JP6677584B2 - Method of manufacturing energy absorbing member - Google Patents

Method of manufacturing energy absorbing member Download PDF

Info

Publication number
JP6677584B2
JP6677584B2 JP2016121037A JP2016121037A JP6677584B2 JP 6677584 B2 JP6677584 B2 JP 6677584B2 JP 2016121037 A JP2016121037 A JP 2016121037A JP 2016121037 A JP2016121037 A JP 2016121037A JP 6677584 B2 JP6677584 B2 JP 6677584B2
Authority
JP
Japan
Prior art keywords
mass
energy absorbing
aluminum alloy
absorbing member
extruded material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016121037A
Other languages
Japanese (ja)
Other versions
JP2017222920A (en
Inventor
隆広 志鎌
隆広 志鎌
吉原 伸二
伸二 吉原
杉本 直
直 杉本
高木 直
直 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Kobe Steel Ltd
Original Assignee
Honda Motor Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Kobe Steel Ltd filed Critical Honda Motor Co Ltd
Priority to JP2016121037A priority Critical patent/JP6677584B2/en
Publication of JP2017222920A publication Critical patent/JP2017222920A/en
Application granted granted Critical
Publication of JP6677584B2 publication Critical patent/JP6677584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車の衝突時のエネルギーを吸収させるエネルギー吸収部材の製造方法に関し、特に7000系(Al−Zn−Mg−Cu系)アルミニウム合金押出材からなるエネルギー吸収部材の製造方法に関する。   The present invention relates to a method of manufacturing an energy absorbing member that absorbs energy at the time of an automobile collision, and more particularly to a method of manufacturing an energy absorbing member made of an extruded 7000 (Al-Zn-Mg-Cu) aluminum alloy.

従来から、自動車には、衝突安全性の向上のため、バンパービームやドアビーム等のエネルギー吸収部材が用いられている。このエネルギー吸収部材には、高いエネルギー吸収性が要求されているため、強度に優れたZn−Mg−Cu系である7000系のアルミニウム合金押出材が用いられている。ただ、エネルギー吸収性を更に高めるためには、エネルギー吸収部材の強度を高めるだけでは不十分であり、衝突時のエネルギー吸収部材の割れを防止することも必要となっている。
この点に関して、例えば、特許文献1、2には、7000系アルミニウム合金押出材からなるエネルギー吸収部材に対して、過時効処理を行うことによって、衝突時のエネルギー吸収部材の割れを防止し、エネルギー吸収性を高めることが記載されている。
2. Description of the Related Art Conventionally, energy absorbing members such as bumper beams and door beams have been used in automobiles to improve collision safety. Since this energy absorbing member is required to have high energy absorbing properties, a 7000-series aluminum alloy extruded material of Zn-Mg-Cu-based material having excellent strength is used. However, in order to further increase the energy absorption, it is not sufficient to simply increase the strength of the energy absorbing member, and it is necessary to prevent the energy absorbing member from cracking at the time of collision.
In this regard, for example, Patent Documents 1 and 2 disclose that an energy-absorbing member made of an extruded 7000-series aluminum alloy is overaged to prevent the energy-absorbing member from cracking in a collision, It is described that the absorbency is enhanced.

特開2001−140029号公報JP 2001-140029 A 特開2006−233336号公報JP 2006-233336 A

7000系アルミニウム合金押出材に対して過時効処理を行うと、衝突時のエネルギー吸収部材の割れが防止される、つまりエネルギー吸収部材の耐圧壊割れ性が改善する。しかし、その一方で、エネルギー吸収部材の強度が低下してしまう。このため、過時効処理によって増加するエネルギー吸収部材のエネルギー吸収量には限界があり、7000系アルミニウム合金押出材からなるエネルギー吸収部材のエネルギー吸収性の更なる向上が困難となっている。   If the 7000 series aluminum alloy extruded material is overaged, cracking of the energy absorbing member at the time of collision is prevented, that is, the pressure cracking resistance of the energy absorbing member is improved. However, on the other hand, the strength of the energy absorbing member is reduced. Therefore, there is a limit to the amount of energy absorption of the energy absorbing member that is increased by the overaging treatment, and it is difficult to further improve the energy absorbing property of the energy absorbing member made of the 7000 series aluminum alloy extruded material.

本発明は、7000系アルミニウム合金押出材からなるエネルギー吸収部材の強度を低下させずに、エネルギー吸収部材の耐圧壊割れ性をさらに向上させ、それにより、7000系アルミニウム合金押出材からなるエネルギー吸収部材のエネルギー吸収性を向上させることを目的とする。   The present invention further improves the pressure-resistant cracking resistance of the energy absorbing member without lowering the strength of the energy absorbing member made of the 7000 series aluminum alloy extruded material. The purpose of the present invention is to improve the energy absorptivity.

本発明に係るエネルギー吸収部材の製造方法は、Zn:5.5〜7.0質量%、Mg:0.5〜1.8質量%、Cu:0.1〜0.5質量%、Fe:0.01〜0.40質量%、Si:0.01〜0.20質量%、Ti:0.005〜0.2質量%を含有し、さらにZr:0.01〜0.25質量%、Cr:0.01〜0.25質量%、Mn:0.01〜0.25質量%のうち1種以上を含有し、残部がAl及び不可避的不純物からなる組成を有し、押し出し後プレス焼き入れを施したアルミニウム合金押出材に対し、10℃/秒以上の加熱速度で330〜550℃の範囲内に加熱し、同範囲内に0秒を超え5分以下保持し、続いて同範囲から50℃/秒以上の冷却速度で冷却する熱処理を施した後、人工時効処理を行うことを特徴とする。   The manufacturing method of the energy absorbing member according to the present invention is as follows: Zn: 5.5 to 7.0% by mass, Mg: 0.5 to 1.8% by mass, Cu: 0.1 to 0.5% by mass, Fe: 0.01 to 0.40% by mass, Si: 0.01 to 0.20% by mass, Ti: 0.005 to 0.2% by mass, and Zr: 0.01 to 0.25% by mass. Cr: 0.01 to 0.25% by mass, Mn: 0.01 to 0.25% by mass, at least one of which has a composition of Al and inevitable impurities, and is extruded and press-baked The extruded aluminum alloy material is heated at a heating rate of 10 ° C./sec or more within a range of 330 to 550 ° C., kept in the same range for more than 0 seconds and 5 minutes or less, and then from the same range. After performing a heat treatment for cooling at a cooling rate of 50 ° C./sec or more, an artificial aging treatment is performed.

本発明では、プレス焼き入れした7000系アルミニウム合金押出材に対し、10℃/秒以上の加熱速度で330〜550℃の範囲内に加熱し、同範囲内に0秒を超え5分以下保持し、続いて同範囲から50℃/秒以上の冷却速度で冷却する熱処理を施した後、時効処理を施す。この時効処理は過時効処理を含む。プレス焼き入れ後の7000系アルミニウム合金押出材の結晶粒界には、粗大なMgZn析出物が存在し、当該MgZn析出物は7000系アルミニウム合金押出材からなるエネルギー吸収部材の耐圧壊割れ性を低下させる。一方、上記の熱処理を行うことによって、当該MgZn析出物は、再固溶して消滅する。そして、当該MgZn析出物が消滅しても、7000系アルミニウム合金押出材の強度に影響しない。その結果、本発明によれば、エネルギー吸収部材の強度を低下させずに、エネルギー吸収部材の耐圧壊割れ性をさらに向上させることができ、それにより、7000系アルミニウム合金押出材からなるエネルギー吸収部材のエネルギー吸収性を向上させることができる。 In the present invention, press-quenched 7000 series aluminum alloy extruded material is heated at a heating rate of 10 ° C./sec or more within a range of 330 to 550 ° C., and is kept in the same range for more than 0 seconds and 5 minutes or less. Subsequently, after performing a heat treatment for cooling at a cooling rate of 50 ° C./sec or more from the same range, an aging treatment is performed. This aging processing includes overaging processing. Coarse MgZn 2 precipitates are present at the crystal grain boundaries of the 7000 series aluminum alloy extruded material after press quenching, and the MgZn 2 precipitates are resistant to pressure cracking of the energy absorbing member made of the 7000 series aluminum alloy extruded material. Lower. On the other hand, by performing the above-described heat treatment, the MgZn 2 precipitate is dissolved again and disappears. Then, the MgZn 2 precipitates even disappear, it does not affect the strength of the 7000 series aluminum alloy extruded product. As a result, according to the present invention, it is possible to further improve the pressure-resistant cracking resistance of the energy absorbing member without lowering the strength of the energy absorbing member, and thereby the energy absorbing member made of a 7000 series aluminum alloy extruded material Can improve the energy absorption.

実施例で使用した試験片の平面図(a)、及びU曲げ試験の方法を説明する側面図(b)である。FIG. 3A is a plan view of a test piece used in an example, and FIG. 3B is a side view illustrating a method of a U bending test. 圧壊割れ性を評価するための他の試験方法を示す図である。It is a figure showing other test methods for evaluating crush cracking nature.

以下、本発明に係る7000系アルミニウム合金押出材からなるエネルギー吸収部材及びその製造方法について、具体的に説明する。
(アルミニウム合金の組成)
まず、本発明に係る7000系アルミニウム合金の組成について説明する。ただし、この組成自体は7000系アルミニウム合金として公知のものである。
Zn:5.5〜7.0質量%
Mg:0.5〜1.8質量%
ZnとMgは金属間化合物であるMgZnを形成して、7000系アルミニウム合金の強度を向上させる元素である。Zn含有量が5.5質量%未満又はMg含有量が0.5質量%未満では、エネルギー吸収部材として必要な300MPa以上の耐力が得られない。一方、Zn含有量が7.0質量%を超え又はMg含有量が1.8質量%を超えると、プレス焼き入れ後に所定の熱処理を行っても耐圧壊割れ性を改善できず、エネルギー吸収量の増加が見込めない。耐圧壊割れ性を改善するとの観点から、Zn含有量、Mg含有量の上限は、それぞれ6.5質量%、1.6質量%が好ましい。
Hereinafter, an energy absorbing member made of an extruded 7000-series aluminum alloy according to the present invention and a method for manufacturing the same will be specifically described.
(Composition of aluminum alloy)
First, the composition of the 7000 series aluminum alloy according to the present invention will be described. However, this composition itself is known as a 7000 series aluminum alloy.
Zn: 5.5 to 7.0 mass%
Mg: 0.5 to 1.8 mass%
Zn and Mg are elements that form MgZn 2 which is an intermetallic compound to improve the strength of the 7000 series aluminum alloy. If the Zn content is less than 5.5% by mass or the Mg content is less than 0.5% by mass, the yield strength of 300 MPa or more required for an energy absorbing member cannot be obtained. On the other hand, if the Zn content exceeds 7.0% by mass or the Mg content exceeds 1.8% by mass, even if a predetermined heat treatment is performed after press quenching, the pressure cracking resistance cannot be improved, and the energy absorption Increase is not expected. From the viewpoint of improving the pressure crack resistance, the upper limits of the Zn content and the Mg content are preferably 6.5% by mass and 1.6% by mass, respectively.

Cu:0.1〜0.5質量%
Cuは7000系アルミニウム合金の強度を向上させる元素である。Cu含有量が0.1質量%未満では十分な強度向上効果がなく、一方、0.5質量%を越えると押出加工性の低下を招く。Cu含有量の上限は好ましくは0.4質量%である。
Ti:0.005〜0.2質量%
Tiは7000系アルミニウム合金の鋳造時に結晶粒を微細化して、押出材の成形性(例えば曲げ加工性)及び耐圧壊割れ性を向上させる作用があり、0.005質量%以上添加する。一方、0.2質量%を越えるとその作用が飽和し、かつ粗大な金属間化合物が晶出して、かえって成形性を低下させる。
Cu: 0.1 to 0.5% by mass
Cu is an element that improves the strength of the 7000 series aluminum alloy. If the Cu content is less than 0.1% by mass, there is no sufficient effect of improving the strength, while if it exceeds 0.5% by mass, the extrudability is lowered. The upper limit of the Cu content is preferably 0.4% by mass.
Ti: 0.005 to 0.2 mass%
Ti has an effect of refining crystal grains during casting of a 7000 series aluminum alloy to improve the formability (for example, bending workability) and pressure cracking resistance of an extruded material, and is added in an amount of 0.005% by mass or more. On the other hand, when the content exceeds 0.2% by mass, the effect is saturated, and a coarse intermetallic compound is crystallized, and the moldability is rather lowered.

Zr:0.01〜0.25質量%
Cr:0.01〜0.25質量%
Mn:0.01〜0.25質量%
Mn,Cr,Zrは7000系アルミニウム合金押出材の再結晶を抑制して、結晶組織を微細再結晶又は繊維状組織とし、耐応力腐食割れ性を向上させる作用があり、1種以上を添加する。これらの元素の含有量がそれぞれ0.01質量%未満では前記効果が十分ではない。一方、Mn,Cr,Zrの含有量がそれぞれ0.25質量%を超えると、押出性が低下し、さらに焼き入れ感受性を高め強度低下を招く。特にプレス焼き入れを空冷で行う場合、焼き入れ感受性が高くなるのを防止するため、2種以上の合計含有量が0.4質量%以下であるのが好ましい。
Zr: 0.01 to 0.25% by mass
Cr: 0.01 to 0.25 mass%
Mn: 0.01 to 0.25 mass%
Mn, Cr and Zr have the effect of suppressing the recrystallization of the 7000 series aluminum alloy extruded material to make the crystal structure fine recrystallized or fibrous, and to improve the stress corrosion cracking resistance. . If the content of each of these elements is less than 0.01% by mass, the above effect is not sufficient. On the other hand, when the contents of Mn, Cr, and Zr each exceed 0.25% by mass, extrudability is reduced, quenching sensitivity is increased, and strength is reduced. In particular, when press quenching is performed by air cooling, the total content of two or more is preferably 0.4% by mass or less in order to prevent quenching sensitivity from increasing.

不可避不純物
Fe、Siは、7000系アルミニウム合金の主要な不可避不純物であり、7000系アルミニウム合金の諸特性を低下させないため、それぞれ0.40質量%、0.20質量%以下に規制される。一方、7000系アルミニウム合金中のFe、Siをそれぞれ0.01質量%未満に低減することはコスト面の負担が大きい。従って、Fe含有量は0.01〜0.40質量%、Si含有量は0.01〜0.20質量%とする。
Fe、Si以外の不可避不純物は、単体で0.05質量%以下、総量で0.15質量%以下とする。
Inevitable impurities Fe and Si are main inevitable impurities of the 7000 series aluminum alloy, and are regulated to 0.40% by mass and 0.20% by mass, respectively, so as not to deteriorate various properties of the 7000 series aluminum alloy. On the other hand, reducing each of Fe and Si in the 7000 series aluminum alloy to less than 0.01% by mass imposes a heavy burden on costs. Therefore, the Fe content is 0.01 to 0.40% by mass, and the Si content is 0.01 to 0.20% by mass.
Inevitable impurities other than Fe and Si are set to 0.05% by mass or less in a simple substance, and 0.15% by mass or less in total.

(エネルギー吸収部材の製造方法)
まず、上記組成を有する7000系アルミニウム合金を鋳造、均質化処理を行い、その後熱間押出成形し、水冷又は空冷でプレス焼き入れする。
プレス焼き入れは、水冷又は空冷のいずれでも良いが、プレス焼き入れを水冷で行うと、アルミニウム合金押出材が歪み、寸法精度が確保しにくく、矯正工程が必要となる。そのため、プレス焼き入れは空冷で行うことが好ましい。
(Method of manufacturing energy absorbing member)
First, a 7000 series aluminum alloy having the above composition is cast and homogenized, then hot-extruded, and press-quenched by water cooling or air cooling.
Press quenching may be either water cooling or air cooling. However, if press quenching is performed with water cooling, the aluminum alloy extruded material is distorted, it is difficult to ensure dimensional accuracy, and a straightening step is required. Therefore, it is preferable that the press hardening is performed by air cooling.

次に、プレス焼き入れ後のアルミニウム合金押出材(中空材)を、必要に応じて所定長さに切断し、10℃/秒以上の加熱速度で330〜550℃の範囲内に加熱し、同範囲内に0秒を超え5分以下保持し、続いて同範囲から50℃/秒以上の冷却速度で冷却する熱処理を行う。   Next, the aluminum alloy extruded material (hollow material) after the press quenching is cut into a predetermined length as necessary, and is heated at a heating rate of 10 ° C./sec or more within a range of 330 to 550 ° C. A heat treatment is performed in which the temperature is kept in the range for more than 0 second and not more than 5 minutes, and subsequently, the same range is cooled at a cooling rate of 50 ° C./second or more.

前記熱処理において、加熱速度を10℃/秒以上とするのは、昇温過程において粗大なMgZnが析出するのを防止するためである。保持温度を330〜550℃の範囲とするのは、330℃未満ではMgZnが再固溶せず、550℃を超えると局部溶融が生じる可能性があるためである。押出材がこの温度範囲に到達後、同温度範囲内における保持時間が極めて短時間(0秒を超える時間)でも、再固溶の効果がある。従って、押出材が前記温度範囲に到達後、直ちに冷却してもよく、同温度範囲に所定時間保持してから冷却してもよい。保持時間の上限は特に限定的ではないが、生産効率の面で5分以下とすることが好ましい。保持時間は好ましくは20秒以内、より好ましくは10秒以内である。加熱手段として例えば高周波誘導加熱装置又は硝石炉を利用することができる。前記熱処理において、冷却速度を50℃/秒以上とするのは、冷却過程においてMgZnが再析出するのを防止するためである。冷却は水冷又は空冷が利用できる。 The reason why the heating rate is set to 10 ° C./sec or more in the heat treatment is to prevent coarse MgZn 2 from being precipitated in the temperature rising process. The reason why the holding temperature is set in the range of 330 to 550 ° C. is that MgZn 2 does not re-dissolve at a temperature lower than 330 ° C., and local melting may occur at a temperature higher than 550 ° C. After the extruded material reaches this temperature range, even if the holding time within the temperature range is extremely short (time exceeding 0 seconds), the effect of re-solid solution can be obtained. Therefore, the extruded material may be cooled immediately after reaching the temperature range, or may be cooled after being kept in the same temperature range for a predetermined time. The upper limit of the holding time is not particularly limited, but is preferably 5 minutes or less from the viewpoint of production efficiency. The holding time is preferably within 20 seconds, more preferably within 10 seconds. As the heating means, for example, a high frequency induction heating device or a nitrite furnace can be used. The reason why the cooling rate is set to 50 ° C./sec or more in the heat treatment is to prevent MgZn 2 from reprecipitating in the cooling process. Water cooling or air cooling can be used for cooling.

上記の速い加熱速度及び冷却速度は、200〜330℃の温度範囲で実施されればよく、200℃未満又は330℃超の温度範囲内の加熱速度及び冷却速度は、上記の加熱速度及び冷却速度に達していなくてもよく、冷却は放冷でもよい。ただし、加熱及び冷却効率の点から、200℃未満又は330℃超の温度範囲内は加熱速度及び冷却速度とも10℃/秒以上が好ましく、さらに加熱及び冷却プロセス全体を上記の速い加熱速度及び冷却速度で行うのがより好ましい。
上記熱処理は、アルミニウム合金押出材の全体又は一部に対して行う。
The above-mentioned high heating rate and cooling rate may be performed in a temperature range of 200 to 330 ° C., and the heating rate and cooling rate in a temperature range of less than 200 ° C. or more than 330 ° C. And cooling may be allowed to cool. However, from the viewpoint of heating and cooling efficiency, within a temperature range of less than 200 ° C. or more than 330 ° C., both the heating rate and the cooling rate are preferably 10 ° C./sec or more. More preferably, it is performed at a speed.
The heat treatment is performed on the entire or a part of the extruded aluminum alloy.

上記熱処理の後、アルミニウム合金押出材に人工時効処理を施す。これによって、本発明に係るエネルギー吸収部材を製造することができる。
人工時効処理の条件は、特に限定的ではなく、一般的な時効処理条件で行うことができる。又は、一般的な時効処理より高温・長時間の条件で時効処理(過時効処理)を行うこともできる。具体的な時効処理条件は、例えば85〜95℃×2〜4時間+130〜140℃×5〜10時間、あるいは85〜95℃×2〜4時間+160〜180℃×5〜10時間の範囲で適宜選択すればよい。前記熱処理による耐圧壊割れ性の改善及びエネルギー吸収量の増加の効果は、その後の人工時効処理が一般的な時効処理でも過時効処理でも得られる。
After the heat treatment, the aluminum alloy extruded material is subjected to an artificial aging treatment. Thereby, the energy absorbing member according to the present invention can be manufactured.
The conditions of the artificial aging treatment are not particularly limited, and can be performed under general aging treatment conditions. Alternatively, aging treatment (overaging treatment) can be performed under conditions of higher temperature and longer time than general aging treatment. Specific aging treatment conditions are, for example, in the range of 85 to 95 ° C. × 2 to 4 hours + 130 to 140 ° C. × 5 to 10 hours, or 85 to 95 ° C. × 2 to 4 hours + 160 to 180 ° C. × 5 to 10 hours. What is necessary is just to select suitably. The effects of improving the pressure-resistant cracking resistance and increasing the amount of energy absorption by the heat treatment can be obtained regardless of whether the subsequent artificial aging treatment is a general aging treatment or an overaging treatment.

以上説明した製造方法には、アルミニウム合金押出材に対する塑性加工が含まれていないが、本発明の実施の形態の一つとして、アルミニウム合金押出材の全部又は一部(長さ方向に沿った一部領域)に対して、さらに塑性加工を施す場合が含まれる。
アルミニウム合金押出材の一部に対して塑性加工を施す場合、前記塑性加工はプレス焼き入れ後前記熱処理前に施すことが望ましい。
前記熱処理後に塑性加工を施すと、続く時効処理において、塑性加工を施さなかった部位に比べて塑性加工を施した部位の時効が促進され(過時効化)、部材全長にわたる強度の均一性が保てず、エネルギー吸収部材の性能を損なうおそれがある。また、塑性加工を時効処理後に施すと、高強度のため割れが入ったり、塑性加工に伴って発生する残留応力により耐応力腐食割れ性が低下するおそれがある。このため、アルミニウム合金押出材の一部に対して塑性加工を施す場合、プレス焼き入れ後前記熱処理の前に施すことが望ましい。
Although the manufacturing method described above does not include plastic working on the aluminum alloy extruded material, as one of the embodiments of the present invention, all or part of the aluminum alloy extruded material (one along the length direction) is used. (Part region) is further subjected to plastic working.
When performing plastic working on a part of the aluminum alloy extruded material, it is preferable that the plastic working be performed after press quenching and before the heat treatment.
When plastic working is performed after the heat treatment, in the subsequent aging treatment, aging of the part subjected to plastic working is accelerated (overaging) as compared with the part not subjected to plastic working, and uniformity of strength over the entire length of the member is maintained. And the performance of the energy absorbing member may be impaired. Further, if plastic working is performed after aging treatment, cracking may occur due to high strength, or stress corrosion cracking resistance may be reduced due to residual stress generated by plastic working. Therefore, when plastic working is performed on a part of the extruded aluminum alloy, it is desirable to perform the plastic working after press quenching and before the heat treatment.

以上の方法によって製造されたエネルギー吸収部材では、前記熱処理によって、プレス焼き入れ後のアルミニウム合金押出材の結晶粒界に存在していた粗大なMgZn析出物が再固溶して消滅している。粗大なMgZn析出物が結晶粒界から消滅することにより、エネルギー吸収部材の耐圧壊割れ性が向上し、一方、粗大なMgZn析出物が結晶粒界から消滅してもエネルギー吸収部材の強度は低下しない。その結果、当該エネルギー吸収部材のエネルギー吸収量を増加させることができる。 In the energy absorbing member manufactured by the above method, the heat treatment causes the coarse MgZn 2 precipitate present at the crystal grain boundaries of the aluminum alloy extruded material after press quenching to be dissolved again and disappear. . When the coarse MgZn 2 precipitate disappears from the crystal grain boundary, the pressure-resistant cracking resistance of the energy absorbing member is improved. On the other hand, even when the coarse MgZn 2 precipitate disappears from the crystal grain boundary, the strength of the energy absorbing member is reduced. Does not drop. As a result, the energy absorption amount of the energy absorbing member can be increased.

表1に記載されたNo.1〜12の組成を有する7000系アルミニウム合金ビレットに、470℃×6時間の均質化処理を行い、押出温度(ビレット温度)470℃、押出速度5m/分の条件で押出成形した。押し出し後はファン空冷(冷却速度は約50℃/分)でプレス焼き入れした。押出材の断面形状は、輪郭が60mm×120mmの矩形で、2つのフランジ(輪郭の長辺部)と3つのウエブ(輪郭の短辺部と中央部)からなり、フランジ及びウエブの肉厚は全て2.0mmである。なお、この実施例は、本発明の一実施形態を示すものであり、本発明がこれに限定されるものではない。   No. described in Table 1 A 7000 series aluminum alloy billet having a composition of 1 to 12 was homogenized at 470 ° C. for 6 hours and extruded at an extrusion temperature (billet temperature) of 470 ° C. and an extrusion speed of 5 m / min. After the extrusion, press hardening was performed by air cooling with a fan (cooling rate: about 50 ° C./min). The cross-sectional shape of the extruded material is a rectangle with a contour of 60 mm x 120 mm, consisting of two flanges (long side of the contour) and three webs (short side and center of the contour). All are 2.0 mm. This example shows one embodiment of the present invention, and the present invention is not limited to this.

Figure 0006677584
Figure 0006677584

この押出材に対し、表2に示す条件で熱処理を行った(No.12のみ行わず)。この熱処理において、表2に示す加熱速度は室温(25℃)から保持温度に達するまでの加熱速度、保持時間は保持温度に保持した時間、冷却速度は保持温度から200℃に達するまでの冷却速度(以後は室温まで放冷)である。従って、表2の保持温度が330〜550℃のNo.1〜8,11は、330〜550℃の温度範囲内に保持された時間は表2に示す保持時間よりやや長い。
続いて表2に示す条件で時効処理を行った。No.1〜4,9,10の時効処理は一般的な時効処理であり、No.5〜8,11,12の時効処理は過時効処理に相当する。
This extruded material was subjected to a heat treatment under the conditions shown in Table 2 (only No. 12 was not used). In this heat treatment, the heating rate shown in Table 2 is the heating rate from room temperature (25 ° C.) to the holding temperature, the holding time is the holding time at the holding temperature, and the cooling rate is the cooling rate from the holding temperature to 200 ° C. (After that, it is cooled to room temperature). Therefore, in Table 2, the holding temperatures of 330 to 550 ° C. For 1 to 8 and 11, the time kept in the temperature range of 330 to 550 ° C. is slightly longer than the holding time shown in Table 2.
Subsequently, aging treatment was performed under the conditions shown in Table 2. No. The aging processes Nos. 1, 4, 9, and 10 are general aging processes. The aging processes 5 to 8, 11, and 12 correspond to overaging processes.

Figure 0006677584
Figure 0006677584

時効処理後の押出材を用いて、以下の要領で、耐力の測定及び圧壊割れ性の評価を行った。その結果を表2に示す。なお、No.9の押出材は局部溶融を起こしたため、耐力の測定及び圧壊割れ性の評価を行わなかった。また、No.12は特許文献1,2に記載された従来材に相当する。
(耐力の測定)
押出材のウエブ(輪郭の短辺部)から押出方向に平行にJIS13号B試験片を採取し、JISZ2241の規定に準じて引張試験を行い、耐力を測定した。
Using the extruded material after the aging treatment, measurement of proof stress and evaluation of crush cracking were performed in the following manner. Table 2 shows the results. In addition, No. Since the extruded material of No. 9 caused local melting, measurement of proof stress and evaluation of crush cracking were not performed. In addition, No. Reference numeral 12 corresponds to the conventional material described in Patent Documents 1 and 2.
(Measurement of proof stress)
A JIS No. 13 B test piece was sampled in parallel with the extrusion direction from a web (short side of the contour) of the extruded material, and a tensile test was performed according to JIS Z2241 to measure the proof stress.

(圧壊割れ性の評価)
押出材のウエブ(輪郭の短辺部)から押出方向に対し垂直方向が試験片の長さ方向となるように、長さ50mm×幅30mmの試験片1を切り出して供試材とし、U曲げ試験により圧壊割れ性を評価した。試験片1の形状を図1(a)に示す。U曲げ試験は、U曲げ冶具及び30Ton万能試験機を用い、図1(b)に示すように、支え2の上に試験片1を載せ、押し治具3を試験片1が支え2を通り抜けるまで押し込む押し曲げ法による試験である。本実施例では、押し冶具3の先端のR(半径)が大きいものから順に試験していき、試験片1の曲げコーナーの外側(引張側部位)に割れが発生しない最小の曲げR(限界曲げR)を求めた。U曲げ試験は、各曲げRごとに3回実施し(n=3)、3回のうち1回でも試験片に割れが発生した場合、当該曲げRで試験片に割れが発生したとした。この限界曲げRが小さい程、材料に力が加わった際に割れが発生しにくいことを示す。
(Evaluation of crush cracking properties)
A test piece 1 having a length of 50 mm and a width of 30 mm is cut out from the web (short side of the contour) of the extruded material so that the direction perpendicular to the extrusion direction is the length direction of the test piece, and is used as a test material. The crush cracking property was evaluated by a test. The shape of the test piece 1 is shown in FIG. The U-bending test uses a U-bending jig and a 30-ton universal testing machine, and places the test piece 1 on the support 2 as shown in FIG. This is a test by the push-bending method of pushing down to the maximum. In this embodiment, the test is performed in order from the one having the largest R (radius) at the tip of the pressing jig 3, and the minimum bending R (critical bending) at which the crack does not occur outside the bending corner (tensile side portion) of the test piece 1. R) was determined. The U-bending test was performed three times for each bending R (n = 3). When a crack occurred in the test piece even in one of the three times, it was determined that a crack occurred in the test piece in the bending R. It is shown that the smaller the critical bending R is, the less the crack is generated when a force is applied to the material.

なお、圧壊割れ性の評価のための試験方法としては、上記U曲げ試験、図2(a)に示す軸圧縮時の局所的な板曲げ試験、及び図2(b)に示す曲げ中心の断面変化に伴う局所的な板曲げ試験が考えられる。図2(a)に示す試験は、所定長さに切断した押出材4を軸方向に圧縮変形させ、割れが発生したときの押出材4の長さ(高さ)を測定する試験である。図2(a)には変形前及び変形後の押出材4の形状を示す。図2(b)に示す試験は、所定長さに切断した押出材5の3点曲げ試験を行い、割れが発生するときの押し治具6の押し込み量を測定する試験である。図2(b)には変形前及び変形後の押出材5の形状をその曲げ中心の断面図と共に示す。以上3つの試験方法のうちいずれであっても、同様の評価結果を得ることできるため、本実施例では上記U曲げ試験を採用した。   In addition, as a test method for evaluation of the crush cracking property, the above-mentioned U bending test, a local plate bending test at the time of axial compression shown in FIG. 2A, and a cross section of the bending center shown in FIG. A local plate bending test accompanying the change is considered. The test shown in FIG. 2A is a test for measuring the length (height) of the extruded material 4 when a crack is generated by compressively deforming the extruded material 4 cut into a predetermined length in the axial direction. FIG. 2A shows the shape of the extruded material 4 before and after deformation. The test shown in FIG. 2B is a test in which a three-point bending test is performed on the extruded material 5 cut to a predetermined length, and the amount of pushing of the pushing jig 6 when a crack occurs is measured. FIG. 2B shows the shape of the extruded material 5 before and after deformation together with a cross-sectional view of the bending center. Since the same evaluation result can be obtained by any of the above three test methods, the U-bending test was employed in this example.

表2に示すように、本発明に規定する条件で熱処理を行ったNo.1〜8は、本発明に規定する熱処理を施さなかったNo.12(従来材)と比較すると、限界曲げRが2/3以下と小さく、また、エネルギー吸収部材として必要な300MPa以上の耐力が得られている。一方、本発明に規定する条件よりも熱処理の保持温度が低いNo.10、及び本発明に規定する条件よりも熱処理の冷却速度が小さいNo.11は、従来材であるNo.12と比較すると限界曲げRがやや小さいが、No.1〜8と比較するとかなり大きい。   As shown in Table 2, No. 1 was heat-treated under the conditions specified in the present invention. Nos. 1 to 8 were not subjected to the heat treatment specified in the present invention. As compared with No. 12 (conventional material), the critical bending R is as small as 2/3 or less, and the proof stress of 300 MPa or more required as an energy absorbing member is obtained. On the other hand, in No. 3 in which the holding temperature of the heat treatment was lower than the conditions specified in the present invention. No. 10 and No. 10 in which the cooling rate of the heat treatment was lower than the conditions specified in the present invention. No. 11 is a conventional material. Although the critical bending R is slightly smaller than that of No. 12, It is much larger than 1-8.

1 試験片
2 支え
3 押し治具
1 Test piece 2 Support 3 Pushing jig

Claims (3)

Zn:5.5〜7.0質量%、Mg:0.5〜1.8質量%、Cu:0.1〜0.5質量%、Fe:0.01〜0.40質量%、Si:0.01〜0.20質量%、Ti:0.005〜0.2質量%を含有し、さらにZr:0.01〜0.25質量%、Cr:0.01〜0.25質量%、Mn:0.01〜0.25質量%のうち1種以上を含有し、残部がAl及び不可避的不純物からなる組成を有し、押し出し後プレス焼き入れを施したアルミニウム合金押出材に対し、その一部に塑性加工を施した後、10℃/秒以上の加熱速度で330〜550℃の範囲内に加熱し、同範囲内に0秒を超え5分以下保持し、続いて同範囲から50℃/秒以上の冷却速度で冷却する熱処理を施した後、人工時効処理を行うことを特徴とするエネルギー吸収部材の製造方法。 Zn: 5.5 to 7.0% by mass, Mg: 0.5 to 1.8% by mass, Cu: 0.1 to 0.5% by mass, Fe: 0.01 to 0.40% by mass, Si: 0.01 to 0.20% by mass, Ti: 0.005 to 0.2% by mass, Zr: 0.01 to 0.25% by mass, Cr: 0.01 to 0.25% by mass, Mn: 0.01 to 0.25 and containing one or more of mass%, having the balance consisting of Al and unavoidable impurities, to an aluminum alloy extruded product after subjected to press quenching extrusion, the After subjecting a part to plastic working, it is heated within a range of 330 to 550 ° C. at a heating rate of 10 ° C./sec or more, kept within the same range for more than 0 seconds and 5 minutes or less, and subsequently 50 An energy absorbing section characterized by performing an artificial aging treatment after performing a heat treatment for cooling at a cooling rate of at least ° C / sec. The method of manufacturing the material. 前記温度範囲が400〜550℃であることを特徴とする請求項1に記載されたエネルギー吸収部材の製造方法。 The method according to claim 1 , wherein the temperature range is 400 to 550C. 前記時効処理が過時効処理であることを特徴とする請求項1又は2に記載されたエネルギー吸収部材の製造方法。

3. The method according to claim 1, wherein the aging treatment is an overaging treatment.

JP2016121037A 2016-06-17 2016-06-17 Method of manufacturing energy absorbing member Active JP6677584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016121037A JP6677584B2 (en) 2016-06-17 2016-06-17 Method of manufacturing energy absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016121037A JP6677584B2 (en) 2016-06-17 2016-06-17 Method of manufacturing energy absorbing member

Publications (2)

Publication Number Publication Date
JP2017222920A JP2017222920A (en) 2017-12-21
JP6677584B2 true JP6677584B2 (en) 2020-04-08

Family

ID=60687858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016121037A Active JP6677584B2 (en) 2016-06-17 2016-06-17 Method of manufacturing energy absorbing member

Country Status (1)

Country Link
JP (1) JP6677584B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7093611B2 (en) * 2016-11-30 2022-06-30 アイシン軽金属株式会社 Aluminum alloy for extruded material and method for manufacturing extruded material and extruded material using it
JP7046780B2 (en) 2018-10-23 2022-04-04 株式会社神戸製鋼所 A method for manufacturing a 7000 series aluminum alloy member.
JP7244195B2 (en) * 2019-07-11 2023-03-22 株式会社神戸製鋼所 Method for manufacturing 7000 series aluminum alloy member
CN111661156B (en) * 2020-06-05 2021-08-13 福建祥鑫股份有限公司 High-strength aluminum alloy light truck crossbeam and manufacturing method thereof
CN111593240B (en) * 2020-07-07 2021-02-23 福建祥鑫股份有限公司 Preparation method of 7-series aluminum alloy transmission tower profile
CN113430433A (en) * 2021-08-25 2021-09-24 中国航发北京航空材料研究院 Aging treatment method of aluminum alloy component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3945861A (en) * 1975-04-21 1976-03-23 Aluminum Company Of America High strength automobile bumper alloy
JP5671422B2 (en) * 2011-07-25 2015-02-18 株式会社神戸製鋼所 Method for producing high strength 7000 series aluminum alloy member and high strength 7000 series aluminum alloy member
JP6223670B2 (en) * 2012-09-20 2017-11-01 株式会社神戸製鋼所 Aluminum alloy sheet for automobile parts
JP5968284B2 (en) * 2013-09-09 2016-08-10 株式会社神戸製鋼所 Bumper structure and bumper beam manufacturing method

Also Published As

Publication number Publication date
JP2017222920A (en) 2017-12-21

Similar Documents

Publication Publication Date Title
JP6677584B2 (en) Method of manufacturing energy absorbing member
JP7321828B2 (en) High-strength 6xxx aluminum alloy and method for making same
US10487383B2 (en) Method for producing 7000-series aluminum alloy member excellent in stress corrosion cracking resistance
US10144997B2 (en) 7xxx series aluminum alloy member excellent in stress corrosion cracking resistance and method for manufacturing the same
US8105449B2 (en) High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same
JP6771456B2 (en) Aluminum alloy products and preparation methods
WO2016140335A1 (en) Aluminum alloy plate
JP5671422B2 (en) Method for producing high strength 7000 series aluminum alloy member and high strength 7000 series aluminum alloy member
CN109844160B (en) Thermomechanical aging of 6XXX extrusions
JP5981842B2 (en) AlMgSi strip for applications with high formability requirements
JP2010159489A (en) Method for molding 7,000 series aluminum alloy material, and formed product molded by the same
JP2010159488A (en) Method for molding 2,000 series aluminum alloy material, and formed product molded by the same
JP4311679B2 (en) Manufacturing method of energy absorbing member for automobile
JP6193808B2 (en) Aluminum alloy extruded material and method for producing the same
US20210010121A1 (en) High-Strength Aluminum Alloy Extruded Material That Exhibits Excellent Formability And Method For Producing The Same
CA2950075C (en) Method for manufacturing aluminum alloy member and aluminum alloy member manufactured by the same
KR20210003196A (en) 6XXX aluminum alloy for extrusion with excellent impact performance and high yield strength, and its manufacturing method
JP2016160516A (en) Aluminum alloy sheet
JP2019143232A (en) Manufacturing method of flexure molded article using aluminum alloy
JP2019026897A (en) Aluminum alloy sheet for structural member, and manufacturing method of aluminum alloy structural member
JP2020139228A (en) Method for producing aluminum alloy extrusion material
JP2928445B2 (en) High-strength aluminum alloy extruded material and method for producing the same
JP6005539B2 (en) Method for producing high strength 7000 series aluminum alloy member
JP4993170B2 (en) Aluminum alloy extruded shape having excellent impact absorption characteristics and good hardenability, and method for producing the same
JP6611287B2 (en) Method for producing 7000 series aluminum alloy member excellent in stress corrosion cracking resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200313

R150 Certificate of patent or registration of utility model

Ref document number: 6677584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250