JP6465040B2 - Manufacturing method of molded member - Google Patents

Manufacturing method of molded member Download PDF

Info

Publication number
JP6465040B2
JP6465040B2 JP2016004220A JP2016004220A JP6465040B2 JP 6465040 B2 JP6465040 B2 JP 6465040B2 JP 2016004220 A JP2016004220 A JP 2016004220A JP 2016004220 A JP2016004220 A JP 2016004220A JP 6465040 B2 JP6465040 B2 JP 6465040B2
Authority
JP
Japan
Prior art keywords
residual stress
shot peening
mpa
less
molded member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016004220A
Other languages
Japanese (ja)
Other versions
JP2017125229A (en
Inventor
達也 中垣内
達也 中垣内
義彦 小野
義彦 小野
真平 吉岡
真平 吉岡
雄介 木俣
雄介 木俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016004220A priority Critical patent/JP6465040B2/en
Publication of JP2017125229A publication Critical patent/JP2017125229A/en
Application granted granted Critical
Publication of JP6465040B2 publication Critical patent/JP6465040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は耐遅れ破壊特性に優れた成形部材の製造方法に関する。本発明は、自動車骨格部材、補強部材等の製造に好適である。   The present invention relates to a method for producing a molded member having excellent delayed fracture resistance. The present invention is suitable for manufacturing automobile frame members, reinforcing members, and the like.

近年、地球環境の保全の見地から、自動車の燃費向上が重要な課題となっている。このため、車体材料の薄肉化により車体そのものを軽量化しようとする動きが活発となってきている。一方、車両衝突時の乗員保護の観点からは、高強度化による自動車車体の安全性向上も要求されている。自動車車体の軽量化と強化を同時に満足させるためには、部品素材を高強度化かつ薄肉化することが有効であり、最近では引張強さ(TS)が1180MPa以上の高強度の薄鋼板(以下、薄鋼板を単に鋼板とも称する)が自動車骨格部材、補強部材等に使用され始めている。   In recent years, improving the fuel efficiency of automobiles has become an important issue from the viewpoint of conservation of the global environment. For this reason, the movement to reduce the weight of the vehicle body itself has become active due to the thinning of the vehicle body material. On the other hand, from the viewpoint of occupant protection in the event of a vehicle collision, it is also required to improve the safety of the automobile body by increasing the strength. In order to satisfy the weight reduction and strengthening of the automobile body at the same time, it is effective to increase the strength and thickness of the component material. Recently, a high strength thin steel sheet (hereinafter referred to as a tensile strength (TS) of 1180 MPa or more) The thin steel plate is also simply referred to as a steel plate) has begun to be used for automobile frame members, reinforcing members and the like.

しかしながら、非特許文献1に記載されているように、TSが1180MPa以上の高強度鋼板は、低強度の鋼板に比べ、自動車の製造時や使用時に鋼板から成形した部材に侵入する水素に起因して遅れ破壊が生じる可能性が高くなる。このため、TSが1180MPa以上の高強度鋼板の適用は限定的となっている。   However, as described in Non-Patent Document 1, a high-strength steel sheet having a TS of 1180 MPa or more is caused by hydrogen entering a member formed from the steel sheet during manufacture or use of an automobile, compared to a low-strength steel sheet. This increases the possibility of delayed fracture. For this reason, application of high-strength steel sheets having a TS of 1180 MPa or more is limited.

また、自動車部材は、通常、プレス成形により目的の形状に加工して使用される。遅れ破壊は上記のプレス成形により加工を受けて加工部の表層の残留応力が高い引張り応力となっている部分で生じることが多く、このような高い引張りの応力が残留している部分での遅れ破壊の抑制が重要となっている。   Further, an automobile member is usually used after being processed into a desired shape by press molding. Delayed fracture often occurs in the part where the residual stress on the surface layer of the processed part is high tensile stress after being processed by the above press forming, and the delay in the part where such high tensile stress remains. Control of destruction is important.

耐遅れ破壊特性に優れる自動車部材用高強度薄鋼板の製造として、従来、特許文献1〜5に記載の技術がある。   Conventionally, there are techniques described in Patent Documents 1 to 5 as a method for producing a high-strength steel sheet for automobile members having excellent delayed fracture resistance.

特許文献1〜3では、CaやMg、Mo、Vなどの元素を添加することで、耐遅れ破壊特性を向上させている。また、特許文献4、5では、鋼組織を限定することで耐遅れ破壊特性を向上させようとしている。   In Patent Documents 1 to 3, delayed fracture resistance is improved by adding elements such as Ca, Mg, Mo, and V. Patent Documents 4 and 5 attempt to improve the delayed fracture resistance by limiting the steel structure.

また、特許文献6では高強度機械構造用鋼にショットピーニング処理を行うことにより耐遅れ破壊特性を向上させる技術が開示されている。   Patent Document 6 discloses a technique for improving delayed fracture resistance by performing shot peening treatment on high-strength mechanical structural steel.

特開2003−166035号公報Japanese Patent Laid-Open No. 2003-166035 特開2004−359974号公報JP 2004-359974 A 特許第3406094号公報Japanese Patent No. 3406904 特許第3424619号公報Japanese Patent No. 3424619 特開2005−220440号公報JP 2005-220440 A 特開平7−292434号公報JP 7-292434 A

吉野、田路、高木、長谷川:鉄と鋼,Vol.99,(2013),p302.Yoshino, Taji, Takagi, Hasegawa: Iron and Steel, Vol. 99, (2013), p302.

しかしながら、特許文献1〜3はいずれも耐遅れ破壊特性を向上させるためにCaやMg、Mo、Vなどの特殊な元素の添加を必須としている。このため、鋼板製造コストが増大するという課題がある。また、特許文献4および5は、鋼組織を限定する必要があり、汎用的な耐遅れ破壊特性の改善には至っていない。また、特許文献1〜5に開示されるように、素材である鋼板の成分や組織を工夫するのではなく、他の着眼点に基づく耐遅れ破壊特性の向上手法が求められている。   However, all of Patent Documents 1 to 3 require the addition of special elements such as Ca, Mg, Mo, and V in order to improve delayed fracture resistance. For this reason, there exists a subject that the steel plate manufacturing cost increases. Further, Patent Documents 4 and 5 need to limit the steel structure and have not led to improvement of general-purpose delayed fracture resistance. Further, as disclosed in Patent Documents 1 to 5, there is a demand for a technique for improving delayed fracture resistance based on other points of view, instead of devising the composition and structure of a steel plate as a raw material.

また、特許文献6で開示された技術は鋼素材にショットピーニング処理を施すことにより水素の侵入を抑制し耐遅れ破壊特性を向上させる技術であるが、薄鋼板を用いた成形部材のように冷間成形が加えられる場合は素材鋼板にショットピーニング処理を施しても部材での耐遅れ破壊特性の向上にはつながらない。   The technique disclosed in Patent Document 6 is a technique for improving delayed fracture resistance by suppressing the intrusion of hydrogen by subjecting a steel material to shot peening treatment. When inter-forming is added, even if shot peening is applied to the material steel plate, it does not lead to an improvement in delayed fracture resistance of the member.

本発明は上記問題点を解決するためになされたものである。冷間成形の素材となる高強度鋼板の成分や組織に厳しい制約をすることなく、耐遅れ破壊特性に優れる成形部材の製造方法を提供することを本発明の課題とする。   The present invention has been made to solve the above problems. It is an object of the present invention to provide a method for producing a molded member having excellent delayed fracture resistance without severely restricting the components and structure of a high-strength steel sheet that is a raw material for cold forming.

上記課題を解決するため、本発明者らは鋭意検討を重ねた。その結果、冷間成形部材にショットピーニング処理を施し、成形部材表層の引張りの残留応力を低減することで冷間成形部材の耐遅れ破壊が顕著に抑制されるという知見を得るに至った。この知見に基づきさらに検討を重ねて、本発明者らは本発明を完成するに至った。本発明の要旨は以下の通りである。   In order to solve the above problems, the present inventors have made extensive studies. As a result, it has been found that the cold-formed member is subjected to shot peening treatment to reduce the residual stress of the tensile force on the surface of the formed member, thereby significantly suppressing the delayed fracture resistance of the cold-formed member. Based on this finding, the inventors have further studied and have completed the present invention. The gist of the present invention is as follows.

[1]引張り強度が1180MPa以上の鋼板を用いて冷間成形する工程と、冷間成形後の成形部材において、少なくとも表層の残留応力が500MPa以上となる箇所にショットピーニング処理を施す工程と、を含む成形部材の製造方法。   [1] A step of cold forming using a steel sheet having a tensile strength of 1180 MPa or more, and a step of subjecting at least a portion having a surface layer residual stress of 500 MPa or more to shot peening treatment in a formed member after cold forming, The manufacturing method of the shaping | molding member containing.

[2]前記ショットピーニング処理において、投射材の投射速度が50m/s以上、投射材の粒径が0.1mm以上2.0mm以下で投射材の硬度がHvで400以上である[1]に記載の成形部材の製造方法。   [2] In the shot peening process, the projection speed of the projection material is 50 m / s or more, the particle size of the projection material is 0.1 mm or more and 2.0 mm or less, and the hardness of the projection material is 400 or more in terms of Hv. The manufacturing method of the shaping | molding member of description.

[3]前記ショットピーニング処理した領域におけるカバー率が30%以上である[1]または[2]に記載の成形部材の製造方法。   [3] The method for producing a molded member according to [1] or [2], wherein a coverage in the shot peened region is 30% or more.

[4]前記ショットピーニング処理後において、表層の残留応力が200MPa以下である[1]〜[3]のいずれかに記載の成形部材の製造方法。   [4] The method for manufacturing a molded member according to any one of [1] to [3], wherein the surface layer has a residual stress of 200 MPa or less after the shot peening treatment.

本発明では、残留応力について、引張の残留応力を「+」、圧縮の残留応力を「−」で表現し、残留応力を連続的に表現する。   In the present invention, the residual stress is expressed as “+” for the tensile residual stress and “−” for the compressive residual stress, and continuously expressed as the residual stress.

本発明によれば、TSが1180MPa以上の鋼板を冷間成形によって目的の形状に成形し製造される成形部材について、成形部材の表面にショットピーニング処理を施すことで特殊な成分の添加や鋼組織の限定をすることなく耐遅れ破壊特性に優れる高強度部材を提供することが可能となる。   According to the present invention, with respect to a molded member manufactured by forming a steel plate having a TS of 1180 MPa or more into a desired shape by cold forming, the addition of a special component or the steel structure is performed by subjecting the surface of the molded member to shot peening treatment. It is possible to provide a high-strength member excellent in delayed fracture resistance without limiting the above.

図1は、実施例における遅れ破壊試験のサンプル作製方法を示す模式図である。FIG. 1 is a schematic view showing a sample preparation method for a delayed fracture test in the example. 図2は、実施例における表層の残留応力と遅れ破壊試験の破壊までの時間との関係を示す図面である。FIG. 2 is a drawing showing the relationship between the residual stress on the surface layer and the time until the failure in the delayed fracture test in the examples.

以下に、本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described.

TSが1180MPa以上の鋼板を用いて冷間成形を行い、その後、成形部材の表面にショットピーニング処理を施す。ショットピーニング処理は成形部材の表面全体に行うほか、表層の残留応力が500MPa以上となる部分を選択的に行っても良い。なお、表層の残留応力が500MPa未満の部位について、ショットピーニング処理が必ずしも必要でない理由は、引張りの残留応力が500MPa未満の部位はショットピーニング処理を施さなくても遅れ破壊が生じにくいためである。一方、後述のように、ショットピーニング処理を施す場合は表層の残留応力を200MPa以下とすることが好ましい。   Cold forming is performed using a steel plate having a TS of 1180 MPa or more, and then the surface of the formed member is subjected to shot peening treatment. The shot peening treatment may be performed on the entire surface of the molded member, or a portion where the residual stress of the surface layer is 500 MPa or more may be selectively performed. The reason why the shot peening treatment is not necessarily required for the portion where the residual stress of the surface layer is less than 500 MPa is that delayed fracture is less likely to occur even if the portion where the residual stress of tension is less than 500 MPa is not subjected to the shot peening treatment. On the other hand, as will be described later, when the shot peening treatment is performed, the residual stress of the surface layer is preferably set to 200 MPa or less.

表層の残留応力はX線で測定が可能で、成形部材の任意の位置および任意の方向について測定して引張りの残留応力が500MPaを超える位置を決定する。その際、事前にCAE(Computer Aided Engineering)で冷間プレス成形のシミュレーションを実施し、その解析結果から引張りの残留応力が高くなる箇所を予測することにより、効率的にショットピーニング処理が必要な部分を決定することができる。ここで、表層とは成形部材表面からX線回折においてX線が成形部材表層に浸透する深さまでの領域を指し、通常表面から100μm以下となる。   The residual stress of the surface layer can be measured by X-ray, and is measured at an arbitrary position and an arbitrary direction of the molded member to determine a position where the residual stress of the tensile force exceeds 500 MPa. At that time, a cold press forming simulation is performed in advance by CAE (Computer Aided Engineering), and a part where the tensile residual stress becomes high is predicted from the analysis result, thereby efficiently requiring shot peening processing. Can be determined. Here, the surface layer refers to a region from the surface of the molded member to a depth at which X-rays penetrate into the surface of the molded member in X-ray diffraction, and is usually 100 μm or less from the surface.

冷間成形の素材となる鋼板はTSが1180MPa以上である。これにより、部品素材の高強度化かつ薄肉化を実現する。TSは素材である鋼板を用いた引張試験により求める。また、素材である鋼板の厚さは0.6〜5.0mmが好ましい。   The steel sheet used as the material for cold forming has a TS of 1180 MPa or more. As a result, the strength and thinning of the component material are realized. TS is obtained by a tensile test using a steel plate as a material. Moreover, as for the thickness of the steel plate which is a raw material, 0.6-5.0 mm is preferable.

ショットピーニング処理を行う装置は、遠心式や空気式などいずれの装置を用いても良い。   As a device for performing the shot peening process, any device such as a centrifugal type or a pneumatic type may be used.

ショットピーニング処理における投射材の投射速度、材質、硬度、径などは限定をするものではなく常法に従って行えばよい。   The projection speed, material, hardness, diameter, and the like of the projection material in the shot peening process are not limited and may be performed according to a conventional method.

例えば、投射速度は50m/s(時間をあらわすsは秒を意味する)以上が好ましい。投射速度が50m/s未満では表層の残留応力の低減が不十分となるおそれがある。   For example, the projection speed is preferably 50 m / s (s representing time means seconds) or more. If the projection speed is less than 50 m / s, there is a possibility that the reduction of the residual stress on the surface layer is insufficient.

また、投射材の硬度はビッカース硬度Hvで400以上が好ましい。投射材の硬度がビッカース硬度で400未満では成形部材の硬度に対して投射材の硬度が不十分となり残留応力の低減が不十分となるおそれがある。なお、投射材のビッカース硬度はマイクロビッカース硬度試験により求める。   The projection material preferably has a Vickers hardness Hv of 400 or more. When the hardness of the projection material is less than 400 in terms of Vickers hardness, the hardness of the projection material is insufficient with respect to the hardness of the molded member, and the residual stress may be insufficiently reduced. The Vickers hardness of the projection material is determined by a micro Vickers hardness test.

また、投射材の粒径は0.1〜2.0mmが好ましい。投射材の粒径が0.1mm未満では運動エネルギーが小さすぎて十分な効果が得られないおそれがあり、2.0mmを超えると表面荒れがひどくなったり成形部材の形状が悪化したりするおそれがある。   The particle size of the projection material is preferably 0.1 to 2.0 mm. If the particle size of the projection material is less than 0.1 mm, the kinetic energy may be too small to obtain a sufficient effect, and if it exceeds 2.0 mm, the surface roughness may be serious or the shape of the molded member may deteriorate. There is.

また、ショットピーニング処理の時間については特に限定しないが、本発明の効果を得るためには、カバー率が30%以上となるまで処理を行うことが好ましく、より好ましくは70%以上である。カバー率とはショットピーニング処理を施す領域の処理前の面積に対して、処理後により投射材が衝突して表面が変形した部分の面積の割合いである。   The time for the shot peening treatment is not particularly limited, but in order to obtain the effect of the present invention, the treatment is preferably performed until the coverage is 30% or more, and more preferably 70% or more. The coverage is the ratio of the area of the portion where the projection material collides after the treatment and the surface is deformed to the area before the treatment of the region where the shot peening treatment is performed.

遅れ破壊は引張り応力下で発生しやすく、引張り残留応力部へのショットピーニング処理による耐遅れ破壊特性の向上は、引張りの残留応力の低減に起因し、成形部材における表層の残留応力を200MPa以下とすることが好ましい。さらに残留応力が圧縮応力になることでその効果が顕著となる。   Delayed fracture is likely to occur under tensile stress, and the improvement in delayed fracture resistance by shot peening treatment to the tensile residual stress part is due to the reduction in tensile residual stress. It is preferable to do. Furthermore, the effect becomes remarkable because the residual stress becomes a compressive stress.

素材となる鋼板については、引張り強さTSが1180MPa以上となるように製造されていればよい。引張強さTSは後述の実施例に記載の方法で測定する。鋼板は熱延鋼板、冷延鋼板のいずれでもよく、表面にZnやAlなどのめっきが施されていても構わない。下記に鋼板の組成例や鋼組織の例について記載するが、素材となる鋼板は下記の内容に限定されるものではない。以下の説明において、成分組成の質量%は単に%と記載する。   About the steel plate used as a raw material, the tensile strength TS should just be manufactured so that it may become 1180 Mpa or more. The tensile strength TS is measured by the method described in the examples described later. The steel plate may be either a hot-rolled steel plate or a cold-rolled steel plate, and the surface may be plated with Zn, Al, or the like. Although the example of a composition and steel structure of a steel plate are described below, the steel plate used as a raw material is not limited to the following content. In the following description, the mass% of the component composition is simply described as%.

TSを1180MPa以上とするためには、Cは0.10%以上が好ましい。また、Cが0.5%を超えると靭性が低下する。このため、Cは0.1%以上0.5%以下が好ましい。含有量の上限側についてより好ましくは0.3%以下である。   In order to set TS to 1180 MPa or more, C is preferably 0.10% or more. On the other hand, if C exceeds 0.5%, the toughness decreases. For this reason, C is preferably 0.1% or more and 0.5% or less. The upper limit side of the content is more preferably 0.3% or less.

その他の元素の好ましい範囲は以下の通りである。
Si:3.0%以下、Mn:0.5〜10%、P:0.1%以下、S:0.01%以下、Al:0.01〜1.5%、N:0.02%以下、O:0.01%以下。
Preferred ranges of other elements are as follows.
Si: 3.0% or less, Mn: 0.5 to 10%, P: 0.1% or less, S: 0.01% or less, Al: 0.01 to 1.5%, N: 0.02% Hereinafter, O: 0.01% or less.

さらに必要に応じてその他の元素を下記のように含有することも可能である。
Ti:0.3%以下、Nb:0.2%以下、V:0.5%以下、Mo:0.5%以下、Cr:1%以下、B:0.005%以下、Cu:0.5%以下、Ni:0.5%以下、Sb:0.03%以下から選ばれる1種以上。
Furthermore, it is possible to contain other elements as described below as required.
Ti: 0.3% or less, Nb: 0.2% or less, V: 0.5% or less, Mo: 0.5% or less, Cr: 1% or less, B: 0.005% or less, Cu: 0.00%. One or more selected from 5% or less, Ni: 0.5% or less, and Sb: 0.03% or less.

通常、上記以外の残部はFeおよび不可避的不純物とする。不可避的不純物としては、例えばSn、Zn、Co等があげられる。また、Mg、Ca、Zr、REMについても通常の鋼組成の範囲内で含有してもその効果は失われない。   Usually, the balance other than the above is Fe and inevitable impurities. Inevitable impurities include, for example, Sn, Zn, Co and the like. Moreover, the effect is not lost even if it contains Mg, Ca, Zr, and REM within the range of a normal steel composition.

鋼組織としては、TSを1180MPa以上とするためには、高強度化に寄与するマルテンサイト(焼戻しマルテンサイトを含む)およびベイナイトを合計で50%以上とすることが好ましい。マルテンサイトおよびベイナイト以外の相としては、フェライト、パーライト、残留オーステナイトなどがあり、必要とする鋼板の特性に応じてこれらを適宜含んでも構わない。特に、フェライトおよび残留オーステナイトは鋼板の延性向上に有効な相であり、プレス成形において延性が必要な場合は、これらの相をそれぞれ3〜50%含有させることが好ましい。鋼組織は、走査型電子顕微鏡(SEM)を用いた鋼板の断面組織観察により面積率で求める。   As a steel structure, in order to set TS to 1180 MPa or more, it is preferable that martensite (including tempered martensite) and bainite contributing to high strength be 50% or more in total. As phases other than martensite and bainite, there are ferrite, pearlite, retained austenite, and the like, and these may be appropriately included depending on the required properties of the steel sheet. In particular, ferrite and retained austenite are effective phases for improving the ductility of the steel sheet. When ductility is required in press forming, it is preferable to contain these phases in an amount of 3 to 50%. The steel structure is obtained as an area ratio by observing the cross-sectional structure of the steel sheet using a scanning electron microscope (SEM).

本発明により製造された成形部材は、自動車骨格部材、補強部材等に用いられることが好ましい。特に自動車の耐衝突特性向上への寄与が大きく部材の高強度化の必要性が高いセンターピラー、フロントピラー、サイドシル、ルーフレール、クロスメンバー、フロントサイドメンバー、リヤサイドメンバー、バンパー、ドアインパクトビームなどの部品への適用が有効となる。   The molded member produced according to the present invention is preferably used for an automobile skeleton member, a reinforcing member and the like. Parts such as center pillars, front pillars, side sills, roof rails, cross members, front side members, rear side members, bumpers, door impact beams, etc. that have a significant contribution to improving the crashworthiness of automobiles and that require a high level of strength. Application to is effective.

以下、本発明を、実施例に基づいて具体的に説明する。本発明の技術的範囲は以下の実施例に限定されない。   Hereinafter, the present invention will be specifically described based on examples. The technical scope of the present invention is not limited to the following examples.

表1に示す成分組成(単位は質量%、残部はFeおよび不可避的不純物)の鋼スラブを連続鋳造により製造し、1250℃まで再加熱後、仕上げ圧延温度850℃、巻取り温度600℃で、板厚2.8mmまで熱間圧延を行った。さらに酸洗後、冷間圧延を施して板厚1.4mmの冷延板とし、次いで800〜900℃に加熱しその温度域で300〜900秒間保持した後、
鋼種A、Bについては、平均冷却速度10℃/sで600〜750℃の温度域まで徐冷した後、室温まで水冷し、その後、150〜250℃で10分間焼戻し処理を施した。
また、鋼種CおよびGについては、平均冷却速度20℃/sで350〜450℃まで冷却した後、その温度域で10分間保持し、その後室温まで冷却した。
また、鋼種D〜Fについては、平均冷却速度20℃/sで150〜300℃まで冷却した後、350〜450℃まで再加熱し、その温度域で10分間保持し、その後室温まで冷却した。
得られた各鋼板に伸び率0.2%で調質圧延を施した。このように製造した冷延鋼板を用いて、引張り強度、遅れ破壊特性を調査した。
A steel slab having the composition shown in Table 1 (unit: mass%, balance is Fe and inevitable impurities) is manufactured by continuous casting, reheated to 1250 ° C, finish rolling temperature 850 ° C, winding temperature 600 ° C, Hot rolling was performed to a plate thickness of 2.8 mm. Further, after pickling, cold rolled to give a cold-rolled sheet having a thickness of 1.4 mm, then heated to 800-900 ° C. and held in that temperature range for 300-900 seconds,
Steel types A and B were gradually cooled to a temperature range of 600 to 750 ° C. at an average cooling rate of 10 ° C./s, then cooled to room temperature, and then tempered at 150 to 250 ° C. for 10 minutes.
Steel types C and G were cooled to 350 to 450 ° C. at an average cooling rate of 20 ° C./s, held in that temperature range for 10 minutes, and then cooled to room temperature.
Steel types D to F were cooled to 150 to 300 ° C. at an average cooling rate of 20 ° C./s, then reheated to 350 to 450 ° C., held in that temperature range for 10 minutes, and then cooled to room temperature.
Each steel plate obtained was subjected to temper rolling at an elongation of 0.2%. Using the cold-rolled steel sheet thus manufactured, the tensile strength and delayed fracture characteristics were investigated.

各試験方法の詳細は以下の通りである。
(引張り試験)
引張方向が鋼板の圧延方向と直角方向となるようサンプル採取したJIS5号試験片を用いて、JISZ2241に準拠した引張試験を行ない、TS(引張強さ)を求めた。その結果を表2に示す。
Details of each test method are as follows.
(Tensile test)
Using a JIS No. 5 test piece sampled so that the tensile direction was perpendicular to the rolling direction of the steel sheet, a tensile test based on JISZ2241 was performed to determine TS (tensile strength). The results are shown in Table 2.

(遅れ破壊特性の試験)
本実施例で行った遅れ破壊試験のサンプル作製方法について、図1に模式的に示す。上記冷延鋼板から、長手を圧延方向に垂直にして採取した100mm×30mmの試験片を用いた。試験片は端面が三山仕上になる(山部分を▽で示した)ように機械加工して採取した。得られた試験片を用いて、曲げ半径5mmでU曲げ加工を施した後、スプリングバックした状態からボルトで部材を締め付けて、その締め付け量により表層の残留応力を変化させた。このような曲げ加工やボルト締め込みによる応力負荷は、実際の成形部材の製造における冷間成形や成形部材への残留応力の導入を模擬している。その後、ボルトで締め付けたサンプルの曲げ部外側からショットピーニング処理を施した(図1参照)。比較としてショットピーニング処理を施していないサンプルも評価した。ショットピーニング処理はサンプルの全面に行う他、一部の条件では曲げ頂点部付近で応力が500MPa以上である領域を選択的に行なった。
(Delayed fracture test)
The sample preparation method for the delayed fracture test performed in this example is schematically shown in FIG. A 100 mm × 30 mm test piece taken from the cold-rolled steel sheet with the longitudinal direction perpendicular to the rolling direction was used. The test piece was sampled by machining so that the end face had a three-end finish (the peak portion is indicated by ▽). The obtained test piece was subjected to U-bending with a bending radius of 5 mm, and then the member was tightened with a bolt from the spring-backed state, and the residual stress on the surface layer was changed depending on the tightening amount. Such stress load due to bending and bolt tightening simulates cold forming and actual introduction of residual stress in the formed member in the production of the formed member. Then, the shot peening process was performed from the outer side of the bending part of the sample fastened with the bolt (see FIG. 1). As a comparison, a sample not subjected to shot peening was also evaluated. The shot peening treatment was performed on the entire surface of the sample, and under some conditions, a region where the stress was 500 MPa or more was selectively performed near the bending vertex.

その後、X線回折法により曲げ頂点部における曲げ変形方向の表層の応力(残留応力に相当する)を測定した。   Thereafter, the surface stress (corresponding to the residual stress) in the bending deformation direction at the bending apex portion was measured by the X-ray diffraction method.

得られたサンプルを0.1規定の塩酸中に浸漬し、割れ発生までの時間を測定した。破壊判定は目視で行い、96時間浸漬し割れが発生しなかった場合を破壊発生なしとした。試験はサンプル数N=3で行い、そのうちの最短の割れ発生時間を破壊時間とした。   The obtained sample was immersed in 0.1 N hydrochloric acid, and the time until cracking was measured. The determination of destruction was made visually, and the case where the specimen was immersed for 96 hours and no cracks occurred was regarded as no occurrence of destruction. The test was performed with the number of samples N = 3, and the shortest crack occurrence time was taken as the fracture time.

各試験におけるショットピーニング処理の有無、ショットピーニング条件、表層の残留応力、破壊の有無および破壊した条件では破壊までの時間を表2に示す。残留応力は、引張りの応力をプラス、圧縮の応力をマイナスで示している。   Table 2 shows the time to break in each test in the presence or absence of shot peening treatment, shot peening conditions, surface residual stress, presence or absence of breakage, and breakage conditions. Residual stress is indicated by positive tensile stress and negative compressive stress.

図2に本実施例における表層の残留応力と遅れ破壊試験の破壊までの時間との関係を示す。図中の矢印は96時間浸漬しても破壊しなかったことを示す。ショットピーニング処理を施さない場合は表層に高い引張りの応力が残留し、遅れ破壊試験において破壊が生じている。それに対して本発明例ではショットピーニング処理を施すことにより表層の引張りの残留応力が低減し破壊は生じない。   FIG. 2 shows the relationship between the residual stress on the surface layer and the time to failure in the delayed fracture test in this example. The arrows in the figure indicate that they were not broken even after being immersed for 96 hours. When the shot peening treatment is not performed, a high tensile stress remains on the surface layer, and fracture occurs in the delayed fracture test. On the other hand, in the example of the present invention, by performing the shot peening treatment, the tensile residual stress of the surface layer is reduced and no breakage occurs.

Figure 0006465040
Figure 0006465040

Figure 0006465040
Figure 0006465040

Claims (2)

引張り強度が1180MPa以上の鋼板を用いて冷間成形する工程と、
冷間成形後の成形部材において、少なくとも表層の残留応力が500MPa以上となる箇所にショットピーニング処理を施す工程と、を含み、前記ショットピーニング処理において、投射材の投射速度が60m/s以上、投射材の粒径が0.1mm以上2.0mm以下で投射材の硬度がHvで500以上であり、前記ショットピーニング処理後において、前記箇所の表層の残留応力が−650MPa以上−410MPa以下である成形部材の製造方法。
Cold forming using a steel plate having a tensile strength of 1180 MPa or more;
A step of performing shot peening treatment at least on a portion where the residual stress of the surface layer is 500 MPa or more in the molded member after cold forming, and in the shot peening treatment, the projection speed of the projection material is 60 m / s or more. The particle diameter of the material is 0.1 mm or more and 2.0 mm or less, the hardness of the projection material is 500 or more in terms of Hv, and after the shot peening treatment, the residual stress of the surface layer at the location is −650 MPa or more and −410 MPa or less. Manufacturing method of molded member.
前記ショットピーニング処理した領域におけるカバー率が30%以上である請求項に記載の成形部材の製造方法。 The method for manufacturing a molded member according to claim 2 , wherein a coverage in the shot peened region is 30% or more.
JP2016004220A 2016-01-13 2016-01-13 Manufacturing method of molded member Active JP6465040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016004220A JP6465040B2 (en) 2016-01-13 2016-01-13 Manufacturing method of molded member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016004220A JP6465040B2 (en) 2016-01-13 2016-01-13 Manufacturing method of molded member

Publications (2)

Publication Number Publication Date
JP2017125229A JP2017125229A (en) 2017-07-20
JP6465040B2 true JP6465040B2 (en) 2019-02-06

Family

ID=59364720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016004220A Active JP6465040B2 (en) 2016-01-13 2016-01-13 Manufacturing method of molded member

Country Status (1)

Country Link
JP (1) JP6465040B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093399A1 (en) 2017-11-10 2019-05-16 国立研究開発法人物質・材料研究機構 Steel material having high toughness, method for producing same, and structural steel plate using said steel material
JP7107327B2 (en) * 2019-01-16 2022-07-27 Jfeスチール株式会社 Press-molded product manufacturing method and press-molded product

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026936A (en) * 1998-07-10 2000-01-25 Nippon Steel Corp Hot rolled steel plate having residual stress and excellent in shape freezability, and its manufacture
US7159425B2 (en) * 2003-03-14 2007-01-09 Prevey Paul S Method and apparatus for providing a layer of compressive residual stress in the surface of a part
JP4507640B2 (en) * 2004-03-04 2010-07-21 Jfeスチール株式会社 Manufacturing method of high strength steel sheet
JP2006104546A (en) * 2004-10-08 2006-04-20 Nippon Steel Corp High strength automobile member and hot pressing method

Also Published As

Publication number Publication date
JP2017125229A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
JP5348268B2 (en) High-strength cold-rolled steel sheet having excellent formability and method for producing the same
JP5283937B2 (en) High-strength ERW steel pipe with excellent low-temperature impact characteristics and method for manufacturing the same
JP6306711B2 (en) Martensitic steel with delayed fracture resistance and manufacturing method
EP2847362B1 (en) Automotive chassis part made from high strength formable hot rolled steel sheet
JP6950835B2 (en) Manufacturing method of high-strength member, high-strength member and steel plate for high-strength member
JP6424841B2 (en) Method of manufacturing molded member
TW201303042A (en) Hot stamped product, method for manufacturing the hot stamped product, energy absorption member, and method for manufacturing the energy absorption member
KR20140117584A (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
MX2015006016A (en) Automobile collision energy absorbing member and manufacturing method therefor.
JP5610102B2 (en) Steel
JP2009173959A (en) High-strength steel sheet and producing method therefor
JP2022028885A (en) High-strength member and method for manufacturing high-strength member
JP5857913B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
JP4975245B2 (en) Manufacturing method of high strength parts
JP2009215572A (en) High strength cold rolled steel sheet having excellent yield stress, elongation and stretch-flange formability
JP5644093B2 (en) Manufacturing method of high strength members
JP6465040B2 (en) Manufacturing method of molded member
JP5194454B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP5024406B2 (en) Method for producing and using ultra-high strength member
JP4551169B2 (en) Manufacturing method of high strength parts
JP2012197516A (en) Method for manufacturing hot-rolled steel sheet
JP4837259B2 (en) Hot forming method and high strength hot formed parts with excellent strength after forming
JP7192819B2 (en) High-strength steel plate and its manufacturing method
JP5035297B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP6322973B2 (en) High-strength steel with excellent shock absorption characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181108

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181224

R150 Certificate of patent or registration of utility model

Ref document number: 6465040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250