JP2021110042A - Production method for high-strength aluminum alloy extrusion material excellent in toughness and corrosion resistance - Google Patents

Production method for high-strength aluminum alloy extrusion material excellent in toughness and corrosion resistance Download PDF

Info

Publication number
JP2021110042A
JP2021110042A JP2021004124A JP2021004124A JP2021110042A JP 2021110042 A JP2021110042 A JP 2021110042A JP 2021004124 A JP2021004124 A JP 2021004124A JP 2021004124 A JP2021004124 A JP 2021004124A JP 2021110042 A JP2021110042 A JP 2021110042A
Authority
JP
Japan
Prior art keywords
aluminum alloy
toughness
billet
cooling
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021004124A
Other languages
Japanese (ja)
Inventor
祐樹 濱高
Yuki Hamataka
祐樹 濱高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Keikinzoku Co Ltd
Original Assignee
Aisin Keikinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Keikinzoku Co Ltd filed Critical Aisin Keikinzoku Co Ltd
Publication of JP2021110042A publication Critical patent/JP2021110042A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

To provide a production method for high-strength aluminum alloy extrusion material excellent in toughness and corrosion resistance.SOLUTION: A production method for high-strength aluminum alloy extrusion material is characterized by carrying out: a step of casting a billet at a casting speed of 50 mm/min or more; a step of applying a homogenization treatment for 1-14 hours at 460-540°C to a casted billet; a step of cooling the billet after the homogenization treatment at a cooling speed of 50°C/hr or more; and a step of performing extrusion using the billet and performing air cooling at a cooling speed of 50-500°C/min as a die end hardening of extrusion, and then carrying out an artificial aging treatment, using the aluminum alloy comprising in mass%, Zn:5.0-7.0%, Mg:0.50-1.60%, Cu:0.05-0.50%, Zr:0.10-0.25%, Ti 0.005-0.05%, Mn:0.3% or less, Cr:0.2% or less, 0.10-0.65% total of [Mn+Cr+Zr], and the balance Al with inevitable impurities.SELECTED DRAWING: Figure 1

Description

本発明は、7000系アルミニウム合金を用いた高強度押出材の製造方法に関し、特に高強度で靭性及び耐食性に優れたアルミニウム合金押出材の製造方法に係る。 The present invention relates to a method for producing a high-strength extruded material using a 7000 series aluminum alloy, and more particularly to a method for producing an aluminum alloy extruded material having high strength and excellent toughness and corrosion resistance.

車両や各種産業機械の分野においては、環境負荷の低減,省エネルギー化,軽量化等の要求から構造部材の軽量化が望まれる。
その手段の1つにアルミニウム合金からなる押出材が検討されており、高強度アルミニウム合金としてはAl−Zn−Mg系の7000系合金とAl−Mg−Si系の6000系合金が代表例である。
その中でも7000系合金は、比較的に押出加工性を低下させることなく高強度化を図ることが可能である。
In the fields of vehicles and various industrial machines, weight reduction of structural members is desired due to demands such as reduction of environmental load, energy saving, and weight reduction.
Extruded materials made of aluminum alloys are being studied as one of the means, and as high-strength aluminum alloys, Al-Zn-Mg-based 7000-based alloys and Al-Mg-Si-based 6000-based alloys are typical examples. ..
Among them, the 7000 series alloy can be increased in strength without relatively lowering the extrusion processability.

例えば特許文献1には、Zn:5.5〜9.0%,Mg:1.0〜2.0%,Cu:0.1〜1.0%,Fe:0.01〜0.40%,Si:0.01〜0.20%,Ti:0.005〜0.2%,さらにZr:0.01〜0.25%,Cr:0.01〜0.25%,V:0.01〜0.25%,Sc:0.01〜0.25%のうち1種類以上を合計で0.1〜0.5%含有するアルミニウム合金を用いたアルミニウム合金押出材を開示するが、押出材の温度が400℃以上である間に200℃/sec以上、即ち12000℃/min以上の急速冷却をしなければならないことから、押出材の形状に冷却ひずみが発生しやすく、またエネルギー吸収特性(靭性)を確保するには過時効処理が必要であることから生産性が低下する原因となっている。 For example, Patent Document 1 describes Zn: 5.5 to 9.0%, Mg: 1.0 to 2.0%, Cu: 0.1 to 1.0%, Fe: 0.01 to 0.40%. , Si: 0.01 to 0.20%, Ti: 0.005 to 0.2%, Zr: 0.01 to 0.25%, Cr: 0.01 to 0.25%, V: 0. Disclosed is an extruded aluminum alloy using an aluminum alloy containing at least one of 01 to 0.25% and Sc: 0.01 to 0.25% in total of 0.1 to 0.5%. Since rapid cooling of 200 ° C./sec or more, that is, 12000 ° C./min or more must be performed while the temperature of the material is 400 ° C. or higher, cooling strain is likely to occur in the shape of the extruded material, and energy absorption characteristics. Over-aging treatment is required to ensure (toughness), which causes a decrease in productivity.

特許文献2にはZn:5.5〜7.0%,Mg:0.5〜1.8%,Cu:0.1〜0.5%,Fe:0.01〜0.40%,Si:0.01〜0.20%,Ti:0.005〜0.2%,さらにZr:0.01〜0.25%,Cr:0.01〜0.25%,Mn:0.01〜0.25%のうち1種以上を有するアルミニウム合金を用いて押出加工した押出材を、10℃/sec以上の加熱速度で330〜550℃に再加熱し、その後に50℃/sec以上の冷却速度で冷却する方法を開示する。
しかし、これでは再加熱のための熱処理炉や冷却装置が必要であるとともに、押出材を再加熱する際に表面の再結晶化が進行し、耐食性に劣る恐れがある。
Patent Document 2 describes Zn: 5.5 to 7.0%, Mg: 0.5 to 1.8%, Cu: 0.1 to 0.5%, Fe: 0.01 to 0.40%, Si. : 0.01 to 0.20%, Ti: 0.005 to 0.2%, Zr: 0.01 to 0.25%, Cr: 0.01 to 0.25%, Mn: 0.01 to Extruded material extruded using an aluminum alloy having at least one of 0.25% is reheated to 330 to 550 ° C. at a heating rate of 10 ° C./sec or higher, and then cooled to 50 ° C./sec or higher. Disclose a method of cooling at a rate.
However, this requires a heat treatment furnace and a cooling device for reheating, and recrystallization of the surface proceeds when the extruded material is reheated, which may result in inferior corrosion resistance.

このように従来の7000系高強度アルミニウム合金押出材にあっては、高強度を得ようとすると、ねばり(靭性)が低下したり応力が負荷される部材での耐応力腐食割れ性が低下し、さらにはダイス端焼入れにて水冷が必要であったりと、生産性が低下する問題があった。 As described above, in the conventional 7000 series high-strength aluminum alloy extruded material, when trying to obtain high strength, the stickiness (toughness) is lowered and the stress corrosion cracking resistance of the member to which stress is applied is lowered. Furthermore, there is a problem that productivity is lowered because water cooling is required for die edge quenching.

特開2015−221924号公報JP 2015-221924 特開2017−222920号公報JP-A-2017-222920

本発明は、押出加工後の空冷によるダイス端焼入れにて、高強度が得られるとともに靭性及び耐食性に優れた生産性の良好な高強度アルミニウム合金押出材の製造方法の提供を目的とする。 An object of the present invention is to provide a method for producing a high-strength aluminum alloy extruded material which can obtain high strength and has excellent toughness and corrosion resistance and good productivity by quenching the edge of a die by air cooling after extrusion.

本発明に係る高強度アルミニウム合金押出材の製造方法は、以下全て質量%にて、Zn:5.0〜7.0%,Mg:0.50〜1.60%,Cu:0.05〜0.50%,Zr:0.10〜0.25%,Ti:0.005〜0.05%,Mn:0.3%以下,Cr:0.2%以下で、且つ[Mn+Cr+Zr]の合計が0.10〜0.65%範囲であり、残部がAlと不可避的不純物からなるアルミニウム合金を用いて、鋳造速度50mm/min以上の速度でビレットを鋳造するステップと、前記鋳造したビレットを460〜540℃にて1〜14時間の均質化処理をするステップと、前記均質化処理後に50℃/hr以上の冷却速度で冷却するステップと、前記ビレットを用いて押出加工し、前記押出加工のダイス端焼入れとして冷却速度50〜500℃/minの空冷を行うステップとを有し、その後に人工時効処理することを特徴とする。
ここで、前記人工時効処理は、80〜120℃で1〜6時間の第1段目と130〜180℃で1〜14時間の第2段目からなり、合計で20時間以内の2段人工時効処理であるのが好ましい。
このように製造された押出材は、耐力が260MPa以上の高強度で、シャルピー衝撃値25J/cm以上,軸圧壊性EA率55%以上の靭性を有し、DSC(吸熱ピークに相当する積分量)の値が30以下及び表面部の再結晶深さが150μm以下であり、耐応力腐食割れ性に優れる。
The method for producing a high-strength aluminum alloy extruded material according to the present invention is as follows, in terms of mass%, Zn: 5.0 to 7.0%, Mg: 0.50 to 1.60%, Cu: 0.05 to 0.50%, Zr: 0.10 to 0.25%, Ti: 0.005 to 0.05%, Mn: 0.3% or less, Cr: 0.2% or less, and the total of [Mn + Cr + Zr] Is in the range of 0.10 to 0.65%, and the step of casting a billet at a casting speed of 50 mm / min or more using an aluminum alloy whose balance is Al and unavoidable impurities, and 460 of the cast billet. A step of homogenizing at ~ 540 ° C. for 1 to 14 hours, a step of cooling at a cooling rate of 50 ° C./hr or more after the homogenizing treatment, and a step of extrusion using the billet to perform the extrusion processing. It is characterized by having a step of performing air cooling at a cooling rate of 50 to 500 ° C./min as die end casting, and then performing artificial aging treatment.
Here, the artificial aging treatment comprises a first stage of 1 to 6 hours at 80 to 120 ° C. and a second stage of 1 to 14 hours at 130 to 180 ° C., and is a two-stage artificial treatment within 20 hours in total. It is preferably an aging process.
The extruded material produced in this way has a high strength with a proof stress of 260 MPa or more, a Charpy impact value of 25 J / cm 2 or more, and a toughness with an axial cracking EA rate of 55% or more, and DSC (integration corresponding to a heat absorption peak). The value of (quantity) is 30 or less and the recrystallization depth of the surface portion is 150 μm or less, and the stress corrosion cracking resistance is excellent.

本発明において、アルミニウム合金の成分範囲を選定した理由は次のとおりである。
<Zn及びMg成分>
Znは比較的高濃度でも押出性が低下することがなく、強度の向上に寄与し、Mgの添加により、組織中にMgZnが折出し、強度アップする。
しかし、Mgは添加量が多くなると押出性が低下するとともに、MgZnの析出量が多くなりすぎ靭性が低下する恐れがある。
そこで、Zn:5.0〜7.0%,Mg:0.5〜1.60%の範囲の組み合せがよい。
なお、Zn:5.5〜7.0%にし、Mg:0.8〜1.3%とすることでMgZnの析出量を制御してもよい。
<Cu成分>
Cu成分の添加は固溶効果により強度向上を図るのに有効であるが、添加量が多くなると一般的な耐食性が低下するので、Cu:0.05〜0.50%の範囲がよく、好ましくはCu:0.10〜0.30%の範囲である。
<Zr,Mn及びCr成分>
これらの成分は、いずれも遷移元素であり、押出加工時に押出材の表面に形成される再結晶深さを抑制するとともに結晶粒の微細化に効果がある。
これにより靭性の向上と、耐応力腐食割れ性が向上する。
しかし、このうちCr成分は最も焼入れ感受性を鋭くし、添加量が多くなると押出加工直後の冷却による焼入れ(ダイス端焼入れ)を水冷レベルの急速冷却にしないと、充分な強度が得られなくなる。
Mn成分はCrよりも焼入れ感受性が強くないものの、Zrよりもその影響が大きい。
そこで本発明は、Cr,Mnを添加することなくZr:0.10〜0.25%添加するのみで対応するのが好ましい。
Mnを添加する場合には、Mn:0.30%以下に抑え、Crを添加する場合にはCr:0.20%以下に抑えるとともに[Mn+Cr+Zr]の合計で0.10〜0.65%の範囲に抑えるのがよい。
<Ti成分>
Ti成分は、押出加工に用いるためのビレットを鋳造する際に結晶粒の微細化に効果があり、一般的にはBもごく微量添加される。
Ti:0.005〜0.05%のわずかな添加量でよい。
<その他の成分>
7000系のアルミニウム合金の鋳造過程等にて、Fe成分及びSi成分が不純物として含まれることが多いが、その量が多くなると、押出性,耐応力腐食割れ性等に影響を与えるので、Fe:0.2%以下,Si:0.1%以下に抑えるのが好ましい。
The reason for selecting the component range of the aluminum alloy in the present invention is as follows.
<Zn and Mg components>
Extrudability of Zn does not decrease even at a relatively high concentration, which contributes to the improvement of strength, and the addition of Mg causes MgZn 2 to fold out in the structure to increase the strength.
However, if the amount of Mg added is large, the extrudability is lowered, and the amount of MgZn 2 precipitated is too large, so that the toughness may be lowered.
Therefore, a combination in the range of Zn: 5.0 to 7.0% and Mg: 0.5 to 1.60% is preferable.
The precipitation amount of MgZn 2 may be controlled by setting Zn: 5.5 to 7.0% and Mg: 0.8 to 1.3%.
<Cu component>
The addition of the Cu component is effective for improving the strength due to the solid solution effect, but since the general corrosion resistance decreases as the addition amount increases, the range of Cu: 0.05 to 0.50% is preferable. Is in the range of Cu: 0.10 to 0.30%.
<Zr, Mn and Cr components>
All of these components are transition elements, and are effective in suppressing the recrystallization depth formed on the surface of the extruded material during extrusion processing and in refining the crystal grains.
This improves toughness and stress corrosion cracking resistance.
However, of these, the Cr component has the sharpest quenching sensitivity, and if the amount added is large, sufficient strength cannot be obtained unless quenching by cooling immediately after extrusion (die end quenching) is rapidly cooled to a water-cooled level.
Although the Mn component is not as sensitive to quenching as Cr, it has a greater effect than Zr.
Therefore, it is preferable that the present invention corresponds only to the addition of Zr: 0.10 to 0.25% without adding Cr and Mn.
When Mn is added, Mn: 0.30% or less is suppressed, and when Cr is added, Cr: 0.20% or less is suppressed, and the total of [Mn + Cr + Zr] is 0.10 to 0.65%. It is better to keep it within the range.
<Ti component>
The Ti component is effective in refining crystal grains when casting billets for use in extrusion processing, and generally B is also added in a very small amount.
Ti: A small amount of 0.005 to 0.05% may be added.
<Other ingredients>
In the casting process of 7000 series aluminum alloy, Fe component and Si component are often contained as impurities, but if the amount is large, it affects extrusion property, stress corrosion cracking resistance, etc., so Fe: It is preferable to keep it at 0.2% or less and Si: 0.1% or less.

次に、製造条件について説明する。
アルミニウム合金の押出材の製造には、円柱状のビレットを鋳造して用いられる。
このビレットの鋳造条件や、その均質化処理条件も製造される押出材の品質に影響を与える。
ビレットの鋳造はホットトップ鋳造等により、アルミニウム合金の溶湯を用いて円柱状に連続鋳造されるが、その鋳造速度が50mm/min以上になると、ビレットの鋳造組織の結晶粒の平均粒径が250μm以下の微細構造になり、その後の押出加工においても押出材の結晶粒が微細化し靭性が向上する。
また、鋳造後の均質化処理条件は、析出物を充分に固溶させるのに460〜540℃にて1時間以上14時間以内の熱処理を行うとともに、その後の冷却を50℃/hr以上の冷却速度で行うのがよい。
Next, the manufacturing conditions will be described.
Cylindrical billets are cast and used in the production of extruded aluminum alloys.
The casting conditions of this billet and its homogenization treatment conditions also affect the quality of the extruded material produced.
Billet is continuously cast in a columnar shape using molten aluminum alloy by hot top casting or the like, but when the casting speed is 50 mm / min or more, the average particle size of the crystal grains of the cast structure of the billet is 250 μm. It has the following microstructure, and the crystal grains of the extruded material become finer and the toughness is improved even in the subsequent extrusion processing.
Further, the homogenization treatment condition after casting is that heat treatment is performed at 460 to 540 ° C. for 1 hour or more and 14 hours or less in order to sufficiently dissolve the precipitate, and the subsequent cooling is performed at 50 ° C./hr or more. It is better to do it at speed.

押出加工は、押出機のコンテナ内にビレットを装填して、ステム等にて押圧することで押圧ダイスを介して押出材が押出成形される。
この場合に、コンテナにビレットを装填する前に400℃以上、500℃以下に余熱される。
押出ダイスから押し出される直後の押出材は、500℃以上の高温になっている。
ダイス端焼入れとは、この押出直後の高温を利用して、ファン等にて冷却速度50〜500℃/minの空冷を行うことで焼入れが可能になる。
本発明に係るアルミニウム合金を用いると、引用文献1のような水冷を行う必要がなく、冷却時に押出材が変形するのを抑えることができ、空冷装置は水冷装置に比較し、簡単な構造であり、生産性に優れる。
In extrusion processing, a billet is loaded in a container of an extruder and pressed by a stem or the like, so that the extruded material is extruded through a pressing die.
In this case, before loading the billet into the container, it is preheated to 400 ° C. or higher and 500 ° C. or lower.
The extruded material immediately after being extruded from the extruded die has a high temperature of 500 ° C. or higher.
Die edge quenching enables quenching by air cooling at a cooling rate of 50 to 500 ° C./min with a fan or the like using the high temperature immediately after extrusion.
When the aluminum alloy according to the present invention is used, it is not necessary to perform water cooling as in Reference 1, and it is possible to suppress deformation of the extruded material during cooling, and the air cooling device has a simpler structure than the water cooling device. Yes, it is excellent in productivity.

ダイス端焼入れ工程を経た押出材は、その後に人工時効処理をすることになるが、その条件も押出材の品質に影響を与える。
本発明においては、第1段目を80〜120℃×1〜6時間,第2段目を130〜180℃×1〜14時間,合計で20時間以内の2段人工時効処理を行う。
これにより、過時効や復熱処理をすることなく目標品質が得られる。
The extruded material that has undergone the die edge quenching process is subsequently subjected to artificial aging treatment, and the conditions also affect the quality of the extruded material.
In the present invention, the first stage is 80 to 120 ° C. × 1 to 6 hours, the second stage is 130 to 180 ° C. × 1 to 14 hours, and the two-stage artificial aging treatment is performed within 20 hours in total.
As a result, the target quality can be obtained without overaging or reheat treatment.

従来から7000系アルミニウム合金は、強度を高くしようとすると割れやすく靭性を確保するのが難しく、押出加工時に加工抵抗が大きくなるために押出材が高温になり、押出材の表面に形成される再結晶層の厚みが厚くなることで、耐応力腐食割れ性が低下する技術的課題があった。
本発明にあっては、アルミニウム合金の化学組成の最適化と製造条件の最適化を図ることで、バランスの良い押出材が得られる。
Conventionally, 7000 series aluminum alloys are easily cracked and it is difficult to secure toughness when trying to increase the strength, and the extrusion material becomes hot due to the increase in processing resistance during extrusion processing, and is recrystallized on the surface of the extrusion material. There is a technical problem that the stress corrosion cracking resistance is lowered due to the increase in the thickness of the crystal layer.
In the present invention, a well-balanced extruded material can be obtained by optimizing the chemical composition of the aluminum alloy and optimizing the production conditions.

評価に用いたアルミニウム合金の化学組成を示す。The chemical composition of the aluminum alloy used for the evaluation is shown. 評価に用いたビレットの鋳造,均質化(HOMO)条件及び押出加工後の人工時効処理条件を示す。The billet casting, homogenization (HOMO) conditions and post-extrusion artificial aging treatment conditions used for the evaluation are shown. 評価結果を示す。The evaluation result is shown. DSC分析チャートの例を示す。An example of a DSC analysis chart is shown. DSCを評価した目的の説明図を示す。An explanatory diagram of the purpose for which DSC was evaluated is shown. 軸圧壊試験における荷重−変位曲線の例を示す。An example of the load-displacement curve in the shaft crush test is shown. (a)は実施例、(b)は比較例の外観写真を示す。(A) shows an example, and (b) shows an external photograph of a comparative example.

図1の表に示した本発明に係る成分範囲に含まれる実施例1〜18と、いずれかの成分が本発明の範囲外となる比較例19〜25のアルミニウム合金の溶湯を調整し、図2の表に示した鋳造速度でビレットを鋳造し、その後に均質化処理温度(HOMO温度)及びHOMO時間にて均質化処理し、表中HOMO後冷却速度で冷却した。
その時のビレットの金属組織の平均結晶粒径を、図2の表「ビレット結晶粒径」の欄に示す。
次に、図2の表中に「BLT温度」に示した温度でビレットを余熱し、押出加工に供した。
押出材の形状は、肉厚約3mmのコ字断面形状とした。
押出加工直後は、図2の表に示した冷却速度でファン空冷し、ダイス端焼入れを行い、次に図2に示した熱処理温度及び熱処理時間にて、1段目の熱処理を行った後に2段目の熱処理を行い、2段人工時効処理を実施した。
なお、図2の表中、製造条件として本発明における好ましい条件、範囲を合せて表記した。
The molten aluminum alloys of Examples 1 to 18 included in the component range according to the present invention shown in the table of FIG. 1 and Comparative Examples 19 to 25 in which any component is outside the range of the present invention are prepared and shown in FIG. The billet was cast at the casting rate shown in Table 2 and then homogenized at the homogenization treatment temperature (HOMO temperature) and HOMO time, and cooled at the cooling rate after HOMO in the table.
The average crystal grain size of the metal structure of the billet at that time is shown in the column of "Billette crystal grain size" in the table of FIG.
Next, the billet was preheated at the temperature shown in "BLT temperature" in the table of FIG. 2 and subjected to extrusion processing.
The shape of the extruded material was a U-shaped cross section with a wall thickness of about 3 mm.
Immediately after extrusion, the fan is air-cooled at the cooling rate shown in the table of FIG. 2, die edge quenching is performed, and then the first stage heat treatment is performed at the heat treatment temperature and heat treatment time shown in FIG. The second stage heat treatment was performed, and a two-stage artificial aging treatment was carried out.
In the table of FIG. 2, the preferable conditions and ranges in the present invention are also shown as manufacturing conditions.

評価項目及びその評価結果を図3の表に示す。
表中に評価項目毎の目標値を示した。
評価条件は、次のとおりである。
<機械的性質>
JIS−Z2241に基づいて、JIS−5号試験片を作製し、JIS規格に準拠した引張試験機を用いて、引張強さ,σ0.2耐力,伸びを計測した。
<ビレット結晶粒径>
ビレット表面を鏡面研磨仕上げし、ケラー試薬にてエッチングを行った。
これを光学顕微鏡観察により金属組織を観察し、100倍の画像を画像処理し、平均結晶粒径を求めた。
<押出材の表面再結晶深さ>
押出材の断面を鏡面仕上げし、その後に3%NaOHにてエッチング処理した。
光学顕微鏡にて100倍画像から画像処理にて再結晶層の平均厚さを求めた。
<シャルピー衝撃試験>
JIS−Z2242に基づいて、JIS−Vノッチ4号試験片を作製し、JIS規格に準拠したシャルピー衝撃試験機にてシャルピー衝撃値を求めた。
<耐応力腐食割れ性(SCC性)>
試験片に耐力の80%の応力を負荷した状態で、次の条件を1サイクルとして720サイクルにて割れが発生しなかったものを目標達成とした。
なお、途中で割れが発生したものは、そのサイクル数を表示した。
[1サイクル]
3.5%NaCl水溶液中に25℃,10min浸漬し、その後に25℃,湿度40%中に50min放置し、その後に自然乾燥する。
<DSC分析>
示差熱分析計(リガク製 Thermo plus evo2)を用いて得られたチャートから、吸熱ピークに相当する面積(積分量)の値をDSCの値とした。
チャート例を図4に示す。
本発明において、DSCの値を評価した目的は図5に説明図を示すように、結晶粒内の析出物の析出量が多くなり過ぎると、靭性が低下し、割れが発生しやすくなるからであり、この析出量を析出物が再固溶する100〜200℃における吸熱ピークの面積(積分量)を30以下とした。
図4にその吸熱ピークの部分を示した。
<軸圧壊性及びその外観>
軸圧壊性の試験は、次のように実施した。
『田』形状をもつ四角筒形状の試験片を用い、圧縮速度50mm/min(試験前の軸長寸法150mm→試験後の軸長寸法60mm)で試験片の軸長方向に沿って静的荷重を作用させて行った。
図6は、実施例4に係る試験片を軸圧壊試験した時の荷重−変位曲線を示す。
横軸は、荷重を試験片の軸長方向にかけたときの圧縮試験機のクロスヘッドのストロークを示す。
縦軸は荷重の大きさを示す。
図6に示すように、試験片が蛇腹状に圧壊変形するときには、荷重値のピーク(P1〜P3)が間隔をおいて発生する。
図7(a)は、実施例4に係る試験片について軸圧壊試験後の状態を示す。
軸圧壊試験後では試験片は良好に蛇腹形状に圧壊変形した。
このように蛇腹形状に圧壊変形した場合には、評価は○とした。
図7(b)は、比較例3に係る試験片について軸圧壊試験後の状態を示す。
軸圧壊試験後では試験片の壁部が破断していた。
このように壁部が破断した場合には評価は×とした。
The evaluation items and the evaluation results are shown in the table of FIG.
The target values for each evaluation item are shown in the table.
The evaluation conditions are as follows.
<Mechanical properties>
A JIS-5 test piece was prepared based on JIS-Z2241, and tensile strength, σ 0.2 proof stress, and elongation were measured using a tensile tester conforming to JIS standards.
<Billette crystal grain size>
The billet surface was mirror-polished and etched with Keller's reagent.
The metallographic structure was observed by observing this with an optical microscope, and a 100-fold image was image-processed to determine the average crystal grain size.
<Surface recrystallization depth of extruded material>
The cross section of the extruded material was mirror-finished and then etched with 3% NaOH.
The average thickness of the recrystallized layer was determined by image processing from a 100-fold image with an optical microscope.
<Charpy impact test>
A JIS-V notch No. 4 test piece was prepared based on JIS-Z2242, and the Charpy impact value was determined by a Charpy impact tester conforming to JIS standards.
<Stress corrosion cracking resistance (SCC property)>
With a stress of 80% of the proof stress applied to the test piece, the target was achieved when no cracks occurred in 720 cycles under the following conditions as one cycle.
If cracks occurred in the middle, the number of cycles was displayed.
[1 cycle]
It is immersed in a 3.5% NaCl aqueous solution at 25 ° C. for 10 minutes, then left at 25 ° C. for 50 minutes in a humidity of 40%, and then air-dried.
<DSC analysis>
From the chart obtained using a differential thermal analyzer (Thermo plus evo2 manufactured by Rigaku), the value of the surface integral (integral amount) corresponding to the endothermic peak was taken as the value of DSC.
An example chart is shown in FIG.
In the present invention, the purpose of evaluating the value of DSC is that if the amount of precipitates in the crystal grains becomes too large, the toughness is lowered and cracks are likely to occur, as shown in the explanatory diagram in FIG. The area (integrated amount) of the heat absorption peak at 100 to 200 ° C. at 100 to 200 ° C. where the precipitate re-dissolves was set to 30 or less.
FIG. 4 shows a portion of the endothermic peak.
<Axial crushability and its appearance>
The axial crushability test was carried out as follows.
Using a square cylinder-shaped test piece with a "field" shape, a static load is applied along the shaft length direction of the test piece at a compression rate of 50 mm / min (shaft length before test 150 mm → shaft length after test 60 mm). Was allowed to act.
FIG. 6 shows a load-displacement curve when the test piece according to Example 4 is subjected to an axial crush test.
The horizontal axis represents the stroke of the crosshead of the compression tester when a load is applied in the axial length direction of the test piece.
The vertical axis shows the magnitude of the load.
As shown in FIG. 6, when the test piece is crushed and deformed in a bellows shape, peaks of load values (P1 to P3) occur at intervals.
FIG. 7A shows the state of the test piece according to Example 4 after the shaft crush test.
After the shaft crush test, the test piece was crushed and deformed into a bellows shape.
When the bellows shape was crushed and deformed in this way, the evaluation was evaluated as ◯.
FIG. 7B shows the state of the test piece according to Comparative Example 3 after the axial crush test.
After the shaft crush test, the wall of the test piece was broken.
When the wall portion was broken in this way, the evaluation was evaluated as x.

<評価結果の考察>
実施例1〜18は、全ての品質目標をクリアした。
これに対して、比較例19はZrの添加量が少なく、表面再結晶深さが厚くなり、シャルピー衝撃値及び耐応力腐食割れ性も目標未達であった。
比較例20は、Mgの添加量が多く強度があるものの、靭性が低下していた。
比較例21は、人工時効処理条件が本発明の範囲になく、靭性が目標未達であった。
比較例22,23は、Zrの添加量が少ないため、靭性が悪かった。
比較例24は、[Mn+Cr+Zr]の範囲が外れ、熱処理条件も所定の範囲にないので品質目標が未達であった。
比較例25は、Mgの含有量が多く、靭性が劣っていた。
<Discussion of evaluation results>
Examples 1 to 18 cleared all quality targets.
On the other hand, in Comparative Example 19, the amount of Zr added was small, the surface recrystallization depth was thick, and the Charpy impact value and stress corrosion cracking resistance did not reach the targets.
In Comparative Example 20, although the amount of Mg added was large and the strength was high, the toughness was lowered.
In Comparative Example 21, the artificial aging treatment conditions were not within the scope of the present invention, and the toughness did not reach the target.
In Comparative Examples 22 and 23, the toughness was poor because the amount of Zr added was small.
In Comparative Example 24, the range of [Mn + Cr + Zr] was out of range, and the heat treatment conditions were not within the predetermined range, so that the quality target was not achieved.
In Comparative Example 25, the Mg content was high and the toughness was inferior.

Claims (3)

以下全て質量%にて、Zn:5.0〜7.0%,Mg:0.50〜1.60%,Cu:0.05〜0.50%,Zr:0.10〜0.25%,Ti:0.005〜0.05%,Mn:0.3%以下,Cr:0.2%以下で、且つ[Mn+Cr+Zr]の合計が0.10〜0.65%範囲であり、残部がAlと不可避的不純物からなるアルミニウム合金を用いて、
鋳造速度50mm/min以上の速度でビレットを鋳造するステップと、
前記鋳造したビレットを460〜540℃にて1〜14時間の均質化処理をするステップと、
前記均質化処理後に50℃/hr以上の冷却速度で冷却するステップと、
前記ビレットを用いて押出加工し、前記押出加工のダイス端焼入れとして冷却速度50〜500℃/minの空冷を行うステップとを有し、その後に人工時効処理することを特徴とする靭性及び耐食性に優れる高強度アルミニウム合金押出材の製造方法。
Zn: 5.0 to 7.0%, Mg: 0.50 to 1.60%, Cu: 0.05 to 0.50%, Zr: 0.10 to 0.25% in terms of mass%. , Ti: 0.005 to 0.05%, Mn: 0.3% or less, Cr: 0.2% or less, and the total of [Mn + Cr + Zr] is in the range of 0.10 to 0.65%, and the balance is Using an aluminum alloy consisting of Al and unavoidable impurities,
The step of casting billets at a casting speed of 50 mm / min or more,
The step of homogenizing the cast billet at 460 to 540 ° C. for 1 to 14 hours, and
After the homogenization treatment, a step of cooling at a cooling rate of 50 ° C./hr or more, and
The toughness and corrosion resistance are characterized by having a step of extruding using the billet and performing air cooling at a cooling rate of 50 to 500 ° C./min as die end quenching of the extrusion processing, followed by artificial aging treatment. A method for producing an excellent high-strength aluminum alloy extruded material.
前記人工時効処理は、80〜120℃で1〜6時間の第1段目と130〜180℃で1〜14時間の第2段目からなり、合計で20時間以内の2段人工時効処理であることを特徴とする請求項1記載の靭性及び耐食性に優れる高強度アルミニウム合金押出材の製造方法。 The artificial aging treatment comprises a first stage of 1 to 6 hours at 80 to 120 ° C. and a second stage of 1 to 14 hours at 130 to 180 ° C., and is a two-stage artificial aging treatment within 20 hours in total. The method for producing a high-strength aluminum alloy extruded material having excellent toughness and corrosion resistance according to claim 1. 耐力が260MPa以上の高強度で、シャルピー衝撃値25J/cm以上,軸圧壊性EA率55%以上の靭性を有し、DSC(吸熱ピークに相当する積分量)の値が30以下及び表面部の再結晶深さが150μm以下であり、耐応力腐食割れ性に優れることを特徴とする請求項2記載の靭性及び耐食性に優れる高強度アルミニウム合金押出材の製造方法。 It has a high strength with a proof stress of 260 MPa or more, a Charpy impact value of 25 J / cm 2 or more, a toughness with an axial crushability EA rate of 55% or more, a DSC (integrated amount corresponding to a heat absorption peak) value of 30 or less, and a surface portion. The method for producing a high-strength aluminum alloy extruded material having excellent toughness and corrosion resistance according to claim 2, wherein the recrystallization depth of the above is 150 μm or less and the stress corrosion cracking resistance is excellent.
JP2021004124A 2020-01-15 2021-01-14 Production method for high-strength aluminum alloy extrusion material excellent in toughness and corrosion resistance Pending JP2021110042A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020004040 2020-01-15
JP2020004040 2020-01-15

Publications (1)

Publication Number Publication Date
JP2021110042A true JP2021110042A (en) 2021-08-02

Family

ID=77059220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021004124A Pending JP2021110042A (en) 2020-01-15 2021-01-14 Production method for high-strength aluminum alloy extrusion material excellent in toughness and corrosion resistance

Country Status (1)

Country Link
JP (1) JP2021110042A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115841052A (en) * 2023-02-23 2023-03-24 江苏甬金金属科技有限公司 Stainless steel precision extrusion process optimization method and system based on numerical simulation
CN115948666A (en) * 2022-09-30 2023-04-11 佛山市三水凤铝铝业有限公司 Preparation method of Al-Zn-Mg series aluminum alloy containing Zr
CN116043079A (en) * 2022-12-28 2023-05-02 优模(上海)新材料科技有限公司 High-strength and high-toughness aluminum alloy and hollow structural section bar thereof and preparation method
WO2023233713A1 (en) * 2022-05-30 2023-12-07 アイシン軽金属株式会社 Manufacturing method for high-strength aluminum alloy extruded material having excellent scc resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233713A1 (en) * 2022-05-30 2023-12-07 アイシン軽金属株式会社 Manufacturing method for high-strength aluminum alloy extruded material having excellent scc resistance
CN115948666A (en) * 2022-09-30 2023-04-11 佛山市三水凤铝铝业有限公司 Preparation method of Al-Zn-Mg series aluminum alloy containing Zr
CN116043079A (en) * 2022-12-28 2023-05-02 优模(上海)新材料科技有限公司 High-strength and high-toughness aluminum alloy and hollow structural section bar thereof and preparation method
CN115841052A (en) * 2023-02-23 2023-03-24 江苏甬金金属科技有限公司 Stainless steel precision extrusion process optimization method and system based on numerical simulation

Similar Documents

Publication Publication Date Title
JP2021110042A (en) Production method for high-strength aluminum alloy extrusion material excellent in toughness and corrosion resistance
JP5421613B2 (en) High strength aluminum alloy wire rod excellent in softening resistance and manufacturing method thereof
US20220389558A1 (en) Thick products made of 7xxx alloy and manufacturing process
JP6955483B2 (en) High-strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability and its manufacturing method
US8168013B2 (en) Al-Mg-Si aluminum alloy extruded product exhibiting excellent fatigue strength and impact fracture resistance
RU2413025C2 (en) Product out of deformed aluminium alloy of aa7000 series and procedure for production of said product
CN110592444B (en) 700-doped 720 MPa-strength heat-resistant high-intergranular corrosion-resistant aluminum alloy and preparation method thereof
JP2007119904A (en) High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same
WO2012165086A1 (en) Aluminum alloy and method of manufacturing extrusion using same
US10900108B2 (en) Method for manufacturing bent article using aluminum alloy
US20210010121A1 (en) High-Strength Aluminum Alloy Extruded Material That Exhibits Excellent Formability And Method For Producing The Same
WO2021157356A1 (en) Production method of high-strength aluminum alloy extruded material
JP2009167464A (en) Method for producing aluminum alloy material having excellent toughness
TWI434939B (en) Aluminium alloy and process of preparation thereof
JP2020139228A (en) Method for producing aluminum alloy extrusion material
US20230357902A1 (en) Method For Manufacturing Aluminum Alloy Extruded Material With High Strength And Excellent In SCC Resistance And Hardenability
US20230357889A1 (en) Method For Manufacturing Aluminum Alloy Extruded Material
US11827967B2 (en) Method for producing aluminum alloy extruded material
US20210332462A1 (en) Aluminum alloy and manufacturing method thereof
WO2023233713A1 (en) Manufacturing method for high-strength aluminum alloy extruded material having excellent scc resistance
JP7119153B1 (en) High-strength aluminum alloy extruded material and manufacturing method thereof
JP7126915B2 (en) Aluminum alloy extruded material and its manufacturing method
JP2009221531A (en) Al-Mg BASED ALUMINUM ALLOY EXTRUDED MATERIAL FOR COLD WORKING, AND METHOD FOR PRODUCING THE SAME
JP2023126137A (en) Production method of aluminum alloy extrusion material having excellent hardenability, high toughness and high strength
NO20211429A1 (en) A 6xxx aluminium alloy with improved properties and a process for manufacturing extruded products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240111