JP7046780B2 - A method for manufacturing a 7000 series aluminum alloy member. - Google Patents

A method for manufacturing a 7000 series aluminum alloy member. Download PDF

Info

Publication number
JP7046780B2
JP7046780B2 JP2018199481A JP2018199481A JP7046780B2 JP 7046780 B2 JP7046780 B2 JP 7046780B2 JP 2018199481 A JP2018199481 A JP 2018199481A JP 2018199481 A JP2018199481 A JP 2018199481A JP 7046780 B2 JP7046780 B2 JP 7046780B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
extruded profile
series aluminum
extruded
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018199481A
Other languages
Japanese (ja)
Other versions
JP2020066768A (en
Inventor
寛哲 細井
隆広 志鎌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018199481A priority Critical patent/JP7046780B2/en
Publication of JP2020066768A publication Critical patent/JP2020066768A/en
Application granted granted Critical
Publication of JP7046780B2 publication Critical patent/JP7046780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)
  • Body Structure For Vehicles (AREA)

Description

本発明は、7000系アルミニウム合金製部材の製造方法に関わり、特に7000系アルミニウム合金押出形材を機械加工して7000系アルミニウム合金製部材を製造する方法に関わる。 The present invention relates to a method for manufacturing a 7000 series aluminum alloy member, and more particularly to a method for manufacturing a 7000 series aluminum alloy member by machining a 7000 series aluminum alloy extruded profile.

アルミニウム合金押出形材は、任意の断面形状及び長さを有する中空断面のアルミニウム合金製部材(特に長尺部材)の製造が可能であり、自動車用部材(骨格部材、エネルギ吸収部材など)への積極的な採用が拡大している。自動車の骨格部材としてロッカー(サイドシル)、サイドメンバー、ピラー等があり、エネルギ吸収部材としてドアビーム、バンパー補強材、ルーフ補強材等がある。
このようなアルミニウム合金製部材は、基本的には曲げモーメントに対する剛性及び強度が求められることがほとんどである。従って、素材となる押出形材は、軽量で曲げ強度及び曲げ剛性に優れる中空断面とされることが多い。そのような中空断面として、例えば略矩形断面、及び略矩形の輪郭の内部に1又は2個の中リブを有する断面が挙げられる。
The aluminum alloy extruded profile can be used to manufacture hollow aluminum alloy members (particularly long members) having an arbitrary cross-sectional shape and length, and can be used for automobile members (skeleton members, energy absorbing members, etc.). Active recruitment is expanding. There are rockers (side sills), side members, pillars, etc. as skeleton members of automobiles, and door beams, bumper reinforcing materials, roof reinforcing materials, etc. as energy absorbing members.
In most cases, such aluminum alloy members are basically required to have rigidity and strength against a bending moment. Therefore, the extruded profile as a material often has a hollow cross section that is lightweight and has excellent bending strength and bending rigidity. Examples of such a hollow cross section include a substantially rectangular cross section and a cross section having one or two middle ribs inside a substantially rectangular contour.

アルミニウム合金押出形材を素材とするアルミニウム合金製部材の一般的な製造プロセスは、1)溶解鋳造、2)熱間押出、3)引張矯正(冷間)、4)切断、5)人工時効処理(熱処理型合金のみ)である。アルミニウム合金製部材が自動車用の場合、さらに曲げ加工や変断面加工及び穴明け等の加工が必要であり、4)の工程以降に行われる。
熱間押し出しで成形されたアルミニウム合金押出形材には、押出ダイスからのメタルの流速差や断面における冷却速度の不均一等により、曲がりやねじれが生じている。アルミニウム合金押出形材が薄肉で、非対称断面であるほど、曲がりやねじれが大きくなる傾向がある。また、冷却速度の速い水冷では、空冷に比べて曲がりやねじれが顕著になる。このような曲がりやねじれを矯正するため、アルミニウム合金押出形材は押出直後に、長尺のままで、冷間で引張矯正される。引張矯正におけるストレッチ量が多いほど、アルミニウム合金押出形材の断面積が減少する。引張矯正によってアルミニウム合金押出形材に付加される歪み(塑性歪み)は、肉厚減少や断面形状の変化を最小限に留めるため、概ね1%以下に設定されている。
The general manufacturing process for aluminum alloy members made from aluminum alloy extruded profiles is 1) melt casting, 2) hot extrusion, 3) tensile straightening (cold), 4) cutting, and 5) artificial aging treatment. (Heat treatment type alloy only). When the aluminum alloy member is for automobiles, further bending, variable cross-section processing, drilling, and other processing are required, which are performed after the step 4).
The aluminum alloy extruded profile formed by hot extrusion is bent or twisted due to the difference in the flow velocity of the metal from the extruded die and the non-uniform cooling rate in the cross section. The thinner the aluminum alloy extruded profile and the asymmetrical cross section, the greater the tendency for bending and twisting. Further, in water cooling with a high cooling rate, bending and twisting become more remarkable than in air cooling. In order to correct such bending and twisting, the aluminum alloy extruded profile is subjected to cold tensile straightening immediately after extrusion, while remaining long. The larger the amount of stretch in tensile straightening, the smaller the cross-sectional area of the extruded aluminum alloy profile. The strain (plastic strain) applied to the extruded aluminum alloy profile by tensile straightening is set to about 1% or less in order to minimize the decrease in wall thickness and the change in cross-sectional shape.

一般にアルミニウム合金の強度レベルが高いほど、軽量化効果を高くできるため、例えば自動車用部材向けに、高強度アルミニウム合金の開発が進められている。
高強度アルミニウム合金として代表的なものに、析出硬化型合金である6000系(Al-Mg-Si-(Cu)系)及び7000系(Al-Zn-Mg-(Cu)系)がある。一般的に、6000系アルミニウム合金は0.2%耐力で200~350MPa程度、7000系アルミニウム合金は0.2%耐力で300~500MPa程度が、T5、T6又はT7調質で得られる。特に7000系アルミニウム合金は高強度が得られ,高い軽量化効果が期待できる。
一方、7000系アルミニウム合金は、引張応力が作用した状態で、腐食環境下に晒され続けると、応力腐食割れ(SCC)と呼ばれる亀裂が生じるリスクが知られている。SCCによる割れは非常に鋭敏であるため早く進展し、突然の破損の危険性があり、品質保証の観点からその発生が強く懸念される。7000系アルミニウム合金のSCCは、高強度材になるほど起こりやすく、7000系アルミニウム合金の高強度化の足かせとなっている。
Generally, the higher the strength level of an aluminum alloy, the higher the weight reduction effect. Therefore, for example, development of a high-strength aluminum alloy is being promoted for automobile members.
Typical high-strength aluminum alloys include 6000 series (Al-Mg-Si- (Cu) series) and 7000 series (Al-Zn-Mg- (Cu) series), which are precipitation-curing alloys. Generally, a 6000 series aluminum alloy has a 0.2% proof stress of about 200 to 350 MPa, and a 7000 series aluminum alloy has a 0.2% proof stress of about 300 to 500 MPa, which can be obtained by T5, T6 or T7 tempering. In particular, the 7000 series aluminum alloy has high strength and can be expected to have a high weight reduction effect.
On the other hand, it is known that the 7000 series aluminum alloy has a risk of causing cracks called stress corrosion cracking (SCC) if it is continuously exposed to a corrosive environment in a state where tensile stress is applied. Since cracking due to SCC is very sensitive, it progresses quickly and there is a risk of sudden damage, and there is a strong concern that it will occur from the viewpoint of quality assurance. SCC of 7000 series aluminum alloy is more likely to occur as the material becomes higher strength, which is a hindrance to increasing the strength of 7000 series aluminum alloy.

SCC発生の主たる要因は、腐食環境下で、臨界値以上の引張残留応力が存在することである。引張残留応力は、製造過程での塑性加工、切削加工、熱処理(焼き入れ等)などで生じる。
アルミニウム合金押出形材の場合、押出直後は一定の断面形状を有するストレートな長尺材の状態である。アルミニウム合金押出形材を用いて自動車用部材等を製造する過程では、所要の形状にするため、曲げ加工、変断面加工及び剪断加工などの塑性加工や、切削加工といった機械加工が必要となる。このような機械加工を冷間で行う場合、アルミニウム合金押出形材に高い引張残留応力が生じることが知られている。
The main cause of SCC generation is the presence of tensile residual stress above the critical value in a corrosive environment. Tension residual stress is generated by plastic working, cutting, heat treatment (quenching, etc.) in the manufacturing process.
In the case of an aluminum alloy extruded profile, it is in the state of a straight long material having a constant cross-sectional shape immediately after extrusion. In the process of manufacturing automobile members and the like using extruded aluminum alloy profiles, plastic working such as bending, variable cross-sectioning and shearing, and machining such as cutting are required to obtain the required shape. It is known that when such machining is performed cold, a high tensile residual stress is generated in the extruded aluminum alloy profile.

SCCの発生リスクのある7000系アルミニウム合金押出形材において、上記のような機械加工を冷間で行う場合に発生する引張残留応力の抑制が課題となっている。
特許文献1には、7000系アルミニウム合金押出形材の端部を斜めに切り落とし、次いで前記端部に塑性変形を加えてドアビームを製造する場合に、塑性変形に伴う引張残留応力の発生を抑制し、耐SCC性を改善することが記載されている。
特許文献2には、T1調質状態の7000系アルミニウム合金押出形材に対し、所定の急熱・急冷条件で熱処理を施した後、塑性加工を行うことにより、塑性加工に伴う引張残留応力の発生を抑制し、耐SCC性を改善することが記載されている。
In the 7000 series aluminum alloy extruded profile, which has a risk of generating SCC, it is an issue to suppress the tensile residual stress generated when the above-mentioned machining is performed cold.
In Patent Document 1, when an end portion of a 7000 series aluminum alloy extruded profile is cut off diagonally and then plastic deformation is applied to the end portion to manufacture a door beam, the generation of tensile residual stress due to plastic deformation is suppressed. , It is described that the SCC resistance is improved.
In Patent Document 2, a 7000 series aluminum alloy extruded profile in a T1 tempered state is heat-treated under predetermined rapid heating and quenching conditions, and then plastic working is performed to reduce the tensile residual stress associated with the plastic working. It is described that the occurrence is suppressed and the SCC resistance is improved.

特開2002-362157号公報Japanese Unexamined Patent Publication No. 2002-362157 特許第5671422号公報Japanese Patent No. 5671422

曲げ加工による歪みは、押出形材の断面高さHと曲げ中立軸の曲率半径Rに依存し、曲げ外側と曲げ内側には長手方向(押出平行方向)に概ね±H/2Rの歪みが生じる。押出形材の歪み分布(除荷前)は図1Aに示すようになり、押出形材の最表層において最も歪み量が大きくなる。押出形材の断面高さHと曲率半径Rの比R/Hは、例えば自動車用部材の場合一般に10~100程度であり、最表層の歪みは0.5~5%程度となる。
また、曲げ加工後(除荷後)の残留応力は主に押出形材の長手方向に生じ、一般的には図1Bに示すような残留応力分布となる。SCC発生の要因となる引張残留応力が最大値を示す位置は、最も歪み量が大きくなる最表層(曲げ外側)ではなく、断面の中心(曲げの中心)寄りの位置、すなわち曲げ加工により付加される歪みが比較的小さい位置となる。
引張曲げ加工の場合、押出形材に対し耐力σyと断面積Sの積(σy×S)の0.3~0.7倍程度の張力を付加して曲げ加工が行われ、引張残留応力が最大値を示す位置がさらに断面の中心(張力ゼロのときの曲げの中心)寄りの位置に近づく。この場合も、張力ゼロの曲げ加工と同様に、引張残留応力が最大値を示す位置は、引張曲げ加工により加えられる歪みが比較的小さい位置となる。
The strain due to bending depends on the cross-sectional height H of the extruded profile and the radius of curvature R of the bending neutral axis, and strain of approximately ± H / 2R occurs in the longitudinal direction (extrusion parallel direction) on the outside and inside of the bending. .. The strain distribution (before unloading) of the extruded profile is as shown in FIG. 1A, and the strain amount is the largest in the outermost layer of the extruded profile. The ratio R / H of the cross-sectional height H and the radius of curvature R of the extruded profile is generally about 10 to 100 in the case of an automobile member, for example, and the strain of the outermost layer is about 0.5 to 5%.
Further, the residual stress after bending (after unloading) occurs mainly in the longitudinal direction of the extruded profile, and generally has a residual stress distribution as shown in FIG. 1B. The position where the tensile residual stress that causes SCC generation shows the maximum value is not the outermost layer (bending outer side) where the strain amount is the largest, but the position near the center of the cross section (bending center), that is, it is added by bending. The distortion is relatively small.
In the case of tensile bending, bending is performed by applying a tension of about 0.3 to 0.7 times the product of yield strength σy and cross-sectional area S (σy × S) to the extruded profile, resulting in tensile residual stress. The position showing the maximum value approaches the position closer to the center of the cross section (the center of bending when the tension is zero). In this case as well, the position where the tensile residual stress shows the maximum value is the position where the strain applied by the tensile bending process is relatively small, as in the bending process with zero tension.

変断面加工においても、高い引張残留応力は大きい歪みが導入された領域ではなく、歪みが小さい領域で発生する。図2は、一対のフランジ1,2と一対のウエブ3,4からなるアルミニウム合金押出形材に変断面加工(潰し加工)を施したときの側面図と断面図を示す。変断面加工後の引張残留応力は主に押出方向に対し垂直方向(図2中の上下矢印参照)に生じる。ウエブ3,4に生じた引張残留応力は、塑性歪みが導入された領域とそうでない領域の境界付近(C-C断面の付近)、すなわち歪みが小さい領域において最も大きくなる(特開2014-145119号公報参照)。 Even in the variable cross-section machining, high tensile residual stress occurs not in the region where a large strain is introduced but in the region where the strain is small. FIG. 2 shows a side view and a cross-sectional view when an aluminum alloy extruded profile composed of a pair of flanges 1 and 2 and a pair of webs 3 and 4 is subjected to a variable cross-sectional processing (crushing processing). The tensile residual stress after the variable cross-section processing is mainly generated in the direction perpendicular to the extrusion direction (see the up and down arrows in FIG. 2). The tensile residual stress generated in the webs 3 and 4 is the largest in the vicinity of the boundary between the region where the plastic strain is introduced and the region where the plastic strain is not introduced (near the CC cross section), that is, in the region where the strain is small (Japanese Patent Laid-Open No. 2014-145119). See Gazette).

7000系アルミニウム合金押出形材に対する塑性加工は、T1調質又はT4調質の状態で行われることが多い。これは、1)人工時効処理後の押出形材は硬化していて延性に乏しく、加工時に割れるため、2)導入される残留応力を低減する(残留応力の大きさは加工時の押出形材の耐力にほぼ比例する)ため、である。従って、塑性加工後に、押出形材に対し人工時効処理が行われる。7000系アルミニウム合金押出形材の人工時効処理条件は、概ね120~180℃×5~20時間の範囲内である。
また、先に述べた自動車用部材の場合、車体が組み上がった後(人工時効処理後)に、焼付塗装と呼ばれる工程が施される。焼付塗装の加熱条件は、人工時効処理より一般的に高温であり、概ね150~200℃で1時間以内である。
Plastic working on 7000 series aluminum alloy extruded profiles is often performed in the state of T1 tempering or T4 tempering. This is because 1) the extruded shape after artificial aging treatment is hardened and has poor ductility and cracks during processing, so 2) the residual stress to be introduced is reduced (the magnitude of the residual stress is the size of the extruded shape during processing). (It is almost proportional to the bearing capacity of). Therefore, after the plastic working, the extruded profile is subjected to artificial aging treatment. The artificial aging treatment conditions for the 7000 series aluminum alloy extruded profile are generally in the range of 120 to 180 ° C. × 5 to 20 hours.
Further, in the case of the automobile member described above, a process called baking coating is performed after the vehicle body is assembled (after artificial aging treatment). The heating condition of the baking coating is generally higher than that of the artificial aging treatment, and is generally 150 to 200 ° C. within 1 hour.

塑性加工により7000系アルミニウム合金押出形材に生じた残留引張応力は、人工時効処理や焼付塗装において加熱されることにより低減する。しかし、加熱による残留引張応力の低減(応力緩和)は、導入された歪みが大きい領域では進行しやすいが、導入された歪みが小さい箇所では十分進行しない。一方、先に記載したとおり、塑性加工後の押出形材において、歪みが小さい領域に大きい残留引張応力が存在することがある。このような領域では加熱による残留引張応力の低減が進行せず、その結果、製品(アルミニウム合金部材)に残留引張応力が低減されないままで存在することとなり、これがSCC発生の原因となる。 The residual tensile stress generated in the 7000 series aluminum alloy extruded profile by plastic working is reduced by heating in artificial aging treatment or baking finish. However, the reduction of residual tensile stress (stress relaxation) by heating tends to proceed in the region where the introduced strain is large, but does not proceed sufficiently in the region where the introduced strain is small. On the other hand, as described above, in the extruded profile after plastic working, a large residual tensile stress may exist in a region where the strain is small. In such a region, the reduction of the residual tensile stress due to heating does not proceed, and as a result, the residual tensile stress exists in the product (aluminum alloy member) without being reduced, which causes the generation of SCC.

本発明は、7000系アルミニウム合金押出形材を素材とする7000系アルミニウム合金部材の製造方法において、加熱処理による引張残留応力の低減を促進し、引張残留応力の低い7000系アルミニウム合金部材を製造することを目的とする。 The present invention promotes reduction of tensile residual stress by heat treatment in a method for manufacturing a 7000 series aluminum alloy member using a 7000 series aluminum alloy extruded profile as a material, and manufactures a 7000 series aluminum alloy member having a low tensile residual stress. The purpose is.

本発明に係る7000系アルミニウム合金部材の製造方法は、7000系アルミニウム合金ビレットを熱間で押し出し、中空断面を有する押出形材を成形した後冷却し、前記押出形材の長手方向の一部又は全部の領域に2~5%の予歪みを付与し、前記領域に残留応力を伴う機械加工を行い、前記押出形材に対し加熱処理を行うことを特徴とする。
上記発明において、機械加工には、曲げ加工、変断面加工、剪断加工(打ち抜き等)等の塑性加工、及び切削加工が含まれる。また、加熱処理には、人工時効処理及び焼付塗装等が含まれる。
In the method for manufacturing a 7000 series aluminum alloy member according to the present invention, a 7000 series aluminum alloy billet is hotly extruded, an extruded profile having a hollow cross section is formed, and then cooled, and a part of the extruded profile in the longitudinal direction or a part thereof or It is characterized in that a prestrain of 2 to 5% is applied to the entire region, the region is machined with residual stress, and the extruded profile is heat-treated.
In the above invention, the machining includes bending, changing cross-section, shearing (punching, etc.) and other plastic working, and cutting. Further, the heat treatment includes artificial aging treatment, baking finish and the like.

上記製造方法によれば、アルミニウム合金押出形材に2~5%の予歪みを付与した後に残留応力を伴う機械加工を行うことにより、その後の加熱による引張残留応力の低減を促進することができ、引張残留応力の低い7000系アルミニウム合金部材を製造することができる。引張残留応力が低減することにより、7000系アルミニウム合金部材の耐SCC性を向上させることができる。 According to the above manufacturing method, by applying a prestrain of 2 to 5% to an aluminum alloy extruded profile and then performing machining with residual stress, it is possible to promote reduction of tensile residual stress due to subsequent heating. , A 7000 series aluminum alloy member having a low tensile residual stress can be manufactured. By reducing the tensile residual stress, the SCC resistance of the 7000 series aluminum alloy member can be improved.

曲げ加工で押出形材に生じる歪みの分布を示す図(1A)、及び除荷後に押出形材に生じる残留応力の分布を示す図(1B)である。It is a figure (1A) which shows the distribution of the strain generated in an extruded profile by bending process, and the figure (1B) which shows the distribution of the residual stress generated in an extruded profile after unloading. 変断面加工(潰し加工)を行った押出形材の側面図、及び同側面図のA-A断面図、B-B断面図、及びC-C断面図である。It is a side view of the extruded profile which has been subjected to the variable cross-section processing (crushing processing), and is the AA cross-sectional view, the BB cross-sectional view, and the CC cross-sectional view of the same side view. 本発明のプロセスの典型例を示すフロー図である。It is a flow chart which shows the typical example of the process of this invention. クリープ試験片の寸法を示す図(4A)、及び図4AのA部拡大図(4B9である。FIG. (4A) shows the dimensions of the creep test piece, and FIG. 4A is an enlarged view of part A (4B9) of FIG. 4A. 実施例のNo.1の合金のクリープ曲線(クリープ歪み-経過時間)に及ぼす予歪みの影響を示す図である。Example No. It is a figure which shows the influence of the pre-strain on the creep curve (creep strain-elapsed time) of the alloy of 1. 実施例のNo.2の合金のクリープ曲線(クリープ歪み-経過時間)に及ぼす予歪みの影響を示す図である。Example No. It is a figure which shows the influence of the pre-strain on the creep curve (creep strain-elapsed time) of the alloy of 2. 実施例のNo.3の合金のクリープ曲線(クリープ歪み-経過時間)に及ぼす予歪みの影響を示す図である。Example No. It is a figure which shows the influence of the pre-strain on the creep curve (creep strain-elapsed time) of the alloy of 3. 定常クリープ速度と予歪みの関係を示す図である。It is a figure which shows the relationship between a steady creep rate and a prestrain.

本発明に係る7000系アルミニウム合金部材の製造方法は、熱間押出工程、押出直後の冷却工程、予歪みを付与する工程、残留応力の発生を伴う機械加工工程、及び加熱工程を含む。以下、本発明が適用されるアルミニウム合金及び前記各工程について、図3のフロー図を参照して説明する。 The method for manufacturing a 7000 series aluminum alloy member according to the present invention includes a hot extrusion step, a cooling step immediately after extrusion, a step of applying prestrain, a machining step accompanied by generation of residual stress, and a heating step. Hereinafter, the aluminum alloy to which the present invention is applied and each of the above steps will be described with reference to the flow chart of FIG.

(アルミニウム合金の組成)
本発明が適用されるアルミニウム合金は、JIS又はAAで規格される7000系(Al-Mg-Zn(-Cu)系)アルミニウム合金であり、組成は特に限定的ではない。好ましい組成として、Zn:3.0~8.0質量%、Mg:0.4~2.5質量%、Cu:0.05~2.0質量%、Ti:0.005~0.2質量%を含有し、さらに、Mn:0.01~0.3質量%、Cr:0.01~0.3質量%、Zr:0.01~0.3質量%の1種又は2種以上を含有し、残部Al及び不純物からなる組成を挙げることができる。
(Composition of aluminum alloy)
The aluminum alloy to which the present invention is applied is a 7000 series (Al—Mg—Zn (—Cu) series) aluminum alloy specified by JIS or AA, and the composition is not particularly limited. Preferred compositions include Zn: 3.0 to 8.0% by mass, Mg: 0.4 to 2.5% by mass, Cu: 0.05 to 2.0% by mass, and Ti: 0.005 to 0.2% by mass. %, Further, one or more of Mn: 0.01 to 0.3% by mass, Cr: 0.01 to 0.3% by mass, Zr: 0.01 to 0.3% by mass. The composition which contains and consists of the balance Al and impurities can be mentioned.

(熱間押出工程S1)
この工程では、加熱した7000系アルミニウム合金ビレットを押出ダイスから押し出し、中空断面の押出形材を成形する。中空断面は用途に応じて任意の形状を取り得るが、例えば自動車用であれば、典型例として略矩形断面、及び略矩形の輪郭の内部に1又は2以上の中リブを有する断面を挙げることができる。
(冷却工程S2)
熱間押出された押出形材は、押出直後からオンラインで冷却し、好ましくは空冷又は水冷によりプレス焼き入れする。必要があれば、押出形材をいったん冷却後、所定長さに切断し、オフラインにおいて溶体化処理する。
(Hot extrusion step S1)
In this step, a heated 7000 series aluminum alloy billet is extruded from an extruded die to form an extruded profile having a hollow cross section. The hollow cross section can take any shape depending on the application, and for example, in the case of an automobile, a substantially rectangular cross section and a cross section having one or more middle ribs inside the contour of the substantially rectangular shape are mentioned as typical examples. Can be done.
(Cooling step S2)
The hot-extruded extruded profile is cooled online immediately after extrusion, and is preferably press-quenched by air cooling or water cooling. If necessary, the extruded profile is once cooled, cut to a predetermined length, and solution-treated offline.

(予歪み付与工程S3)
冷却された押出形材に対し、冷間で2~5%の予歪み(塑性歪み)を付与する。予歪みが付与される際の押出形材は、T1調質又は又はT4調質の状態であることが好ましい。なお、本実施の形態において、T1調質の状態とは、プレス焼き入れ後、自然時効以外の人工的な調質が行われていない状態、T4調質の状態とは、溶体化処理後、自然時効以外の人工的な調質が行われていない状態を意味する。予歪みを付与する領域は、押出形材の長手方向の一部又は全部の領域であり、後述する機械加工が行われる箇所が前記領域に含まれる必要がある。
この工程で付与される予歪み量を2%以上とするのは、後述する実施例で示すように、予歪み量を2%以上とすることにより、後述する加熱処理工程において引張残留応力の低減効果が顕著となるからである。一方、予歪み量を5%以下とするのは、5%を超えても引張残留応力の低減効果が大きくは変化しないこと、及び押出形材の断面積減少や肉厚減少が顕著になるためである。
(Pre-strain applying step S3)
A prestrain (plastic strain) of 2 to 5% is applied to the cooled extruded profile in the cold. The extruded profile to which prestrain is applied is preferably in a T1 tempered state or a T4 tempered state. In the present embodiment, the T1 tempered state is a state in which artificial tempering other than natural aging is not performed after press quenching, and the T4 tempered state is a state after solution heat treatment. It means that no artificial tempering other than natural aging has been performed. The region to which the pre-strain is applied is a part or all of the region in the longitudinal direction of the extruded profile, and the region where the machining described later is performed needs to be included in the region.
The reason why the pre-strain amount applied in this step is 2% or more is that, as shown in Examples described later, by setting the pre-strain amount to 2% or more, the tensile residual stress is reduced in the heat treatment step described later. This is because the effect becomes remarkable. On the other hand, the reason why the pre-strain amount is 5% or less is that the effect of reducing the tensile residual stress does not change significantly even if it exceeds 5%, and the cross-sectional area reduction and the wall thickness reduction of the extruded profile become remarkable. Is.

押出形材がプレス焼き入れされ、T1調質の状態の場合、予歪み付与工程を、長尺の押出形材に対して通常行われる引張矯正の一環として行うことができる。この場合、長尺の押出形材の全長(チャック部分を除く)に対し均一な予歪みを付与できる利点がある。ただし、通常の引張矯正で付与される歪み量は1%以下であるが、本発明においては歪み量は2~5%である。予歪み付与工程後(引張矯正後)の押出形材は、目的とする製品(7000系アルミニウム合金部材)の長さに応じた長さに切断する。なお、予歪み付与工程の前に、長尺の押出形材を目的とする製品(7000系アルミニウム合金部材)の長さに応じた長さに切断し、切断後の個々の押出形材に対し、この予歪み付与工程を行うこともできる。
押出形材が溶体化処理され、T4調質の状態の場合、通常、押出形材は、すでに目的とする製品(7000系アルミニウム合金部材)の長さに応じた長さに切断されている。この場合も、予歪みは引張(ストレッチ)により押出形材の全長(チャック部分を除く)に対して付与することが好ましい。
When the extruded profile is press-quenched and in a T1 tempered state, the prestraining step can be performed as part of the tensile straightening normally performed on the long extruded profile. In this case, there is an advantage that uniform pre-strain can be applied to the entire length (excluding the chuck portion) of the long extruded profile. However, the amount of strain applied by normal tensile straightening is 1% or less, but in the present invention, the amount of strain is 2 to 5%. The extruded profile after the prestraining step (after tensile straightening) is cut to a length corresponding to the length of the target product (7000 series aluminum alloy member). Before the pre-straining step, the long extruded profile is cut to a length corresponding to the length of the product (7000 series aluminum alloy member), and the extruded profile after cutting is cut. , This pre-straining step can also be performed.
When the extruded profile is solution-treated and in a T4 tempered state, the extruded profile is usually cut to a length corresponding to the length of the target product (7000 series aluminum alloy member). Also in this case, it is preferable that the prestrain is applied to the entire length (excluding the chuck portion) of the extruded profile by tension (stretching).

(機械加工工程S4)
予歪み付与工程の後、機械加工工程が冷間で行われる。本発明でいう機械加工には、曲げ加工(図1参照)、変断面加工(図2参照)、剪断加工(打ち抜き等)等の塑性加工、及び切削加工が含まれる。この機械加工により、押出形材に残留引張応力が発生する。なお、曲げ加工が引張曲げ加工の場合、押出形材の両端を挟持するチャックにより前記予歪み付与工程(ストレッチ)を行った後、そのまま引張曲げ加工に移行することができる。この場合、前記チャックにより押出形材に負荷する張力Tを、予歪み付与工程では耐力σyと断面積Sの積(σy×S)の1倍超として押出形材に2~5%の予歪みを付与し、引張曲げ加工工程では(σy×S)の1倍未満(例えば0.3~0.7倍程度)に減少させる。
(Machining process S4)
After the pre-straining process, the machining process is performed cold. Machining as used in the present invention includes plastic working such as bending (see FIG. 1), variable cross-section machining (see FIG. 2), shearing (punching, etc.), and cutting. This machining creates residual tensile stress in the extruded profile. When the bending process is a tensile bending process, the pre-strain applying step (stretching) can be performed by a chuck holding both ends of the extruded profile, and then the process can be directly shifted to the tensile bending process. In this case, the tension T applied to the extruded profile by the chuck is set to be more than 1 times the product of the proof stress σy and the cross-sectional area S (σy × S) in the prestraining step, and the extruded profile is prestrained by 2 to 5%. In the tensile bending process, the amount is reduced to less than 1 times (for example, about 0.3 to 0.7 times) of (σy × S).

(加熱処理工程S5)
機械加工工程に続いて、加熱処理工程が行われる。加熱処理工程として、例えば人工時効処理と焼付塗装の一方又は双方が行われる。なお、焼付塗装とは、焼付硬化型の塗料を塗装した後、熱を加えて塗料を強制的に乾燥させることをいう。
この加熱処理工程により、押出形材に存在する引張残留応力が低減し、特に予歪み付与工程を行ったことにより、機械加工工程で大きい歪みが導入されなかった箇所に存在する引張残留応力が効果的に低減する。加熱処理の条件は、例えば120~200℃×20分~20時間の範囲内で適宜選択される。
人工時効処理の条件は7000系アルミニウム合金の通常のものでよく、例えば120~180℃×5~20時間の範囲内で行えばよい。焼付塗装の条件も通常のものでよく、例えば150~200℃で20分以上1時間以内の条件で行えばよい。なお、加熱処理工程として焼付塗装を行うとき、人工時効処理は機械加工工程の前(予歪み付与工程の後)に行うこともでき、この場合、人工時効処理は本発明でいう加熱処理工程に相当しない。
(Heat treatment step S5)
Following the machining process, a heat treatment process is performed. As the heat treatment step, for example, one or both of artificial aging treatment and baking finish is performed. Note that baking coating means that after coating a baking-curable paint, heat is applied to forcibly dry the paint.
By this heat treatment step, the tensile residual stress existing in the extruded profile is reduced, and in particular, by performing the prestraining step, the tensile residual stress existing in the place where a large strain was not introduced in the machining process is effective. Reduced. The heat treatment conditions are appropriately selected within the range of, for example, 120 to 200 ° C. × 20 minutes to 20 hours.
The conditions for the artificial aging treatment may be those of a normal 7000 series aluminum alloy, and may be performed within the range of, for example, 120 to 180 ° C. × 5 to 20 hours. The baking coating conditions may be normal, and may be performed at 150 to 200 ° C. for 20 minutes or more and 1 hour or less. When baking coating is performed as a heat treatment step, the artificial aging treatment can be performed before the machining step (after the prestraining step), and in this case, the artificial aging treatment is the heat treatment step referred to in the present invention. Not equivalent.

加熱処理は、押出形材(7000系アルミニウム合金製部材)の0.2%耐力が400MPa以上となる条件で行うことが好ましい。7000系アルミニウム合金は、高強度であるほど腐食環境下でSCCが発生しやすく、7000系アルミニウム合金が400MPa以上の高い0.2%耐力を有するとき、本発明のSCC抑制効果が顕著に表れるからである。 The heat treatment is preferably performed under the condition that the 0.2% proof stress of the extruded profile (member made of 7000 series aluminum alloy) is 400 MPa or more. The higher the strength of the 7000 series aluminum alloy, the more easily SCC is generated in a corrosive environment, and when the 7000 series aluminum alloy has a high 0.2% proof stress of 400 MPa or more, the SCC suppressing effect of the present invention is remarkably exhibited. Is.

本実施例では、7000系アルミニウム合金のクリープ特性に及ぼす予歪みの影響を調査した。なお、クリープは一定応力下での歪み変化、応力緩和(残留応力の低減)は歪み一定下での応力変化であるが、材料内で発生している現象は同じである。
3種類の7000系アルミニウム合金のビレットを熱間で押し出し、平板状の押出材(長さ500mm×幅110mm×厚さ3mm)を成形し、押出直後にオンラインで空冷した。各押出材(No.1~3)の組成を表1に示す。
In this example, the effect of prestrain on the creep characteristics of the 7000 series aluminum alloy was investigated. Creep is a strain change under a constant stress, and stress relaxation (reduction of residual stress) is a stress change under a constant strain, but the phenomenon occurring in the material is the same.
Three types of 7000 series aluminum alloy billets were hotly extruded to form a flat plate-shaped extruded material (length 500 mm × width 110 mm × thickness 3 mm), which was air-cooled online immediately after extrusion. The composition of each extruded material (No. 1 to 3) is shown in Table 1.

Figure 0007046780000001
Figure 0007046780000001

No.1~3の押出材(いずれもT1調質)からJIS13号B試験片を採取し、JISZ2241の規定に準拠して引張試験を行った。その結果を表2に示す。 No. JIS No. 13B test pieces were collected from 1 to 3 extruded materials (all of which were T1 tempered) and subjected to a tensile test in accordance with the regulations of JIS Z2241. The results are shown in Table 2.

Figure 0007046780000002
Figure 0007046780000002

また、前記No.1~3の押出材(いずれもT1調質)から、押出直交方向(LT方向)が長手方向になるように、図4に示す形状の板材クリープ試験片を採取した。
クリープ試験片を冷間でストレッチし、1%、2%、5%、10%の予歪み(塑性歪み)を付与した。予歪みを付与したクリープ試験片と予歪み0%(ストレッチなし)のクリープ試験片を用い、クリープ試験を行った。試験温度は各合金の時効温度相当(No.1:130℃、No.2:140℃、No.3:140℃)とし、負荷応力は220MPaに固定した。
クリープ試験の結果(クリープ歪みと経過時間の関係)を図5~7に示す。図5は、No.1の試験結果、図6はNo.2の試験結果、図7はNo.3の試験結果である。図5~7の右に記載した値は予歪みの大きさである。
図5~7の各線図から求めた、予歪みごとの定常クリープ速度(定常クリープ領域での歪み速度)を表3に示す。また、表3のデータを元に、予歪み0%の定常クリープ速度を1として整理した定常クリープ速度と予歪みの関係を図8に示す。
In addition, the above-mentioned No. A plate creep test piece having the shape shown in FIG. 4 was collected from the extruded materials 1 to 3 (all of which were T1 tempered) so that the extrusion orthogonal direction (LT direction) was the longitudinal direction.
The creep test piece was cold-stretched to give 1%, 2%, 5%, and 10% prestrain (plastic strain). A creep test was performed using a creep test piece to which a pre-strain was applied and a creep test piece having a pre-strain of 0% (no stretch). The test temperature was equivalent to the aging temperature of each alloy (No. 1: 130 ° C., No. 2: 140 ° C., No. 3: 140 ° C.), and the load stress was fixed at 220 MPa.
The results of the creep test (relationship between creep strain and elapsed time) are shown in FIGS. 5 to 7. FIG. 5 shows No. The test result of No. 1 and FIG. 6 show No. As a result of the test of No. 2, FIG. 7 shows No. It is a test result of 3. The values shown on the right side of FIGS. 5 to 7 are the magnitudes of pre-strain.
Table 3 shows the steady creep rate (strain rate in the steady creep region) for each pre-strain obtained from each diagram of FIGS. 5 to 7. Further, based on the data in Table 3, FIG. 8 shows the relationship between the steady creep rate and the prestrain, which is arranged with the steady creep speed of 0% prestrain as 1.

Figure 0007046780000003
Figure 0007046780000003

図8に示すように、予歪みを付与することにより、全ての合金(No.1~3)で定常クリープ速度が増加した。特に2%以上の予歪みを付与したとき、予歪みを付与しないときに比べて定常クリープ速度の増加が大きい。すなわち、予歪みを付与することで、加熱による押出材の応力緩和が促進されている。
この結果から、ストレッチ量を意図的に増やすなどして押出形材に対し予歪みを付与することにより、人工時効や焼付塗装などの加熱処理工程で応力緩和を促進し、7000系アルミニウム合金部材の引張残留応力(SCCの発生要因である)を顕著に低減できることが分かる。
As shown in FIG. 8, by applying the prestrain, the steady creep rate was increased in all the alloys (Nos. 1 to 3). In particular, when a pre-strain of 2% or more is applied, the steady creep rate increases significantly as compared with the case where no pre-strain is applied. That is, by applying prestrain, stress relaxation of the extruded material due to heating is promoted.
From this result, stress relaxation is promoted in the heat treatment process such as artificial aging and baking coating by giving prestrain to the extruded profile by intentionally increasing the stretch amount, and the 7000 series aluminum alloy member. It can be seen that the tensile residual stress (which is a factor that causes SCC) can be significantly reduced.

Claims (9)

7000系アルミニウム合金ビレットを熱間で押し出し、中空断面を有する押出形材を成形した後プレス焼き入れし、前記押出形材の長手方向の一部又は全部の領域に2~5%の予歪みを付与した後、前記押出形材を所定長さに切断し、切断後の前記押出形材に対し前記領域に残留応力を伴う機械加工を行い、この機械加工は曲げ加工、変断面加工、剪断加工及び切削加工を意味し、機械加工後の前記押出形材に対し加熱処理を行うことを特徴とする7000系アルミニウム合金製部材の製造方法。 A 7000 series aluminum alloy billet is hotly extruded to form an extruded profile having a hollow cross section and then press-baked to apply 2-5% prestrain to a part or all of the longitudinal direction of the extruded profile. After applying, the extruded profile is cut to a predetermined length, and the extruded profile is machined with residual stress in the region, and this machining is bending, variable cross-sectioning, and shearing. A method for manufacturing a member made of a 7000 series aluminum alloy , which means machining and cutting, and is characterized in that the extruded profile after machining is heat-treated. 7000系アルミニウム合金ビレットを熱間で押し出し、中空断面を有する押出形材を成形した後プレス焼き入れし、前記押出形材を所定長さに切断し、切断後の前記押出形材の長手方向の一部又は全部の領域に2~5%の予歪みを付与した後、前記領域に残留応力を伴う機械加工を行い、この機械加工は曲げ加工、変断面加工、剪断加工及び切削加工を意味し、機械加工後の前記押出形材に対し加熱処理を行うことを特徴とする7000系アルミニウム合金製部材の製造方法。 A 7000 series aluminum alloy billet is hotly extruded to form an extruded profile having a hollow cross section, which is then press-baked, the extruded profile is cut to a predetermined length, and the extruded profile after cutting is formed in the longitudinal direction. After applying 2-5% prestrain to a part or all of the area, the area is machined with residual stress, which means bending, variable cross section, shearing and cutting. A method for manufacturing a 7000 series aluminum alloy member, which comprises heat-treating the extruded profile after machining . 7000系アルミニウム合金ビレットを熱間で押し出し、中空断面を有する押出形材を成形した後冷却し、前記押出形材を所定長さに切断し、切断後の前記押出形材を溶体化処理し、長手方向の一部又は全部の領域に2~5%の予歪みを付与した後、前記領域に残留応力を伴う機械加工を行い、この機械加工は曲げ加工、変断面加工、剪断加工及び切削加工を意味し、機械加工後の前記押出形材に対し加熱処理を行うことを特徴とする7000系アルミニウム合金製部材の製造方法。 The 7000 series aluminum alloy billet is hotly extruded to form an extruded profile having a hollow cross section and then cooled, the extruded profile is cut to a predetermined length, and the extruded profile after cutting is solution-treated. After applying 2-5% prestrain to a part or all of the longitudinal region, the region is machined with residual stress, which is bending, profile change, shearing and cutting. A method for manufacturing a member made of a 7000 series aluminum alloy , which means that the extruded profile after machining is heat-treated. 前記押出形材に引張矯正を加え、これにより前記押出形材に予歪みを付与することを特徴とする請求項1~3のいずれかに記載された7000系アルミニウム合金製部材の製造方法。 The method for manufacturing a 7000 series aluminum alloy member according to any one of claims 1 to 3, wherein the extruded profile is subjected to tensile straightening to impart prestrain to the extruded profile. 前記機械加工が引張曲げ加工であり、曲げ加工前に前記押出形材に張力を付与し、これにより前記押出形材に前記予歪みを付与することを特徴とする請求項2又は3に記載された7000系アルミニウム合金製部材の製造方法。 2 . A method for manufacturing a member made of a 7000 series aluminum alloy. 前記加熱処理後の前記押出形材の0.2%耐力が400MPa以上であることを特徴とする請求項1~5のいずれかに記載された7000系アルミニウム合金製部材の製造方法。 The method for manufacturing a 7000 series aluminum alloy member according to any one of claims 1 to 5, wherein the extruded profile after the heat treatment has a 0.2% proof stress of 400 MPa or more. 前記加熱処理として人工時効処理を行うことを特徴とする請求項1~6のいずれかに記載された7000系アルミニウム合金製部材の製造方法。 The method for manufacturing a 7000 series aluminum alloy member according to any one of claims 1 to 6, wherein an artificial aging treatment is performed as the heat treatment. 前記加熱処理として人工時効処理及び焼付塗装を行うことを特徴とする請求項1~6のいずれかに記載された7000系アルミニウム合金製部材の製造方法。 The method for manufacturing a 7000 series aluminum alloy member according to any one of claims 1 to 6, wherein the heat treatment includes an artificial aging treatment and a baking finish. 前記機械加工の前に人工時効処理を行い、前記加熱処理として焼付塗装を行うことを特徴とする請求項1~6のいずれかに記載された7000系アルミニウム合金製部材の製造方法。 The method for manufacturing a 7000 series aluminum alloy member according to any one of claims 1 to 6 , wherein an artificial aging treatment is performed before the machining, and a baking finish is performed as the heat treatment.
JP2018199481A 2018-10-23 2018-10-23 A method for manufacturing a 7000 series aluminum alloy member. Active JP7046780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018199481A JP7046780B2 (en) 2018-10-23 2018-10-23 A method for manufacturing a 7000 series aluminum alloy member.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018199481A JP7046780B2 (en) 2018-10-23 2018-10-23 A method for manufacturing a 7000 series aluminum alloy member.

Publications (2)

Publication Number Publication Date
JP2020066768A JP2020066768A (en) 2020-04-30
JP7046780B2 true JP7046780B2 (en) 2022-04-04

Family

ID=70389680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018199481A Active JP7046780B2 (en) 2018-10-23 2018-10-23 A method for manufacturing a 7000 series aluminum alloy member.

Country Status (1)

Country Link
JP (1) JP7046780B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9088190B2 (en) 2011-11-30 2015-07-21 Abb Research Ltd. Electrical machines and electrical machine rotors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113787107A (en) * 2021-09-02 2021-12-14 中色(天津)特种材料有限公司 Production method for ensuring flatness of hard aluminum alloy thick plate profile and eliminating residual stress
CN116463565B (en) * 2023-03-24 2024-06-25 福州大学 Pre-strain cryogenic aging method for improving comprehensive performance of aluminum-lithium alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248327A (en) 1999-02-26 2000-09-12 Kobe Steel Ltd Door beam material made of aluminum alloy
JP2006523145A (en) 2003-03-17 2006-10-12 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー Method of manufacturing an integrated monolithic aluminum structure and aluminum products machined from the structure
WO2016060117A1 (en) 2014-10-17 2016-04-21 三菱重工業株式会社 Method for producing aluminum alloy member, and aluminum alloy member obtained by same
JP2017222920A (en) 2016-06-17 2017-12-21 株式会社神戸製鋼所 Manufacturing method of energy absorption member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9016694D0 (en) * 1990-07-30 1990-09-12 Alcan Int Ltd Ductile ultra-high strength aluminium alloy extrusions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248327A (en) 1999-02-26 2000-09-12 Kobe Steel Ltd Door beam material made of aluminum alloy
JP2006523145A (en) 2003-03-17 2006-10-12 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー Method of manufacturing an integrated monolithic aluminum structure and aluminum products machined from the structure
WO2016060117A1 (en) 2014-10-17 2016-04-21 三菱重工業株式会社 Method for producing aluminum alloy member, and aluminum alloy member obtained by same
JP2017222920A (en) 2016-06-17 2017-12-21 株式会社神戸製鋼所 Manufacturing method of energy absorption member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9088190B2 (en) 2011-11-30 2015-07-21 Abb Research Ltd. Electrical machines and electrical machine rotors

Also Published As

Publication number Publication date
JP2020066768A (en) 2020-04-30

Similar Documents

Publication Publication Date Title
RU2685295C1 (en) High-strength, easy-deformable aluminum-magnesium strip and production method therefor
JP7046780B2 (en) A method for manufacturing a 7000 series aluminum alloy member.
JP5576656B2 (en) Method of manufacturing a structural element for aircraft manufacturing including differential strain hardening
US5516375A (en) Method for making titanium alloy products
JP5133563B2 (en) Titanium-aluminum-vanadium alloy processing and products produced thereby
KR102159857B1 (en) Aluminum alloy products and a method of preparation
JP2020045578A (en) Titanium alloy
KR20130138169A (en) Processing of alpha/beta titanium alloys
US10501835B2 (en) Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages
JP7401760B2 (en) Manufacturing method of α+β type titanium alloy bar material
JP7448776B2 (en) Titanium alloy thin plate and method for producing titanium alloy thin plate
US20160368588A1 (en) Extruded products for aeroplane floors made of an aluminium-copper-lithium alloy
US20170306467A1 (en) Methods for finishing extruded titanium products
JP6424841B2 (en) Method of manufacturing molded member
EP3617335B1 (en) Titanium alloy-based sheet material for low-temperature superplastic deformation
KR20010087232A (en) Aℓ-Mg-Si BASED ALUMINUM ALLOY EXTRUSION FOR DOOR BEAM AND DOOR BEAM
JP3454755B2 (en) Shock absorbing member with excellent pressure-resistant cracking resistance
US11512376B2 (en) Method for manufacturing 7000-series aluminum alloy member
JP6465040B2 (en) Manufacturing method of molded member
JP2003013159A (en) Fastener material of titanium alloy and manufacturing method therefor
US3333990A (en) Aluminum base alloy forgings
JP3073197B1 (en) Shock absorbing member in automobile frame structure
RU2793901C1 (en) Method for obtaining material for high-strength fasteners
RU2461642C1 (en) Method of hot-rolling of semis from aluminium alloys with scandium
RU2793901C9 (en) Method for obtaining material for high-strength fasteners

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220323

R150 Certificate of patent or registration of utility model

Ref document number: 7046780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150