JP7401760B2 - Manufacturing method of α+β type titanium alloy bar material - Google Patents

Manufacturing method of α+β type titanium alloy bar material Download PDF

Info

Publication number
JP7401760B2
JP7401760B2 JP2020028004A JP2020028004A JP7401760B2 JP 7401760 B2 JP7401760 B2 JP 7401760B2 JP 2020028004 A JP2020028004 A JP 2020028004A JP 2020028004 A JP2020028004 A JP 2020028004A JP 7401760 B2 JP7401760 B2 JP 7401760B2
Authority
JP
Japan
Prior art keywords
titanium alloy
rolling
type titanium
temperature
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020028004A
Other languages
Japanese (ja)
Other versions
JP2021130861A (en
Inventor
健一 森
利行 奥井
真哉 西山
翔太朗 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020028004A priority Critical patent/JP7401760B2/en
Publication of JP2021130861A publication Critical patent/JP2021130861A/en
Application granted granted Critical
Publication of JP7401760B2 publication Critical patent/JP7401760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、α+β型チタン合金棒材の製造方法に関する。 The present invention relates to a method for manufacturing an α+β type titanium alloy bar.

たとえば、エンジンのピストンピンあるいはクロスヘッドピンと、クランクとを連結するのに使用されるコンロッドとしては、従来、鉄系材料の鍛造品が主に使用されていた。鉄系材料は比重が大きいため、コンロッドの軽量化に限界があり、エンジンの軽量化による燃料経済性の向上や、高速回転化による動力性能の向上などを実現するうえでの支障となっていた。 For example, for connecting rods used to connect a crank to a piston pin or crosshead pin of an engine, forged products of iron-based materials have conventionally been mainly used. Iron-based materials have a high specific gravity, so there is a limit to how lightweight connecting rods can be made, which has been an obstacle to achieving improvements in fuel economy by reducing the weight of the engine, as well as improving power performance by increasing rotation speeds. .

一般に、自動車や産業機械などにおいて使用されるコンロッドは、疲労強度、靭延性、耐摩耗性、被削性などが求められる。チタン合金は、これらの要求に応える優れた特性を有し、たとえばレーシングカーのような特殊な用途においてもチタン合金製のコンロッドが使用されている。代表的なものとしては、Ti-6Al-4Vが挙げられる。 Generally, connecting rods used in automobiles, industrial machinery, etc. are required to have fatigue strength, toughness and ductility, wear resistance, machinability, etc. Titanium alloys have excellent properties that meet these demands, and connecting rods made of titanium alloys are used even in special applications such as racing cars. A typical example is Ti-6Al-4V.

特許文献1には、表層部が微細な等軸晶であって破壊の起点となる亀裂の生じにくい組織であり、内部が粗い板状晶または針状晶であって亀裂が伝播しにくい組織である、疲労強度が向上したチタン合金が開示されている。 Patent Document 1 states that the surface layer is a fine equiaxed crystal structure that is difficult to form cracks that become the starting point of fracture, and the interior is a rough plate-like or acicular crystal structure that makes it difficult for cracks to propagate. Certain titanium alloys with improved fatigue strength have been disclosed.

特開平05-311366号公報Japanese Patent Application Publication No. 05-311366

一般に、α+β型チタン合金丸棒は、以下のような工程で製造される。 Generally, α+β type titanium alloy round bars are manufactured through the following process.

はじめに、スポンジチタン、母合金、チタンスクラップなどを溶解原料として、真空アーク溶解法、電子ビーム溶解法、プラズマ溶解法などにより、鋳塊を製造する。次に、鋳塊をβ域に加熱後、分塊鍛造あるいは分塊圧延による分塊工程を経てビレットを得、冷却後、β域あるいはα+β域に加熱して、圧延により丸棒を製造する。一般に、β域圧延よりもα+β域圧延の方が微細で等軸に近い結晶粒で構成される微視組織が得られ、疲労強度が高い丸棒が得られる。 First, an ingot is manufactured using a vacuum arc melting method, an electron beam melting method, a plasma melting method, etc. using sponge titanium, master alloy, titanium scrap, etc. as melting raw materials. Next, after heating the ingot to the β region, a billet is obtained through a blooming process by blooming forging or blooming rolling, and after cooling, it is heated to the β region or α+β region, and a round bar is manufactured by rolling. In general, α+β region rolling provides a microstructure composed of finer, nearly equiaxed crystal grains than β region rolling, resulting in a round bar with higher fatigue strength.

分塊鍛造は加熱と鍛造を繰り返し行うが、微視組織の微細等軸化のため、前段はβ域加熱、後段はα+β域加熱を行うことが一般的である。そのため、分塊圧延と比較して、生産効率が低くなる。 Blossom forging involves repeating heating and forging, but in order to make the microstructure fine and equiaxed, it is common to perform β region heating in the first stage and α+β region heating in the second stage. Therefore, the production efficiency is lower than that of blooming.

分塊圧延は、β域に加熱した後に高効率な圧延ラインで圧延を行うので、圧延終了時にも素材内部の温度はβ域である。したがって、良好な微視組織を得ることが困難である。そこで、分塊圧延後のビレットを冷却した後に切断し、改めて加熱炉に装入してα+β域加熱を行い、圧延することで微視組織を改善する必要が生じる。したがって、生産効率が十分に高いとはいえない。なお、切断を行う理由は、β域圧延によって素材が伸びるために、加熱炉に入らないことが多いためである。 In blooming rolling, rolling is performed in a highly efficient rolling line after heating to the β region, so the temperature inside the material remains in the β region even at the end of rolling. Therefore, it is difficult to obtain a good microstructure. Therefore, it is necessary to improve the microstructure by cooling the billet after blooming and cutting it, charging it into a heating furnace again, heating it in the α+β region, and rolling it. Therefore, it cannot be said that the production efficiency is sufficiently high. Note that the reason for cutting is that the material is elongated by β region rolling and therefore often does not enter the heating furnace.

また、分塊圧延の初期加熱を低い温度で行うと、圧延中の素材温度の低下によって圧延モータートルクが上昇し、トルクが設備許容値を超えたり、圧延が停止したりする場合がある。 Furthermore, if the initial heating for blooming rolling is performed at a low temperature, the rolling motor torque will increase due to a decrease in the material temperature during rolling, and the torque may exceed an equipment allowable value or the rolling may stop.

本発明は上記の事情に鑑み、良好な圧延性を確保しつつ疲労強度が高いα+β型チタン合金棒材の製造方法を提供することを課題とする。 In view of the above circumstances, it is an object of the present invention to provide a method for manufacturing an α+β type titanium alloy bar material that has high fatigue strength while ensuring good rollability.

本発明者らは、良好な圧延性を確保しつつ疲労強度が高いα+β型チタン合金棒材を製造する方法について鋭意検討した。その結果、チタン合金に適切な熱履歴を与えることにより、チタン合金の微視組織を改善して高い疲労強度を得、さらに、圧延モータートルクの上昇を抑えることもできることを見出した。 The present inventors have conducted intensive studies on a method for manufacturing an α+β type titanium alloy bar material that has high fatigue strength while ensuring good rollability. As a result, they discovered that by giving the titanium alloy an appropriate thermal history, it is possible to improve the microstructure of the titanium alloy, obtain high fatigue strength, and also suppress the increase in rolling motor torque.

本発明は上記の知見に基づき、さらに検討を進めてなされたものであって、その要旨は以下のとおりである。 The present invention has been made based on the above findings and further studies, and the gist thereof is as follows.

(1)α+β型チタン合金鋳塊をTβ+30℃以上、Tβ+250℃未満に加熱し、加熱した前記チタン合金鋳塊に減面率70%以上の第一の圧延を施す第一圧延工程、圧延されたチタン合金の平均 の表面温度を800℃以上、Tβ-50℃以下の範囲に、2分以上、6分以下の間保持する保持工程、保持後の前記チタン合金に減面率50%以上の第二の圧延を施す第二圧延工程を順に備えることを特徴とするα+β型チタン合金棒材の製造方法。ここで、Tβはβ変態温度である。 (1) A first rolling step in which an α+β type titanium alloy ingot is heated to Tβ+30°C or more and less than Tβ+250°C, and the heated titanium alloy ingot is subjected to a first rolling with an area reduction rate of 70% or more, and the rolled A holding step in which the average surface temperature of the titanium alloy is held in the range of 800°C or more and Tβ-50°C or less for 2 minutes or more and 6 minutes or less, and a second process with an area reduction rate of 50% or more is applied to the titanium alloy after holding. 1. A method for producing an α+β type titanium alloy bar, comprising a second rolling process in which two rolling steps are performed. Here, Tβ is the β transformation temperature.

(2)さらに、前記第一圧延工程と、前記第二圧延工程の間に、前記チタン合金の先後端を1000℃以上に加熱する先行端加熱工程を備えることを特徴とする前記(1)のα+β型チタン合金棒材の製造方法。 (2) The method according to (1) above, further comprising a leading end heating step of heating the leading and trailing ends of the titanium alloy to 1000° C. or higher between the first rolling step and the second rolling step. A method for manufacturing α+β type titanium alloy rods.

(3)前記α+β型チタン合金棒材は自動車用コネクティングロッド用の棒材であることを特徴とする前記(1)又は(2)のα+β型チタン合金棒材の製造方法。 (3) The method for producing an α+β type titanium alloy bar according to (1) or (2) above, wherein the α+β type titanium alloy bar is a bar for a connecting rod for an automobile.

(4)前記α+β型チタン合金鋳塊の化学成分が、質量%でAl:2.5~8.0%、Fe:0.5~3.0%、及びO:0.01~0.30%を含有し、残部がTi及び不純物であることを特徴とする前記(1)~(3)のいずれかのα+β型チタン合金棒材の製造方法。 (4) The chemical components of the α+β type titanium alloy ingot are Al: 2.5 to 8.0%, Fe: 0.5 to 3.0%, and O: 0.01 to 0.30 in mass %. %, and the remainder is Ti and impurities.

(5)前記Tiの一部に代えて、Sn、Zr、Mo、Si、Cu、及びNbの1種以上を各3.0%以下含有する前記(4)のα+β型チタン合金棒材の製造方法。 (5) Production of the α+β type titanium alloy bar according to (4) above, containing at least 3.0% each of one or more of Sn, Zr, Mo, Si, Cu, and Nb in place of a part of the Ti. Method.

本発明によれば、α+β型チタン合金鋳塊を直接加工して製造するチタン合金棒材において、良好な圧延性を確保しつつ、疲労強度が向上する。 According to the present invention, fatigue strength is improved while ensuring good rollability in a titanium alloy bar manufactured by directly processing an α+β type titanium alloy ingot.

本発明のα+β型チタン合金棒材の製造方法においては、分塊工程、その後の冷却を経ずに鋳塊を直接熱延し、疲労強度の高い棒材を得る。この機構は以下のように推定される。 In the method for producing an α+β type titanium alloy bar according to the present invention, an ingot is directly hot-rolled without going through a blooming process and subsequent cooling to obtain a bar with high fatigue strength. This mechanism is estimated as follows.

鋳造ままの鋳塊には、柱状晶や等軸晶といった粗大な鋳造組織が形成されている。一般的な製造方法では、分塊鍛造を行うことで鋳造組織を破壊して、中間程度の細かさの結晶組織を得る。鋳塊を、分塊鍛造を経ないで直接熱延して棒材を製造する場合、鋳造組織の微細化が不充分で粗大なミクロ組織になりやすい。その結果、特に疲労強度が低下しやすい。 A coarse cast structure such as columnar crystals and equiaxed crystals is formed in the as-cast ingot. In a typical manufacturing method, the cast structure is destroyed by blooming forging to obtain a medium-fine crystal structure. When producing a bar by directly hot rolling an ingot without undergoing blooming forging, the casting structure tends to be insufficiently refined, resulting in a coarse microstructure. As a result, fatigue strength in particular tends to decrease.

一般に、疲労破壊は棒材の表面のき裂の発生に起因するため、棒材の表層部の組織を微細化することが、疲労強度の向上に有効である。本発明者らの検討の結果、鋳造組織を微細化するためには、β域からα+β域にかけて温度が低下する過程で、その両方の温度域でひずみを加えるとよいことが分かった。 Generally, fatigue fracture is caused by the occurrence of cracks on the surface of a bar, so making the structure of the surface layer of the bar finer is effective in improving fatigue strength. As a result of studies by the present inventors, it has been found that in order to refine the cast structure, it is effective to apply strain in both temperature ranges during the process of decreasing the temperature from the β region to the α+β region.

チタン合金鋳塊をβ域に加熱した後、第一の圧延で表層部にひずみを加えることでα相が析出しやすくなり、温度が低下するに従い、β粒界およびβ粒内にα相が析出する。さらに、α相の析出が早い温度域(TTT線図のノーズ部)で保持することによって、α相の析出がさらに促進され、α相にひずみを加えることが容易になる。 After heating the titanium alloy ingot to the β region, strain is applied to the surface layer in the first rolling process, which makes it easier for the α phase to precipitate, and as the temperature decreases, the α phase forms at the β grain boundaries and within the β grains. Precipitate. Furthermore, by holding the temperature in the temperature range where the α phase precipitates quickly (the nose of the TTT diagram), the α phase precipitation is further promoted and it becomes easier to apply strain to the α phase.

その後に第二の圧延を行うことで、β粒界やβ粒内に析出したα相が分断されたり、新たに生成するための析出サイトが増加するなどして、微細な組織が形成される。 By performing a second rolling after that, a fine structure is formed by dividing the α phase precipitated at β grain boundaries and within β grains, and increasing the number of new precipitation sites. .

以下、本発明のα+β型チタン合金棒材の製造方法について詳細に説明する。 Hereinafter, the method for manufacturing an α+β type titanium alloy bar according to the present invention will be described in detail.

初めに、α+β型チタン合金鋳塊を製造する。チタン合金鋳塊は、公知の方法で製造すればよい。具体的には、スポンジチタン、母合金、チタンスクラップなどを溶解原料として、真空アーク溶解法、電子ビーム溶解法、プラズマ溶解法などにより、鋳塊を製造することができる。 First, an α+β type titanium alloy ingot is manufactured. The titanium alloy ingot may be manufactured by a known method. Specifically, an ingot can be manufactured using a vacuum arc melting method, an electron beam melting method, a plasma melting method, etc. using sponge titanium, master alloy, titanium scrap, etc. as melting raw materials.

次に、チタン合金鋳塊を、β変態温度をTβとして、Tβ+30℃以上、Tβ+250℃未満に加熱し、減面率70%以上の第一の圧延を施す。加熱温度がTβ+30℃では、表面温度の低下により、表面割れを生じやすくなるため表面疵が増加しやすくなる。加熱温度がTβ+250℃を超えると、表層が著しく酸化し、表面疵が増加しやすくなる。減面率は、表層組織を十分に微細化するため、70%以上とする。 Next, the titanium alloy ingot is heated to Tβ+30° C. or higher and lower than Tβ+250° C., where the β transformation temperature is Tβ, and subjected to first rolling with an area reduction rate of 70% or higher. When the heating temperature is Tβ+30° C., surface cracks are likely to occur due to a decrease in surface temperature, and surface flaws are likely to increase. When the heating temperature exceeds Tβ+250° C., the surface layer is significantly oxidized and surface flaws are likely to increase. The area reduction rate is set to 70% or more in order to sufficiently refine the surface layer structure.

次に、圧延されたチタン合金の表面温度を800℃以上、Tβ-50℃以下の範囲に、2分以上、6分以下の間保持する。β域圧延の後に冷却期間を設けることで、チタン合金の表層部でα相の析出を促し、微視組織を改善する。表面温度を上記の範囲に保持するため、保熱カバーを用いても良い。続いてチタン合金に減面率50%以上の第二の圧延を施す。 Next, the surface temperature of the rolled titanium alloy is maintained in the range of 800° C. or more and Tβ-50° C. or less for 2 minutes or more and 6 minutes or less. By providing a cooling period after β region rolling, precipitation of α phase is promoted in the surface layer of the titanium alloy, improving the microstructure. A heat retaining cover may be used to maintain the surface temperature within the above range. Subsequently, the titanium alloy is subjected to a second rolling process with an area reduction rate of 50% or more.

圧延中の温度低下による圧延モータートルクは、α+β型チタン合金においては、鋼よりも顕著に上昇する。その理由は、単に温度低下に起因するのではなく、温度低下によってβ相(bcc構造)からα相(hcp構造)が析出し、変形しにくいα相の比率が増加するためと考えられる。その対策として、温度低下部を切断除去する対策が考えられる。しかしながら、この対策は歩留りの低下を招くため、圧延ライン中で加熱することが望ましい。 The rolling motor torque due to the temperature drop during rolling increases more significantly in α+β type titanium alloys than in steel. The reason for this is not simply due to the temperature drop, but is thought to be because the α phase (hcp structure) precipitates from the β phase (bcc structure) due to the temperature drop, and the ratio of the α phase, which is difficult to deform, increases. As a countermeasure to this problem, it is possible to cut and remove the temperature-reduced portion. However, since this measure causes a decrease in yield, it is desirable to heat the material in the rolling line.

本発明によれば、第一の圧延の後の保持工程における表面温度を800℃以上Tβ-50℃以下とすることで、第二の圧延において素材中心部は変形しやすいβ相が多く保持されるため、素材先後端における圧延モータートルクの増加を抑制できる。第二の圧延における温度は、低すぎると表面温度低下により表面疵が発生しやすくなること、及びα相率の過度の増加によってひずみによる分断効果が得られにくく組織が微細化されにくくなることから800℃以上が好ましく、Tβ-200℃または800℃の高い方の温度以上とすることがより好ましい。また、加工発熱による組織の粗大化を防ぐため、Tβ-70℃以下とすることがより好ましい。 According to the present invention, by setting the surface temperature in the holding step after the first rolling to 800°C or higher and Tβ-50°C or lower, a large amount of the easily deformable β phase is retained in the center of the material during the second rolling. Therefore, the increase in rolling motor torque at the leading and trailing ends of the material can be suppressed. The temperature in the second rolling is determined because if the temperature is too low, surface flaws are likely to occur due to a decrease in surface temperature, and excessive increase in α phase ratio makes it difficult to obtain the breaking effect due to strain, making it difficult to refine the structure. The temperature is preferably 800°C or higher, and more preferably the higher of Tβ-200°C or 800°C. Further, in order to prevent coarsening of the structure due to processing heat, it is more preferable to set the temperature to Tβ-70°C or lower.

以上のようにして、素材表層部の微視組織の改善と、圧延性の向上を両立することができる。 As described above, it is possible to simultaneously improve the microstructure of the surface layer of the material and improve the rollability.

さらに、第一の圧延と第二の圧延の間に、チタン合金の先後端を1000℃以上に加熱することで、圧延モータートルクの上昇をより効果的に抑制することができる。この加熱をライン上で行えば、チタン合金の切断の必要がなく好ましい。加熱の方法は、可燃性ガスと酸素による加熱、誘導加熱、アーク加熱、電子ビーム加熱、レーザー加熱のうちの一種または2種以上を組合わせて用いることができる。放熱による表層下部層の温度低下を短時間で補うためには、表面温度は高い方が望ましい。 Furthermore, by heating the front and rear ends of the titanium alloy to 1000° C. or higher between the first rolling and the second rolling, an increase in rolling motor torque can be more effectively suppressed. It is preferable to perform this heating on-line since there is no need to cut the titanium alloy. As the heating method, one or a combination of two or more of heating using flammable gas and oxygen, induction heating, arc heating, electron beam heating, and laser heating can be used. In order to compensate for the temperature drop in the lower surface layer due to heat radiation in a short time, it is desirable that the surface temperature be high.

本発明のα+β型チタン合金棒材の製造方法により製造したα+β型チタン合金棒材は、たとえば自動車用コネクティングロッド用の棒材に好適である。 The α+β type titanium alloy bar produced by the method for producing an α+β type titanium alloy bar of the present invention is suitable for use as a bar for connecting rods for automobiles, for example.

本発明のα+β型チタン合金棒材の化学成分は特に限定されない。一例として、質量%でAl:2.5~8.0%、Fe:0.5~3.0%、及びO:0.01~0.30%を含有し、残部がTi及び不純物であるチタン合金棒材とすることができる。 The chemical composition of the α+β type titanium alloy rod of the present invention is not particularly limited. As an example, it contains Al: 2.5 to 8.0%, Fe: 0.5 to 3.0%, and O: 0.01 to 0.30% in mass %, with the remainder being Ti and impurities. It can be a titanium alloy bar.

また、前記Tiの一部に代えて、Sn、Zr、Mo、Si、Cu、及びNbの1種以上を各3.0%以下含有することができる。 Further, in place of a part of the Ti, one or more of Sn, Zr, Mo, Si, Cu, and Nb can be contained in an amount of 3.0% or less each.

[実施例1]
電子ビーム溶解法により製造された、断面310×440mmあるいは直径300mmのTi-5%Al-1%Fe-0.18%O(Tβは1015℃)で表されるα+β型チタン合金鋳塊を、表1に記載の温度に加熱し、表1の記載の第一圧延減面率で第一の圧延を施し、圧延されたチタン合金の表面温度を表1に記載の範囲に保持時間の間保持し、続いて、表1の記載の第二圧延減面率で第二の圧延を施しチタン合金丸棒を得た。
[Example 1]
An α+β type titanium alloy ingot manufactured by electron beam melting and represented by Ti-5%Al-1%Fe-0.18%O (Tβ is 1015°C) with a cross section of 310 x 440 mm or a diameter of 300 mm, The surface temperature of the rolled titanium alloy is heated to the temperature listed in Table 1, the first rolling is performed at the first rolling area reduction rate listed in Table 1, and the surface temperature of the rolled titanium alloy is maintained within the range listed in Table 1 for the holding time. Then, a second rolling was performed at the second rolling area reduction ratio shown in Table 1 to obtain a titanium alloy round bar.

製造中、第二の圧延工程のうち、最終の圧延スタンド通過時の定常部と先後端の圧延モータートルクを測定し、トルク比(定常部の圧延モータートルク値に対する先後端の圧延モータートルク値の比)を求め、表1に示した。 During manufacturing, during the second rolling process, the rolling motor torques at the steady section and the leading and trailing ends are measured when passing through the final rolling stand, and the torque ratio (rolling motor torque value at the leading and trailing ends relative to the rolling motor torque value at the steady section) is calculated. The ratio) was determined and shown in Table 1.

ここで、先後端の圧延モータートルクは、先端あるいは後端の高い方とした。定常部の圧延モータートルクは、先後端近傍のトルク上昇部を除いた平均値とした。本実施例では、トルク比が150%以下の場合、圧延設備に対する負荷の観点から、製造条件が良好であると判断した。 Here, the rolling motor torque at the leading and trailing ends was set to be higher at the leading and trailing ends. The rolling motor torque in the steady portion was the average value excluding the torque increasing portion near the leading and trailing ends. In this example, when the torque ratio was 150% or less, it was determined that the manufacturing conditions were good from the viewpoint of the load on the rolling equipment.

得られたチタン合金丸棒の表層付近から、平行部φ8mmの疲労試験片を採取した。疲労試験は、回転曲げ疲労試験を室温で1×10回まで行い、破断しなかった最大の応力を疲労強度とし、500MPa以上を良好と判断した。結果を表1に示す。 A fatigue test piece with a parallel portion of φ8 mm was taken from near the surface layer of the obtained titanium alloy round bar. For the fatigue test, a rotary bending fatigue test was performed up to 1×10 7 times at room temperature, and the maximum stress that did not cause rupture was taken as the fatigue strength, and 500 MPa or more was judged to be good. The results are shown in Table 1.

Figure 0007401760000001
Figure 0007401760000001

No.1~10は、310×440mmの鋳塊を用いて行った。 No. Tests 1 to 10 were conducted using an ingot measuring 310 x 440 mm.

No.1、2、3、5、7、8は、減面率、保持温度とも本発明の範囲であり、トルク比が150%以下で、疲労強度は500MPa以上であった。 No. In Samples No. 1, 2, 3, 5, 7, and 8, both the area reduction rate and the holding temperature were within the range of the present invention, the torque ratio was 150% or less, and the fatigue strength was 500 MPa or more.

No.4は保持温度が高く、No.6は第二圧延の減面率が小さく、いずれも本発明の範囲を外れており、疲労強度が500MPa未満であった。 No. No. 4 has a high holding temperature; No. 6 had a small area reduction rate in the second rolling, which was outside the scope of the present invention, and the fatigue strength was less than 500 MPa.

No.9は保持温度が低く、丸棒表面に割れが多く発生していたため、疲労試験片の採取ができなかった。 No. Sample No. 9 had a low holding temperature and many cracks occurred on the surface of the round bar, so it was not possible to collect fatigue test pieces.

No.11~13は、φ300mmの鋳塊を用いて行った。 No. Tests 11 to 13 were carried out using an ingot with a diameter of 300 mm.

No.11は本発明の例であり、500MPa以上の疲労強度が得られた。 No. No. 11 is an example of the present invention, and a fatigue strength of 500 MPa or more was obtained.

No.12は保持温度が低く、No.13は第一圧延の減面率が不足しており、いずれも疲労強度が500MPa未満であった。 No. No. 12 has a low holding temperature; In No. 13, the area reduction rate in the first rolling was insufficient, and the fatigue strength in all cases was less than 500 MPa.

No.14は、第一の圧延の後で、先後端の加熱を行った実施例である。LPGと酸素を用いてガス加熱を行い、1000℃以上に加熱した。加熱条件と圧延条件が同じNo.1と比較して、トルク比が低下したが、疲労強度は同じであった。 No. No. 14 is an example in which the front and rear ends were heated after the first rolling. Gas heating was performed using LPG and oxygen, and the temperature was increased to 1000°C or higher. No. 1 with the same heating conditions and rolling conditions. Compared to No. 1, the torque ratio decreased, but the fatigue strength was the same.

[参考例]
従来技術により、消耗電極式真空アーク溶解法により製造された、直径730mmのTi-5%Al-1%Fe-0.18%O(Tβは1015℃)で表されるα+β型チタン合金鋳塊を、β域に加熱して鍛造する工程により、直径200mmの圧延素材とした。次いで、α+β域に加熱して、減面率78%の圧延を施しチタン合金丸棒を得た。得られたチタン合金丸棒について、実施例1と同様の方法で、疲労強度を測定した結果、1×10回まで破断しなかった最大の応力は500MPaであった。この結果から、本発明のチタン合金棒材の製造方法による実施例1は、分塊工程を省略しても、分塊鍛造工程を含む従来技術により製造されたチタン合金丸棒と同等以上の疲労強度が得られることが確認できた。
[Reference example]
An α+β type titanium alloy ingot with a diameter of 730 mm and represented by Ti-5%Al-1%Fe-0.18%O (Tβ is 1015°C) manufactured by conventional technology using a consumable electrode vacuum arc melting method. was made into a rolled material with a diameter of 200 mm by a process of heating to β region and forging. Next, it was heated to the α+β region and rolled with an area reduction rate of 78% to obtain a titanium alloy round bar. The fatigue strength of the obtained titanium alloy round bar was measured in the same manner as in Example 1. As a result, the maximum stress that did not break even after 1×10 7 cycles was 500 MPa. From this result, even if Example 1 according to the method for producing a titanium alloy bar of the present invention omitted the blooming process, the fatigue was equivalent to or higher than that of the titanium alloy round bar produced by the conventional technology including the blooming forging process. It was confirmed that strength was obtained.

[実施例2]
表2に示す化学組成の、直径300mmのα+β型チタン合金鋳塊を、表2に記載の温度に加熱し、第一圧延減面率74%で第一の圧延を施し、圧延されたチタン合金の表面温度を表2に示す温度範囲および保持時間の間保持した。続いて、第二圧延減面率78%で第二の圧延を施しチタン合金丸棒を得た。
[Example 2]
An α+β type titanium alloy ingot with a diameter of 300 mm and a chemical composition shown in Table 2 was heated to the temperature shown in Table 2, and the first rolling was performed at a first rolling area reduction rate of 74%, resulting in a rolled titanium alloy. The surface temperature of the sample was maintained for the temperature range and holding time shown in Table 2. Subsequently, a second rolling was performed at a second rolling area reduction rate of 78% to obtain a titanium alloy round bar.

実施例1と同様に、第二の圧延におけるトルク比を求め、表2に示した。 As in Example 1, the torque ratio in the second rolling was determined and shown in Table 2.

得られたチタン合金丸棒について、実施例1と同様の方法で、疲労強度を測定した。結果を表2に示す。 The fatigue strength of the obtained titanium alloy round bar was measured in the same manner as in Example 1. The results are shown in Table 2.

No.1、3、5、7、8、9、12、13の保持温度および保持時間は、いずれも本発明の範囲であり、トルク比は150%以下であった。 No. The holding temperatures and holding times of Samples Nos. 1, 3, 5, 7, 8, 9, 12, and 13 were all within the range of the present invention, and the torque ratio was 150% or less.

No.2、4、6、10、11、14は、保持温度あるいは保持時間が本発明の範囲を外れており、一部でトルク比が150%を超えていた。 No. Tests Nos. 2, 4, 6, 10, 11, and 14 had holding temperatures or holding times outside the range of the present invention, and some had torque ratios exceeding 150%.

同じ化学組成のα+β型チタン合金で比較した場合、No.1、3、5、7、8、9、10、12、13の方が疲労強度が高かった。 When comparing α+β type titanium alloys with the same chemical composition, No. Nos. 1, 3, 5, 7, 8, 9, 10, 12, and 13 had higher fatigue strength.

さらに、No.7と8を比較した場合、No.7(Tβ-最高保持温度=55℃)よりも、No.8(Tβ-最高保持温度=75℃)の方が、疲労強度が高かった。 Furthermore, No. When comparing 7 and 8, No. 7 (Tβ-maximum holding temperature = 55°C), No. 8 (Tβ-maximum holding temperature = 75°C) had higher fatigue strength.

同様に、No.12と13を比較した場合、No.12(Tβ-最高保持温度=60℃)よりも、No.13(Tβ-最高保持温度=80℃)の方が、疲労強度が高かった。 Similarly, No. When comparing 12 and 13, No. No. 12 (Tβ-maximum holding temperature = 60°C). No. 13 (Tβ-maximum holding temperature = 80°C) had higher fatigue strength.

本発明のチタン合金棒材の製造方法によれば、分塊工程を省略しても、高い疲労強度を有するチタン合金母材を製造できることが確認できた。 According to the method for producing a titanium alloy bar of the present invention, it was confirmed that a titanium alloy base material having high fatigue strength could be produced even if the blooming step was omitted.

Figure 0007401760000002
Figure 0007401760000002

Claims (5)

α+β型チタン合金鋳塊をTβ+30℃以上、Tβ+250℃未満に加熱し、
加熱した前記チタン合金鋳塊に減面率70%以上の第一の圧延を施す第一圧延工程、
圧延されたチタン合金の平均の表面温度を800℃以上、Tβ-50℃以下の範囲に、2分以上、6分以下の間保持する保持工程、
保持後の前記チタン合金に減面率50%以上の第二の圧延を施す第二圧延工程
を順に備えることを特徴とするα+β型チタン合金棒材の製造方法。
ここで、Tβはβ変態温度である。
Heating the α+β type titanium alloy ingot to Tβ+30°C or higher and lower than Tβ+250°C,
a first rolling step of subjecting the heated titanium alloy ingot to a first rolling with an area reduction rate of 70% or more;
A holding step of maintaining the average surface temperature of the rolled titanium alloy in a range of 800°C or higher and Tβ-50°C or lower for 2 minutes or more and 6 minutes or less,
A method for producing an α+β type titanium alloy bar, comprising a second rolling step of subjecting the titanium alloy after holding to a second rolling with an area reduction of 50% or more.
Here, Tβ is the β transformation temperature.
さらに、前記第一圧延工程と、前記第二圧延工程の間に、前記チタン合金の先後端を1000℃以上に加熱する先後端加熱工程を備えることを特徴とする請求項1に記載のα+β型チタン合金棒材の製造方法。 The α+β type according to claim 1, further comprising a leading and trailing end heating step of heating the leading and trailing ends of the titanium alloy to 1000° C. or higher between the first rolling step and the second rolling step. A method for manufacturing titanium alloy bars. 前記α+β型チタン合金棒材は自動車用コネクティングロッド用の棒材であることを特徴とする請求項1又は2に記載のα+β型チタン合金棒材の製造方法。 3. The method for manufacturing an α+β type titanium alloy bar according to claim 1 or 2, wherein the α+β type titanium alloy bar is a bar for a connecting rod for an automobile. 前記α+β型チタン合金鋳塊の化学成分が、質量%でAl:2.5~8.0%、Fe:0.5~3.0%、及びO:0.01~0.30%を含有し、残部がTi及び不純物であることを特徴とする請求項1~3のいずれか1項に記載のα+β型チタン合金棒材の製造方法。 The chemical components of the α + β type titanium alloy ingot include Al: 2.5 to 8.0%, Fe: 0.5 to 3.0%, and O: 0.01 to 0.30% in mass %. The method for producing an α+β type titanium alloy bar according to any one of claims 1 to 3, wherein the remainder is Ti and impurities. 前記Tiの一部に代えて、Sn、Zr、Mo、Si、Cu、及びNbの1種以上を各3.0%以下含有する請求項4に記載のα+β型チタン合金棒材の製造方法。 The method for producing an α+β type titanium alloy bar according to claim 4, which contains at least 3.0% of each of Sn, Zr, Mo, Si, Cu, and Nb in place of a part of the Ti.
JP2020028004A 2020-02-21 2020-02-21 Manufacturing method of α+β type titanium alloy bar material Active JP7401760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020028004A JP7401760B2 (en) 2020-02-21 2020-02-21 Manufacturing method of α+β type titanium alloy bar material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020028004A JP7401760B2 (en) 2020-02-21 2020-02-21 Manufacturing method of α+β type titanium alloy bar material

Publications (2)

Publication Number Publication Date
JP2021130861A JP2021130861A (en) 2021-09-09
JP7401760B2 true JP7401760B2 (en) 2023-12-20

Family

ID=77552124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020028004A Active JP7401760B2 (en) 2020-02-21 2020-02-21 Manufacturing method of α+β type titanium alloy bar material

Country Status (1)

Country Link
JP (1) JP7401760B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023025547A (en) 2021-08-10 2023-02-22 セイコーエプソン株式会社 Inkjet composition and inkjet recording method
CN113967711A (en) * 2021-10-22 2022-01-25 西安赛特思迈钛业有限公司 Hot processing method of two-phase titanium alloy bar
WO2023181104A1 (en) * 2022-03-22 2023-09-28 日本製鉄株式会社 Titanium alloy material, titanium alloy wire material, titanium alloy powder material, and method for producing titanium alloy material
CN114540667B (en) * 2022-04-27 2022-07-22 北京煜鼎增材制造研究院有限公司 High-toughness titanium alloy and preparation method thereof
CN115449666B (en) * 2022-09-21 2023-04-25 宝鸡鑫诺新金属材料有限公司 1050 MPa-level strength low-elastic modulus titanium alloy bar and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201530A (en) 2001-10-22 2003-07-18 Kobe Steel Ltd High-strength titanium alloy with excellent hot workability
JP2006219734A (en) 2005-02-14 2006-08-24 Kobe Steel Ltd ULTRAHIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY HAVING ADEQUATE DUCTILITY
CN104942016A (en) 2014-03-31 2015-09-30 西安中泰新材料科技有限公司 Titanium ingot casting temperature-control semi-continuous rolling method
CN105525141A (en) 2015-12-22 2016-04-27 北京有色金属研究总院 High-speed impact resistance, high-strength and high-toughness titanium alloy
JP6033805B2 (en) 2007-12-26 2016-11-30 シマンテック コーポレーションSymantec Corporation Balanced consistent hash for distributed resource management

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201530A (en) 2001-10-22 2003-07-18 Kobe Steel Ltd High-strength titanium alloy with excellent hot workability
JP2006219734A (en) 2005-02-14 2006-08-24 Kobe Steel Ltd ULTRAHIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY HAVING ADEQUATE DUCTILITY
JP6033805B2 (en) 2007-12-26 2016-11-30 シマンテック コーポレーションSymantec Corporation Balanced consistent hash for distributed resource management
CN104942016A (en) 2014-03-31 2015-09-30 西安中泰新材料科技有限公司 Titanium ingot casting temperature-control semi-continuous rolling method
CN105525141A (en) 2015-12-22 2016-04-27 北京有色金属研究总院 High-speed impact resistance, high-strength and high-toughness titanium alloy

Also Published As

Publication number Publication date
JP2021130861A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
JP7401760B2 (en) Manufacturing method of α+β type titanium alloy bar material
EP3587606A1 (en) Ni-based super heat-resistant alloy and method for manufacturing same
JP5315888B2 (en) α-β type titanium alloy and method for melting the same
CN110144496B (en) Titanium alloy with improved properties
JP4013761B2 (en) Manufacturing method of titanium alloy bar
CN103348029B (en) The wearability titanium alloy member of fatigue strength excellence
JP7218428B2 (en) High-strength titanium alloys for additive manufacturing
EP3791003B1 (en) High strength titanium alloys
EP3772544A1 (en) Method for manufacturing super-refractory nickel-based alloy and super-refractory nickel-based alloy
EP0533918A1 (en) Superalloy forging process and related composition.
CA3110188C (en) High strength fastener stock of wrought titanium alloy and method of manufacturing the same
WO2009113335A1 (en) Tial-based alloy, process for production of the same, and rotor blade comprising the same
WO2020195049A1 (en) Method for producing ni-based super-heat-resistant alloy, and ni-based super-heat-resistant alloy
RU2724751C1 (en) Billet for high-strength fasteners made from deformable titanium alloy, and method of manufacturing thereof
JP5605232B2 (en) Hot rolling method of α + β type titanium alloy
JP2965841B2 (en) Method of manufacturing forged Ni-base superalloy product
JP6642843B2 (en) Manufacturing method of Ni-base super heat-resistant alloy
JP5605273B2 (en) High strength α + β type titanium alloy having excellent hot and cold workability, production method thereof, and titanium alloy product
JP7233659B2 (en) Titanium aluminide alloy material for hot forging, method for forging titanium aluminide alloy material, and forged body
EP0533914A1 (en) Superalloy forging process and related composition.
JPH05247574A (en) Production of aluminum alloy for forging and forged product of aluminum alloy
JP2003013159A (en) Fastener material of titanium alloy and manufacturing method therefor
JP7372532B2 (en) Titanium alloy round rod and connecting rod
JP4987640B2 (en) Titanium alloy bar wire for machine parts or decorative parts suitable for manufacturing cold-worked parts and method for manufacturing the same
RU2797351C2 (en) High-strength titanium alloy for additive manufacturing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R151 Written notification of patent or utility model registration

Ref document number: 7401760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151