JP4311679B2 - Manufacturing method of energy absorbing member for automobile - Google Patents

Manufacturing method of energy absorbing member for automobile Download PDF

Info

Publication number
JP4311679B2
JP4311679B2 JP2006078666A JP2006078666A JP4311679B2 JP 4311679 B2 JP4311679 B2 JP 4311679B2 JP 2006078666 A JP2006078666 A JP 2006078666A JP 2006078666 A JP2006078666 A JP 2006078666A JP 4311679 B2 JP4311679 B2 JP 4311679B2
Authority
JP
Japan
Prior art keywords
absorbing member
energy absorbing
aluminum alloy
strength
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006078666A
Other languages
Japanese (ja)
Other versions
JP2006233336A (en
Inventor
浩之 山下
正和 平野
久司 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006078666A priority Critical patent/JP4311679B2/en
Publication of JP2006233336A publication Critical patent/JP2006233336A/en
Application granted granted Critical
Publication of JP4311679B2 publication Critical patent/JP4311679B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、自動車の補強用部材として使用されるアルミニウム合金製エネルギー吸収部材の製造方法に関する。   The present invention relates to a method for manufacturing an energy absorbing member made of aluminum alloy used as a reinforcing member for automobiles.

図2に示すように、アルミニウム合金製ドアビームの両端部を支持した状態で、中央部に圧縮側から荷重(P)を付加していく(3点曲げ試験という)と、ドアビームの中央部は押し込まれて曲げ変形を起こし、引張側(乗員側)フランジに引張力が作用する。さらに変位量(δ)が増大し、この引張力が材料の破断限界値を超えると引張側フランジに破断(亀裂)が生じる。
破断までの変位(破断変位)を増大させるため、下記特許文献1では、曲げの中立軸の位置を引張側に必要量だけ偏らせることが開示されており、また下記特許文献2では、中立軸を偏らせるのに加え、最大曲げ強度を達成した後に圧縮側に局部座屈を誘発し、引張側フランジにかかる応力を急激に下げることが開示されている。
As shown in FIG. 2, when a load (P) is applied from the compression side to the central portion while supporting both ends of the aluminum alloy door beam (referred to as a three-point bending test), the central portion of the door beam is pushed in. This causes bending deformation, and tensile force acts on the tension side (occupant side) flange. Further, when the displacement amount (δ) increases and the tensile force exceeds the fracture limit value of the material, a fracture (crack) occurs in the tension side flange.
In order to increase the displacement until fracture (breaking displacement), the following Patent Document 1 discloses that the position of the neutral axis of bending is biased by a necessary amount toward the tension side, and the following Patent Document 2 discloses a neutral axis. It is disclosed that after the maximum bending strength is achieved, local buckling is induced on the compression side and the stress applied to the tension side flange is rapidly reduced.

特開平5−246242号公報JP-A-5-246242 特開平6−171362号公報JP-A-6-171362

しかし、近年の安全対策の高まりの中で、破断変位を一層高める必要がでてきた。
例えば、上記特許文献2ではドアビーム材の高さ(H)が30〜35mmとされ、上記特許文献1でも同程度の高さのドアビームが記載されているが、重量を増やすことなしに初期剛性を稼ぐためには、曲げを受ける軸回りの高さを大きくして断面二次モーメントを大きくすることが有効であるため、35mmより大きいビーム高さで設計されるドアビームもでてきた。しかし、その場合は従来のものに比べ、小さい変位量で引張側フランジの破断が生じてしまう。
また、ドアビームの適用車種は小型車へも広がる傾向にあり、その場合、ビーム長が短くなってくる。例えばこれを小型4ドア車のリアドアへ適用する場合は、ビーム長が700mm以下となることもあり(上記特許文献2では、700mm以上を対象としている)、その分、従来のビーム長の長いドアビームに比べ小さい変位量で破断が生じてしまう。
However, with the recent increase in safety measures, it has become necessary to further increase the breaking displacement.
For example, in the above Patent Document 2, the height (H) of the door beam material is set to 30 to 35 mm, and the door beam having the same height is described in the above Patent Document 1, but the initial rigidity is increased without increasing the weight. In order to earn, it is effective to increase the sectional moment by increasing the height around the axis subjected to bending, and therefore, a door beam designed with a beam height larger than 35 mm has come out. However, in that case, the tension side flange breaks with a small displacement compared to the conventional one.
In addition, the application types of door beams tend to spread to small cars, and in this case, the beam length becomes shorter. For example, when this is applied to the rear door of a small four-door car, the beam length may be 700 mm or less (the above Patent Document 2 targets 700 mm or more), and accordingly, a conventional door beam having a long beam length. Breakage occurs with a small displacement compared to.

安全対策のため、単に曲げ変形時の引張側フランジの破断を防止するだけであるなら、強度を向上させる元素すなわち、Zn、Mg、Cu等を多めに添加したうえで、伸びを大きくするため焼鈍を行うということも考えられるが、それでは素材が発揮し得る強度、耐力及びエネルギー吸収量を大幅に犠牲にすることになり、軽量化の要求にも応えることができない。   As a safety measure, if it is only necessary to prevent breakage of the flange on the tension side during bending deformation, an element that improves the strength, that is, Zn, Mg, Cu, etc., is added, and annealing is performed to increase the elongation. However, in this case, the strength, proof stress, and energy absorption amount that the material can exhibit are greatly sacrificed, and the demand for weight reduction cannot be met.

本発明は、アルミニウム合金製ドアビームを含む自動車のエネルギー吸収部材について、このような一層の安全対策及び軽量化が求められている現状に鑑み、アルミニウム合金製エネルギー吸収部材が曲げ荷重を受けたとき、これまで以上に大きい破断変位を得ることができ、しかも最大強度やエネルギー吸収量において素材自体のもつポテンシャルを過度に犠牲にすることのない、エネルギー吸収部材を得ることを目的とする。   In view of the present situation where such further safety measures and weight reduction are required for the energy absorbing member of an automobile including an aluminum alloy door beam, the present invention, when the aluminum alloy energy absorbing member receives a bending load, An object of the present invention is to obtain an energy absorbing member that can obtain a larger breaking displacement than before and that does not excessively sacrifice the potential of the material itself in terms of maximum strength and energy absorption.

本発明に係るエネルギー吸収部材は、過時効処理した熱処理型アルミニウム合金押出材からなり、この熱処理型アルミニウム合金は、強度、最大荷重、破断変位、破断までのエネルギー吸収量等の観点から、Al−Zn−Mg系アルミニウム合金が特に好適であり、その具体的組成は、Zn:4〜7%、Mg:0.8〜1.5%、Ti:0.005〜0.3%と、Cu:0.05〜0.6%、Mn:0.2〜0.7%、Cr:0.05〜0.3%、Zr:0.05〜0.25%から選択された1種又は2種以上を含有し、残部がAl及び不可避不純物からなる。そして、本発明に係るエネルギー吸収部材の製造方法は、上記熱処理型アルミニウム合金押出材を最高強度を得るように時効処理した後、塗装焼付け工程を利用して過時効処理を行うことを特徴とする。   The energy absorbing member according to the present invention is made of a heat-treated aluminum alloy extruded material that has been over-aged. This heat-treatable aluminum alloy is made of Al-- from the viewpoint of strength, maximum load, breaking displacement, energy absorption amount until breaking, and the like. A Zn—Mg-based aluminum alloy is particularly suitable, and its specific composition is: Zn: 4-7%, Mg: 0.8-1.5%, Ti: 0.005-0.3%, Cu: One or two selected from 0.05 to 0.6%, Mn: 0.2 to 0.7%, Cr: 0.05 to 0.3%, Zr: 0.05 to 0.25% It contains the above, and the balance consists of Al and inevitable impurities. And the manufacturing method of the energy-absorbing member according to the present invention is characterized in that after heat-treating the heat-treated aluminum alloy extruded material so as to obtain the maximum strength, an overaging treatment is performed using a paint baking process. .

本発明によれば、熱処理型アルミニウム合金押出材からなるエネルギー吸収部材の破断変位を大幅に改善することができ、例えばドアビームであれば短いビーム長あるいは大きいビーム高さでも大きい破断変位を得ることができる。   According to the present invention, the breaking displacement of an energy absorbing member made of heat treated aluminum alloy extruded material can be greatly improved. For example, a door beam can obtain a large breaking displacement even with a short beam length or a large beam height. it can.

熱処理型アルミニウム合金製押出材に対し過時効処理を行うことにより、曲げ変形における最大荷重は多少低下するが、破断変位が大幅に向上する。なお、後述する実施例をみると過時効処理による伸びの向上はなく、従って、この破断変位の向上は、焼鈍の場合と違って、強度の低下と伸びの向上によるものではなく、全く別のメカニズムによるものではないかと推測している。
ここで、過時効処理とは、最高強度が得られる時効処理条件より高い温度又は長い時間時効処理を行うことである。具体的には、例えば処理温度T℃で時効処理した場合にHminでT℃での最高強度が得られるとすれば、T℃×(H+α)minの処理条件を施すと過時効処理となり、また、処理時間Hminで時効処理した場合にT℃でHminでの最高強度が得られたとすれば、(T+β)℃×Hminの処理条件を施すと過時効処理となる。α、βは正の値である。
By performing an overaging treatment on the heat-treated aluminum alloy extruded material, the maximum load in bending deformation is somewhat reduced, but the fracture displacement is greatly improved. In addition, looking at the examples to be described later, there is no improvement in elongation due to overaging treatment, and therefore, the improvement in fracture displacement is not due to a decrease in strength and an improvement in elongation, unlike in the case of annealing, and is completely different. I guess it is due to the mechanism.
Here, the overaging treatment is to perform an aging treatment at a higher temperature or longer time than the aging treatment conditions for obtaining the maximum strength. Specifically, for example, if the maximum strength at T 1 ° C. is obtained at H 1 min when aging treatment is performed at a processing temperature T 1 ° C., the processing condition of T 1 ° C. × (H 1 + α) min is applied. If the maximum strength at H 2 min is obtained at T 2 ° C. when the aging treatment is performed at a treatment time of H 2 min, the processing condition of (T 2 + β) ° C. × H 2 min is obtained. When applied, it becomes an overaging treatment. α and β are positive values.

また、ここでいう最高強度とは、溶体化焼入れ又はプレス焼入れ(押出直後の焼入れ)された押出材を時効処理して得られる耐力の最高値であり、同じ条件で溶体化焼入れ又はプレス焼入れされた押出材であれば、その値は特定できる。その処理条件は、処理温度によって処理時間も変わり、一義的には決められないが、例えばAl−Zn−Mg系合金であれば、例えば117〜123℃×18〜24hrや127〜133℃×11〜14hrである。Al−Mg−Si系合金であれば、例えば177〜183℃×7.5〜8.5hrや187〜193℃×2.5〜3.5hrである。   The maximum strength here is the maximum value of yield strength obtained by aging treatment of extruded material that has been solution-quenched or press-quenched (quenched immediately after extrusion), and is solution-quenched or press-quenched under the same conditions. If it is an extruded material, its value can be specified. The treatment conditions vary depending on the treatment temperature and the treatment time is not uniquely determined. For example, in the case of an Al—Zn—Mg alloy, it is, for example, 117 to 123 ° C. × 18 to 24 hours or 127 to 133 ° C. × 11. ~ 14 hr. In the case of an Al—Mg—Si based alloy, for example, 177 to 183 ° C. × 7.5 to 8.5 hr or 187 to 193 ° C. × 2.5 to 3.5 hr.

また、例えば最高強度を得たところでいったん時効処理を停止し、再度加熱して時効処理を行った場合も、本発明でいう過時効処理が行われたことになる。
この場合の過時効処理の条件は、合金系や要求される破断変位等によって異なり、一義的に決められないが、Al−Zn−Mg系合金では、前工程の時効処理(最高強度を得た時効処理)の時効温度より40〜60℃高い温度で15分〜1時間保持することが、目安として挙げられる。また、強度(耐力又は引張強度)は、最高値から5〜10%低下した辺りを目安とすればよい。
Al−Zn−Mg系合金では、この過時効処理を自動車の塗装焼付け(ベーキング)工程を利用して行うことができる。(なお、自動車用Al−Mg−Si系合金などでは、塗装焼付け工程を利用して時効硬化させ強度向上を図る、いわゆるベークハードを利用することは、例えば特開平5−44000号公報等により周知であるが、この工程を過時効処理に利用した例はない。)
In addition, for example, when the aging treatment is stopped once the maximum strength is obtained, and the aging treatment is performed by heating again, the overaging treatment referred to in the present invention is performed.
The conditions of the overaging treatment in this case differ depending on the alloy system and the required fracture displacement and cannot be uniquely determined. However, in the Al—Zn—Mg alloy, the aging treatment in the previous step (the highest strength was obtained). Holding for 15 minutes to 1 hour at a temperature 40 to 60 ° C. higher than the aging temperature of the aging treatment) is mentioned as a standard. Moreover, what is necessary is just to make the intensity | strength (proof stress or tensile strength) into the 5%-10% vicinity from the maximum value.
In an Al—Zn—Mg alloy, this overaging treatment can be performed by using an automobile paint baking process. (In the case of Al-Mg-Si alloys for automobiles and the like, it is well known, for example, in Japanese Patent Application Laid-Open No. 5-44000, to use so-called bake hardware that is age-hardened using a paint baking process to improve strength. However, there is no example of using this process for overaging treatment.)

本発明に適するAl−Zn−Mg系アルミニウム合金は、Zn、Mgを主成分とする析出硬化型合金であり、概ね次のような組成をもつ。Zn:4〜7%、Mg:0.8〜1.5%、Ti:0.005〜0.3%と、Cu:0.05〜0.6%、Mn:0.2〜0.7%、Cr:0.05〜0.3%、Zr:0.05〜0.25%から選択された1種又は2種以上を含有し、残部がAl及び不可避不純物。各成分の限定理由は次のとおりである。   The Al—Zn—Mg based aluminum alloy suitable for the present invention is a precipitation hardening type alloy mainly composed of Zn and Mg, and has the following composition. Zn: 4-7%, Mg: 0.8-1.5%, Ti: 0.005-0.3%, Cu: 0.05-0.6%, Mn: 0.2-0.7 %, Cr: 0.05-0.3%, Zr: One or more selected from 0.05-0.25%, the balance being Al and inevitable impurities. The reasons for limiting each component are as follows.

Zn、Mg
Zn、Mgはアルミニウム合金の強度を維持するために必要な元素である。Znが4%未満、Mgが0.8%未満では所望の強度が得られない。また、Znが7%、Mgが1.5%を超えるとアルミニウム合金の押出性が低下するとともに伸びも低下し、所要の特性値が得られなくなる。従って、Zn:4〜7%、Mg:0.8〜1.5%とする。
Zn, Mg
Zn and Mg are elements necessary for maintaining the strength of the aluminum alloy. If Zn is less than 4% and Mg is less than 0.8%, the desired strength cannot be obtained. On the other hand, if Zn exceeds 7% and Mg exceeds 1.5%, the extrudability of the aluminum alloy is lowered and the elongation is also lowered, making it impossible to obtain the required characteristic values. Therefore, Zn: 4-7%, Mg: 0.8-1.5%.

Ti
Tiは、鋳塊組織の微細化のために添加される。Tiが0.005%より少ないと、微細化の効果が十分でなく、0.3%より多いと飽和して巨大化合物が発生してしまう。従って、Tiの含有量は0.005〜0.3%とする。
Cu、Mn、Cr、Zr
これらの元素はアルミニウム合金の強度を高める作用があり、これらの中から1種又は2種以上が適宜添加される。そのほか、Cuはアルミニウム合金の耐応力腐食割れ性を改善する。好適な範囲は、Cu:0.05〜0.6%、Mn:0.2〜0.7%、Cr:0.05〜0.3%、Zr:0.05〜0.25%である。それぞれ下限未満では上記の作用が不十分であり、また、上限を超えると、押出性が悪くなり、Cuの場合は一般耐食性が悪くなる。
Ti
Ti is added to refine the ingot structure. When Ti is less than 0.005%, the effect of miniaturization is not sufficient, and when it is more than 0.3%, saturation occurs and a huge compound is generated. Therefore, the Ti content is set to 0.005 to 0.3%.
Cu, Mn, Cr, Zr
These elements have the effect | action which raises the intensity | strength of an aluminum alloy, and 1 type (s) or 2 or more types are added suitably from these. In addition, Cu improves the stress corrosion cracking resistance of the aluminum alloy. Preferred ranges are: Cu: 0.05-0.6%, Mn: 0.2-0.7%, Cr: 0.05-0.3%, Zr: 0.05-0.25% . If the amount is less than the lower limit, the above action is insufficient, and if the upper limit is exceeded, the extrudability deteriorates, and in the case of Cu, the general corrosion resistance deteriorates.

不可避不純物
不可避不純物のうちFeはアルミニウム地金に最も多く含まれる不純物であり、0.35%を超えて合金中に存在すると鋳造時に粗大な金属間化合物を晶出し、合金の機械的性質を損なう。従って、Feの含有量は0.35%以下に規制する。
また、アルミニウム合金を鋳造する際には地金、添加元素の中間合金等様々な経路より不純物が混入する。混入する元素は様々であるが、Fe以外の不純物は単体で0.05%以下、総量で0.15%以下であれば合金の特性にほとんど影響を及ぼさない。従って、これらの不純物は単体で0.05%以下、総量で0.15%以下とする。
Inevitable Impurities Among the inevitable impurities, Fe is the most abundant impurity in aluminum ingots. If it exceeds 0.35% in the alloy, coarse intermetallic compounds are crystallized during casting, which impairs the mechanical properties of the alloy. . Therefore, the Fe content is restricted to 0.35% or less.
Further, when casting an aluminum alloy, impurities are mixed from various paths such as a metal base and an intermediate alloy of an additive element. The elements to be mixed are various, but impurities other than Fe alone are 0.05% or less, and if the total amount is 0.15% or less, the characteristics of the alloy are hardly affected. Accordingly, these impurities are 0.05% or less as a single substance, and the total amount is 0.15% or less.

なお、過時効処理した熱処理型アルミニウム合金押出材を利用することで、ドアビームだけでなく、バンパー等を含めて、曲げ変形時の耐破断性に優れたエネルギー吸収部材を得ることができる。また、過時効処理した熱処理型アルミニウム合金押出材は曲げ変形時の耐破断性に優れているため、曲げ加工部材(曲げ加工を受ける素材)として種々の用途に広く利用できる。   In addition, by using the heat-treated aluminum alloy extruded material that has been over-aged, it is possible to obtain an energy-absorbing member that is excellent in fracture resistance during bending deformation, including not only the door beam but also a bumper and the like. Moreover, since the heat-treated aluminum alloy extruded material that has been over-aged is excellent in fracture resistance at the time of bending deformation, it can be widely used as a bending member (a material subjected to bending) for various applications.

表1に示す成分のアルミニウム合金を、常法により溶解し、直径200mmの鋳塊に鋳造した。この鋳塊を470℃×8hrソーキングし、押出温度470℃、押出速度4m/分にて押し出し、押出直後位置において冷却した窒素ガスを押出材表面に吹き付けて冷却した。押出材の断面形状は図1に示すとおりである。この押出材に対し130℃×12hrの時効処理を行い、比較例についてはそのまま、実施例についてはさらにベーキング相当の熱処理(170℃×60min)を行い、供試材とした。なお、図1において、上方のフランジが圧縮側、下方のフランジが引張側(乗員側)である。   Aluminum alloys having the components shown in Table 1 were melted by a conventional method and cast into an ingot having a diameter of 200 mm. This ingot was soaked at 470 ° C. for 8 hours, extruded at an extrusion temperature of 470 ° C. and an extrusion speed of 4 m / min, and cooled by blowing nitrogen gas at the position immediately after extrusion onto the surface of the extruded material. The cross-sectional shape of the extruded material is as shown in FIG. The extruded material was subjected to an aging treatment of 130 ° C. × 12 hr, and the heat treatment equivalent to baking (170 ° C. × 60 min) was further performed for the comparative examples as they were for the comparative examples to obtain test materials. In FIG. 1, the upper flange is the compression side, and the lower flange is the tension side (occupant side).

Figure 0004311679
Figure 0004311679

この供試材からJIS13号B引張試験片を採取し、機械的性質を調査した。さらに、この供試材から試験材を切り出し、スパンLを600mmとして3点曲げ試験を行い、変位量(δ)が12インチ(305mm)になるまで押し込み、引張側(乗員側)フランジに破断が生じた(亀裂が生じて分離した状態となった)変位量を測定した。試験結果を表2に示す。   JIS No. 13 B tensile test specimens were collected from the specimens and examined for mechanical properties. Further, a test material is cut out from this test material, a span L is set to 600 mm, a three-point bending test is conducted, and the displacement (δ) is pushed in until 12 inches (305 mm), and the tensile side (occupant side) flange is broken. The amount of displacement that occurred (becomes separated by cracks) was measured. The test results are shown in Table 2.

Figure 0004311679
Figure 0004311679

この試験に用いた押出材はビーム高さが大きく(40mm)、ビーム長、すなわちスパンLが短い(600mm)にも関わらず、表2にみられるように、過時効処理(ベーキング相当の熱処理)された実施例の試験材は、比較例に比べ最大荷重は少し低下するが、12インチの変位量でも破断が生じなかった。またエネルギー吸収量でも優っている。
なお、実施例の試験材の伸びは比較例よりやや小さかった。すなわち、過時効処理された実施例では伸びが比較例より小さいにも関わらず、大きい変位量で破断が生じなかったことになる。
The extruded material used in this test has a large beam height (40 mm) and a beam length, ie, a short span L (600 mm), but as shown in Table 2, an overaging treatment (heat treatment equivalent to baking). In the test materials of the examples, the maximum load was slightly reduced as compared with the comparative example, but no fracture occurred even with a displacement of 12 inches. It also excels in energy absorption.
In addition, the elongation of the test material of an Example was a little smaller than the comparative example. That is, in the over-aged example, although the elongation was smaller than that of the comparative example, the fracture did not occur with a large displacement.

実施例に用いたドアビームの断面形状である。It is the cross-sectional shape of the door beam used for the Example. ドアビームの断面形状例(a)、それを用いた3点曲げ試験(b)、3点曲げ試験による破断の状態(c)を示す説明図である。It is explanatory drawing which shows the cross-sectional shape example (a) of a door beam, the state (c) of a fracture | rupture by a three-point bending test (b) using the same, and a three-point bending test.

Claims (2)

Zn:4〜7%(質量%、以下同じ)、Mg:0.8〜1.5%、Ti:0.005〜0.3%と、Cu:0.05〜0.6%、Mn:0.2〜0.7%、Cr:0.05〜0.3%、Zr:0.05〜0.25%から選択された1種又は2種以上を含有し、残部がAl及び不可避不純物からなるAl−Zn−Mg系アルミニウム合金押出材を最高強度を得るように時効処理した後、塗装焼付け工程を利用して過時効処理を行うことを特徴とする自動車のエネルギー吸収部材の製造方法。 Zn: 4-7% (mass%, the same applies hereinafter), Mg: 0.8-1.5%, Ti: 0.005-0.3%, Cu: 0.05-0.6%, Mn: Contains one or more selected from 0.2 to 0.7%, Cr: 0.05 to 0.3%, Zr: 0.05 to 0.25%, the balance being Al and inevitable impurities A method for producing an energy absorbing member for an automobile, comprising subjecting an Al—Zn—Mg-based aluminum alloy extruded material made of aging to an aging treatment so as to obtain the highest strength and then performing an overaging treatment using a paint baking process. 前記エネルギー吸収部材がバンパーであることを特徴とする請求項1に記載された自動車のエネルギー吸収部材の製造方法。 The method for manufacturing an energy absorbing member for an automobile according to claim 1, wherein the energy absorbing member is a bumper.
JP2006078666A 2006-03-22 2006-03-22 Manufacturing method of energy absorbing member for automobile Expired - Lifetime JP4311679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078666A JP4311679B2 (en) 2006-03-22 2006-03-22 Manufacturing method of energy absorbing member for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078666A JP4311679B2 (en) 2006-03-22 2006-03-22 Manufacturing method of energy absorbing member for automobile

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP08951298A Division JP3800275B2 (en) 1998-03-17 1998-03-17 Aluminum alloy door beam manufacturing method

Publications (2)

Publication Number Publication Date
JP2006233336A JP2006233336A (en) 2006-09-07
JP4311679B2 true JP4311679B2 (en) 2009-08-12

Family

ID=37041313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078666A Expired - Lifetime JP4311679B2 (en) 2006-03-22 2006-03-22 Manufacturing method of energy absorbing member for automobile

Country Status (1)

Country Link
JP (1) JP4311679B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4977281B2 (en) 2005-09-27 2012-07-18 アイシン軽金属株式会社 High-strength aluminum alloy extruded material excellent in shock absorption and stress corrosion cracking resistance and method for producing the same
JP4695052B2 (en) * 2006-10-27 2011-06-08 株式会社神戸製鋼所 Aluminum alloy foam for energy absorbing members
JP5588170B2 (en) * 2007-03-26 2014-09-10 アイシン軽金属株式会社 7000 series aluminum alloy extruded material and method for producing the same
JP5419401B2 (en) * 2008-08-21 2014-02-19 株式会社神戸製鋼所 Roll bending member and roll bending method
JP5204793B2 (en) * 2010-01-12 2013-06-05 株式会社神戸製鋼所 High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
CN102489973B (en) * 2011-12-23 2013-08-28 东北轻合金有限责任公司 Method for manufacturing aluminum alloy hollow section for sedan bumper
JP5631379B2 (en) * 2012-12-27 2014-11-26 株式会社神戸製鋼所 High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance
JP6322329B1 (en) 2017-11-22 2018-05-09 株式会社神戸製鋼所 Door beam
JP6452878B1 (en) 2018-04-24 2019-01-16 株式会社神戸製鋼所 Door beam
JP7051569B2 (en) * 2018-05-08 2022-04-11 株式会社神戸製鋼所 Car bumper reinforcement
JP6979991B2 (en) 2019-10-09 2021-12-15 株式会社Uacj Welded structural members with excellent stress corrosion cracking resistance and their manufacturing methods

Also Published As

Publication number Publication date
JP2006233336A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4311679B2 (en) Manufacturing method of energy absorbing member for automobile
JP5421613B2 (en) High strength aluminum alloy wire rod excellent in softening resistance and manufacturing method thereof
US8105449B2 (en) High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same
JP6273158B2 (en) Aluminum alloy plate for structural materials
WO2012165086A1 (en) Aluminum alloy and method of manufacturing extrusion using same
JP6677584B2 (en) Method of manufacturing energy absorbing member
KR102613197B1 (en) Automotive door beam made of aluminum alloy extrusion material
JP3800275B2 (en) Aluminum alloy door beam manufacturing method
JP2003221636A (en) Al-Mg-Si ALUMINUM ALLOY EXTRUSION MOLDED MATERIAL SHOWING EXCELLENT RESISTANCE TO IMPACT FRACTURE
JP3772962B2 (en) Automotive bumper reinforcement
JP5946425B2 (en) Method for producing aluminum alloy extruded material
JPH116044A (en) High strength/high toughness aluminum alloy
JPH09268342A (en) High strength aluminum alloy
JP2003034834A (en) Al-Mg-Si ALUMINUM ALLOY EXTRUSION MATERIAL SUPERIOR IN ENERGY IMPACT ABSORPTIVITY, AND MANUFACTURING METHOD THEREFOR
JP2910920B2 (en) Aluminum alloy door beam material
JP4086404B2 (en) Aluminum alloy door beam
JP3539980B2 (en) Aluminum alloy automobile side door impact beam
JP5288671B2 (en) Al-Mg-Si-based aluminum alloy extruded material with excellent press workability
JP3077974B2 (en) Al-Mg-Si based aluminum alloy extruded material with excellent axial crushing properties
JP4993170B2 (en) Aluminum alloy extruded shape having excellent impact absorption characteristics and good hardenability, and method for producing the same
KR102012952B1 (en) Aluminium alloy and manufacturing method thereof
JP4274674B2 (en) Aluminum alloy member excellent in crushability and manufacturing method thereof
JP2001355032A (en) Aluminum alloy extruded material having excellent impact absorptivity
JP4183396B2 (en) Aluminum alloy extruded material with excellent crushing properties
JP4052641B2 (en) Aluminum alloy having excellent impact absorption characteristics and good hardenability and extrudability, and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

EXPY Cancellation because of completion of term