JP2001316750A - EXTRUDED Al-Mg-Si ALUMINUM ALLOY EXCELLENT IN CRUSHING CAPACITY - Google Patents

EXTRUDED Al-Mg-Si ALUMINUM ALLOY EXCELLENT IN CRUSHING CAPACITY

Info

Publication number
JP2001316750A
JP2001316750A JP2001141596A JP2001141596A JP2001316750A JP 2001316750 A JP2001316750 A JP 2001316750A JP 2001141596 A JP2001141596 A JP 2001141596A JP 2001141596 A JP2001141596 A JP 2001141596A JP 2001316750 A JP2001316750 A JP 2001316750A
Authority
JP
Japan
Prior art keywords
less
extruded
aluminum alloy
alloy
based aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001141596A
Other languages
Japanese (ja)
Inventor
Hiroshi Iwamura
宏 岩村
Shinji Yoshihara
伸二 吉原
Kazutoshi Sakano
和敏 坂野
Tatsuya Kinoshita
達也 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001141596A priority Critical patent/JP2001316750A/en
Publication of JP2001316750A publication Critical patent/JP2001316750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an extruded Al-Mg-Si aluminum alloy which is contracted and deformed into a bellowslike shape without generating cracks when a compressive impact or a compressive static load is applied in the axial direction, and can absorb the impact load and static load. SOLUTION: This shape material has a fibrous crystal structure in T1 refining and has a composition in which the content of stoichiometrically equivalent Mg2Si composed of Mg and Si as the main alloy elements is 0.6 to 1.2%, containing Si exceeding stoichiometrically equivalent Mg2Si by <=0.6% and Cu by <=0.4% and containing at least one or more kinds selected from 0.05 to 0.3% Mn, 0.01 to 0.1% Ti, 0.05 to 0.1% Cr and 0.05 to 0.1% Zr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、形材の押出軸方向
に圧縮の衝撃荷重あるいは圧縮の静的負荷を受けたと
き、その衝撃荷重及び静的負荷を吸収する作用を持つA
l−Mg−Si系アルミニウム合金押出形材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an A type having a function of absorbing an impact load and a static load when a compression impact load or a compression static load is applied in the extrusion axis direction of a profile.
The present invention relates to a 1-Mg-Si based aluminum alloy extruded member.

【0002】[0002]

【従来の技術】6000系(Al−Mg−Si系)アル
ミニウム合金は、高い引張性質を得る合金の中では比較
的耐食性に優れ、サッシ材料などとして市場に多く出回
っており、リサイクルの面でも他の系のアルミニウム合
金より優れていることから、構造部材、機能部材への適
用が注目され、例えば特開平7−118782号公報に
みられるように、押出形材を自動車のサイドメンバーや
バンパーステイなどの衝撃吸収部材に適用することが検
討されている。
2. Description of the Related Art A 6000 series (Al-Mg-Si) aluminum alloy has relatively high corrosion resistance among alloys having high tensile properties, and is widely used as a sash material in the market. Because of its superiority to aluminum alloys of the type described above, application to structural members and functional members has attracted attention. For example, as disclosed in Japanese Patent Application Laid-Open No. 7-118782, extruded profiles are used for automobile side members and bumper stays. It has been studied to apply it to a shock absorbing member.

【0003】衝撃吸収部材に要求される特性の1つは、
上記公報にも記載されているように、部材が押出軸方向
に荷重を受けたとき形材全体がオイラー座屈(形材全体
がくの字形に曲がる座屈)を起こさず割れを発生するこ
となく蛇腹状に収縮変形することである。Al−Mg−
Si系合金押出形材を用いて部材に割れを発生させるこ
となく衝撃を吸収せしめるため、これまで、部材の伸び
をでき得る限り大きくしてその変形能を高める方法が一
般的に行われている。
[0003] One of the characteristics required of a shock absorbing member is as follows.
As described in the above publication, when the member is subjected to a load in the direction of the extrusion axis, the entire shape does not undergo Euler buckling (buckling in which the entire shape bends in a U-shape) without cracking. Shrinking deformation in the form of a bellows. Al-Mg-
In order to absorb the impact without causing cracks in the member by using the extruded Si-based alloy, a method of increasing the elongation of the member as much as possible to increase its deformability has been generally performed. .

【0004】従って、必然的に引張強さ及び耐力(0.
2%耐力)を当該合金が発揮し得る最高値よりもかなり
低い状態に抑えて用いざるを得ず、そのため部材に高い
強度が必要とされる場合には、引張性質を向上せしめる
合金元素すなわちSi、Mg、Cu等を相当多めに添加
したうえで伸びを大きくするために焼鈍するなど、当該
合金が発揮し得る引張強さ及び耐力を犠牲にした材料設
計を余儀なくされていた。この方法では添加された合金
元素の効果は100%生かされておらず、ある面では無
駄な添加といえないこともなかった。
Accordingly, the tensile strength and proof stress (0.
2% proof stress) must be kept at a state considerably lower than the maximum value that can be exhibited by the alloy, and when high strength is required for the member, an alloy element for improving the tensile properties, namely, Si , Mg, Cu and the like are added in a considerably large amount, and then annealing is performed to increase elongation. For this reason, it has been necessary to design a material that sacrifices the tensile strength and proof stress that the alloy can exhibit. In this method, 100% of the effect of the added alloy element was not utilized, and in some aspects, the addition was useless.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記従来の問
題点に鑑みてなされたもので、Al−Mg−Si系合金
押出形材において、押出軸方向に圧縮の衝撃荷重あるい
は圧縮の静的負荷を受けたとき、割れを発生することな
く蛇腹状に収縮変形し、その衝撃荷重及び静的負荷を吸
収する作用を持つとともに、合金が発揮し得る引張強さ
あるいは耐力を犠牲にすることなく、なおかつ圧壊性能
が伸びの値に特に依存することもない、圧壊性能に優れ
たAl−Mg−Si系合金押出形材を得ることを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems. In an extruded Al-Mg-Si alloy material, an impact load of compression or a static load of compression in the direction of the extrusion axis. When subjected to a load, it shrinks and deforms in a bellows shape without generating cracks, has the effect of absorbing the impact load and static load, and without sacrificing the tensile strength or proof stress that the alloy can exhibit Further, an object of the present invention is to obtain an Al-Mg-Si based alloy extruded material having excellent crushing performance, wherein the crushing performance does not particularly depend on the value of elongation.

【0006】[0006]

【課題を解決するための手段】本発明に関わる圧壊性能
に優れるAl−Mg−Si系アルミニウム合金押出形材
は、T1調質下においてその結晶組織がファイバー組織
を呈しており、その主要合金元素であるMgとSiとか
らなる化学量論的に平衡なMgSiが0.6%以上
1.2%以下であり、MgとSiとからなる化学量論的
に平衡なMgSiを越えるSiを0.6%以下、Cu
を0.4%以下含む組成をもつことを特徴とする。
The extruded Al-Mg-Si-based aluminum alloy according to the present invention, which is excellent in crushing performance, has a crystal structure showing a fiber structure under T1 tempering, and its main alloying element. The stoichiometrically balanced Mg 2 Si composed of Mg and Si is 0.6% or more and 1.2% or less, and exceeds the stoichiometrically balanced Mg 2 Si composed of Mg and Si. 0.6% or less of Si, Cu
Of 0.4% or less.

【0007】また、本発明に関わる圧壊性能に優れるA
l−Mg−Si系アルミニウム合金押出形材は、T5調
質下においてその結晶組織がファイバー組織を呈してお
り、その主要合金元素であるMgとSiとからなる化学
量論的に平衡なMgSiが0.6%以上1.1%未満
であり、MgとSiとからなる化学量論的に平衡なMg
Siを越えるSiを0.6%以下、Cuを0.4%以
下含む組成をもつことを特徴とする。
[0007] The present invention relates to A
The l-Mg-Si-based aluminum alloy extruded material has a crystal structure exhibiting a fiber structure under T5 tempering, and a stoichiometrically balanced Mg 2 composed of its main alloying elements Mg and Si. Mg having a stoichiometric balance of 0.6% or more and less than 1.1% and comprising Mg and Si
0.6% of Si in excess of 2 Si hereinafter, characterized by having a composition containing Cu 0.4% or less.

【0008】さらに、本発明に関わる圧壊性能に優れる
Al−Mg−Si系アルミニウム合金押出形材は、T6
調質下においてその結晶組織がファイバー組織を呈して
おり、その主要合金元素であるMgとSiとからなる化
学量論的に平衡なMgSiが0.6%以上1.1%以
下であり、MgとSiとからなる化学量論的に平衡なM
Siを越えるSiを0.4%以下、Cuを0.2%
以下含む組成をもつことを特徴とする。
Further, the extruded Al-Mg-Si-based aluminum alloy material having excellent crushing performance according to the present invention is T6
Under refining, the crystal structure shows a fiber structure, and the stoichiometrically balanced Mg 2 Si composed of Mg and Si, which are the main alloying elements, is 0.6% or more and 1.1% or less. , A stoichiometric equilibrium of Mg and Si
0.4% or less of Si exceeding g 2 Si and 0.2% of Cu
It is characterized by having the following composition.

【0009】上記Al−Mg−Si系アルミニウム合金
押出形材は、T1、T5又はT6調質下において結晶組
織を安定なファイバー状に制御することにより、合金が
発揮し得る引張強さあるいは耐力を犠牲にすることな
く、なおかつ伸びの値に特に依存することもなく(伸び
の大小と割れ発生の有無に明確な相関が見られない)、
圧壊性能を向上することができる。ここで、T1、T5
又はT6処理はJISH0001に規定される処理であ
り、ファイバー組織とは、押出によるファイバー組織が
押出工程以降の熱処理工程の間においても再結晶するこ
となくそのまま残った状態の組織を意味する。
[0009] The extruded Al-Mg-Si-based aluminum alloy material has a tensile strength or a proof stress that the alloy can exhibit by controlling the crystal structure to a stable fiber shape under T1, T5 or T6 tempering. Without sacrificing and without depending on the value of elongation (there is no clear correlation between the magnitude of elongation and the presence or absence of cracks)
The crushing performance can be improved. Here, T1, T5
Alternatively, the T6 treatment is a treatment prescribed in JIS H0001, and the fiber structure means a structure in which a fiber structure by extrusion remains as it is without being recrystallized even during a heat treatment step after the extrusion step.

【0010】[0010]

【発明の実施の形態】次に、本発明に関わるAl−Mg
−Si系合金の化学組成について説明する。Al−Mg
−Si系合金の主要合金元素は、MgとSiであり、主
にこれら元素が化学量論的に平衡な析出物MgSiを
形成するとともに化学量論的に平衡な量を越える過剰S
iが固溶することによって材料の引張強さ、耐力を高め
る。しかしながら引張強さ、耐力の向上と引き換えに材
料の変形能が低下し、押出軸方向の変形による割れが生
じやすくなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the Al-Mg according to the present invention will be described.
The chemical composition of the Si-based alloy will be described. Al-Mg
Major alloying elements of the -Si-based alloys are Mg and Si, mainly over these elements exceeds an amount stoichiometrically balanced to form a stoichiometrically equilibrium precipitates Mg 2 Si S
The solid solution of i increases the tensile strength and proof stress of the material. However, in exchange for the improvement in tensile strength and proof stress, the deformability of the material is reduced, and cracking due to deformation in the extrusion axis direction is likely to occur.

【0011】工業的に有益な引張性質を得るためにはM
Si量として0.6%以上必要であり、0.8%以
上でより高い引張強さ及び耐力が得られ、またT1調質
の場合1.2%を越えると押出材としての変形能が大き
く低下して二次加工が難しくなり、また押出軸方向の変
形による割れが生じやすくなる。過剰SiもMgSi
と同様引張強さ、耐力を高める代わりに変形能を低下さ
せる作用があり、また押出軸方向の変形による割れ防止
の観点からも、T1調質の場合0.6%以下(0%を含
む)に制限される。Siの総量は、好ましくはMg
iを構成するSiと併せて1.0%以下とする。
In order to obtain industrially useful tensile properties, M
The g 2 Si content is required to be 0.6% or more, and 0.8% or more provides higher tensile strength and proof stress. In the case of T1 refining, the deformation ability as an extruded material exceeds 1.2%. And the secondary processing becomes difficult, and cracks due to deformation in the direction of the extrusion axis tend to occur. Excess Si is also Mg 2 Si
It has the effect of reducing the deformability instead of increasing the tensile strength and proof stress similarly to the above, and from the viewpoint of preventing cracking due to deformation in the extrusion axis direction, 0.6% or less (including 0%) in the case of T1 tempering. Is limited to The total amount of Si is preferably Mg 2 S
The content is set to 1.0% or less together with Si constituting i.

【0012】なお、T5、T6と熱処理の程度が進むに
つれAl−Mg−Si系合金の引張強度、耐力が高まり
変形能が低下する。同一成分の合金においても、引張強
度、耐力が高い状態では変形しにくくなり(加工に要す
る力が大きくなる)、それにも関わらず変形、加工を強
いた場合には割れ等の欠陥、破壊を生ずることになる。
そのため圧壊割れを防止できる組成範囲がT5、T6調
質下ではT1調質下より必然的に狭くなり、本発明にお
いては、T5調質下ではMgSiを1.1%以下、過
剰Siを0.6%以下(0%を含む)とし、T6調質下
ではMgSiを1.1%以下、過剰Siを0.4%以
下(0%を含む)に制限している。
Incidentally, as the degree of the heat treatment proceeds to T5 and T6, the tensile strength and proof stress of the Al-Mg-Si alloy increase, and the deformability decreases. Even with alloys of the same component, it is difficult to deform when the tensile strength and proof stress are high (the force required for processing is large). Nevertheless, when deformation and processing are forced, defects such as cracks and destruction occur. Will be.
Therefore, the composition range in which crush cracking can be prevented is inevitably narrower under T5 and T6 temper than under T1 temper. In the present invention, Mg 2 Si is reduced to 1.1% or less and excess Si is reduced under T5 temper. 0.6% or less (including 0%), and under T6 refining, Mg 2 Si is limited to 1.1% or less, and excess Si is limited to 0.4% or less (including 0%).

【0013】本発明に関わるAl−Mg−Si系合金と
して、主要合金元素として上記のMgとSiを含み、必
要に応じてCu、Ti、Mn、Cr、Zr等を含み、残
部Al及び不純物からなる組成を挙げることができる。
Cuはその添加量に応じ、合金の引張強さ及び耐力を高
める働きがあるが、その反面、耐食性、耐応力腐食割れ
性を低下させるとともに、溶接時にはミクロフィッシャ
ー(溶接される母材とビードとの界面近傍に発生する細
かな内部割れ)と呼ばれる溶接欠陥を発生させやすくす
る。そのため、一般にAl−Mg−Si系合金にCuを
添加元素として配合するときは、ミクロフィッシャーを
発生させないため0.4%を上限としている。
[0013] The Al-Mg-Si alloy according to the present invention contains the above-mentioned Mg and Si as main alloy elements, and contains Cu, Ti, Mn, Cr, Zr and the like as necessary. The following composition can be mentioned.
Cu has the function of increasing the tensile strength and proof stress of the alloy according to the added amount, but on the other hand, it also reduces the corrosion resistance and stress corrosion cracking resistance, and at the time of welding, uses a microfischer (base metal and bead to be welded). (A small internal crack generated near the interface of the alloy). Therefore, in general, when Cu is added to an Al-Mg-Si alloy as an additive element, the upper limit is 0.4% in order not to generate microfischer.

【0014】また、本発明の押出形材においては、T1
又はT5調質下でCu含有量が0.4%を越えると押出
軸方向の変形により割れが発生しやすくなり、T6調質
下では0.2%を越えると割れが発生しやすくなる。T
6調質下で圧壊割れを防止できる組成範囲が狭くなるの
は、先にMgSi及びSiに関して述べたと同様の理
由による。以上の理由により、前記のようにCu含有量
を0.4%以下又は0.2%以下(いずれも0%を含
む)に制限した。なお、Cuを添加して強度向上の効果
を得るためには0.1%以上添加するのが好ましいが、
この系の合金に容認される不純物として0.1%未満含
有されていてもよい。
In the extruded profile of the present invention, T1
Alternatively, if the Cu content exceeds 0.4% under T5 refining, cracks are likely to occur due to deformation in the extrusion axis direction, and if the Cu content exceeds 0.2% under T6 refining, cracks tend to occur. T
(6) The reason why the composition range in which the crush cracking can be prevented under the refining is narrowed is the same reason as described above for Mg 2 Si and Si. For the above reasons, the Cu content was limited to 0.4% or less or 0.2% or less (both including 0%) as described above. In order to obtain an effect of improving strength by adding Cu, it is preferable to add 0.1% or more.
Less than 0.1% may be contained as an acceptable impurity in the alloy of this system.

【0015】次に結晶粒微細化元素として用いられるT
i、Mn、Cr及びZrの各々の作用を詳説する。Ti
は溶解鋳造時に核生成し鋳造組織を微細にする働きがあ
り、適宜添加される。その効果は0.01%以上の添加
により顕著となり、0.1%を越えると粗大な化合物を
生成しAl−Mg−Si系合金を脆弱にするため、その
添加量は0.01%以上0.1%以下が好適である。
Next, T used as a grain refining element is used.
Each action of i, Mn, Cr and Zr will be described in detail. Ti
Has the function of forming nuclei during melting and casting to make the casting structure fine, and is appropriately added. The effect becomes remarkable when added at 0.01% or more, and when it exceeds 0.1%, a coarse compound is formed and the Al-Mg-Si alloy is made brittle, so the added amount is 0.01% or more and 0%. 0.1% or less is preferable.

【0016】Mnは合金組織の再結晶化を抑制し、組織
の微細化に効果がある。この性質から、押出形材のファ
イバー組織を安定化する働きが有り、適宜添加される。
その効果は0.05%以上で顕在化してくるが、0.3
%を越えると熱処理時のMgの拡散を抑制し、熱処理性
を劣化させるとともに粗大なAlMnを生成しアルミ
ニウム合金を脆弱にするため、その添加量は0.05%
以上0.3%以下が好適である。
Mn suppresses the recrystallization of the alloy structure and is effective in refining the structure. Due to this property, it has a function of stabilizing the fiber structure of the extruded material, and is added as appropriate.
The effect becomes apparent at 0.05% or more, but 0.3% or more.
%, The diffusion of Mg during the heat treatment is suppressed, the heat treatment property is deteriorated, and coarse Al 6 Mn is generated to make the aluminum alloy brittle.
More than 0.3% is suitable.

【0017】Crは粒界のピン止め効果があり、押出形
材のファイバー組織を安定化する働きがあることから、
適宜添加される。その効果は0.05%以上で顕在化し
てくるが、0.1%を越えて添加した場合、押出加工時
の初期圧力を著しく高めてしまうため実用的でなく、そ
の添加量は0.05%以上0.1%以下が好適である。
ZrはCrと同様粒界のピン止め効果があり、押出形材
のファイバー組織を安定化する働きがあることから、適
宜添加される。その効果は0.05%以上で顕在化して
くるが、0.1%を越えて添加してもファイバー組織を
安定化する効果がそれ以上上がらないため、その添加量
は0.05%以上0.1%以下が好適である。
Cr has the effect of pinning the grain boundaries and has the function of stabilizing the fiber structure of the extruded material.
It is added as appropriate. The effect becomes apparent at 0.05% or more. However, if it exceeds 0.1%, the initial pressure at the time of extrusion processing is remarkably increased, which is not practical. % Or more and 0.1% or less is preferable.
Like Zr, Zr has a pinning effect on the grain boundaries and has a function of stabilizing the fiber structure of the extruded material, so Zr is appropriately added. The effect becomes apparent at 0.05% or more, but the effect of stabilizing the fiber structure is not further increased even if added over 0.1%, so the added amount is 0.05% or more. 0.1% or less is preferable.

【0018】本発明に関わるAl−Mg−Si系合金の
好ましい組成としては、前記Mg、Si、Cuに加え、
Mn0.05%以上0.3%以下を含む組成、さらに必
要に応じてTi0.01%以上0.1%以下、Cr0.
05%以上0.1%以下、Zr0.05%以上0.1%
以下のうち少なくとも1種以上(特にTi)を含む組
成、あるいは、前記Mg、Si、Cuに加え、Ti0.
01%以上0.1%以下、Cr0.05%以上0.1%
以下及びZr0.05%以上0.1%以下を同時に含む
組成が例示できる。
The preferred composition of the Al—Mg—Si alloy according to the present invention is, in addition to the aforementioned Mg, Si and Cu,
Composition containing Mn 0.05% or more and 0.3% or less, further, Ti 0.01% or more and 0.1% or less, Cr0.
05% or more and 0.1% or less, Zr 0.05% or more and 0.1%
A composition containing at least one or more of the following (particularly, Ti), or in addition to Mg, Si, and Cu, Ti.
01% or more and 0.1% or less, Cr 0.05% or more and 0.1%
And a composition simultaneously containing Zr 0.05% or more and 0.1% or less.

【0019】次に押出加工条件について説明する。押出
加工は通常熱間において行われ、その加工温度を利用し
て溶体化を兼ねることが工業上一般的である。このため
押出温度は極力溶体化温度とすることが重要であるが、
押出温度を高くしすぎると結晶組織の再結晶化が促進さ
れ、ファイバー組織から粗大な結晶粒へと変化する。一
方、材料が変形するときの材料内の歪は転位の動きによ
って導かれるが、この転位は結晶粒界等の金属結晶の並
びが不規則な部分において消失するため、結晶粒界等の
金属結晶の並びが不規則な部分は転位による格子のずれ
が蓄積し歪みが集中することになる。従って、材料内で
の転位の分布すなわち歪みの分布は結晶粒径が細かい方
が、材料全体の中で均一になりやすい。そして、圧壊時
に割れの発生を抑制するためには、変形歪みを材料内で
均等にさせる必要がある。
Next, the extrusion processing conditions will be described. Extrusion is usually performed at a hot temperature, and it is industrially common to use the processing temperature to serve as a solution. For this reason, it is important that the extrusion temperature be as high as possible the solution temperature.
If the extrusion temperature is too high, recrystallization of the crystal structure is promoted, and the fiber structure changes to coarse grains. On the other hand, the strain in the material when the material is deformed is guided by the movement of dislocations. However, since the dislocations disappear in a portion where the arrangement of metal crystals such as crystal grain boundaries is irregular, the metal crystals such as crystal grain boundaries and the like are lost. Are irregular, the lattice displacement due to the dislocations accumulates, and the distortion concentrates. Therefore, the distribution of dislocations in the material, that is, the distribution of strain, tends to be uniform throughout the material as the crystal grain size is smaller. Then, in order to suppress the occurrence of cracks at the time of crushing, it is necessary to make the deformation strain uniform in the material.

【0020】再結晶を抑制し、ファイバー組織、すなわ
ち粒界が細かな状態に保持することによって変形歪みを
材料内で均等に分布させることができ、なおかつ優れた
引張性質を発揮することができる。このことを踏まえ、
押出工程では押出直後の形材温度を適正溶体化温度範
囲、すなわち515℃以上550℃以下に制御すること
が好適である。
By suppressing the recrystallization and keeping the fiber structure, that is, the grain boundary in a fine state, the deformation strain can be evenly distributed in the material, and excellent tensile properties can be exhibited. Based on this,
In the extrusion step, it is preferable to control the temperature of the shaped material immediately after extrusion to an appropriate solution temperature range, that is, 515 ° C. or more and 550 ° C. or less.

【0021】[0021]

【実施例】表1に示す化学成分を含有するAl−Mg−
Si系合金を半連続鋳造法により作製した鋳塊に470
℃×8hの均質化熱処理を施した後、前記溶体化処理温
度にて断面形状外寸70×54mmで肉厚2mmの田形
形材を熱間直接押出法にて製造し、押し出すと同時に常
温水を用いて焼入れを行った。得られた押出形材はT1
調質材として供した。また、T1調質材に170℃×6
hの人工時効処理を施したものをT5調質材とし、T1
調質材を530℃×1hにおいて再び溶体化した後常温
水中に焼入れし、その後170℃×6hの人工時効処理
を施したものをT6調質材として供した。
EXAMPLES Al-Mg-containing the chemical components shown in Table 1
470 is added to the ingot produced by semi-continuous casting of a Si alloy.
After performing a homogenizing heat treatment at 8 ° C. × 8 h, a 2 mm-thick rice-shaped section having a cross-sectional shape of 70 × 54 mm and a thickness of 2 mm is manufactured by the hot direct extrusion method at the solution treatment temperature, and extruded at the same time as room temperature water. And quenching was performed. The obtained extruded profile is T1
Used as a temper. In addition, 170 ° C x 6
h after the artificial aging treatment of T
The tempered material was again solution-solutioned at 530 ° C. × 1 h, quenched in room temperature water, and then subjected to artificial aging treatment at 170 ° C. × 6 h, and provided as a T6 tempered material.

【0022】[0022]

【表1】 [Table 1]

【0023】引張性質はJISZ2201に規定される
13号B試験片を用いて測定した。圧壊特性は各押出形
材を150mm長さに切断したものを試験片とし、押出
軸方向に油圧万能試験機を用い静的圧縮荷重を負荷し、
圧縮開始から圧縮変形量100mmまでの間で試験片に
割れが発生するか否かを調べた。また、圧縮変形中に負
荷した荷重で最も高い値を示した数値を最大荷重として
求め、圧縮開始から圧縮変形量100mmまでの間に負
荷された荷重と変形量との積を吸収エネルギーとした。
なお、断面形状を田形としたことには、複数の中空部を
持ち圧壊時の材料変形が複雑になるようにし、工業的一
般に用いられる形形状を代表させる目的がある。この形
状にて圧壊割れが生じない場合は、工業的一般に造られ
ている形材においても圧壊割れが概略生じないといえ
る。
The tensile properties were measured using a No. 13 B specimen specified in JISZ2201. The crushing characteristics were obtained by cutting each extruded member into a 150 mm length as a test piece, and applying a static compression load using a hydraulic universal testing machine in the extrusion axis direction.
It was examined whether or not cracks occurred in the test specimen from the start of compression to the amount of compression deformation of 100 mm. The numerical value showing the highest value among the loads applied during the compression deformation was determined as the maximum load, and the product of the load applied from the start of compression to the compression deformation amount of 100 mm and the deformation amount was defined as the absorbed energy.
The cross-sectional shape having the cross-sectional shape has the purpose of having a plurality of hollow portions so as to complicate material deformation at the time of crushing and to represent a shape generally used in industry. When crush cracking does not occur in this shape, it can be said that crush cracking does not substantially occur even in a shape material generally manufactured industrially.

【0024】表2(T1調質材)、表3(T5調質材)
及び表4(T6調質材)に、各々の試験片につき上記手
順で測定した引張性質と圧壊特性及びマクロ組織を示
す。なお、圧壊特性のうち割れ発生の有無については、
発生したものを×、発生しなかったものを○とした。表
2〜表4に示すように、本発明の要件を満たす形材は割
れを発生させることなく蛇腹状に収縮変形し、圧壊性能
が優れていた。一方、本発明の要件を満たさない比較例
には割れが発生した。
Table 2 (T1 tempered material), Table 3 (T5 tempered material)
And Table 4 (T6 tempered material) shows the tensile properties, crush properties, and macrostructure of each test piece measured by the above procedure. Regarding the occurrence of cracks in the crushing characteristics,
Those that occurred were evaluated as x, and those that did not occur were evaluated as ○. As shown in Tables 2 to 4, the shape material satisfying the requirements of the present invention contracted and deformed in a bellows shape without generating cracks, and was excellent in crushing performance. On the other hand, cracks occurred in Comparative Examples not satisfying the requirements of the present invention.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【発明の効果】本発明によれば、結晶組織を安定なファ
イバー組織とすることによって形材の押出方向に圧縮の
衝撃荷重あるいは圧縮の静的負荷を受けたときに座屈変
形を起こさず割れを発生することなく蛇腹状に収縮変形
して衝撃荷重及び静的負荷を吸収する、圧壊性能に優れ
たAl−Mg−Si系合金押出形材を得ることができ
る。
According to the present invention, the crystal structure is made to be a stable fiber structure, so that it does not buckle when subjected to a compressive impact load or a compressive static load in the extrusion direction of the profile and cracks. An Al-Mg-Si based alloy extruded material excellent in crushing performance, which absorbs an impact load and a static load by contracting and deforming in a bellows shape without generating cracks, can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂野 和敏 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (72)発明者 木下 達也 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazutoshi Sakano 14-1 Chofu Minatomachi, Shimonoseki City, Yamaguchi Prefecture Inside the Kofu Steel Works Chofu Works (72) Inventor Tatsuya Kinoshita 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture No. 5 Inside Kobe Research Institute, Kobe Steel, Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 T1調質下においてその結晶組織がファ
イバー組織を呈しており、その主要合金元素であるMg
とSiとからなる化学量論的に平衡なMgSiが0.
6%(質量%、以下同じ)以上1.2%以下であり、M
gとSiとからなる化学量論的に平衡なMgSiを越
えるSiを0.6%以下、Cuを0.4%以下含む組成
をもつことを特徴とする圧壊性能に優れるAl−Mg−
Si系アルミニウム合金押出形材。
1. The crystal structure of T1 has a fiber structure under tempering, and the main alloying element Mg
Mg 2 Si in stoichiometric balance consisting of
6% (mass%, the same applies hereinafter) to 1.2% or less;
Al—Mg— having excellent crushing performance, characterized by having a composition containing 0.6% or less of Si and 0.4% or less of Cu exceeding stoichiometrically balanced Mg 2 Si composed of g and Si.
Extruded Si-based aluminum alloy.
【請求項2】 T5調質下においてその結晶組織がファ
イバー組織を呈しており、その主要合金元素であるMg
とSiとからなる化学量論的に平衡なMgSiが0.
6%以上1.1%以下であり、MgとSiとからなる化
学量論的に平衡なMgSiを越えるSiを0.6%以
下、Cuを0.4%以下含む組成をもつことを特徴とす
る圧壊性能に優れるAl−Mg−Si系アルミニウム合
金押出形材。
2. Under T5 tempering, its crystal structure shows a fiber structure, and its main alloying element is Mg.
Mg 2 Si in stoichiometric balance consisting of
6% or more and 1.1% or less, and having a composition containing 0.6% or less of Si exceeding 0.4% and Cu exceeding Mg 2 Si in a stoichiometric equilibrium composed of Mg and Si. An Al-Mg-Si-based aluminum alloy extruded material with excellent crush performance.
【請求項3】 T6調質下においてその結晶組織がファ
イバー組織を呈しており、その主要合金元素であるMg
とSiとからなる化学量論的に平衡なMgSiが0.
6%以上1.1%以下であり、MgとSiとからなる化
学量論的に平衡なMgSiを越えるSiを0.4%以
下、Cuを0.2%以下含む組成をもつことを特徴とす
る圧壊性能に優れるAl−Mg−Si系アルミニウム合
金押出形材。
3. The T6 temper has a crystal structure showing a fiber structure, and its main alloying element Mg
Mg 2 Si in stoichiometric balance consisting of
6% or more and 1.1% or less, and having a composition containing 0.4% or less of Si and 0.2% or less of Cu exceeding stoichiometrically balanced Mg 2 Si composed of Mg and Si. An Al-Mg-Si-based aluminum alloy extruded material with excellent crush performance.
【請求項4】 化学量論的に平衡なMgSiが0.8
%以上であることを特徴とする請求項1〜3のいずれか
に記載された圧壊性能に優れるAl−Mg−Si系アル
ミニウム合金押出形材。
4. A stoichiometric equilibrium of Mg 2 Si of 0.8
%. The extruded Al-Mg-Si-based aluminum alloy according to any one of claims 1 to 3, which is excellent in crushing performance.
【請求項5】 Mn0.05%以上0.3%以下を含む
組成であることを特徴とする請求項1〜4のいずれかに
記載された圧壊性能に優れるAl−Mg−Si系アルミ
ニウム合金押出形材。
5. The extruded Al—Mg—Si based aluminum alloy according to claim 1, which has a composition containing Mn of 0.05% or more and 0.3% or less. Shapes.
【請求項6】 Mn0.05%以上0.3%以下を含
み、さらにTi0.01%以上0.1%以下、Cr0.
05%以上0.1%以下、Zr0.05%以上0.1%
以下のうち少なくとも1種以上を含む組成であることを
特徴とする請求項1〜4のいずれかに記載された圧壊性
能に優れるAl−Mg−Si系アルミニウム合金押出形
材。
6. An alloy containing Mn of 0.05% to 0.3%, Ti of 0.01% to 0.1%, and Cr of 0.1% to 0.1%.
05% or more and 0.1% or less, Zr 0.05% or more and 0.1%
The extruded Al-Mg-Si-based aluminum alloy according to any one of claims 1 to 4, wherein the aluminum-Mg-Si-based aluminum alloy has a composition containing at least one of the following.
【請求項7】 Ti0.01%以上0.1%以下、Cr
0.05%以上0.1%以下及びZr0.05%以上
0.1%以下を同時に含む組成であることを特徴とする
請求項1〜4のいずれかに記載された圧壊性能に優れる
Al−Mg−Si系アルミニウム合金押出形材。
7. Ti not less than 0.01% and not more than 0.1%, Cr
5. The composition according to claim 1, wherein the composition contains both 0.05% and 0.1% of Zr and 0.05% and 0.1% of Zr. 6. Extruded Mg-Si aluminum alloy.
JP2001141596A 2001-05-11 2001-05-11 EXTRUDED Al-Mg-Si ALUMINUM ALLOY EXCELLENT IN CRUSHING CAPACITY Pending JP2001316750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001141596A JP2001316750A (en) 2001-05-11 2001-05-11 EXTRUDED Al-Mg-Si ALUMINUM ALLOY EXCELLENT IN CRUSHING CAPACITY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001141596A JP2001316750A (en) 2001-05-11 2001-05-11 EXTRUDED Al-Mg-Si ALUMINUM ALLOY EXCELLENT IN CRUSHING CAPACITY

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP08728696A Division JP3253244B2 (en) 1996-03-15 1996-03-15 Extruded Al-Mg-Si aluminum alloy material for shock absorbing members with excellent axial crushing performance.

Publications (1)

Publication Number Publication Date
JP2001316750A true JP2001316750A (en) 2001-11-16

Family

ID=18988027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001141596A Pending JP2001316750A (en) 2001-05-11 2001-05-11 EXTRUDED Al-Mg-Si ALUMINUM ALLOY EXCELLENT IN CRUSHING CAPACITY

Country Status (1)

Country Link
JP (1) JP2001316750A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2157200A1 (en) 2008-08-21 2010-02-24 Aisin Keikinzoku Co., Ltd. Al-Mg-Si aluminum alloy extruded product exhibiting excellent fatigue strength and impact fracture resistance
EP2811043B1 (en) 2012-01-31 2016-07-27 Aisin Keikinzoku Co., Ltd. High-strength aluminum alloy extrudate with excellent corrosion resistance, ductility, and hardenability and process for producing same
JPWO2015129304A1 (en) * 2014-02-28 2017-03-30 アイシン軽金属株式会社 High-strength aluminum alloy extruded material with excellent formability
EP3631030B1 (en) 2017-05-26 2022-06-29 Novelis Inc. High-strength corrosion-resistant 6xxx series aluminum alloys and methods of making the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2157200A1 (en) 2008-08-21 2010-02-24 Aisin Keikinzoku Co., Ltd. Al-Mg-Si aluminum alloy extruded product exhibiting excellent fatigue strength and impact fracture resistance
JP2010070847A (en) * 2008-08-21 2010-04-02 Aisin Keikinzoku Co Ltd Al-Mg-Si-BASED ALUMINUM ALLOY EXTRUDED PRODUCT EXHIBITING EXCELLENT FATIGUE STRENGTH AND IMPACT FRACTURE RESISTANCE
US8168013B2 (en) 2008-08-21 2012-05-01 Aisin Keikinzoku Co., Ltd. Al-Mg-Si aluminum alloy extruded product exhibiting excellent fatigue strength and impact fracture resistance
EP2811043B1 (en) 2012-01-31 2016-07-27 Aisin Keikinzoku Co., Ltd. High-strength aluminum alloy extrudate with excellent corrosion resistance, ductility, and hardenability and process for producing same
JPWO2015129304A1 (en) * 2014-02-28 2017-03-30 アイシン軽金属株式会社 High-strength aluminum alloy extruded material with excellent formability
EP3631030B1 (en) 2017-05-26 2022-06-29 Novelis Inc. High-strength corrosion-resistant 6xxx series aluminum alloys and methods of making the same

Similar Documents

Publication Publication Date Title
JP4977281B2 (en) High-strength aluminum alloy extruded material excellent in shock absorption and stress corrosion cracking resistance and method for producing the same
US6551424B1 (en) Method for the manufacturing of an aluminium-magnesium-lithium alloy product
EP2157200B1 (en) Al-Mg-Si aluminum alloy extruded product exhibiting excellent fatigue strength and impact fracture resistance
JP6644376B2 (en) Method for producing extruded high-strength aluminum alloy with excellent formability
US20030008165A1 (en) Shock absorbing material
JP2928445B2 (en) High-strength aluminum alloy extruded material and method for producing the same
JP3772962B2 (en) Automotive bumper reinforcement
JP3253244B2 (en) Extruded Al-Mg-Si aluminum alloy material for shock absorbing members with excellent axial crushing performance.
JP3454755B2 (en) Shock absorbing member with excellent pressure-resistant cracking resistance
JP3674897B2 (en) Zn-Al alloy for vibration control and manufacturing method thereof
JP2001316750A (en) EXTRUDED Al-Mg-Si ALUMINUM ALLOY EXCELLENT IN CRUSHING CAPACITY
JP2003034834A (en) Al-Mg-Si ALUMINUM ALLOY EXTRUSION MATERIAL SUPERIOR IN ENERGY IMPACT ABSORPTIVITY, AND MANUFACTURING METHOD THEREFOR
KR20010087232A (en) Aℓ-Mg-Si BASED ALUMINUM ALLOY EXTRUSION FOR DOOR BEAM AND DOOR BEAM
JP3077974B2 (en) Al-Mg-Si based aluminum alloy extruded material with excellent axial crushing properties
JP4993170B2 (en) Aluminum alloy extruded shape having excellent impact absorption characteristics and good hardenability, and method for producing the same
JP5288671B2 (en) Al-Mg-Si-based aluminum alloy extruded material with excellent press workability
JP3073197B1 (en) Shock absorbing member in automobile frame structure
JP4052641B2 (en) Aluminum alloy having excellent impact absorption characteristics and good hardenability and extrudability, and method for producing the same
JPH09241785A (en) High toughness aluminum alloy
JP3077976B1 (en) Extruded Al-Mg-Si based aluminum alloy material with excellent impact energy absorption characteristics in the extrusion axis direction
JP2003183757A (en) Shock-absorbing member showing excellent crush resistance
JP2001355032A (en) Aluminum alloy extruded material having excellent impact absorptivity
JP2000345272A (en) Impact absorbing member
JP2953617B2 (en) Energy absorbing member made of extruded aluminum alloy with excellent axial crushing characteristics
JP3313059B2 (en) Energy absorbing member made of aluminum alloy hollow extruded material with excellent axial crushing characteristics