JP3454755B2 - Shock absorbing member with excellent pressure-resistant cracking resistance - Google Patents

Shock absorbing member with excellent pressure-resistant cracking resistance

Info

Publication number
JP3454755B2
JP3454755B2 JP17231999A JP17231999A JP3454755B2 JP 3454755 B2 JP3454755 B2 JP 3454755B2 JP 17231999 A JP17231999 A JP 17231999A JP 17231999 A JP17231999 A JP 17231999A JP 3454755 B2 JP3454755 B2 JP 3454755B2
Authority
JP
Japan
Prior art keywords
less
extruded material
absorbing member
aluminum alloy
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17231999A
Other languages
Japanese (ja)
Other versions
JP2001003128A (en
Inventor
仁 川井
伸二 吉原
正和 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17231999A priority Critical patent/JP3454755B2/en
Priority to EP00107024A priority patent/EP1041165A1/en
Publication of JP2001003128A publication Critical patent/JP2001003128A/en
Priority to US10/190,483 priority patent/US20030008165A1/en
Priority to US10/420,756 priority patent/US20030207143A1/en
Application granted granted Critical
Publication of JP3454755B2 publication Critical patent/JP3454755B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、Al−Mg−Si
系アルミニウム合金押出材からなり、圧縮の衝撃荷重を
受けたとき、その衝撃荷重を吸収する作用を持つ衝撃吸
収部材に関し、特に自動車のフレーム構造におけるサイ
ドメンバやバンパーステイ及びサイドフレームなどとし
て好適な衝撃吸収部材に関する。
TECHNICAL FIELD The present invention relates to Al--Mg--Si.
Impact absorbing member made of extruded aluminum-based aluminum alloy and having an action of absorbing the impact load when it receives a compressive impact load, and is particularly suitable as a side member, a bumper stay and a side frame in a frame structure of an automobile. It relates to an absorbing member.

【0002】[0002]

【従来の技術】自動車のフレーム構造において、サイド
メンバやバンパーステイなどの衝撃吸収部材として、軽
量化のためアルミニウム合金中空押出材の適用が検討さ
れている。軸方向に圧縮の衝撃荷重を受けるこれらの衝
撃吸収部材には、押出軸方向に荷重を受けたとき形材全
体がオイラー座屈(形材全体がくの字形に曲がる座屈)
を起こさず、かつ圧壊割れを発生することなく蛇腹状に
収縮変形して、安定した高いエネルギー吸収を得るこ
と、及び自動車フレーム構造材として必要な強度(耐
力)を有することが要求される。
2. Description of the Related Art In a frame structure of an automobile, application of an aluminum alloy hollow extruded material as a shock absorbing member such as a side member or a bumper stay has been studied for weight reduction. These shock-absorbing members that receive a compressive shock load in the axial direction cause Euler buckling of the entire profile when a load is applied in the axial direction of the extrusion (buckling in which the entire profile bends like a dogleg).
It is required that the structure does not occur, and that it contracts and deforms in a bellows shape without causing crush cracking to obtain stable high energy absorption and has the strength (proof strength) required as an automobile frame structural material.

【0003】これまで、衝撃吸収部材として利用できる
アルミニウム合金押出材として、高強度アルミニウム合
金の中では比較的耐食性に優れ、リサイクル性の面でも
他の系のアルミニウム合金より優れているAl−Mg−
Si系アルミニウム合金押出材が多く検討されている
(例えば特開平6−25783号公報、特開平7−54
090号公報、特開平7−118782号公報、特開平
9−256096号公報等)。
As an aluminum alloy extruded material which can be used as a shock absorbing member, Al--Mg-- which is relatively superior in corrosion resistance among high strength aluminum alloys and superior in recyclability to other types of aluminum alloys.
Many Si-based aluminum alloy extruded materials have been studied (for example, JP-A-6-25783 and JP-A-7-54).
090, JP-A-7-118782, JP-A-9-256096, etc.).

【0004】上記公報にも記載されているように、Al
−Mg−Si系アルミニウム合金押出材を衝撃吸収部材
に適用する場合、一般にオンラインによるプレス焼入れ
又はオフラインによる溶体化・焼入れ処理を行った後、
時効処理を施している。ここで時効処理を施すのは、押
出材の強度を向上させ、かつ組織を安定化し使用中に自
然時効が進行して耐圧壊割れ性が劣化するのを防止する
ためである。
As described in the above publication, Al
When applying a Mg-Si-based aluminum alloy extruded material to a shock absorbing member, generally, after press quenching online or off-line solution heat treatment,
Aging treatment is applied. The aging treatment is performed here to improve the strength of the extruded material and to stabilize the structure and prevent the natural aging during use from degrading the pressure crack resistance.

【0005】[0005]

【発明が解決しようとする課題】しかし、Al−Mg−
Si系アルミニウム合金押出材は、サイドメンバー等と
して使用中に高温にさらされ、自然時効が進行し耐圧壊
割れ性が劣化する可能性があり、それを防止するため時
効処理を行うことは熱処理型のAl−Mg−Si系アル
ミニウム合金押出材を衝撃吸収部材として用いる場合の
必須の要件であるが、T5、T6処理を行って強度を上
げた場合、軸方向に圧縮変形させたときに圧壊割れが発
生するという問題をはらんでいる。圧壊割れが発生する
と、蛇腹状の収縮変形が妨げられて安定したエネルギー
吸収が得られなくなる。また、最近ではリサイクル性等
の観点から、同じAl−Mg−Si系アルミニウム合金
押出材を、横方向に衝撃荷重を受けるサイドフレームな
ど、その他の自動車フレーム構造材等としても、同時に
利用できるようにすることが求められるようになってき
た。そこで、本発明は、高強度(耐力)を付与したAl
−Mg−Si系アルミニウム合金押出材に、軸方向に優
れた耐圧壊割れ性及び優れたエネルギー吸収性を与え、
同時に横方向にも優れた耐圧壊割れ性を与えることを目
的とする。
However, Al-Mg-
Extruded Si-based aluminum alloys may be exposed to high temperatures during use as side members, etc., and natural aging may progress, resulting in deterioration of pressure crack resistance. To prevent this, aging treatment is a heat treatment type. This is an indispensable requirement when using the Al-Mg-Si-based aluminum alloy extruded material as a shock absorbing member, but when the strength is increased by performing T5 and T6 treatment, crush cracking occurs when it is compressed and deformed in the axial direction. Is a problem. When crush cracking occurs, the bellows-like contraction deformation is hindered and stable energy absorption cannot be obtained. Recently, from the viewpoint of recyclability, the same Al-Mg-Si-based aluminum alloy extruded material can be used at the same time as other automobile frame structural materials such as side frames subjected to a lateral impact load. It has become required to do. Therefore, in the present invention, Al with high strength (proof stress) is given.
-Mg-Si-based aluminum alloy extruded material is provided with excellent axial crush resistance and excellent energy absorption,
At the same time, the purpose is to give excellent resistance to pressure cracking in the lateral direction.

【0006】[0006]

【課題を解決するための手段】Al−Mg−Si系アル
ミニウム合金押出材において、時効処理後の強度を高く
したいとき、一般にMg、Si及び遷移元素(Cu、M
n、Cr、Zr等)の添加量を多くしているが、その場
合、必然的に粒界の析出物が増して粒界に歪みが集中す
る。また、添加元素量が多いと一般に焼入感受性が鋭く
なり、低い冷却速度(例えば寸法精度やコスト面で有利
な空冷プレス焼入れ)では同じく粒界の析出物の量が増
し、大きい衝撃荷重を受けて圧壊するとき割れが発生し
やすくなる。これに対し、本発明者らは、Al−Mg−
Si系アルミニウム合金押出材のマクロ組織が再結晶組
織を主体とするものであるとき圧壊割れが発生しやすい
が、繊維状組織(押出による繊維状組織が押出工程以降
の熱処理工程の間においても再結晶することなく、その
まま残った状態の組織)を主体とするとき、高強度でも
圧壊割れの発生が抑えられることを見いだした。一方、
オフラインで溶体化・焼入れを行うと繊維状組織が緩ん
でしまうこと、またオンラインによるプレス焼入れで所
要の特性を得るためには、ある程度の厚さの表面再結晶
層を形成する方が有利であることも分かった。本発明
は、この知見に基づいてなされたものである。
In an Al-Mg-Si based aluminum alloy extruded material, when it is desired to increase the strength after aging treatment, Mg, Si and transition elements (Cu, M) are generally used.
(n, Cr, Zr, etc.) is increased, but in that case, precipitates inevitably increase at the grain boundaries and strain concentrates at the grain boundaries. In addition, if the amount of added elements is large, quenching sensitivity generally becomes sharp, and at low cooling rates (for example, air-cooled press quenching, which is advantageous in terms of dimensional accuracy and cost), the amount of precipitates at grain boundaries also increases and a large impact load is applied. When it is crushed by crushing, cracks are likely to occur. On the other hand, the present inventors have found that Al-Mg-
When the macrostructure of the Si-based aluminum alloy extruded material is mainly composed of a recrystallized structure, crush cracking is likely to occur, but a fibrous structure (a fibrous structure formed by extrusion is also regenerated during the heat treatment process after the extrusion process). It was found that even when the strength is high, the occurrence of crush cracking can be suppressed when the main structure is the structure that remains as it is without crystallization. on the other hand,
It is advantageous to form a surface recrystallized layer of a certain thickness in order to loosen the fibrous structure when performing solution hardening / quenching off-line and to obtain the required properties by online press hardening. I also understood that. The present invention has been made based on this finding.

【0007】本発明に係る耐圧壊性に優れた衝撃吸収部
材は、Mgが0.40〜0.80wt%、Si含有量が
0.50〜1.0wt%を含み、プレス焼入れ後時効処
理したAl−Mg−Si系アルミニウム合金中空押出材
からなり、耐力200MPa以上かつ表面再結晶層厚さ
が肉厚の1〜50%であり、さらに表面再結晶層の肉厚
方向の結晶粒径は200μm以下であることを特徴とす
る。押出材の表面再結晶層の内側は繊維状組織層であ
る。この衝撃吸収部材は、押出軸方向に圧縮の衝撃荷重
を受けるサイドメンバやバンパーステイに特に好適であ
り、また横方向に圧縮の衝撃荷重を受けるサイドフレー
ムなど、その他の自動車フレーム構造材等としても利用
できる。
The shock-absorbing member excellent in crush resistance according to the present invention contains 0.40 to 0.80 wt% of Mg and 0.50 to 1.0 wt% of Si, and is aged after press hardening. It is made of an Al-Mg-Si-based aluminum alloy hollow extruded material, has a proof stress of 200 MPa or more, a surface recrystallization layer thickness of 1 to 50% of the wall thickness, and the surface recrystallization layer has a grain size in the thickness direction of 200 μm. It is characterized by the following. The inside of the surface recrystallized layer of the extruded material is a fibrous texture layer. This shock absorbing member is particularly suitable for side members and bumper stays that receive a compressive impact load in the extrusion axis direction, and also as other automobile frame structural materials such as a side frame that receives a compressive impact load in the lateral direction. Available.

【0008】[0008]

【発明の実施の形態】上記Al−Mg−Si系アルミニ
ウム合金は、上記以外の添加元素として必要に応じてC
u、Mn、Cr、Zr、Ti、不可避不純物としてF
e、その他の元素を含むことができる。以下、本発明の
衝撃吸収部材を構成する押出材の組成等について説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The Al-Mg-Si based aluminum alloy described above contains C as an additional element other than the above, if necessary.
u, Mn, Cr, Zr, Ti, F as unavoidable impurities
e, other elements may be included. Hereinafter, the composition and the like of the extruded material forming the impact absorbing member of the present invention will be described.

【0009】Mg、Si MgとSiは結合してMgSiを形成し、合金強度を
向上させる。自動車フレーム構造材として必要な強度を
得るためには、Mgは0.40%以上の添加が必要であ
る。しかし、0.80%を越えて添加されると焼入れ感
受性が鋭くなり、焼入れ速度が低くなると焼きが入らず
必要な強度が出なくなる。従って、Mg含有量は0.4
0〜0.80%とする。より望ましい範囲は0.40〜
0.60%である。一方、Si量が0.50%より少な
いと必要な強度が得られず、1.0%を越えると焼入れ
感受性が鋭くなり、同じく焼入れ速度が低くなると焼き
が入らず必要な強度が出なくなる。従って、Si含有量
は0.50〜1.0%とする。このMg及びSi量の範
囲内で、高い強度が得られ焼入れ感受性が余り鋭くなら
ない範囲として、Si量は0.50〜0.70%が特に
望ましい。
Mg, Si Mg and Si combine to form Mg 2 Si and improve alloy strength. In order to obtain the strength required as an automobile frame structural material, it is necessary to add 0.40% or more of Mg. However, if it exceeds 0.80%, the quenching sensitivity becomes sharp, and if the quenching rate becomes low, quenching does not occur and the required strength cannot be obtained. Therefore, the Mg content is 0.4
0 to 0.80%. A more desirable range is 0.40
It is 0.60%. On the other hand, if the Si content is less than 0.50%, the required strength cannot be obtained, and if it exceeds 1.0%, the quenching sensitivity becomes sharp, and if the quenching rate is also low, the quenching does not occur and the required strength cannot be obtained. Therefore, the Si content is 0.50 to 1.0%. Within this Mg and Si amount range, the Si amount is particularly preferably 0.50 to 0.70% as a range in which high strength is obtained and quenching sensitivity is not so sharp.

【0010】Mn、Cr、Zr Mn、Cr、Zrは押出材に繊維状組織を形成して耐圧
壊割れ性を向上させる作用があり、これらの中から1種
又は2種以上が、Mn:0.05〜0.40%、Cr:
0.05〜0.20%、Zr:0.05〜0.20%の
範囲で添加される。これらの遷移元素の添加量が下限未
満では繊維状組織とならないか、表面再結晶層が厚く出
て圧壊割れが発生し、上限を越えると焼入れ感受性が鋭
くなり、焼入れ速度が低いとき焼きが入らず、自動車フ
レーム構造材として必要な強度が出なくなる。このとき
各元素の望ましい範囲は、Mn:0.05〜0.25
%、Cr:0.05〜0.15%、Zr:0.05〜
0.15%である。また、これらの遷移元素の合計添加
量は0.05〜0.60%とし、0.10〜0.40%
がより望ましく、さらに0.2〜0.3%が望ましい。
Mn, Cr, and Zr Mn, Cr, and Zr have the action of forming a fibrous structure in the extruded material and improving the resistance to pressure cracking, and one or more of these are Mn: 0. .05 to 0.40%, Cr:
It is added in the range of 0.05 to 0.20% and Zr: 0.05 to 0.20%. If the addition amount of these transition elements is less than the lower limit, a fibrous structure will not be formed, or the surface recrystallized layer will be thick and crush cracking will occur, and if it exceeds the upper limit, quenching sensitivity will become sharp, and quenching will occur when the quenching speed is low. As a result, the strength required as a structural material for automobile frames cannot be obtained. At this time, the desirable range of each element is Mn: 0.05 to 0.25.
%, Cr: 0.05 to 0.15%, Zr: 0.05 to
It is 0.15%. The total addition amount of these transition elements is 0.05 to 0.60%, and 0.10 to 0.40%
Is more desirable, and 0.2 to 0.3% is desirable.

【0011】Cu CuはAl−Mg−Si系アルミニウム合金の強度を高
め、耐応力腐食割れ性を改善する作用があり、必要に応
じて添加される。しかし、0.05%未満では作用が不
十分であり、0.7%を越えると押出性及び一般耐食性
が低下するので、含有量は0.05〜0.7%が望まし
い。より望ましい範囲は0.10〜0.35%である。 Ti Tiは、鋳塊組織を微細化する作用があり、適宜添加さ
れる。しかし、0.005%より少ないと微細化の効果
が十分でなく、0.2%より多いと飽和して巨大化合物
が発生してしまう。従って、Tiの含有量は0.005
〜0.2%とする。より望ましい範囲は0.01〜0.
10%、さらに望ましい範囲は0.015〜0.05%
である。
Cu Cu has the effect of increasing the strength of the Al--Mg--Si system aluminum alloy and improving the resistance to stress corrosion cracking, and is added as necessary. However, if it is less than 0.05%, the action is insufficient, and if it exceeds 0.7%, the extrudability and general corrosion resistance are deteriorated, so the content is preferably 0.05 to 0.7%. A more desirable range is 0.10 to 0.35%. Ti Ti has the effect of refining the ingot structure and is added as appropriate. However, if it is less than 0.005%, the effect of miniaturization is not sufficient, and if it is more than 0.2%, it is saturated and a huge compound is generated. Therefore, the Ti content is 0.005
~ 0.2%. A more desirable range is 0.01-0.
10%, more desirable range is 0.015-0.05%
Is.

【0012】不可避不純物 不可避不純物のうちFeはアルミニウム地金に最も多く
含まれる不純物であり、0.35%を超えて合金中に存
在すると鋳造時に粗大な金属間化合物を晶出し、合金の
機械的性質を損なう。従って、Feの含有量は0.35
%以下に規制する。望ましくは0.30%以下であり、
さらに0.25%以下が望ましい。また、アルミニウム
合金を鋳造する際には地金、添加元素の中間合金等様々
な経路より不純物が混入する。混入する元素は様々であ
るが、Fe以外の不純物は単体で0.05%以下、総量
で0.15%以下であれば合金の特性にほとんど影響を
及ぼさない。従って、これらの不純物は単体で0.05
%以下、総量で0.15%以下とする。なお、不純物の
うちBについてはTiの添加に伴い合金中にTi含有量
の1/5程度の量で混入するが、より望ましい範囲は
0.02%以下、さらに0.01%以下が望ましい。
Inevitable Impurities Of the unavoidable impurities, Fe is the most contained impurity in the aluminum base metal, and if more than 0.35% is present in the alloy, coarse intermetallic compounds crystallize during casting and the alloy mechanically acts. Spoil the nature. Therefore, the Fe content is 0.35
% Or less. It is preferably 0.30% or less,
Furthermore, 0.25% or less is desirable. Further, when casting an aluminum alloy, impurities are mixed in through various routes such as a base metal and an intermediate alloy of additive elements. Although various elements are mixed in, if the impurities other than Fe alone are 0.05% or less and the total amount is 0.15% or less, the characteristics of the alloy are hardly affected. Therefore, these impurities are 0.05
% Or less, and the total amount is 0.15% or less. It should be noted that, of the impurities, B is mixed in the alloy in an amount of about 1/5 of the Ti content as Ti is added, but a more desirable range is 0.02% or less, and further 0.01% or less.

【0013】強度(耐力) 自動車フレーム構造材(衝撃吸収部材)としての適用を
考えた場合、強度が200MPaに満たないとエネルギ
ー吸収量が低下するため、強度は200MPa以上が必
要である。しかし、上記組成を外れるとその強度が出な
くなるか(エネルギー吸収量も大きく低下する)、繊維
状組織が形成されず耐圧壊割れ特性に劣るようになる。
耐力の望ましい範囲は220MPa以上である。
Strength (Proof Strength) In consideration of application as an automobile frame structural material (shock absorbing member), if the strength is less than 200 MPa, the amount of energy absorbed decreases, so the strength must be 200 MPa or more. However, if the composition is out of the above range, the strength will not be obtained (the amount of energy absorbed will also be greatly reduced), or a fibrous structure will not be formed, resulting in inferior resistance to pressure cracking.
A desirable range of proof stress is 220 MPa or more.

【0014】表面再結晶層 上記Al−Mg−Si系アルミニウム合金押出材におい
て、押出材の繊維状組織は押出材の断面のほぼ全体に形
成されているのが望ましく、自動車フレーム構造材のよ
うに厚さ1〜5mmの押出材であれば、表面再結晶層は
全体の肉厚の50%以下とする必要がある。望ましくは
30%以下である。これは、再結晶粒は繊維状組織に比
べて結晶粒径が大きいことと、冷却速度が低い場合は冷
却過程で結晶粒界に析出する析出物が多くなり、表面再
結晶粒の粒界に歪みが集中して割れが発生しやすくなる
ためである。一方、上記組成及び厚さのAl−Mg−S
i系アルミニウム合金押出材であれば、5m/分以下の
押出速度で押出材の断面のほぼ全て(表面再結晶層厚さ
が肉厚の1%未満)繊維状組織とすることができるが、
このような低い押出速度ではプレス焼入れ(オンライ
ン)において焼入れゾーンに入るまでに時間がかかるた
め、焼きが入りにくく必要な強度、エネルギー吸収量及
び最大荷重が得にくくなる。従って、表面再結晶層厚さ
は肉厚の1%以上とする必要がある。望ましくは5%以
上である。また、表面再結晶粒の結晶粒径は200μm
以下、さらに100μm以下とするのが望ましい。これ
は、表面再結晶粒の粒径が大きいほど歪みが集して割れ
が発生しやすくなるためである。
Surface Recrystallization Layer In the above Al—Mg—Si type aluminum alloy extruded material, it is desirable that the fibrous structure of the extruded material is formed in almost the entire cross section of the extruded material. If the extruded material has a thickness of 1 to 5 mm, the surface recrystallized layer needs to be 50% or less of the total thickness. It is preferably 30% or less. This is because the recrystallized grains have a larger crystal grain size than the fibrous structure, and when the cooling rate is low, many precipitates precipitate at the crystal grain boundaries during the cooling process, and the grain boundaries of the surface recrystallized grains become larger. This is because strain is concentrated and cracks are likely to occur. On the other hand, Al-Mg-S having the above composition and thickness
With the i-type aluminum alloy extruded material, almost all of the cross section of the extruded material (the surface recrystallization layer thickness is less than 1% of the wall thickness) can have a fibrous structure at an extrusion speed of 5 m / min or less.
At such a low extrusion speed, it takes time to enter the quenching zone in press quenching (online), so that quenching hardly occurs and it becomes difficult to obtain required strength, energy absorption amount and maximum load. Therefore, the surface recrystallized layer thickness needs to be 1% or more of the wall thickness. It is preferably at least 5%. The crystal grain size of the surface recrystallized grains is 200 μm.
Hereafter, it is desirable that the thickness be 100 μm or less. This is because the larger the grain size of the surface recrystallized grains, the more strain is collected and cracks are more likely to occur.

【0015】[0015]

【実施例】以下、本発明の実施例について説明する。D
C鋳造により、表1に示す成分組成のAl−Mg−Si
系アルミニウム合金ビレットを溶製し、550℃×4h
rの均熱処理を行った。続いて、押出温度500℃及び
表1に示す押出速度で押出加工を行い、押出直後にオン
ラインで空冷又は水冷によるプレス焼入れを行い、図1
に示すような中空矩形断面の押出材(長辺が70〜80
mm、短辺が54〜60mm、肉厚が2〜5mm)を得
た。なお、空冷はファン空冷で冷却速度:約190℃/
min、水冷は冷却速度:約10000℃/minであ
った。ついで、この押出材に対し190℃×3時間の時
効処理を施し、供試材とした。
EXAMPLES Examples of the present invention will be described below. D
Al-Mg-Si having the composition shown in Table 1 by C casting
Molten aluminum alloy billet, 550 ℃ × 4h
Soaking was performed for r. Subsequently, extrusion processing was performed at an extrusion temperature of 500 ° C. and an extrusion rate shown in Table 1, and immediately after extrusion, online press-quenching by air cooling or water cooling was performed.
Extruded material with a hollow rectangular cross section as shown in Fig.
mm, the short side is 54 to 60 mm, and the wall thickness is 2 to 5 mm). The air cooling is fan cooling, and the cooling rate is approximately 190 ° C /
min, water cooling was at a cooling rate of about 10,000 ° C./min. Next, this extruded material was subjected to an aging treatment at 190 ° C. for 3 hours to obtain a test material.

【0016】この供試材について、表面再結晶層(GG
層)厚さ、表面再結晶層の結晶粒径、機械的特性、縦及
び横方向圧壊特性を下記要領で調べた。その結果を表1
及び表2に示す。 表面再結晶層厚さ:押出方向に平行方向の断面におい
て、表面4箇所及び裏面4箇所をとり、それぞれの再結
晶層厚を測定し、表裏各々平均をとり、表の平均値と裏
の平均値の合計をGG層厚さとした。 表面再結晶層粒径:押出方向に平行方向の断面におい
て、表面から肉厚中心部へ向かって切断法にて、表側4
箇所、裏側4箇所測定し、その平均をとってGG層粒径
とした。ここで、粒径を表面から肉厚中心部へ向かって
測定するのは、この方向に測定した粒径が割れの発生に
特に関係するためである。(なお、本発明では、表面再
結晶層厚さが表面再結晶層粒径より十分大きくなく粒径
の測定が難しい場合は、表面再結晶層粒径=表面再結晶
層厚さと定義する。) 機械的特性:供試材よりJIS5号試験片を採取し、J
IS Z 2241に準拠して引張試験を行った。
The surface recrystallized layer (GG
Layer) thickness, crystal grain size of the surface recrystallized layer, mechanical properties, and longitudinal and lateral crushing properties were examined in the following manner. The results are shown in Table 1.
And shown in Table 2. Surface recrystallized layer thickness: In the cross section parallel to the extrusion direction, the front surface and the back surface are taken at four points, the recrystallized layer thicknesses are measured, the front and back sides are averaged, and the average value of the front and back sides is averaged. The sum of the values was taken as the GG layer thickness. Surface recrystallized layer grain size: in a cross section parallel to the extrusion direction, from the surface to the center of the wall thickness by the cutting method, the front side 4
The number of spots and four spots on the back side were measured, and the average thereof was taken as the GG layer grain size. Here, the particle size is measured from the surface toward the central part of the wall thickness because the particle size measured in this direction is particularly related to the occurrence of cracks. (In the present invention, when the surface recrystallized layer thickness is not sufficiently larger than the surface recrystallized layer particle size and the particle size measurement is difficult, the surface recrystallized layer particle size is defined as the surface recrystallized layer thickness.) Mechanical properties: JIS No. 5 test pieces were taken from the test material, and J
A tensile test was conducted according to IS Z 2241.

【0017】縦圧縮特性:長さ200mmの供試材を用
い、アムスラー試験機にて図2に示すように軸方向に静
的圧縮荷重を加え、これを100mmまで圧縮して荷重
−変位曲線を得、最大荷重と100mmまでの吸収エネ
ルギーを求めた。割れ性の評価は目視にて行い、割れの
発生していないものを◎、微小な割れの発生したものを
○、開口割れの発生したものを×と評価した。 横圧縮特性:長さ200mmの供試材を用い、図3に示
すように長辺側が上下になるように横向きに置いて静的
圧縮荷重を加え、これを20mmまで圧縮し、割れ性の
評価を目視にて行った。割れの発生していないものを
◎、微小な割れの発生したものを○、開口割れの発生し
たものを×と評価した。
Longitudinal compression characteristics: Using a test material having a length of 200 mm, an Amsler tester applies a static compressive load in the axial direction as shown in FIG. 2, and compresses this to 100 mm to obtain a load-displacement curve. Then, the maximum load and the absorbed energy up to 100 mm were obtained. The cracking property was evaluated by visual inspection, and those with no cracks were rated as ⊚, those with minute cracks as ◯, and those with opening cracks as x. Lateral compression characteristics: Using a test material having a length of 200 mm, as shown in Fig. 3, it is placed sideways so that the long sides are up and down and a static compressive load is applied, and this is compressed to 20 mm, and the crackability is evaluated. Was visually observed. The case where no crack was generated was evaluated as ⊚, the case where the minute crack was generated was evaluated as ○, and the case where the opening crack was generated was evaluated as ×.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】表2に示すように、GG層厚さが本発明の
規定範囲内のもの(No.1〜8)は圧壊割れを起こさ
ず、高い耐力及び優れたエネルギー吸収特性(縦横とも
に圧壊割れなし、高い吸収エネルギー及び最大荷重)を
示す。一方、表面GG層が形成されていないNo.9は
耐力が200MPaに満たず、吸収エネルギー及び最大
荷重が低く、GG層厚さが本発明の規定範囲を超えるも
の(No.10〜15)は圧壊割れ性が劣り、GG層厚
さが本発明の規定範囲内でも、耐力が200MPaに達
しないNo.16は吸収エネルギー及び最大荷重が低
く、GG層粒径が200μmを超えるNo.17は圧壊
割れ性が劣る。
As shown in Table 2, those having a GG layer thickness within the specified range of the present invention (Nos. 1 to 8) do not cause crush cracking, and have high yield strength and excellent energy absorption characteristics (crush crack in both length and width). None, high absorbed energy and maximum load). On the other hand, in No. 1 in which the surface GG layer is not formed. No. 9 has a proof stress of less than 200 MPa, a low absorbed energy and a maximum load, and a GG layer thickness exceeding the specified range of the present invention (No. 10 to 15) has poor crush cracking resistance and a GG layer thickness of this. Even within the stipulated range of the invention, the proof stress does not reach 200 MPa. No. 16 has a low absorbed energy and a maximum load, and has a GG layer grain size of more than 200 μm. No. 17 is inferior in crush cracking resistance.

【0021】[0021]

【発明の効果】本発明によれば、Al−Mg−Si系ア
ルミニウム合金押出材について、耐力と表面再結晶層の
割合、及び粒径を規定することにより、高強度で優れた
エネルギー吸収特性を示す衝撃吸収部材を得ることがで
きる。
EFFECTS OF THE INVENTION According to the present invention, an Al-Mg-Si-based aluminum alloy extruded material has high strength and excellent energy absorption characteristics by defining the yield strength, the ratio of the surface recrystallized layer, and the grain size. The shock absorbing member shown can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例に用いた押出材の断面形状を示す図で
ある。
FIG. 1 is a diagram showing a cross-sectional shape of an extruded material used in Examples.

【図2】 実施例の縦圧壊試験を説明する図(圧壊前、
圧壊後)である。
FIG. 2 is a diagram illustrating a vertical crush test of an example (before crush,
After crushing).

【図3】 実施例の横圧壊試験を説明する図(圧壊前、
圧壊後)である。
FIG. 3 is a diagram illustrating a lateral crush test of an example (before crush,
After crushing).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−171328(JP,A) 特開 平6−25783(JP,A) 特開 平9−256096(JP,A) 特開 平5−247575(JP,A) 特開2000−54049(JP,A) 特開2000−54051(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 21/00 - 21/18 B62D 21/15 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-5-171328 (JP, A) JP-A-6-25783 (JP, A) JP-A-9-256096 (JP, A) JP-A-5- 247575 (JP, A) JP 2000-54049 (JP, A) JP 2000-54051 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 21 / 00-21 / 18 B62D 21/15

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Mgが0.40〜0.80wt%、Si
含有量が0.50〜1.0wt%を含み、プレス焼入れ
後時効処理したAl−Mg−Si系アルミニウム合金中
空押出材からなり、耐力200MPa以上かつ表面再結
晶層厚さが肉厚の5〜50%であり(100μm以下を
除く)、さらに表面再結晶層の肉厚方向の結晶粒径が2
00μm以下であることを特徴とする押出軸方向に圧縮
の衝撃荷重を受ける耐圧壊割れ性に優れた衝撃吸収部
材。
1. Mg of 0.40 to 0.80 wt%, Si
The content is 0.50 to 1.0 wt% and is made of an Al-Mg-Si-based aluminum alloy hollow extruded material which has been aged after press hardening, and has a yield strength of 200 MPa or more and a surface recrystallization layer thickness of 5 to 5 mm. 50% (less than 100 μm
Except that the grain size in the thickness direction of the surface recrystallized layer is 2
Compressed in the axial direction of extrusion , characterized by being less than 00 μm
Shock absorbing member with excellent resistance to crushing and cracking under the impact load of .
【請求項2】 Mgが0.40〜0.80wt%、Si
含有量が0.50〜1.0wt%を含み、プレス焼入れ
後時効処理したAl−Mg−Si系アルミニウム合金中
空押出材からなり、耐力200MPa以上かつ表面再結
晶層厚さが肉厚の5〜50%であり(100μm以下を
除く)、さらに表面再結晶層の肉厚方向の結晶粒径が2
00μm以下であることを特徴とする耐圧壊割れ性に優
れたサイドメンバ
2. Mg of 0.40 to 0.80 wt% and Si
The content is 0.50 to 1.0 wt% and is made of an Al-Mg-Si-based aluminum alloy hollow extruded material which has been aged after press hardening, and has a yield strength of 200 MPa or more and a surface recrystallization layer thickness of 5 to 5 mm. 50% (less than 100 μm
Except that the grain size in the thickness direction of the surface recrystallized layer is 2
A side member having excellent resistance to pressure cracking and cracking, which is characterized by having a thickness of 00 μm or less.
JP17231999A 1999-04-02 1999-06-18 Shock absorbing member with excellent pressure-resistant cracking resistance Expired - Lifetime JP3454755B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17231999A JP3454755B2 (en) 1999-06-18 1999-06-18 Shock absorbing member with excellent pressure-resistant cracking resistance
EP00107024A EP1041165A1 (en) 1999-04-02 2000-03-31 Shock absorbing material
US10/190,483 US20030008165A1 (en) 1999-04-02 2002-07-09 Shock absorbing material
US10/420,756 US20030207143A1 (en) 1999-04-02 2003-04-23 Shock absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17231999A JP3454755B2 (en) 1999-06-18 1999-06-18 Shock absorbing member with excellent pressure-resistant cracking resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002272315A Division JP2003183757A (en) 2002-09-18 2002-09-18 Shock-absorbing member showing excellent crush resistance

Publications (2)

Publication Number Publication Date
JP2001003128A JP2001003128A (en) 2001-01-09
JP3454755B2 true JP3454755B2 (en) 2003-10-06

Family

ID=15939719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17231999A Expired - Lifetime JP3454755B2 (en) 1999-04-02 1999-06-18 Shock absorbing member with excellent pressure-resistant cracking resistance

Country Status (1)

Country Link
JP (1) JP3454755B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198165A (en) 2004-01-09 2005-07-21 Canon Inc Device and method for reproducing image, computer program, and computer readable recording medium
FR2917428B1 (en) * 2007-06-18 2009-08-28 Alcan Int Ltd PROCESS FOR PRODUCING AN ALUMINUM ALLOY SEMI-PRODUCT, IN PARTICULAR FOR A MOTOR VEHICLE STRUCTURE
JP5410845B2 (en) * 2008-08-21 2014-02-05 アイシン軽金属株式会社 Al-Mg-Si aluminum alloy extruded material with excellent fatigue strength and impact fracture resistance
JP5366748B2 (en) * 2009-09-30 2013-12-11 株式会社神戸製鋼所 Aluminum alloy extruded material with excellent bending crushability and corrosion resistance
JP2011074470A (en) * 2009-09-30 2011-04-14 Kobe Steel Ltd Aluminum alloy extruded form with excellent bending crushability and corrosion resistance
JP5473718B2 (en) * 2010-03-30 2014-04-16 株式会社神戸製鋼所 Aluminum alloy extruded material with excellent bending crushability and corrosion resistance
JP7182425B2 (en) * 2018-10-22 2022-12-02 昭和電工株式会社 Al-Mg-Si-based aluminum alloy extruded material and method for producing the same
JP2023061742A (en) * 2021-10-20 2023-05-02 株式会社Uacj Extrusion multiple hole pipe and method for manufacturing the same

Also Published As

Publication number Publication date
JP2001003128A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP4977281B2 (en) High-strength aluminum alloy extruded material excellent in shock absorption and stress corrosion cracking resistance and method for producing the same
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
JP3454755B2 (en) Shock absorbing member with excellent pressure-resistant cracking resistance
EP1041165A1 (en) Shock absorbing material
JP2020164893A (en) Automobile door beam made of extruded aluminum alloy material
JP3909543B2 (en) Aluminum alloy extruded material with excellent axial crushing properties
JP4111651B2 (en) Al-Mg-Si aluminum alloy extruded material for door beam and door beam
JP2011001563A (en) Aluminum alloy extruded product exhibiting excellent impact cracking resistance
JP3757831B2 (en) Al-Mg-Si aluminum alloy extruded material with excellent impact energy absorption performance
JP2020164980A (en) Automobile door beam made of extruded aluminum alloy material
JP5288671B2 (en) Al-Mg-Si-based aluminum alloy extruded material with excellent press workability
JP3073197B1 (en) Shock absorbing member in automobile frame structure
JP3077974B2 (en) Al-Mg-Si based aluminum alloy extruded material with excellent axial crushing properties
JP3502939B2 (en) Al-Mg-Si aluminum alloy extruded shape with excellent impact energy absorption
JP4587588B2 (en) Aluminum alloy extruded material with excellent axial crushing characteristics and method for producing the same
JP3253244B2 (en) Extruded Al-Mg-Si aluminum alloy material for shock absorbing members with excellent axial crushing performance.
JP5823010B2 (en) High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance
JP2003183757A (en) Shock-absorbing member showing excellent crush resistance
JP3068395B2 (en) Aluminum alloy door impact beam material
JP5631379B2 (en) High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance
JP3077976B1 (en) Extruded Al-Mg-Si based aluminum alloy material with excellent impact energy absorption characteristics in the extrusion axis direction
JP4052641B2 (en) Aluminum alloy having excellent impact absorption characteristics and good hardenability and extrudability, and method for producing the same
JP2001316750A (en) EXTRUDED Al-Mg-Si ALUMINUM ALLOY EXCELLENT IN CRUSHING CAPACITY
JP2001355032A (en) Aluminum alloy extruded material having excellent impact absorptivity
JP3498948B2 (en) Al-Mg-Si aluminum alloy extruded material with excellent pressure cracking resistance

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3454755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

EXPY Cancellation because of completion of term