WO2022181307A1 - Method for manufacturing aluminum alloy extruded material - Google Patents

Method for manufacturing aluminum alloy extruded material Download PDF

Info

Publication number
WO2022181307A1
WO2022181307A1 PCT/JP2022/004678 JP2022004678W WO2022181307A1 WO 2022181307 A1 WO2022181307 A1 WO 2022181307A1 JP 2022004678 W JP2022004678 W JP 2022004678W WO 2022181307 A1 WO2022181307 A1 WO 2022181307A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
extruded material
less
aluminum
alloy extruded
Prior art date
Application number
PCT/JP2022/004678
Other languages
French (fr)
Japanese (ja)
Inventor
果林 柴田
宏昭 松井
Original Assignee
アイシン軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン軽金属株式会社 filed Critical アイシン軽金属株式会社
Priority to CN202280012147.5A priority Critical patent/CN116761904A/en
Priority to JP2023502252A priority patent/JPWO2022181307A1/ja
Priority to DE112022001208.0T priority patent/DE112022001208T5/en
Publication of WO2022181307A1 publication Critical patent/WO2022181307A1/en
Priority to US18/351,826 priority patent/US20230357889A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0084Obtaining aluminium melting and handling molten aluminium
    • C22B21/0092Remelting scrap, skimmings or any secondary source aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the present invention relates to a method for producing an extruded material using an Al-Zn-Mg-based aluminum alloy, and in particular can effectively utilize recycled aluminum material.
  • High-strength aluminum alloys used for extruded materials are roughly classified into Al--Mg--Si based 6000 series aluminum alloys and Al--Zn--Mg based 7000 series aluminum alloys.
  • the aluminum alloy used for extruded materials is continuously cast into long billets by injecting molten metal with an alloy composition adjusted to a predetermined range from the top of the mold and cooling and solidifying from the bottom or bottom of the mold. Used.
  • Si and Fe components are likely to be mixed as impurities. Therefore, when used products that have been produced as extruded materials using aluminum alloy billets or scrap materials such as mill ends generated in the manufacturing process of products are remelted and used as recycled aluminum materials, this Inclusion of Si and Fe poses a problem.
  • Al--Si--Mg-based aluminum alloys originally have a large Si content, and the allowable range of Fe content is relatively large, so this is not a big problem. If there is, the contamination of Si and Fe causes a decrease in strength and bending formability, which is a serious problem.
  • Patent Document 1 Zn: 5.0 to 7.0 wt%, Mg: 1.0 to 1.50 wt%, Cu: 0.1 to 0.3 wt%, Zr: 0.05 to 0.20 wt% , Cr: 0.03 to 0.2 wt%, Mn: 0.3 wt% or less, Ti: 0.001 to 0.05 wt%, and the balance being Al and unavoidable impurities.
  • Si and Fe are also treated as impurities, and in the examples, Si is suppressed to a level of 0.1 wt% or less and Fe is suppressed to a level of 0.21 wt% or less.
  • the purpose of the present invention is to provide a method for manufacturing an aluminum alloy extruded material that can widen the allowable range of impurities Si and Fe and obtain high strength so that recycled aluminum can be used.
  • an aluminum alloy extruded material made of used or scrap material generated in the manufacturing process is recovered, and 20 to 95% by mass of remelted aluminum recycled material is contained. All in mass %, Zn: 6.0 to 8.0%, Mg: 1.0 to 2.0%, Cu: 0.10 to 0.50%, Zr: 0.10 to 0.25%, Ti
  • the composition of the molten metal is adjusted by remelting the recycled aluminum material and adding the virgin material to it.
  • Mn may be contained at 0.35% or less
  • Sr may be contained at 0.25% or less.
  • the amount of Si and Fe mixed as impurities is expanded to the following mass%, Si: 0.30% or less, Fe: 0.40% or less.
  • the composition of the aluminum alloy is set so that it can be quenched at a cooling rate equivalent to that of air cooling immediately after extrusion, has high strength, and is resistant to SCC.
  • ⁇ Zn component> In the 7000 series aluminum alloys, the Zn component has the highest content, because even at a relatively high concentration, there is little decrease in extrudability. However, excessive addition of Zn lowers the resistance to stress corrosion cracking.
  • Mg component is an important additive component along with Zn because high strength is obtained by the precipitates of the Zn component and MgZn2 .
  • Mg in the range of 1.0 to 2.0%.
  • Cu component improves the strength by dissolution, and when it exists together with MgZn 2 at the grain boundary of the metal structure, it has the effect of lowering the potential difference with the PF zone, thereby improving the SCC resistance.
  • the PF zone refers to a region where precipitates do not exist (Precipitate-Free-Zone) observed on both sides of the grain boundary. However, if added excessively, extrudability deteriorates and general corrosion resistance deteriorates.
  • ⁇ Zr, Mn, Cr components> Zr, Mn, and Cr components are all transition elements, and have the effect of suppressing the depth of the recrystallized layer formed on the surface of the extruded material during extrusion, the effect of refining crystal grains, and the SCC resistance. improves.
  • the Cr component has the sharpest quenching sensitivity, and the required high strength cannot be obtained without high-speed water cooling in die end quenching.
  • Sr 0.10 to 0.25%
  • Mn 0.35% or less
  • Sr component has a great effect on the crystal structure during billet casting, and the addition of a small amount of Sr component suppresses coarsening of crystal grains and suppresses recrystallization on the surface of the extruded material during extrusion.
  • Sr is preferably added at 0.25% or less.
  • Ti component is effective for refining crystal grains during billet casting, and the Ti content is preferably in the range of 0.05 to 0.05%. In addition, a very small amount of B is often contained.
  • a billet for extrusion processing is generally continuously cast as a cylindrical long billet.
  • various casting methods such as hot top casting and float type casting.
  • the billet used in the present invention preferably has a fine structure composed of fine crystal grains, and is cooled and solidified and cast to the lower side of the mold at a casting speed of 50 mm / min or more.
  • the microstructure of the billet preferably has a casting structure with an average grain size of 250 ⁇ m or less, preferably 200 ⁇ m or less.
  • the extrusion processing conditions will be explained.
  • the extruder has a container with an extrusion die attached on the front side, and a cylindrical billet is loaded into this container and hot-extruded from the rear using a stem or the like.
  • the billet is preheated to 400° C. or higher, preferably 430 to 510° C., loaded into a container, and extruded.
  • the extruded material extruded by hot working becomes hot due to the heat of processing, but it is preferable to secure a temperature of 440 ° C. or higher in order to sufficiently perform the subsequent quenching, and at least 325 ° C. or higher is required at the start of cooling by air cooling. do. Further, if the temperature of the extruded material immediately after extrusion exceeds 550° C., it is not preferable because the appearance tends to be distorted.
  • the extruded material extruded as described above is subjected to die end quenching by air cooling. Ensure a cooling rate in the range of 50 to 750°C/min by fan air cooling or the like. In conventional water cooling, the extruded material is often locally quenched, and strain deformation such as cross-sectional deformation is likely to occur in the extruded material. It can also prevent deformation.
  • An extruded material made of a 7000 series aluminum alloy contains G.I. in the crystal structure of the extruded material.
  • P. High strength is obtained by precipitating zones and intermediate phases, and two-stage artificial aging treatment is performed at 90 to 130°C for 1 to 8 hours in the first stage and at 130 to 180°C for 1 to 20 hours in the second stage. done.
  • the present invention can increase the amount of recycled material used, and obtains an extruded material with high strength and excellent SCC resistance.
  • the composition of the aluminum alloy used for evaluation is shown.
  • Billet casting and extrusion conditions are shown.
  • the evaluation results of extruded materials are shown.
  • “billet crystal grain size” refers to the value of the average crystal grain size measured with an optical microscope after cutting out a test piece of the casting cross section from the billet, polishing and etching the piece.
  • “BLT temperature” indicates the preheat temperature when the billet is loaded into the container of the extruder
  • post-extrusion shape temperature is the surface temperature of the extruded material immediately after extrusion
  • cooling start shape temperature indicates the surface temperature of the extruded material at the start of die end insertion and the cooling rate by fan air cooling.
  • “Heat treatment condition” in the table indicates the condition and treatment time of the artificial aging treatment. The evaluation results are shown in the table of FIG.
  • T5 tensile strength”, T5 yield strength”, and “T5 elongation” in the table are JIS-Z2241, JIS-5 test pieces cut out in the extrusion direction from the two-stage artificially processed extruded material, and tensile tests according to JIS standards. Measured by machine.
  • SCC property is obtained by cutting out a test piece from the extruded material in the extrusion direction, applying a stress of 80% of the 0.2% yield strength value shown in "T5 yield strength” in the table in the bending direction, and under the following conditions. 720 cycles were carried out and the presence or absence of cracks was evaluated. " ⁇ " in the table indicates that no crack occurred.
  • aluminum alloy extruded materials with high strength and excellent SCC resistance can be obtained while effectively using recycled aluminum materials, which can be used for structural members of vehicles and various machines.

Abstract

The purpose of the present invention is to provide a method for manufacturing an aluminum alloy extruded material with which it is possible to widen the allowable range for Si and Fe as impurities and obtain a high strength, so as to enable use of an aluminum recycled material. The present invention is a method for manufacturing an aluminum alloy extruded material in which is used an aluminum alloy containing 20-95 mass% of an aluminum recycled material obtained by recovering an extruded material of an aluminum alloy comprising a used scrap material or a scrap material generated during a manufacturing process and re-melting the extruded material, and containing, by mass, 6.0 to 8.0% of Zn, 1.0 to 2.0% of Mg, 0.10 to 0.50% of Cu 0.10 to 0.25% of Zr, and 0.005 to 0.05% of Ti, as well as 0.30% or less of Si and 0.40% or less of Fe as impurities with the remainder made up by Al, the method for manufacturing an aluminum alloy extruded material being characterized in performing cooling from an extruded material temperature of 325-550°C immediately after the extrusion processing at a cooling speed of 50-750°C/min, and then performing a two-stage artificial aging treatment of 1-8 hours at 90-130°C and then 1-20 hours at 130-180°C.

Description

アルミニウム合金押出材の製造方法Method for manufacturing aluminum alloy extruded material
 本発明は、Al-Zn-Mg系アルミニウム合金を用いた押出材の製造方法に関し、特にアルミリサイクル材を有効利用できる。 The present invention relates to a method for producing an extruded material using an Al-Zn-Mg-based aluminum alloy, and in particular can effectively utilize recycled aluminum material.
 押出材に使用される高強度のアルミニウム合金には、大きく分けてAl-Mg-Si系の6000系アルミニウム合金と、Al-Zn-Mg系の7000系アルミニウム合金とが知られている。
 押出材に用いられるアルミニウム合金は、成分を所定の範囲に調整した合金組成の溶湯を鋳型の上方から注入し、鋳型の下部あるいは下方から冷却凝固させることで、長尺のビレットが連続鋳造されて用いられる。
 この製造過程にて不純物として、Si,Fe成分が混入しやすい。
 従って、アルミニウム合金のビレットを用いて押出材として一度生産された使用済みの製品や、製品の製造過程で発生する端材等のスクラップ材をアルミリサイクル材として再溶解して使用する場合に、このSi,Feの混入が問題となる。
 Al-Si-Mg系のアルミニウム合金にあっては、元々Siの含有量が多く、Feの含有量の許容範囲も比較的大きく大きな問題とはならないが、Al-Zn-Mg系のアルミニウム合金にあっては、Si,Feの混入は強度の低下,曲げ成形性等の低下原因となり、重要な課題となる。
High-strength aluminum alloys used for extruded materials are roughly classified into Al--Mg--Si based 6000 series aluminum alloys and Al--Zn--Mg based 7000 series aluminum alloys.
The aluminum alloy used for extruded materials is continuously cast into long billets by injecting molten metal with an alloy composition adjusted to a predetermined range from the top of the mold and cooling and solidifying from the bottom or bottom of the mold. Used.
In this manufacturing process, Si and Fe components are likely to be mixed as impurities.
Therefore, when used products that have been produced as extruded materials using aluminum alloy billets or scrap materials such as mill ends generated in the manufacturing process of products are remelted and used as recycled aluminum materials, this Inclusion of Si and Fe poses a problem.
Al--Si--Mg-based aluminum alloys originally have a large Si content, and the allowable range of Fe content is relatively large, so this is not a big problem. If there is, the contamination of Si and Fe causes a decrease in strength and bending formability, which is a serious problem.
 例えば特許文献1には、Zn:5.0~7.0wt%,Mg:1.0~1.50wt%,Cu:0.1~0.3wt%,Zr:0.05~0.20wt%,Cr:0.03~0.2wt%,Mn:0.3wt%以下,Ti:0.001~0.05wt%で、残部がAlと不可避的不純物からなる高強度アルミニウム合金押出材を開示する。
 同公報に開示するアルミニウム合金押出材もSi,Feが不純物として取り扱われ、実施例を見ると、Siが0.1wt%以下,Feが0.21wt%以下のレベルに抑えられている。
 これは、押出材の表面に形成される再結晶層の大きさや深さを抑えるのにCrが0.03~0.2wt%添加されていることもあり、高強度や耐SCC(Stress Corrosion Cracking)性[耐応力腐食割れ性]を確保するのに、SiやFeの不純物の量を少なく抑える必要があった。
For example, in Patent Document 1, Zn: 5.0 to 7.0 wt%, Mg: 1.0 to 1.50 wt%, Cu: 0.1 to 0.3 wt%, Zr: 0.05 to 0.20 wt% , Cr: 0.03 to 0.2 wt%, Mn: 0.3 wt% or less, Ti: 0.001 to 0.05 wt%, and the balance being Al and unavoidable impurities. .
In the extruded aluminum alloy material disclosed in the same publication, Si and Fe are also treated as impurities, and in the examples, Si is suppressed to a level of 0.1 wt% or less and Fe is suppressed to a level of 0.21 wt% or less.
This is because 0.03 to 0.2 wt% of Cr is added to suppress the size and depth of the recrystallized layer formed on the surface of the extruded material. ) properties [stress corrosion cracking resistance], it was necessary to suppress the amounts of impurities such as Si and Fe.
日本国特許第2928445号公報Japanese Patent No. 2928445
 本発明は、アルミリサイクル材の使用が可能になるように、不純物Si,Feの許容範囲を広くすることができ、高強度が得られるアルミニウム合金押出材の製造方法の提供を目的とする。 The purpose of the present invention is to provide a method for manufacturing an aluminum alloy extruded material that can widen the allowable range of impurities Si and Fe and obtain high strength so that recycled aluminum can be used.
 本発明に係るアルミニウム合金押出材の製造方法は、使用済み又は製造工程で発生するスクラップ材からなるアルミニウム合金の押出材を回収し、再溶解したアルミリサイクル材を20~95質量%含有し、以下全て質量%で、Zn:6.0~8.0%,Mg:1.0~2.0%,Cu:0.10~0.50%,Zr:0.10~0.25%,Ti:0.005~0.05%含有し、不純物としてSi:0.30%以下,Fe:0.40%以下であり、残部がAlであるアルミニウム合金を用いたアルミニウム合金押出材の製造方法であって、押出加工直後の押出材温度325~550℃から冷却速度50~750℃/minにて冷却し、その後に90~130℃にて1~8時間及び130~180℃にて1~20時間の二段人工時効処理することを特徴とする。
 本発明においては、アルミリサイクル材を再溶解し、これにバージン材を加えることで溶湯の成分調整が行われる。
 ここで、さらにMnが0.35%以下で含有し、Srが0.25%以下で含有していてもよい。
 これにより、引張強さ400MPa以上,0.2%耐力380MPa以上の押出材が得られる。
In the method for producing an aluminum alloy extruded material according to the present invention, an aluminum alloy extruded material made of used or scrap material generated in the manufacturing process is recovered, and 20 to 95% by mass of remelted aluminum recycled material is contained. All in mass %, Zn: 6.0 to 8.0%, Mg: 1.0 to 2.0%, Cu: 0.10 to 0.50%, Zr: 0.10 to 0.25%, Ti A method for producing an aluminum alloy extruded material using an aluminum alloy containing: 0.005 to 0.05%, Si: 0.30% or less, Fe: 0.40% or less as impurities, and the balance being Al There, the extruded material is cooled from 325 to 550 ° C. immediately after extrusion at a cooling rate of 50 to 750 ° C./min, and then at 90 to 130 ° C. for 1 to 8 hours and 130 to 180 ° C. for 1 to 20 It is characterized by two-stage artificial aging treatment of time.
In the present invention, the composition of the molten metal is adjusted by remelting the recycled aluminum material and adding the virgin material to it.
Here, Mn may be contained at 0.35% or less, and Sr may be contained at 0.25% or less.
As a result, an extruded material having a tensile strength of 400 MPa or more and a 0.2% yield strength of 380 MPa or more is obtained.
 本発明は、アルミリサイクル材の使用比率を向上させるのにSi,Feの不純物としての混入量を以下質量%で、Si:0.30%以下,Fe:0.40%以下まで許容範囲を広げつつ、押出直後の空冷レベルの冷却速度で焼入れが可能で、高強度で耐SCC性を確保するために設定したアルミニウム合金の組成を以下説明する。
<Zn成分>
 7000系のアルミニウム合金においてZn成分は、比較的高濃度でも押出性の低下が少ないことから、最も含有量が多い。
 しかし、過度に添加されると耐応力腐食割れ性が低下するので、質量%でZn:6.0~8.0%の範囲がよい。
<Mg成分>
 Mg成分は、Zn成分とMgZnの析出物による高強度が得られることから、Znとともに重要な添加成分であるが、添加量が多くなると押出性が低下し、曲げ成形性も低下することから、Mg:1.0~2.0%の範囲とした。
<Cu成分>
 Cu成分は、固溶により強度が向上するとともに、金属組織の結晶粒界にMgZnとともに存在することで、PFゾーンとの電位差を下げる作用があり、耐SCC性が向上する。
 ここでPFゾーンとは、粒界の両側に観測される析出物の存在しない領域(Precipitate - Free - Zone)をいう。
 しかし、過度に添加されると押出性が低下し、一般耐食性が低下することから、Cu:0.10~0.50%の範囲とした。
<Zr,Mn,Cr成分>
 Zr,Mn及びCr成分は、いずれも遷移元素であり、押出加工時に押出材の表面に形成される再結晶層の深さを抑制する作用と、結晶粒の微細化効果があり、耐SCC性が向上する。
 しかし、押出加工直後の焼入れに与える影響に差があり、Cr成分は最も焼入れ感受性を鋭くし、ダイス端焼入れにおいて水冷レベルの高速冷却しないと、要求される高強度が得られない。
 次に焼入れ感受性を鋭くするのはMn成分であり、Zr成分は最も焼入れ感受性が鋭くないことから、本発明はZrとMnの添加により調整し、Cr成分はできるだけ少なくした。
 よって、Zr:0.10~0.25%,Mn:0.35%以下にし、Crは添加しない方が好ましく、添加する場合には0.05%未満の不可避的不純物レベルに抑えるのが好ましい。
<Sr成分>
 Sr成分は、ビレットを鋳造する際の結晶組織に大きな影響を与え、Sr成分を微量添加することで結晶粒の粗大化を抑制するとともに、押出加工時の押出材表面の再結晶を抑制する。
 本発明では必須成分ではないが、Sr:0.25%以下で添加されているのが好ましい。
 しかし、過度に添加されると粗大な晶出物が出現し、強度が低下することから、遷移元素の添加量と調整する必要があり、[Mn+Zr+Sr]の合計は0.25~0.50%の範囲にする。
<Ti成分>
 Ti成分は、ビレット鋳造時の結晶粒の微細化に有効であり、Ti:0.05~0.05%の範囲がよい。
 なお、Bが微量含まれることも多い。
In the present invention, in order to improve the usage ratio of recycled aluminum materials, the amount of Si and Fe mixed as impurities is expanded to the following mass%, Si: 0.30% or less, Fe: 0.40% or less. The composition of the aluminum alloy is set so that it can be quenched at a cooling rate equivalent to that of air cooling immediately after extrusion, has high strength, and is resistant to SCC.
<Zn component>
In the 7000 series aluminum alloys, the Zn component has the highest content, because even at a relatively high concentration, there is little decrease in extrudability.
However, excessive addition of Zn lowers the resistance to stress corrosion cracking.
<Mg component>
The Mg component is an important additive component along with Zn because high strength is obtained by the precipitates of the Zn component and MgZn2 . , Mg: in the range of 1.0 to 2.0%.
<Cu component>
The Cu component improves the strength by dissolution, and when it exists together with MgZn 2 at the grain boundary of the metal structure, it has the effect of lowering the potential difference with the PF zone, thereby improving the SCC resistance.
Here, the PF zone refers to a region where precipitates do not exist (Precipitate-Free-Zone) observed on both sides of the grain boundary.
However, if added excessively, extrudability deteriorates and general corrosion resistance deteriorates.
<Zr, Mn, Cr components>
Zr, Mn, and Cr components are all transition elements, and have the effect of suppressing the depth of the recrystallized layer formed on the surface of the extruded material during extrusion, the effect of refining crystal grains, and the SCC resistance. improves.
However, there is a difference in the effect on quenching immediately after extrusion. The Cr component has the sharpest quenching sensitivity, and the required high strength cannot be obtained without high-speed water cooling in die end quenching.
Next, it is the Mn component that sharpens the quenching sensitivity, and the Zr component has the least quenching sensitivity.
Therefore, Zr: 0.10 to 0.25%, Mn: 0.35% or less, it is preferable not to add Cr, and when it is added, it is preferable to suppress the level of unavoidable impurities to less than 0.05%. .
<Sr component>
The Sr component has a great effect on the crystal structure during billet casting, and the addition of a small amount of Sr component suppresses coarsening of crystal grains and suppresses recrystallization on the surface of the extruded material during extrusion.
Although it is not an essential component in the present invention, Sr is preferably added at 0.25% or less.
However, if it is added excessively, coarse crystallized substances appear and the strength decreases, so it is necessary to adjust the amount of transition elements added, and the total of [Mn + Zr + Sr] is 0.25 to 0.50%. range.
<Ti component>
The Ti component is effective for refining crystal grains during billet casting, and the Ti content is preferably in the range of 0.05 to 0.05%.
In addition, a very small amount of B is often contained.
 次に、ビレットの鋳造及び均質化処理について説明する。
 押出加工用のビレットは、一般的に円柱状の長尺ビレットとして連続鋳造される。
 鋳造方法としては、ホットトップ鋳造法,フロート式鋳造方法等、いろいろな方式が行われているが、いずれの場合にも鋳型下部あるいは下側で周囲から冷却し、凝固することで、長尺の円柱ビレットに鋳造される。
 本発明に用いるビレットは、鋳造組織が微細な結晶粒からなる微細組織であるのが好ましく、冷却凝固されて鋳型の下側に鋳造されてくる鋳造速度が50mm/min以上であるのが好ましく、その結果としてビレットの微細組織が平均粒径250μm以下、好ましくは200μm以下の鋳造組織になっているのが好ましい。
Next, billet casting and homogenization processing will be described.
A billet for extrusion processing is generally continuously cast as a cylindrical long billet.
There are various casting methods such as hot top casting and float type casting. Cast into a cylindrical billet.
The billet used in the present invention preferably has a fine structure composed of fine crystal grains, and is cooled and solidified and cast to the lower side of the mold at a casting speed of 50 mm / min or more. As a result, the microstructure of the billet preferably has a casting structure with an average grain size of 250 µm or less, preferably 200 µm or less.
 押出加工条件について、説明する。
 押出機は、前方側に押出ダイスを取り付けたコンテナを有し、このコンテナに円柱ビレットを装填し、後方からステム等にて熱間押出する。
 ここでビレットは、400℃以上、好ましくは430~510℃に余熱した状態でコンテナに装填され、押出加工される。
 熱間加工により押し出された押出材は加工熱によっても高温になるが、その後の焼入れを充分に行うには440℃以上を確保するのが好ましく、少なくとも空冷による冷却開始時には325℃以上を必要とする。
 また、押出直後の押出材の温度が550℃を超えると、外観にムシレ欠陥等が生じやすく、好ましくない。
The extrusion processing conditions will be explained.
The extruder has a container with an extrusion die attached on the front side, and a cylindrical billet is loaded into this container and hot-extruded from the rear using a stem or the like.
Here, the billet is preheated to 400° C. or higher, preferably 430 to 510° C., loaded into a container, and extruded.
The extruded material extruded by hot working becomes hot due to the heat of processing, but it is preferable to secure a temperature of 440 ° C. or higher in order to sufficiently perform the subsequent quenching, and at least 325 ° C. or higher is required at the start of cooling by air cooling. do.
Further, if the temperature of the extruded material immediately after extrusion exceeds 550° C., it is not preferable because the appearance tends to be distorted.
 上記のように押出加工した押出材は、空冷によるダイス端焼入れを行う。
 ファン空冷等により冷却速度を50~750℃/minの範囲を確保する。
 従来の水冷では、押出材が局部的に急冷されることが多く、押出材に断面変形等の歪み変形が発生しやすかったが、本発明においては空冷で充分に高強度が得られ、冷却歪み変形を抑えることもできる。
The extruded material extruded as described above is subjected to die end quenching by air cooling.
Ensure a cooling rate in the range of 50 to 750°C/min by fan air cooling or the like.
In conventional water cooling, the extruded material is often locally quenched, and strain deformation such as cross-sectional deformation is likely to occur in the extruded material. It can also prevent deformation.
 押出後の人工時効処理について説明する。
 7000系のアルミニウム合金からなる押出材は、押出材の結晶組織中にG.P.ゾーンや中間相を析出させることで高強度が得られ、一段目に90~130℃にて1~8時間,二段目に130~180℃にて1~20時間の二段人工時効処理が行われる。
The artificial aging treatment after extrusion will be described.
An extruded material made of a 7000 series aluminum alloy contains G.I. in the crystal structure of the extruded material. P. High strength is obtained by precipitating zones and intermediate phases, and two-stage artificial aging treatment is performed at 90 to 130°C for 1 to 8 hours in the first stage and at 130 to 180°C for 1 to 20 hours in the second stage. done.
 本発明は、上記のようなアルミニウムの合金組成と、製造条件を採用したことにより、リサイクル材の使用量を多くすることができ、高強度で耐SCC性に優れた押出材が得られる。 By adopting the aluminum alloy composition and manufacturing conditions as described above, the present invention can increase the amount of recycled material used, and obtains an extruded material with high strength and excellent SCC resistance.
評価に用いたアルミニウム合金の組成を示す。The composition of the aluminum alloy used for evaluation is shown. ビレットの鋳造及び押出条件を示す。Billet casting and extrusion conditions are shown. 押出材の評価結果を示す。The evaluation results of extruded materials are shown.
 種々のアルミニウム合金の組成を調整し、直径8インチの円柱ビレットを試作し、押出条件を検討しながら評価したので、以下説明する。
 図1の表に示した各種合金組成のアルミニウム合金の溶湯を用いて、図2の表に示した鋳造速度にて8インチの長尺ビレットを鋳造した。
 この場合に、図1の表の組成を調整するのに、図2の表に示した割合のアルミリサイクル材を用いた。
 次に図2の表で「HOMO」と表示した均質処理条件で、均質化処理を行った後に直に、図2の表「HOMO後冷却速度」の条件にて冷却を実施した。
 なお、表中に示した各条件は、本発明に適した条件を示す。
 表中「ビレット結晶粒径」とは、ビレットから鋳造断面の試験片を切り出し、研磨処理,エッチング処理した後に、光学顕微鏡にて平均結晶粒径の値を計測した。
 表中「BLT温度」はビレットを押出機のコンテナに装填する際の余熱温度を示し、「押出後形材温度」は押出加工直後の押出材の表面温度、「冷却開始形材温度」及び「押出後冷却速度」はダイス端入れ開始の押出材の表面温度及びファン空冷による冷却速度を示す。
 表中「熱処理条件」は、人工時効処理の条件及び処理時間を示す。
 図3の表に評価結果を示す。
 表中「T5引張強度」,「T5耐力」,「T5伸び」は、二段人工処理した押出材から押出方向にJIS-Z2241,JIS-5号試験片を切り出し、JIS規格に準じた引張り試験機にて計測した。
 表中「SCC性」は、押出材を押出方向に試験片を切り出し、表中「T5耐力」に示した0.2%耐力値の80%の応力を曲げ方向に負荷し、次の条件で720サイクル実施し、割れの有無を評価した。
 表中「○」は、割れが生じなかったことを示す。
 耐SCC性試験<1サイクル>
 3.5%NaCl水溶液に25℃,10分間浸漬後に25℃,湿度40%の雰囲気中に50分間保持し、その後に試験炉から取り出して自然乾燥させた。
 表中「ミクロ組織,表面再結晶深」は、押出材の押出断面を研磨及びエッチング処理し、光学顕微鏡にて押出材の表面側に形成される再結晶層の深さを測定した。
By adjusting the composition of various aluminum alloys, cylindrical billets with a diameter of 8 inches were experimentally produced and evaluated while examining the extrusion conditions, which will be described below.
Using molten aluminum alloys of various alloy compositions shown in the table of FIG. 1, 8-inch long billets were cast at the casting speeds shown in the table of FIG.
In this case, to adjust the composition shown in the table of FIG. 1, recycled aluminum material was used in the ratio shown in the table of FIG.
Next, immediately after performing homogenization treatment under the homogenization treatment conditions indicated as "HOMO" in the table of FIG. 2, cooling was performed under the conditions of "cooling rate after HOMO" in the table of FIG.
Each condition shown in the table indicates conditions suitable for the present invention.
In the table, "billet crystal grain size" refers to the value of the average crystal grain size measured with an optical microscope after cutting out a test piece of the casting cross section from the billet, polishing and etching the piece.
In the table, "BLT temperature" indicates the preheat temperature when the billet is loaded into the container of the extruder, "post-extrusion shape temperature" is the surface temperature of the extruded material immediately after extrusion, "cooling start shape temperature" and ""Post-extrusion cooling rate" indicates the surface temperature of the extruded material at the start of die end insertion and the cooling rate by fan air cooling.
"Heat treatment condition" in the table indicates the condition and treatment time of the artificial aging treatment.
The evaluation results are shown in the table of FIG.
"T5 tensile strength", "T5 yield strength", and "T5 elongation" in the table are JIS-Z2241, JIS-5 test pieces cut out in the extrusion direction from the two-stage artificially processed extruded material, and tensile tests according to JIS standards. Measured by machine.
In the table, "SCC property" is obtained by cutting out a test piece from the extruded material in the extrusion direction, applying a stress of 80% of the 0.2% yield strength value shown in "T5 yield strength" in the table in the bending direction, and under the following conditions. 720 cycles were carried out and the presence or absence of cracks was evaluated.
"○" in the table indicates that no crack occurred.
SCC resistance test <1 cycle>
After being immersed in a 3.5% NaCl aqueous solution at 25° C. for 10 minutes, it was held in an atmosphere of 25° C. and humidity of 40% for 50 minutes, then taken out from the test furnace and air-dried.
"Microstructure, surface recrystallization depth" in the table was obtained by polishing and etching the extruded cross section of the extruded material and measuring the depth of the recrystallized layer formed on the surface side of the extruded material with an optical microscope.
 図3の評価結果から、次のことが言える。
 実施例1~8は、いずれもアルミニウム合金の組成及びアルミビレットの鋳造条件,押出加工条件が設定範囲であるため、アルミリサイクル材の使用率が20~95%の範囲で高く設定できた。
 これに対して比較例1は、アルミリサイクル材100%であったために、Si:0.30%以下,Fe:0.40%以下に抑えることができず、耐SCC性が目標未達となった。
 比較例2は、アルミリサイクル材の使用量を25%に抑えたものの、合金組成が設定から外れているために耐SCC性が目標未達であった。
 比較例3は、アルミリサイクル材を100%使用したものであるが、この場合には強度も目標未達であった。
From the evaluation results in FIG. 3, the following can be said.
In Examples 1 to 8, the composition of the aluminum alloy, the casting conditions of the aluminum billet, and the extrusion processing conditions were set within the set ranges, so that the usage rate of the recycled aluminum material could be set high within the range of 20 to 95%.
On the other hand, in Comparative Example 1, since the recycled aluminum material was 100%, Si: 0.30% or less and Fe: 0.40% or less could not be suppressed, and the SCC resistance did not reach the target. rice field.
In Comparative Example 2, although the amount of recycled aluminum material used was suppressed to 25%, the target SCC resistance was not achieved because the alloy composition was outside the set range.
In Comparative Example 3, 100% recycled aluminum material was used, but in this case the target strength was also not achieved.
 本発明は、アルミリサイクル材を有効利用しつつ、高強度で耐SCC性に優れたアルミニウム合金押出材が得られ、車両や各種機械の構造部材に利用できる。 According to the present invention, aluminum alloy extruded materials with high strength and excellent SCC resistance can be obtained while effectively using recycled aluminum materials, which can be used for structural members of vehicles and various machines.

Claims (3)

  1.  使用済み又は製造工程で発生するスクラップ材からなるアルミニウム合金の押出材を回収し、再溶解したアルミリサイクル材を20~95質量%含有し、以下全て質量%で、Zn:6.0~8.0%,Mg:1.0~2.0%,Cu:0.10~0.50%,Zr:0.10~0.25%,Ti:0.005~0.05%含有し、
    不純物としてSi:0.30%以下,Fe:0.40%以下であり、残部がAlであるアルミニウム合金を用いたアルミニウム合金押出材の製造方法であって、
    押出加工直後の押出材温度325~550℃から冷却速度50~750℃/minにて冷却し、
    その後に90~130℃にて1~8時間及び130~180℃にて1~20時間の二段人工時効処理することを特徴とするアルミニウム合金押出材の製造方法。
    It contains 20 to 95% by mass of aluminum alloy extruded material that is used or made of scrap material generated in the manufacturing process and is remelted. 0%, Mg: 1.0 to 2.0%, Cu: 0.10 to 0.50%, Zr: 0.10 to 0.25%, Ti: 0.005 to 0.05%,
    A method for producing an aluminum alloy extruded material using an aluminum alloy containing as impurities Si: 0.30% or less, Fe: 0.40% or less, and the balance being Al,
    Cooling at a cooling rate of 50 to 750 ° C./min from the extruded material temperature of 325 to 550 ° C. immediately after extrusion processing,
    A method for producing an aluminum alloy extruded material, characterized in that it is then subjected to a two-stage artificial aging treatment at 90 to 130° C. for 1 to 8 hours and at 130 to 180° C. for 1 to 20 hours.
  2.  さらにMnが0.35%以下で含有し、Srが0.25%以下で含有するアルミニウム合金を用いたことを特徴とする請求項1記載のアルミニウム合金押出材の製造方法。 The method for producing an aluminum alloy extruded material according to claim 1, wherein an aluminum alloy containing 0.35% or less of Mn and 0.25% or less of Sr is used.
  3.  引張強さ400MPa以上,0.2%耐力380MPa以上であることを特徴とする請求項1又は2記載のアルミニウム合金押出材の製造方法。 The method for producing an aluminum alloy extruded material according to claim 1 or 2, characterized in that the tensile strength is 400 MPa or more and the 0.2% yield strength is 380 MPa or more.
PCT/JP2022/004678 2021-02-25 2022-02-07 Method for manufacturing aluminum alloy extruded material WO2022181307A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280012147.5A CN116761904A (en) 2021-02-25 2022-02-07 Method for producing aluminum alloy extruded material
JP2023502252A JPWO2022181307A1 (en) 2021-02-25 2022-02-07
DE112022001208.0T DE112022001208T5 (en) 2021-02-25 2022-02-07 Process for producing an extruded aluminum alloy material
US18/351,826 US20230357889A1 (en) 2021-02-25 2023-07-13 Method For Manufacturing Aluminum Alloy Extruded Material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021028184 2021-02-25
JP2021-028184 2021-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/351,826 Continuation US20230357889A1 (en) 2021-02-25 2023-07-13 Method For Manufacturing Aluminum Alloy Extruded Material

Publications (1)

Publication Number Publication Date
WO2022181307A1 true WO2022181307A1 (en) 2022-09-01

Family

ID=83048261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004678 WO2022181307A1 (en) 2021-02-25 2022-02-07 Method for manufacturing aluminum alloy extruded material

Country Status (5)

Country Link
US (1) US20230357889A1 (en)
JP (1) JPWO2022181307A1 (en)
CN (1) CN116761904A (en)
DE (1) DE112022001208T5 (en)
WO (1) WO2022181307A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233713A1 (en) * 2022-05-30 2023-12-07 アイシン軽金属株式会社 Manufacturing method for high-strength aluminum alloy extruded material having excellent scc resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316295A (en) * 2005-05-10 2006-11-24 Furukawa Sky Kk Aluminum alloy extruded material for high temperature forming, and high temperature formed product thereof
JP2019039042A (en) * 2017-08-25 2019-03-14 アイシン軽金属株式会社 Aluminum alloy for extrusion molding and method for producing extrusion material using the same
JP2020139228A (en) * 2019-02-22 2020-09-03 アイシン軽金属株式会社 Method for producing aluminum alloy extrusion material
JP2020164893A (en) * 2019-03-28 2020-10-08 株式会社神戸製鋼所 Automobile door beam made of extruded aluminum alloy material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2928445B2 (en) 1993-08-31 1999-08-03 株式会社神戸製鋼所 High-strength aluminum alloy extruded material and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316295A (en) * 2005-05-10 2006-11-24 Furukawa Sky Kk Aluminum alloy extruded material for high temperature forming, and high temperature formed product thereof
JP2019039042A (en) * 2017-08-25 2019-03-14 アイシン軽金属株式会社 Aluminum alloy for extrusion molding and method for producing extrusion material using the same
JP2020139228A (en) * 2019-02-22 2020-09-03 アイシン軽金属株式会社 Method for producing aluminum alloy extrusion material
JP2020164893A (en) * 2019-03-28 2020-10-08 株式会社神戸製鋼所 Automobile door beam made of extruded aluminum alloy material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233713A1 (en) * 2022-05-30 2023-12-07 アイシン軽金属株式会社 Manufacturing method for high-strength aluminum alloy extruded material having excellent scc resistance

Also Published As

Publication number Publication date
DE112022001208T5 (en) 2024-01-11
US20230357889A1 (en) 2023-11-09
CN116761904A (en) 2023-09-15
JPWO2022181307A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
JP5421613B2 (en) High strength aluminum alloy wire rod excellent in softening resistance and manufacturing method thereof
JP6955483B2 (en) High-strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability and its manufacturing method
JP5335056B2 (en) Aluminum alloy wire for bolt, bolt and method for producing the same
RU2413025C2 (en) Product out of deformed aluminium alloy of aa7000 series and procedure for production of said product
JP2012207302A (en) METHOD FOR MANUFACTURING EXTRUDED MATERIAL OF HEAT TREATMENT TYPE Al-Zn-Mg-BASED ALUMINUM ALLOY
FR2907466A1 (en) ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME
WO2012165086A1 (en) Aluminum alloy and method of manufacturing extrusion using same
JP4328996B2 (en) Al-Mg-Si aluminum alloy cold forging manufacturing method
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
JP7479854B2 (en) Manufacturing method of aluminum alloy extrusion material
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP2021110042A (en) Production method for high-strength aluminum alloy extrusion material excellent in toughness and corrosion resistance
JP2021123798A (en) Method for producing high-strength aluminum alloy extruded material
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
TWI434939B (en) Aluminium alloy and process of preparation thereof
US20230357889A1 (en) Method For Manufacturing Aluminum Alloy Extruded Material
US20230357902A1 (en) Method For Manufacturing Aluminum Alloy Extruded Material With High Strength And Excellent In SCC Resistance And Hardenability
JP2000212673A (en) Aluminum alloy sheet for aircraft stringer excellent in stress corrosion cracking resistance and its production
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
JP5802114B2 (en) Aluminum alloy wire for bolt, bolt and method for producing aluminum alloy wire for bolt
JP5435266B2 (en) Anodized aluminum alloy wrought material with excellent fatigue strength, toughness, and glitter, and method for producing the same
JP5631379B2 (en) High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance
JP5088703B2 (en) Al-Mg-Si aluminum alloy cold forging with excellent appearance quality
JP2003155535A (en) Aluminum alloy extruded material for automobile bracket, and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502252

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280012147.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022001208

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759347

Country of ref document: EP

Kind code of ref document: A1