部材であれば曲げ外側を、破断が問題になる部材であれば、曲げ内側をそれぞれ復元処理することで望ましい効果が得られる。本発明の部分的な復元処理は、このように、破断としわのうち、部材や成形加工の大きな課題となる片方を、通常のT1調質材に比べて抑制し、部材や成形加工の課題とはならないもう一方を、通常のT1調質材同等程度にとどめる、などの制御あるいは選択ができる。すなわち、対象とする部材(製品)において、曲げ加工における破断あるいはこれと相反するしわのどちらが問題になるかによって、復元処理の適用位置を自由に制御あるいは選択できる。   From these facts, when partially performing the restoration process, by controlling the part and range to be processed in relation to the type of molding process and the intended effect, the above-described fracture and the wrinkles that contradict this It can be seen that the suppression can be controlled or selected including the degree of the effect. For example, a desired effect can be obtained by restoring the outer side of the bend if the member causes wrinkles, and the inner side of the bend if the member causes fracture. As described above, the partial restoration process of the present invention suppresses one of the fractures and wrinkles, which is a major problem of the member and the molding process, as compared with a normal T1 tempered material, and the problem of the member and the molding process. It is possible to perform control or selection such that the other, which is not the same, is kept at the same level as a normal T1 tempered material. That is, in the target member (product), the application position of the restoration process can be freely controlled or selected depending on whether the fracture in bending or the wrinkle opposite to the problem occurs.

(実施例3)
実施例3として、端部を復元処理した形材につき、両端部の潰し加工を模擬して、この端部を潰し加工した際の割れ性(破断性)の調査結果を表4、図9に示す。また、この潰し加工の、試験体を図10に、試験条件を図11に各々示す。
(Example 3)
As Example 3, with respect to the profile whose end portion was restored, the crushing process at both ends was simulated, and the investigation results of crackability (breakability) when this end was crushed are shown in Table 4 and FIG. Show. Moreover, the test body of this crushing process is shown in FIG. 10, and the test conditions are shown in FIG.

図10は潰し加工した試験体(押出形材)の日型矩形断面形状を示している。また、図11の上側は、試験体(押出形材)の端部断面の潰し加工を模式的に断面で示し、剛体で上下から挟持した形材(試験体)を矢印の通り、上下方向に圧力を加えて潰し加工している態様を示している。この図11の下側は、前記上側の図をより具体化した側面図であり、剛体上に置いた試験体(押出形材)の端部の日型矩形断面を、上側から剛体であるパンチで押しつぶしている。そして、試験体(押出形材)が、端部のみの部分的な潰し加工によって、この端部に連なる断面も、点線で示す元の断面から、図11の右側の前記端部に向かって(長手方向に)傾斜するように変形させている態様を示している。   FIG. 10 shows the shape of a rectangular cross section of a crushed specimen (extruded profile). In addition, the upper side of FIG. 11 schematically shows the crushing process of the end section of the test specimen (extruded profile) in a cross section, and the profile (test specimen) sandwiched from above and below by a rigid body is shown in the vertical direction as indicated by the arrows. An embodiment in which pressure is applied and crushed is shown. The lower side of FIG. 11 is a side view in which the upper side figure is embodied more specifically, and shows a rectangular shape cross section of the end of the test body (extruded profile) placed on the rigid body from the upper side. Crushing with. Then, the test piece (extruded profile) is partially crushed only at the end, so that the cross section connected to this end also moves from the original cross section indicated by the dotted line toward the end on the right side of FIG. The aspect which is changing so that it may incline (longitudinal direction) is shown.

図9は、表4を横軸の復元処理の形材の実体温度(材料到達温度と記載、℃)と、縦軸の形材の潰し加工率(%)とに、整理し直したグラフである。図9は、日型断面の潰れ具合を、端部断面図(上側)とウェブ板の曲げ外側表面破断状況(下側:破断部近傍の切り出しサンプル)でも示している。例えば、図の最左側(温度25℃)の黒丸でのプロット点はT1調質材(比較例42、43)の亀裂発生(破断発生)、これ以外の材料到達温度が200℃以下の黒丸の各点は、本発明範囲から外れた復元処理温度が低すぎる比較例44〜47の亀裂発生(破断発生)を示している。   FIG. 9 is a graph in which Table 4 is rearranged into the body temperature of the shape of the restoration processing on the horizontal axis (described as material arrival temperature, ° C.) and the crushing rate (%) of the shape on the vertical axis. is there. FIG. 9 also shows the crushing condition of the cross section of the die in the end cross-sectional view (upper side) and the bending outer surface fracture state of the web plate (lower side: cut sample near the fractured part). For example, the plot point of the black circle on the leftmost side of the figure (temperature 25 ° C.) is the crack occurrence (break occurrence) of the T1 tempered material (Comparative Examples 42 and 43), and the black circle whose other material arrival temperature is 200 ° C. or less. Each point indicates the occurrence of cracks (break occurrence) in Comparative Examples 44 to 47 in which the restoration processing temperature outside the scope of the present invention is too low.

この図9、表4から分かる通り、各比較例は、比較例48を除き、潰し加工率が小さい、断面変形が浅い段階から破断あるいはネッキングが生じている。比較例42、43は、押出後から曲げ加工までに長期間(20日)室温時効したT1調質材は復元処理をしていない。比較例44〜47は復元処理はしているものの、実体温度が低すぎ、好ましい条件から外れている。   As can be seen from FIG. 9 and Table 4, in each comparative example, except for the comparative example 48, fracture or necking occurs from the stage where the crushing rate is small and the cross-sectional deformation is shallow. In Comparative Examples 42 and 43, the T1 tempered material aged at room temperature for a long time (20 days) after extrusion until bending is not subjected to a restoration treatment. In Comparative Examples 44 to 47, the restoration process is performed, but the actual temperature is too low, which is not preferable.

これに対して、220℃〜400℃で復元処理した発明例49〜51は、潰し加工率が93%と大きくなり、断面変形が深くなった(平坦状に潰れた)段階でも、少なくとも外周リブには亀裂(破断)が発生せず、潰し加工できている。   On the other hand, in the inventive examples 49 to 51 restored at 220 ° C. to 400 ° C., the crushing rate increased to 93%, and even at the stage where the cross-sectional deformation became deep (crushed flat), at least the outer peripheral ribs No cracks (breaks) occur in the material, and it can be crushed.

これらの結果から、潰し加工における復元処理の実体温度(材料到達温度)は200℃以上とすることが望ましく、復元処理を前記した好ましい条件範囲内で行うことの、潰し加工性向上の意義が裏付けられる。ちなみに比較例48では、170℃で復元処理しても亀裂(破断)は発生していない結果が出ている。しかし、これと復元処理温度が近い160℃の比較例47でネッキングが発生しており、これを抑制する必要や、素材のバラツキによる安全性や再現性なども考慮し、また、前記曲げ加工の実施例1、2などの結果も考慮して、本発明では、復元処理における実体温度の下限を200℃以上と規定した。   From these results, it is desirable that the actual temperature (material arrival temperature) of the restoration process in the crushing process is 200 ° C. or higher, and the significance of improving the crushing workability by performing the restoration process within the above-described preferable range is supported. It is done. Incidentally, in Comparative Example 48, there was a result that no cracks (breaks) occurred even when the restoration treatment was performed at 170 ° C. However, necking occurred in the comparative example 47 of 160 ° C., which is close to the restoration processing temperature, and it is necessary to suppress this, considering safety and reproducibility due to material variations, etc. Considering the results of Examples 1 and 2 and the like, in the present invention, the lower limit of the substantial temperature in the restoration process is defined as 200 ° C. or higher.

なお、この潰し加工に先立って、予め復元処理をした押出形材の処理範囲(領域)は以下の通りとした。表4の処理する成形相当部位が「端部」で、かつ処理範囲が「変形部全域」の場合は、潰し加工部に相当する部分として、押出形材の潰し変形相当部分の幅方向全域で、長手方向150mmに亘る長さとした。表4の処理する成形相当部位が「端部」で、かつ処理範囲が「ウエブ面のみ」の場合は、端部から長手方向150mmに渡る範囲のウェブ板(高さ60mmの面)のみを復元処理した。   Prior to the crushing process, the processing range (region) of the extruded shape that was restored in advance was set as follows. In the case where the forming equivalent part to be processed in Table 4 is “end part” and the processing range is “whole deformation part”, the part corresponding to the crushing part is the whole part in the width direction of the crushing deformation equivalent part of the extruded profile. The length extends in the longitudinal direction of 150 mm. When the molding equivalent part of Table 4 is “end part” and the processing range is “web surface only”, only the web plate (surface with a height of 60 mm) in the range extending 150 mm from the end part in the longitudinal direction is restored. Processed.

以上の実施例から、本発明における復元処理の各規定条件の、自然時効した後でも7000系アルミニウム合金押出形材素材の、部材への成形性自体を向上できる技術的な意義が裏付けられる。   From the above examples, the technical significance of improving the formability of the 7000 series aluminum alloy extruded shape material itself to the member even after natural aging of each specified condition of the restoration treatment in the present invention is supported.

本発明によれば、自然時効した後でも、成形性自体を向上させた高強度7000系アルミニウム合金部材および高強度7000系アルミニウム合金部材の製造方法を提供できる。このため、本発明は、軽量化された高強度7000系アルミニウム合金からなる自動車用部材あるいは補強部材、更には航空機用などの構造部材に好適に用いることができる。   ADVANTAGE OF THE INVENTION According to this invention, even after natural aging, the manufacturing method of the high strength 7000 series aluminum alloy member and the high strength 7000 series aluminum alloy member which improved formability itself can be provided. For this reason, this invention can be used suitably for structural members, such as a member for automobiles which consists of a weight-reduced high-strength 7000 series aluminum alloy, or a reinforcement member, and for airplanes.

Claims (6)

押出加工によって製造後に調質処理されることなく自然時効したのみの状態で、長手方向あるいは幅方向の一部分だけに予め復元処理が施された7000系アルミニウム合金押出形材の、前記復元処理部分あるいは前記復元処理部分とその周縁部分において成形加工が施されたアルミニウム合金部材であって、前記復元処理が前記押出形材の実体温度で200〜500℃の範囲に加熱されるとともに、この温度範囲に0.1秒以上、20秒未満の短時間だけ保持された後に冷却される条件で行われ、この復元処理の冷却終了後から100分以内の時間内に前記成形加工したことを特徴とする7000系アルミニウム合金部材。   The 7000-series aluminum alloy extruded shape, in which only a part in the longitudinal direction or the width direction has been subjected to a restoration process in advance in a state of being naturally aged without being tempered after production by extrusion, It is an aluminum alloy member that has been subjected to a forming process in the restoration processing portion and the peripheral portion thereof, and the restoration processing is heated to a temperature range of 200 to 500 ° C. at the substantial temperature of the extruded profile, and in this temperature range 7000, characterized in that it is carried out under the condition that it is cooled after being held for a short time of not less than 0.1 seconds and less than 20 seconds, and the molding process is performed within 100 minutes after the completion of the cooling of the restoration process. -Based aluminum alloy members. 前記曲げ加工が前記押出形材の長手方向を円周方向とする曲げ加工であり、前記押出形材の部分的な復元処理として、この曲げ加工における前記押出形材の円弧状の曲げ変形部の曲げ中立軸の内側と外側とに相当する部分同士か、または、この曲げ中立軸の内側と外側とに相当する部分と、この曲げ変形部の周縁とに相当する部分同士で、前記復元処理の条件に差が設けられた請求項1に記載の7000系アルミニウム合金部材。   The bending process is a bending process in which the longitudinal direction of the extruded profile is a circumferential direction. As a partial restoration process of the extruded profile, an arc-shaped bending deformation portion of the extruded profile in the bending process The portions corresponding to the inside and outside of the bending neutral shaft, or the portions corresponding to the inside and outside of the bending neutral shaft, and the portions corresponding to the periphery of the bending deformation portion, The 7000 series aluminum alloy member according to claim 1 provided with a difference in conditions. 前記成形加工が前記押出形材の一部の断面形状を長手方向に変化させるプレス加工である請求項1または2に記載の7000系アルミニウム合金部材。   The 7000 series aluminum alloy member according to claim 1 or 2, wherein the forming process is a press process for changing a partial cross-sectional shape of the extruded shape member in a longitudinal direction. 押出加工によって製造後に調質処理されることなく自然時効したのみの状態で、長手方向あるいは幅方向の一部分だけに予め復元処理を施した7000系アルミニウム合金押出形材を、前記復元処理部分あるいは前記復元処理部分とその周縁部分において成形加工を施す、アルミニウム合金部材の製造方法であって、前記復元処理を、前記押出形材の実体温度で200〜500℃の範囲に加熱するとともに、この温度範囲に0.1秒以上、20秒未満の短時間だけ保持された後に冷却する条件で行い、この復元処理の冷却終了後から100分以内の時間内に前記成形加工を行うことを特徴とする7000系アルミニウム合金部材の製造方法。   A 7000 series aluminum alloy extruded shape that has been subjected to a restoration process in advance only in a part in the longitudinal direction or the width direction in a state where it is only naturally aged without being subjected to a tempering treatment after production by extrusion, the restoration treatment part or the A method for manufacturing an aluminum alloy member, which is subjected to a forming process at a restoration processing portion and a peripheral portion thereof, wherein the restoration processing is heated to a range of 200 to 500 ° C. at a substantial temperature of the extruded profile, and this temperature range 7000, characterized in that it is cooled for a period of 0.1 seconds or more and less than 20 seconds and then cooled, and the forming process is performed within 100 minutes after the completion of the cooling of the restoration process. Method for manufacturing an aluminum alloy member. 前記曲げ加工が前記押出形材の長手方向を円周方向とする曲げ加工であり、前記押出形材の部分的な復元処理として、この曲げ加工における前記押出形材の円弧状の曲げ変形部の曲げ中立軸の内側と外側とに相当する部分同士か、または、この曲げ中立軸の内側と外側とに相当する部分と、この曲げ変形部の周縁とに相当する部分同士で、前記復元処理の条件に差を設ける請求項4に記載の7000系アルミニウム合金部材の製造方法。   The bending process is a bending process in which the longitudinal direction of the extruded profile is a circumferential direction. As a partial restoration process of the extruded profile, an arc-shaped bending deformation portion of the extruded profile in the bending process The portions corresponding to the inside and outside of the bending neutral shaft, or the portions corresponding to the inside and outside of the bending neutral shaft, and the portions corresponding to the periphery of the bending deformation portion, The manufacturing method of the 7000 series aluminum alloy member according to claim 4 which makes a difference in conditions. 前記成形加工が前記押出形材の一部の断面形状を長手方向に変化させるプレス加工である請求項4に記載の7000系アルミニウム合金部材の製造方法。   The method for producing a 7000 series aluminum alloy member according to claim 4, wherein the forming process is a press process for changing a partial cross-sectional shape of the extruded shape member in a longitudinal direction.
JP2013018525A 2013-02-01 2013-02-01 Method for producing high strength 7000 series aluminum alloy member Expired - Fee Related JP6005539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013018525A JP6005539B2 (en) 2013-02-01 2013-02-01 Method for producing high strength 7000 series aluminum alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013018525A JP6005539B2 (en) 2013-02-01 2013-02-01 Method for producing high strength 7000 series aluminum alloy member

Publications (2)

Publication Number Publication Date
JP2014147958A true JP2014147958A (en) 2014-08-21
JP6005539B2 JP6005539B2 (en) 2016-10-12

Family

ID=51571403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013018525A Expired - Fee Related JP6005539B2 (en) 2013-02-01 2013-02-01 Method for producing high strength 7000 series aluminum alloy member

Country Status (1)

Country Link
JP (1) JP6005539B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128189A (en) * 2015-01-05 2016-07-14 ザ・ボーイング・カンパニーThe Boeing Company Method of forming workpiece made of naturally-aging alloy
KR20190087698A (en) * 2018-01-16 2019-07-25 (주)알루코 High strength aluminum alloy for high gloss and various color anodizing
JP2021014612A (en) * 2019-07-11 2021-02-12 株式会社神戸製鋼所 Manufacturing method of 7000 series aluminum alloy member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000515432A (en) * 1997-05-01 2000-11-21 ゼネラル・モーターズ・コーポレーション Method for improving the hem formability of age hardenable aluminum sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000515432A (en) * 1997-05-01 2000-11-21 ゼネラル・モーターズ・コーポレーション Method for improving the hem formability of age hardenable aluminum sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128189A (en) * 2015-01-05 2016-07-14 ザ・ボーイング・カンパニーThe Boeing Company Method of forming workpiece made of naturally-aging alloy
KR20190087698A (en) * 2018-01-16 2019-07-25 (주)알루코 High strength aluminum alloy for high gloss and various color anodizing
KR102029689B1 (en) 2018-01-16 2019-10-10 (주)알루코 High-strength aluminum alloy for high gloss and various color anodizing
JP2021014612A (en) * 2019-07-11 2021-02-12 株式会社神戸製鋼所 Manufacturing method of 7000 series aluminum alloy member
JP7244195B2 (en) 2019-07-11 2023-03-22 株式会社神戸製鋼所 Method for manufacturing 7000 series aluminum alloy member

Also Published As

Publication number Publication date
JP6005539B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP5671422B2 (en) Method for producing high strength 7000 series aluminum alloy member and high strength 7000 series aluminum alloy member
KR101758956B1 (en) Processing of alpha/beta titanium alloys
JP5435914B2 (en) Method for producing aluminum alloy plate for cold press forming, method for cold press forming aluminum alloy plate, and aluminum alloy cold press formed product
WO2016140335A1 (en) Aluminum alloy plate
JP5498069B2 (en) Method for producing aluminum alloy sheet blank for cold press forming, and cold press forming method and molded product thereby
JP2016151045A (en) Method for producing 7000 series aluminum alloy member excellent in stress corrosion cracking resistance
JP5789150B2 (en) Method for manufacturing press-molded aluminum alloy blank, and method for manufacturing aluminum alloy press-formed body using the blank
JP5968285B2 (en) Bumper reinforcement and manufacturing method thereof
JP6677584B2 (en) Method of manufacturing energy absorbing member
JP2011111657A (en) Method for producing aluminum alloy sheet blank for cold press forming having coating/baking hardenability, cold press forming method using the blank, and formed part
WO2015141647A1 (en) Aluminum alloy sheet for structural material
JP2016160516A (en) Aluminum alloy sheet
JP5379471B2 (en) Method for producing aluminum alloy plate for cold press forming and cold press forming method
JP2019026897A (en) Aluminum alloy sheet for structural member, and manufacturing method of aluminum alloy structural member
JP6005539B2 (en) Method for producing high strength 7000 series aluminum alloy member
JP4944474B2 (en) Aluminum alloy plate excellent in stretch flangeability and manufacturing method thereof
JP2018204116A (en) Aluminum alloy sheet
JP4164453B2 (en) Forming method of aluminum alloy material
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP2009242907A (en) Method for producing aluminum alloy blank for press forming
JP4203393B2 (en) Aluminum alloy extruded hollow shape with excellent bending workability and pressure cracking resistance
CN112210734B (en) Method for producing 7000 series aluminum alloy member
KR100722060B1 (en) Method for molding aluminum alloy material
JP2012152780A (en) Molding working method for aluminum alloy plate
JP2008246508A (en) Bending method of aluminum alloy material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160907

R150 Certificate of patent or registration of utility model

Ref document number: 6005539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees