JP2020139228A - Method for producing aluminum alloy extrusion material - Google Patents

Method for producing aluminum alloy extrusion material Download PDF

Info

Publication number
JP2020139228A
JP2020139228A JP2020005108A JP2020005108A JP2020139228A JP 2020139228 A JP2020139228 A JP 2020139228A JP 2020005108 A JP2020005108 A JP 2020005108A JP 2020005108 A JP2020005108 A JP 2020005108A JP 2020139228 A JP2020139228 A JP 2020139228A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
extruded material
range
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020005108A
Other languages
Japanese (ja)
Other versions
JP7479854B2 (en
Inventor
吉田 朋夫
Tomoo Yoshida
朋夫 吉田
果林 柴田
Karin Shibata
果林 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Keikinzoku Co Ltd
Original Assignee
Aisin Keikinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Keikinzoku Co Ltd filed Critical Aisin Keikinzoku Co Ltd
Priority to US16/796,973 priority Critical patent/US11827967B2/en
Publication of JP2020139228A publication Critical patent/JP2020139228A/en
Application granted granted Critical
Publication of JP7479854B2 publication Critical patent/JP7479854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

To provide a method for producing a high-strength aluminum alloy extrusion material that has a good hardenability as well as that has an excellent corrosion resistance and formability.SOLUTION: The method for producing aluminum alloy extrusion material comprises: extrusion processing using a cast billet of an aluminum alloy composed of, hereinafter in mass%, Zn: 6.0 to 8.0%, Mg: 1.50 to 3.50%, Cu: 0.20 to 1.50%, Zr: 0.10 to 0.25%, Ti: 0.005 to 0.05%, Mn: 0.3% or less, Sr: 0.25% or less, and [Mn + Zr + Sr]: 0.10 to 0.50%, the balance being Al and unavoidable impurities; cooling to 100°C or less at a cooling speed in a range of 50 to 750°C/min immediately after the extrusion processing; then subjecting to heating treatment in the range of 110 to 270°C; and after the heating treatment subjecting to plastic processing within a predetermined time.SELECTED DRAWING: Figure 1

Description

本発明は、アルミニウム合金を用いた押出材の製造方法に関し、特に高強度でありながら成形性及び耐食性に優れたアルミニウム合金押出材の製造方法に係る。 The present invention relates to a method for producing an extruded material using an aluminum alloy, and more particularly to a method for producing an extruded aluminum alloy material having high strength and excellent moldability and corrosion resistance.

自動車や各種産業機械等の分野においては、さらなる軽量化や小型化が要求されており、その達成手段の1つとして構造部材を高強度のアルミニウム合金部材で製作することが検討されている。
高強度アルミニウム合金には、Al−Mg−Si系(6000系)合金と、Al−Zn−Mg系(7000系)合金とが知られている。
6000系合金は、MgSiの析出硬化による高強化をねらいとするが、Mg,Siの添加量が多くなると、押出性が著しく低下する技術的課題がある。
7000系合金は、自然時効型合金であり、Znの添加はMg,Siよりも押出性に対する影響が少ない点が特徴となるが、耐応力腐食割れ性が低下しやすい技術的課題がある。
また、強度が高くなると、曲げ成形等の加工時に割れが発生しやすい問題もあった。
Further weight reduction and miniaturization are required in the fields of automobiles and various industrial machines, and as one of the means for achieving this, it is considered to manufacture structural members with high-strength aluminum alloy members.
As high-strength aluminum alloys, Al-Mg-Si-based (6000-based) alloys and Al-Zn-Mg-based (7000-based) alloys are known.
The 6000 series alloy aims at high strengthening by precipitation hardening of Mg 2 Si, but there is a technical problem that the extrusion property is remarkably lowered when the addition amount of Mg and Si is large.
The 7000 series alloy is a natural aging alloy, and is characterized in that the addition of Zn has a smaller effect on extrusion properties than Mg and Si, but there is a technical problem that stress corrosion cracking resistance tends to decrease.
Further, when the strength is increased, there is a problem that cracks are likely to occur during processing such as bending molding.

例えば特許文献1には、プレス焼入れで製造された7000系アルミニウム合金押出形材を0.4℃/秒以上の昇温速度で加熱し、200〜550℃の温度範囲に0秒を超えて保持し、次いで0.5℃/秒以上の冷却速度で冷却する復元処理を施した後に、潰し加工及び時効処理を施す製造方法が開示されている。
しかし、同公報に開示する7000系アルミニウム合金は、Mn,Cr,Zrの遷移元素の添加量が多く、必ずしも耐応力腐食割れ性が充分でない。
また、押出性にも劣る。
For example, in Patent Document 1, a 7000 series aluminum alloy extruded profile manufactured by press quenching is heated at a heating rate of 0.4 ° C./sec or more and held in a temperature range of 200 to 550 ° C. for more than 0 second. Then, a manufacturing method is disclosed in which a restoration process of cooling at a cooling rate of 0.5 ° C./sec or more is performed, and then a crushing process and an aging process are performed.
However, the 7000 series aluminum alloy disclosed in the same publication has a large amount of Mn, Cr, and Zr transition elements added, and does not necessarily have sufficient stress corrosion cracking resistance.
It is also inferior in extrudability.

特開2014−145119号公報Japanese Unexamined Patent Publication No. 2014-145119

本発明は、良好な焼入れ性を有するとともに、耐食性及び成形性に優れた高強度アルミニウム合金押出材の製造方法の提供を目的とする。 An object of the present invention is to provide a method for producing a high-strength aluminum alloy extruded material having good hardenability and excellent corrosion resistance and moldability.

本発明に係るアルミニウム合金押出材の製造方法は、以下質量%にて、Zn:6.0〜8.0%,Mg:1.50〜3.50%,Cu:0.20〜1.50%,Zr:0.10〜0.25%,Ti:0.005〜0.05%,Mn:0.3%以下,Sr:0.25%以下,且つ[Mn+Zr+Sr]:0.10〜0.50%,残部がAlと不可避的不純物からなるアルミニウム合金の鋳造ビレットを用いて押出加工し、前記押出加工直後に冷却速度50〜750℃/分の範囲にて100℃以下になるまで冷却し、その後に110〜270℃の範囲にて加熱処理を行い、前記加熱処理後に、所定時間内に塑性加工することを特徴とする。 The method for producing an aluminum alloy extruded material according to the present invention is as follows, in terms of mass%, Zn: 6.0 to 8.0%, Mg: 1.50 to 3.50%, Cu: 0.25 to 1.50. %, Zr: 0.10 to 0.25%, Ti: 0.005 to 0.05%, Mn: 0.3% or less, Sr: 0.25% or less, and [Mn + Zr + Sr]: 0.10 to 0 Extrude using a cast billet of aluminum alloy consisting of .50% and Al and unavoidable impurities, and immediately after the extrusion, cool to 100 ° C or less at a cooling rate of 50 to 750 ° C / min. After that, heat treatment is performed in the range of 110 to 270 ° C., and after the heat treatment, plastic processing is performed within a predetermined time.

本発明は、Al−Zn−Mg−Cu系の合金において、押出加工直後に空冷することで押出材表面の再結晶深さを抑制でき、良好な焼入れを有するとともに高強度が得られる。
そのアルミニウム合金組成を設定した理由を以下、説明する。
In the present invention, in an Al-Zn-Mg-Cu based alloy, the recrystallization depth of the surface of the extruded material can be suppressed by air cooling immediately after the extrusion processing, and good quenching and high strength can be obtained.
The reason for setting the aluminum alloy composition will be described below.

<Zn成分>
Znは比較的多く添加しても押出性の低下を少なく抑えつつ、高強度が得られやすいものの、過度に添加すると耐応力腐食割れ性が低下するので、以下全て質量%にてZn:6.0〜8.0%の範囲にするのが好ましい。
<Mg成分>
押出材の高強度化に最も有効な成分であるが、押出性が低下しやすく、曲げ成形等の塑性加工時に押出材に割れが発生しやすくなる。
そこで、Mg成分は1.50〜3.50%の範囲に設定した。
後述する人工時効処理にてT5処理後の引張り強さ580MPa以上を確保するには、Mg:2.40〜3.50%の範囲が好ましく、さらにT5処理後の引張り強さ600MPaレベルを確保するにはMg:3.0〜3.50%の範囲が良い。
また、成形性に重点を置き、人工時効処理(T5)後の引張強度が480〜580MPaレベルがよい場合には、Mg:1.50〜3.0%好ましくは1.50〜2.80%の範囲でもよい。
<Cu成分>
Cu成分は金属組織中の固溶効果により高強度化を図ることができるが、添加量が多くなると押出性、成形性低下の原因になりやすく一般耐食性が低下する。
そこで、Cu成分は0.20〜1.50%の範囲に設定した。
好ましくは、Cu成分0.20〜1.00%、さらには0.20〜0.60%の範囲でもよい。
<Mn,Cr,Zr成分>
Mn,Cr,Zr成分は、いずれも遷移元素であり、押出加工時に押出材の表面に発生しやすい再結晶を抑制し、表面の再結晶層の深さが小さくなる方向に作用する。
しかし、これらの成分は多くなると押出加工直後の冷却(プレス端焼入れ)において、焼入れ感受性が鋭くなる。
例えば、先の特許文献1にあっては、Cr:0.01〜0.3%含有しているが、Crはこの焼入れ感受性が特に強く押出直後の冷却がファン等による冷却のレベルでは、その後の人工時効処理にて充分な高強度を得るのが難しくなる。
したがって、Cr成分は0.01%以下が好ましい。
Mn成分は、Cr成分ほどには焼入れ感受性が強くないが、添加する場合でもその添加量は0.3%以下にするのが好ましい。
本発明においては、この再結晶層の深さを抑えるのにZr成分を添加した。
Zrはアルミ溶湯中に溶解できる限界があることから、Zr:0.10〜0.25%の範囲とした。
<Sr,Ti成分>
Sr成分はビレット鋳造組織中の結晶粒の粗大化を抑制でき、その結果として、押出加工時に発生しやすい押出材表面の再結晶層の深さを抑える作用がある。
一方、Sr成分の添加量が多いと、Srを核とする粗大な晶出物が発生しやすくなる。
そこでSrを添加する場合には、Sr:0.25%以下に抑えるのが好ましく、強度と再結晶層の抑制を両立させるのには[Mn+Zr+Sr]の合計量は0.10〜0.50%の範囲にするのが好ましい。
Ti成分はビレットを鋳造する際に、結晶粒の微細化に有効であり、Ti:0.005〜0.05%の範囲で添加する。
<その他の成分>
アルミニウム合金のビレット鋳造において、混入しやすい不純物としては、Fe,Si等が挙げられる。
これらの成分は多くなると、強度の低下や曲げ成形性の低下につながるので、Feは0.2%以下、Siは0.1%以下に抑えるのが好ましい。
<Zn component>
Even if a relatively large amount of Zn is added, it is easy to obtain high strength while suppressing a decrease in extrusion property, but if it is added excessively, the stress corrosion cracking resistance is reduced. Therefore, the following are all Zn: 6. It is preferably in the range of 0 to 8.0%.
<Mg component>
It is the most effective component for increasing the strength of the extruded material, but the extrudability tends to decrease, and the extruded material tends to crack during plastic working such as bending.
Therefore, the Mg component was set in the range of 1.50 to 3.50%.
In order to secure a tensile strength of 580 MPa or more after T5 treatment in the artificial aging treatment described later, the range of Mg: 2.40 to 3.50% is preferable, and a tensile strength of 600 MPa level after T5 treatment is further secured. The range of Mg: 3.0 to 3.50% is good.
Further, when the tensile strength after the artificial aging treatment (T5) is at a level of 480 to 580 MPa with an emphasis on moldability, Mg: 1.50 to 3.0%, preferably 1.50 to 2.80%. It may be in the range of.
<Cu component>
The strength of the Cu component can be increased by the solid solution effect in the metal structure, but if the amount added is large, it tends to cause deterioration of extrusion property and moldability, and general corrosion resistance is lowered.
Therefore, the Cu component was set in the range of 0.25 to 1.50%.
Preferably, the Cu component may be in the range of 0.25 to 1.00%, more preferably 0.25 to 0.60%.
<Mn, Cr, Zr components>
The Mn, Cr, and Zr components are all transition elements and act to suppress recrystallization that tends to occur on the surface of the extruded material during extrusion processing and to reduce the depth of the recrystallized layer on the surface.
However, when the amount of these components increases, the quenching sensitivity becomes sharp in the cooling (press end quenching) immediately after the extrusion process.
For example, in Patent Document 1 above, Cr: 0.01 to 0.3% is contained, but Cr has a particularly strong quenching sensitivity, and if the cooling immediately after extrusion is at the level of cooling by a fan or the like, then It becomes difficult to obtain sufficiently high strength by the artificial aging treatment of.
Therefore, the Cr component is preferably 0.01% or less.
The Mn component is not as sensitive to quenching as the Cr component, but even when it is added, the addition amount is preferably 0.3% or less.
In the present invention, a Zr component was added to suppress the depth of the recrystallized layer.
Since Zr has a limit that can be dissolved in the molten aluminum, the range of Zr: 0.10 to 0.25% was set.
<Sr, Ti components>
The Sr component can suppress the coarsening of crystal grains in the billet cast structure, and as a result, has the effect of suppressing the depth of the recrystallized layer on the surface of the extruded material, which tends to occur during extrusion.
On the other hand, if the amount of the Sr component added is large, coarse crystals having Sr as a nucleus are likely to be generated.
Therefore, when Sr is added, it is preferable to suppress Sr: 0.25% or less, and the total amount of [Mn + Zr + Sr] is 0.10 to 0.50% in order to achieve both strength and suppression of the recrystallized layer. It is preferable to set it in the range of.
The Ti component is effective for refining crystal grains when casting billets, and is added in the range of Ti: 0.005 to 0.05%.
<Other ingredients>
Examples of impurities that are easily mixed in the billet casting of an aluminum alloy include Fe and Si.
If the amount of these components increases, the strength and bendability will decrease. Therefore, it is preferable to suppress Fe to 0.2% or less and Si to 0.1% or less.

本発明においては、上記のようなアルミニウム合金のビレットを鋳造し、押出加工する際に押出加工直後に冷却速度50〜750℃/分、好ましくは冷却速度50〜500℃/分の範囲にてファン空冷を行う。
冷却速度を750℃/分超にすると、押出材の部位による冷却差が生じ、ひずみが発生しやすい。
また、空冷では冷却装置が大型になる。
押出材が100℃以下の常温近くになるまで冷却する。
本発明は、上記押出材が100℃以下まで冷却された後に、この押出材を110〜270℃、好ましくは120〜260℃の範囲になるように加熱処理する点に特徴がある。
加熱時間は、30〜800秒の範囲である。
加熱温度が低いと、相対的に長い時間の加熱が好ましい。
特許文献1に開示する復元処理は、金属組織中に折出した金属間化合物の再固溶を目的としているため、400℃前後の溶体化温度まで加熱する必要があるために加熱後の冷却が重要となる。
これに対して本発明における加熱処理は、押出材に曲げ成形等の塑性加工を加える際に生じる残留応力が少なくなるようにするのが目的である。
これにより、押出材にねばりが付与されるとともに耐応力腐食割れ性も向上する。
曲げ成形における残留応力を少なくする目的では、110℃以上に加熱する必要があるが、加熱時間が長いと人工時効が進むので加熱時間は800秒以内とした。
In the present invention, when the above-mentioned aluminum alloy billet is cast and extruded, the fan has a cooling rate of 50 to 750 ° C./min, preferably a cooling rate of 50 to 500 ° C./min immediately after extrusion. Perform air cooling.
When the cooling rate exceeds 750 ° C./min, a cooling difference occurs depending on the part of the extruded material, and strain is likely to occur.
In addition, air cooling makes the cooling device large.
Cool the extruded material to near room temperature below 100 ° C.
The present invention is characterized in that after the extruded material is cooled to 100 ° C. or lower, the extruded material is heat-treated so as to be in the range of 110 to 270 ° C., preferably 120 to 260 ° C.
The heating time is in the range of 30 to 800 seconds.
When the heating temperature is low, heating for a relatively long time is preferable.
Since the restoration treatment disclosed in Patent Document 1 aims at re-solid solution of the intermetallic compound folded out in the metal structure, it is necessary to heat it to a solution temperature of about 400 ° C., so that cooling after heating is performed. It becomes important.
On the other hand, the purpose of the heat treatment in the present invention is to reduce the residual stress generated when plastic working such as bending is applied to the extruded material.
As a result, the extruded material is given stickiness and stress corrosion cracking resistance is also improved.
For the purpose of reducing the residual stress in bending molding, it is necessary to heat to 110 ° C. or higher, but if the heating time is long, artificial aging proceeds, so the heating time is set to 800 seconds or less.

本発明において塑性加工とは、プレス成形、ベンダー曲げ等にて押出材に曲げ成形等の塑性変形を加えることをいう。
本発明に係るアルミニウム合金は、自然時効型であるので、加熱処理後は168時間以内に曲げ成形等の塑性加工を行うのが良い。
In the present invention, plastic working refers to applying plastic deformation such as bending to an extruded material by press molding, bending of a bender or the like.
Since the aluminum alloy according to the present invention is a natural aging type, it is preferable to perform plastic working such as bending molding within 168 hours after the heat treatment.

本発明に用いるアルミニウム合金の鋳造ビレットは、アルミニウム合金の溶湯における化学組成を上記の範囲に調整し、円柱状のビレットに連続鋳造されるが、その鋳造速度を50mm/分以上にすると、ビレット組織中の平均結晶粒径が250μm以下になり、押出加工時の表面再結晶層の深さを小さく抑えることができる。 The cast billet of an aluminum alloy used in the present invention is continuously cast into a columnar billet by adjusting the chemical composition of the molten aluminum alloy to the above range, but when the casting speed is 50 mm / min or more, the billet structure is formed. The average crystal grain size inside is 250 μm or less, and the depth of the surface recrystallized layer during extrusion can be kept small.

本発明において押出材は、曲げ加工等の塑性加工後に人工時効処理することで高強度になる。
例えば、1段目90〜120℃×1〜8時間、2段目130〜180℃×1〜16時間の2段人工時効処理(T5処理)すると、0.2%耐力460MPa以上、引張り強さ480MPa以上になる。
人工時効処理時間は、1段目と2段目の合計で2〜24時間の範囲が好ましい。
1段目で初晶を発生させ、2段目にてこの初晶を成長させるねらいであり、合計時間が長くなると生産性が低下する。
In the present invention, the extruded material becomes high in strength by being artificially aged after plastic working such as bending.
For example, when the first stage 90 to 120 ° C. × 1 to 8 hours, the second stage 130 to 180 ° C. × 1 to 16 hours of two-stage artificial aging treatment (T5 treatment), 0.2% proof stress 460 MPa or more and tensile strength It becomes 480 MPa or more.
The artificial aging treatment time is preferably in the range of 2 to 24 hours in total of the first stage and the second stage.
The aim is to generate primary crystals in the first stage and grow these primary crystals in the second stage, and the productivity decreases as the total time increases.

本発明に係るアルミニウム合金押出材の製造方法にて製造された押出材は、割れが発生しにくくなるいわゆる「ねばり」が生じ、耐応力腐食割れ性が向上する。
また、プレス端焼入れもファン空冷等の空冷手段でよく、押出材にひずみや変形が発生しにくく、生産性が向上する。
The extruded material produced by the method for producing an aluminum alloy extruded material according to the present invention has so-called “stickiness” in which cracking is less likely to occur, and stress corrosion cracking resistance is improved.
Further, press edge quenching may be performed by air cooling means such as fan air cooling, and the extruded material is less likely to be distorted or deformed, which improves productivity.

評価に用いたアルミニウム合金の組成例(実施例)を示す。The composition example (Example) of the aluminum alloy used for the evaluation is shown. 評価に用いたアルミニウム合金の組成例(比較例)を示す。A composition example (comparative example) of the aluminum alloy used for the evaluation is shown. 評価に用いた鋳造ビレット及び押出材の製造条件(実施例)を示す。The manufacturing conditions (examples) of the cast billet and the extruded material used for the evaluation are shown. 評価に用いた鋳造ビレット及び押出材の製造条件(比較例)を示す。The manufacturing conditions (comparative example) of the cast billet and the extruded material used for the evaluation are shown. 押出材品質の評価結果(実施例)を示す。The evaluation result (Example) of the extruded material quality is shown. 押出材品質の評価結果(比較例)を示す。The evaluation result (comparative example) of the extruded material quality is shown.

図1及び図2の表に示した組成のアルミニウム合金溶湯を調整し、円柱ビレットを鋳造した。
図3及び図4の表にその鋳造速度を示し、HOMO温度(℃)にて均質化処理をした。
HOMO温度は、480〜520℃の範囲が好ましい。
表中、ビレット結晶粒径とは、鋳造されたビレットの組織中の平均結晶粒径を示す。
ビレット結晶粒径は、平均粒径で250μm以下が好ましい。
表中に示したBLT温度に予熱したビレットを押出機のコンテナに装填し、押出加工した。
押出加工直後に表中、冷却速度(℃/分)にて押出材が少なくとも100℃以下になるまでファン空冷した。
冷却速度は50〜750℃/分の範囲が好ましい。
ここで、焼入れ性を確保するためにビレットの予熱温度は400℃以上が好ましく、押出材の押出直後の温度は500〜550℃がよい。
次に、表中に示した加熱温度(℃)まで、昇温速度(℃/秒)にて加熱し、その押出材温度を加熱時間(秒)の間、保持した。
条件は、人工時効が進行しない範囲で設定する。
例えば、加熱温度は110〜270℃,加熱時間30〜800秒の範囲が好ましい。
また、加熱時の昇温速度は1.8℃/秒以上が好ましい。
次に加熱処理後、168時間以内に所定の塑性加工を行う。
例えば、車部品で示すとバンパーリインフォースメント,ドアビーム等の製品形状を想定して、弓形形状に曲げ成形を行う。
例えば、曲率500〜3000mmの曲げ成形である。
表中、曲げ加工開始時間(Hr)は、加熱処理後の経過時間を示す。
本発明が係るアルミニウム合金は自然時効型合金であり、168時間を超えると割れが発生しやすくなる。
その後に表中に示した熱処理条件にて2段人工時効処理を行った。
1段目は90〜120℃にて1〜8時間の範囲がよく、2段目は130〜180℃にて1〜16時間の範囲がよい。
表中の熱処理条件(hr)で1段目とは1段目の熱処理時間、2段目とは2段目の熱処理時間を示し、全体時間とはその合計時間を示す。
The molten aluminum alloy having the composition shown in the tables of FIGS. 1 and 2 was adjusted, and a cylindrical billet was cast.
The casting speeds are shown in the tables of FIGS. 3 and 4, and homogenization treatment was performed at the HOMO temperature (° C.).
The HOMO temperature is preferably in the range of 480 to 520 ° C.
In the table, the billet crystal grain size indicates the average crystal grain size in the structure of the cast billet.
The average particle size of the billet crystal is preferably 250 μm or less.
Billets preheated to the BLT temperature shown in the table were loaded into a container of an extruder and extruded.
Immediately after the extrusion process, the fan was air-cooled at a cooling rate (° C./min) in the table until the extruded material became at least 100 ° C. or lower.
The cooling rate is preferably in the range of 50 to 750 ° C./min.
Here, in order to ensure hardenability, the preheating temperature of the billet is preferably 400 ° C. or higher, and the temperature immediately after extrusion of the extruded material is preferably 500 to 550 ° C.
Next, the mixture was heated at a heating rate (° C./sec) to the heating temperature (° C.) shown in the table, and the extruded material temperature was maintained for the heating time (seconds).
The conditions are set within the range where artificial aging does not progress.
For example, the heating temperature is preferably in the range of 110 to 270 ° C. and the heating time is preferably in the range of 30 to 800 seconds.
The rate of temperature rise during heating is preferably 1.8 ° C./sec or higher.
Next, after the heat treatment, a predetermined plastic working is performed within 168 hours.
For example, in the case of car parts, the shape of products such as bumper reinforcement and door beams is assumed, and bending is performed into a bow shape.
For example, bending molding with a curvature of 500 to 3000 mm.
In the table, the bending start time (Hr) indicates the elapsed time after the heat treatment.
The aluminum alloy according to the present invention is a natural aging alloy, and cracks are likely to occur after 168 hours.
After that, a two-stage artificial aging treatment was performed under the heat treatment conditions shown in the table.
The first stage is preferably in the range of 90 to 120 ° C. for 1 to 8 hours, and the second stage is preferably in the range of 130 to 180 ° C. for 1 to 16 hours.
In the heat treatment conditions (hr) in the table, the first stage indicates the heat treatment time of the first stage, the second stage indicates the heat treatment time of the second stage, and the total time indicates the total time.

図5及び図6の表に評価結果を示す。
表中、T1の値は人工時効処理前の引張り強さ(MPa),0.2%耐力(MPa),伸び(%)を示す。
T1の段階で引張り強さ、耐力が高くなりすぎると、後述するねばり性が低下するので、表中に目標値を示した。
T1の段階で引張り強さ等を抑えるには、押出後の加熱時間を270℃以下、加熱時間を800秒以下にする。
T5の値は人工時効処理後の引張り強さ(MPa),0.2%耐力(MPa)伸び(%)を示す。
表中に本発明に係る目標値を示す。
これらの機械的性質は、JIS−Z2241に基づいて、JIS−5号片を押出材から製作し、JIS規格に準拠した引張り試験機にて計測した。
ビレットの結晶粒径、押出材の表面再結晶深さは、断面を鏡面仕上げ後にそれぞれ所定のエッチング処理を行い、光学顕微鏡観察による画像処理にて計測した。
表中、SCC性は耐応力腐食割れ試験結果を示す。
試験片に耐力の80%の応力を負荷した状態で次の条件を1サイクルとし、720サイクルにて割れが発生しなかったものを目標達成とした。
<1サイクル>
3.5%NaCl水溶液,25℃,10分浸漬し、その後に25℃,湿度40%,50分放置し、その後に自然乾燥する。
表中、小R曲げ試験は押出材のねばり性を評価したものであり、人工時効処理後に20×150mmの試験片を切り出す。
間隔7mmの試験台に試験片を載置し、上から先端R=1.5,外径3mmのパンチにて負荷を加えて、変位一荷重線図を計測した。
ここで、U字曲げ部先端部に割れが発生するまでの、この先端部伸びが30%以上となる場合にねばり目標が達成したと評価した。
The evaluation results are shown in the tables of FIGS. 5 and 6.
In the table, the value of T1 indicates the tensile strength (MPa), 0.2% proof stress (MPa), and elongation (%) before the artificial aging treatment.
If the tensile strength and proof stress become too high at the stage of T1, the stickiness described later decreases, so the target values are shown in the table.
In order to suppress the tensile strength and the like at the stage of T1, the heating time after extrusion is set to 270 ° C. or less and the heating time is set to 800 seconds or less.
The value of T5 indicates the tensile strength (MPa), 0.2% proof stress (MPa) and elongation (%) after the artificial aging treatment.
The target values according to the present invention are shown in the table.
These mechanical properties were measured with a tensile tester conforming to JIS standards by manufacturing JIS-5 pieces from extruded materials based on JIS-Z2241.
The crystal grain size of the billet and the surface recrystallization depth of the extruded material were measured by performing predetermined etching treatments after mirror-finishing the cross section and then performing image processing by observation with an optical microscope.
In the table, SCC property shows the results of stress corrosion cracking resistance test.
With a stress of 80% of the proof stress applied to the test piece, the following conditions were set as one cycle, and the target was achieved when no cracks occurred in 720 cycles.
<1 cycle>
Immerse in 3.5% NaCl aqueous solution at 25 ° C. for 10 minutes, then leave at 25 ° C. at humidity 40% for 50 minutes, and then air dry.
In the table, the small R bending test evaluates the stickiness of the extruded material, and a test piece of 20 × 150 mm is cut out after artificial aging treatment.
A test piece was placed on a test table with an interval of 7 mm, a load was applied from above with a punch having a tip R = 1.5 and an outer diameter of 3 mm, and a displacement one-load diagram was measured.
Here, it was evaluated that the tenacity target was achieved when the elongation of the tip portion was 30% or more until the tip portion of the U-shaped bent portion was cracked.

評価結果の考察
実施例1〜48は合金成分の範囲が所定の範囲に設定され、製造条件も所定の範囲にあるので、押出材の評価項目の全てがクリアした。
これに対して比較例101〜105は、加熱処理時の加熱温度が270℃を超えていたので小R曲げ試験にて目標未達であった。
また、比較例106,107は加熱時間が800秒を超えて時間が長いので、小R曲げ試験が未達となった。
また、比較例109〜114及び117〜120は加熱処理条件が所定の範囲を超えているので、引張り強さ、耐力が目標未達であった。
比較例115,116は、加熱処理しなかったので、小R曲げ試験で割れが発生しやすかった。
比較例121は、アルミニウム合金の組成においてCu成分が多く、Crも添加されているのでSCC性が目標未達であり、比較例122はMg成分が少なく強度不足となった。
Consideration of Evaluation Results In Examples 1 to 48, the range of alloy components was set to a predetermined range, and the production conditions were also within a predetermined range, so that all the evaluation items of the extruded material were cleared.
On the other hand, in Comparative Examples 101 to 105, the heating temperature during the heat treatment exceeded 270 ° C., so that the target was not achieved in the small R bending test.
Further, in Comparative Examples 106 and 107, the heating time exceeded 800 seconds and the time was long, so that the small R bending test was not achieved.
Further, in Comparative Examples 109 to 114 and 117 to 120, since the heat treatment conditions exceeded the predetermined range, the tensile strength and the proof stress did not reach the targets.
Since Comparative Examples 115 and 116 were not heat-treated, cracks were likely to occur in the small R bending test.
In Comparative Example 121, the composition of the aluminum alloy contained a large amount of Cu and Cr was also added, so that the target of SCC property was not achieved. In Comparative Example 122, the Mg component was small and the strength was insufficient.

Claims (4)

以下質量%にて、Zn:6.0〜8.0%,Mg:1.50〜3.50%,Cu:0.20〜1.50%,Zr:0.10〜0.25%,Ti:0.005〜0.05%,Mn:0.3%以下,Sr:0.25%以下,且つ[Mn+Zr+Sr]:0.10〜0.50%,残部がAlと不可避的不純物からなるアルミニウム合金の鋳造ビレットを用いて押出加工し、
前記押出加工直後に冷却速度50〜750℃/分の範囲にて100℃以下になるまで冷却し、その後に110〜270℃の範囲にて加熱処理を行い、前記加熱処理後に、所定時間内に塑性加工することを特徴とするアルミニウム合金押出材の製造方法。
In the following mass%, Zn: 6.0 to 8.0%, Mg: 1.50 to 3.50%, Cu: 0.25 to 1.50%, Zr: 0.10 to 0.25%, Ti: 0.005 to 0.05%, Mn: 0.3% or less, Sr: 0.25% or less, and [Mn + Zr + Sr]: 0.10 to 0.50%, the balance is composed of Al and unavoidable impurities. Extruded using cast aluminum alloy billets,
Immediately after the extrusion process, the mixture is cooled at a cooling rate of 50 to 750 ° C./min to 100 ° C. or lower, and then heat-treated at 110 to 270 ° C. within a predetermined time after the heat treatment. A method for producing an extruded aluminum alloy material, which is characterized by plastic working.
前記鋳造ビレットは平均結晶粒径が250μm以下であることを特徴とする請求項1記載のアルミニウム合金押出材の製造方法。 The method for producing an extruded aluminum alloy according to claim 1, wherein the cast billet has an average crystal grain size of 250 μm or less. 前記塑性加工は曲げ成形であり、前記曲げ成形後に人工時効処理することを特徴とする請求項1又は2記載のアルミニウム合金押出材の製造方法。 The method for producing an aluminum alloy extruded material according to claim 1 or 2, wherein the plastic working is bending molding, and artificial aging treatment is performed after the bending molding. 前記押出材は引張強度480MPa以上、耐力460MPa以上であることを特徴とする請求項3記載のアルミニウム合金押出材の製造方法。 The method for producing an aluminum alloy extruded material according to claim 3, wherein the extruded material has a tensile strength of 480 MPa or more and a proof stress of 460 MPa or more.
JP2020005108A 2019-02-22 2020-01-16 Manufacturing method of aluminum alloy extrusion material Active JP7479854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/796,973 US11827967B2 (en) 2019-02-22 2020-02-21 Method for producing aluminum alloy extruded material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019029930 2019-02-22
JP2019029930 2019-02-22

Publications (2)

Publication Number Publication Date
JP2020139228A true JP2020139228A (en) 2020-09-03
JP7479854B2 JP7479854B2 (en) 2024-05-09

Family

ID=72264555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020005108A Active JP7479854B2 (en) 2019-02-22 2020-01-16 Manufacturing method of aluminum alloy extrusion material

Country Status (1)

Country Link
JP (1) JP7479854B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181306A1 (en) * 2021-02-25 2022-09-01 アイシン軽金属株式会社 Method for manufacturing aluminum alloy extruded material having high strength and excellent scc resistance and quenchability
WO2022181307A1 (en) * 2021-02-25 2022-09-01 アイシン軽金属株式会社 Method for manufacturing aluminum alloy extruded material
CN116891965A (en) * 2023-07-28 2023-10-17 东莞市东铝铝业有限公司 Novel high-altitude anti-falling aluminum alloy material and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5671422B2 (en) 2011-07-25 2015-02-18 株式会社神戸製鋼所 Method for producing high strength 7000 series aluminum alloy member and high strength 7000 series aluminum alloy member
US9765419B2 (en) 2014-03-12 2017-09-19 Alcoa Usa Corp. Methods for artificially aging aluminum-zinc-magnesium alloys, and products based on the same
JP6406971B2 (en) 2014-10-17 2018-10-17 三菱重工業株式会社 Method for producing aluminum alloy member
WO2017169962A1 (en) 2016-03-30 2017-10-05 アイシン軽金属株式会社 High strength extruded aluminum alloy material with excellent corrosion resistance and favorable quenching properties and manufacturing method therefor
CN105838945B (en) 2016-04-01 2018-01-09 中南大学 A kind of superpower high-ductility corrosion aluminium alloy of anti-recrystallizing and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181306A1 (en) * 2021-02-25 2022-09-01 アイシン軽金属株式会社 Method for manufacturing aluminum alloy extruded material having high strength and excellent scc resistance and quenchability
WO2022181307A1 (en) * 2021-02-25 2022-09-01 アイシン軽金属株式会社 Method for manufacturing aluminum alloy extruded material
CN116891965A (en) * 2023-07-28 2023-10-17 东莞市东铝铝业有限公司 Novel high-altitude anti-falling aluminum alloy material and preparation method and application thereof

Also Published As

Publication number Publication date
JP7479854B2 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
JP7321828B2 (en) High-strength 6xxx aluminum alloy and method for making same
JP6955483B2 (en) High-strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability and its manufacturing method
JP2614686B2 (en) Manufacturing method of aluminum alloy for forming process excellent in shape freezing property and paint bake hardenability
WO2021157356A1 (en) Production method of high-strength aluminum alloy extruded material
JP2007119904A (en) High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same
JP7018274B2 (en) Aluminum alloy for extrusion molding and method for manufacturing extruded material using it
US10900108B2 (en) Method for manufacturing bent article using aluminum alloy
WO2012165086A1 (en) Aluminum alloy and method of manufacturing extrusion using same
JPWO2008123184A1 (en) 7000 series aluminum alloy extruded material and method for producing the same
JP2020139228A (en) Method for producing aluminum alloy extrusion material
JP6193808B2 (en) Aluminum alloy extruded material and method for producing the same
JP6810508B2 (en) High-strength aluminum alloy plate
WO2019167469A1 (en) Al-mg-si system aluminum alloy material
JP7093611B2 (en) Aluminum alloy for extruded material and method for manufacturing extruded material and extruded material using it
WO2016060117A1 (en) Method for producing aluminum alloy member, and aluminum alloy member obtained by same
WO2007076980A1 (en) Aluminium alloy sheet for automotive applications and structural automobile body member provided with said aluminium alloy sheet
JP2021110042A (en) Production method for high-strength aluminum alloy extrusion material excellent in toughness and corrosion resistance
CN113302327A (en) 7xxx series aluminum alloy products
TWI434939B (en) Aluminium alloy and process of preparation thereof
US20230357902A1 (en) Method For Manufacturing Aluminum Alloy Extruded Material With High Strength And Excellent In SCC Resistance And Hardenability
US20230357889A1 (en) Method For Manufacturing Aluminum Alloy Extruded Material
JP6810178B2 (en) High-strength aluminum alloy and its manufacturing method, aluminum alloy plate and aluminum alloy member using the aluminum alloy
JP4865174B2 (en) Manufacturing method of aluminum alloy sheet with excellent bending workability and drawability
US11827967B2 (en) Method for producing aluminum alloy extruded material
WO2023233713A1 (en) Manufacturing method for high-strength aluminum alloy extruded material having excellent scc resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240424

R150 Certificate of patent or registration of utility model

Ref document number: 7479854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150