WO2022181307A1 - Procédé de fabrication d'un matériau extrudé en alliage d'aluminium - Google Patents

Procédé de fabrication d'un matériau extrudé en alliage d'aluminium Download PDF

Info

Publication number
WO2022181307A1
WO2022181307A1 PCT/JP2022/004678 JP2022004678W WO2022181307A1 WO 2022181307 A1 WO2022181307 A1 WO 2022181307A1 JP 2022004678 W JP2022004678 W JP 2022004678W WO 2022181307 A1 WO2022181307 A1 WO 2022181307A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
extruded material
less
aluminum
alloy extruded
Prior art date
Application number
PCT/JP2022/004678
Other languages
English (en)
Japanese (ja)
Inventor
果林 柴田
宏昭 松井
Original Assignee
アイシン軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン軽金属株式会社 filed Critical アイシン軽金属株式会社
Priority to JP2023502252A priority Critical patent/JPWO2022181307A1/ja
Priority to DE112022001208.0T priority patent/DE112022001208T5/de
Priority to CN202280012147.5A priority patent/CN116761904A/zh
Publication of WO2022181307A1 publication Critical patent/WO2022181307A1/fr
Priority to US18/351,826 priority patent/US20230357889A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0084Obtaining aluminium melting and handling molten aluminium
    • C22B21/0092Remelting scrap, skimmings or any secondary source aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the present invention relates to a method for producing an extruded material using an Al-Zn-Mg-based aluminum alloy, and in particular can effectively utilize recycled aluminum material.
  • High-strength aluminum alloys used for extruded materials are roughly classified into Al--Mg--Si based 6000 series aluminum alloys and Al--Zn--Mg based 7000 series aluminum alloys.
  • the aluminum alloy used for extruded materials is continuously cast into long billets by injecting molten metal with an alloy composition adjusted to a predetermined range from the top of the mold and cooling and solidifying from the bottom or bottom of the mold. Used.
  • Si and Fe components are likely to be mixed as impurities. Therefore, when used products that have been produced as extruded materials using aluminum alloy billets or scrap materials such as mill ends generated in the manufacturing process of products are remelted and used as recycled aluminum materials, this Inclusion of Si and Fe poses a problem.
  • Al--Si--Mg-based aluminum alloys originally have a large Si content, and the allowable range of Fe content is relatively large, so this is not a big problem. If there is, the contamination of Si and Fe causes a decrease in strength and bending formability, which is a serious problem.
  • Patent Document 1 Zn: 5.0 to 7.0 wt%, Mg: 1.0 to 1.50 wt%, Cu: 0.1 to 0.3 wt%, Zr: 0.05 to 0.20 wt% , Cr: 0.03 to 0.2 wt%, Mn: 0.3 wt% or less, Ti: 0.001 to 0.05 wt%, and the balance being Al and unavoidable impurities.
  • Si and Fe are also treated as impurities, and in the examples, Si is suppressed to a level of 0.1 wt% or less and Fe is suppressed to a level of 0.21 wt% or less.
  • the purpose of the present invention is to provide a method for manufacturing an aluminum alloy extruded material that can widen the allowable range of impurities Si and Fe and obtain high strength so that recycled aluminum can be used.
  • an aluminum alloy extruded material made of used or scrap material generated in the manufacturing process is recovered, and 20 to 95% by mass of remelted aluminum recycled material is contained. All in mass %, Zn: 6.0 to 8.0%, Mg: 1.0 to 2.0%, Cu: 0.10 to 0.50%, Zr: 0.10 to 0.25%, Ti
  • the composition of the molten metal is adjusted by remelting the recycled aluminum material and adding the virgin material to it.
  • Mn may be contained at 0.35% or less
  • Sr may be contained at 0.25% or less.
  • the amount of Si and Fe mixed as impurities is expanded to the following mass%, Si: 0.30% or less, Fe: 0.40% or less.
  • the composition of the aluminum alloy is set so that it can be quenched at a cooling rate equivalent to that of air cooling immediately after extrusion, has high strength, and is resistant to SCC.
  • ⁇ Zn component> In the 7000 series aluminum alloys, the Zn component has the highest content, because even at a relatively high concentration, there is little decrease in extrudability. However, excessive addition of Zn lowers the resistance to stress corrosion cracking.
  • Mg component is an important additive component along with Zn because high strength is obtained by the precipitates of the Zn component and MgZn2 .
  • Mg in the range of 1.0 to 2.0%.
  • Cu component improves the strength by dissolution, and when it exists together with MgZn 2 at the grain boundary of the metal structure, it has the effect of lowering the potential difference with the PF zone, thereby improving the SCC resistance.
  • the PF zone refers to a region where precipitates do not exist (Precipitate-Free-Zone) observed on both sides of the grain boundary. However, if added excessively, extrudability deteriorates and general corrosion resistance deteriorates.
  • ⁇ Zr, Mn, Cr components> Zr, Mn, and Cr components are all transition elements, and have the effect of suppressing the depth of the recrystallized layer formed on the surface of the extruded material during extrusion, the effect of refining crystal grains, and the SCC resistance. improves.
  • the Cr component has the sharpest quenching sensitivity, and the required high strength cannot be obtained without high-speed water cooling in die end quenching.
  • Sr 0.10 to 0.25%
  • Mn 0.35% or less
  • Sr component has a great effect on the crystal structure during billet casting, and the addition of a small amount of Sr component suppresses coarsening of crystal grains and suppresses recrystallization on the surface of the extruded material during extrusion.
  • Sr is preferably added at 0.25% or less.
  • Ti component is effective for refining crystal grains during billet casting, and the Ti content is preferably in the range of 0.05 to 0.05%. In addition, a very small amount of B is often contained.
  • a billet for extrusion processing is generally continuously cast as a cylindrical long billet.
  • various casting methods such as hot top casting and float type casting.
  • the billet used in the present invention preferably has a fine structure composed of fine crystal grains, and is cooled and solidified and cast to the lower side of the mold at a casting speed of 50 mm / min or more.
  • the microstructure of the billet preferably has a casting structure with an average grain size of 250 ⁇ m or less, preferably 200 ⁇ m or less.
  • the extrusion processing conditions will be explained.
  • the extruder has a container with an extrusion die attached on the front side, and a cylindrical billet is loaded into this container and hot-extruded from the rear using a stem or the like.
  • the billet is preheated to 400° C. or higher, preferably 430 to 510° C., loaded into a container, and extruded.
  • the extruded material extruded by hot working becomes hot due to the heat of processing, but it is preferable to secure a temperature of 440 ° C. or higher in order to sufficiently perform the subsequent quenching, and at least 325 ° C. or higher is required at the start of cooling by air cooling. do. Further, if the temperature of the extruded material immediately after extrusion exceeds 550° C., it is not preferable because the appearance tends to be distorted.
  • the extruded material extruded as described above is subjected to die end quenching by air cooling. Ensure a cooling rate in the range of 50 to 750°C/min by fan air cooling or the like. In conventional water cooling, the extruded material is often locally quenched, and strain deformation such as cross-sectional deformation is likely to occur in the extruded material. It can also prevent deformation.
  • An extruded material made of a 7000 series aluminum alloy contains G.I. in the crystal structure of the extruded material.
  • P. High strength is obtained by precipitating zones and intermediate phases, and two-stage artificial aging treatment is performed at 90 to 130°C for 1 to 8 hours in the first stage and at 130 to 180°C for 1 to 20 hours in the second stage. done.
  • the present invention can increase the amount of recycled material used, and obtains an extruded material with high strength and excellent SCC resistance.
  • the composition of the aluminum alloy used for evaluation is shown.
  • Billet casting and extrusion conditions are shown.
  • the evaluation results of extruded materials are shown.
  • “billet crystal grain size” refers to the value of the average crystal grain size measured with an optical microscope after cutting out a test piece of the casting cross section from the billet, polishing and etching the piece.
  • “BLT temperature” indicates the preheat temperature when the billet is loaded into the container of the extruder
  • post-extrusion shape temperature is the surface temperature of the extruded material immediately after extrusion
  • cooling start shape temperature indicates the surface temperature of the extruded material at the start of die end insertion and the cooling rate by fan air cooling.
  • “Heat treatment condition” in the table indicates the condition and treatment time of the artificial aging treatment. The evaluation results are shown in the table of FIG.
  • T5 tensile strength”, T5 yield strength”, and “T5 elongation” in the table are JIS-Z2241, JIS-5 test pieces cut out in the extrusion direction from the two-stage artificially processed extruded material, and tensile tests according to JIS standards. Measured by machine.
  • SCC property is obtained by cutting out a test piece from the extruded material in the extrusion direction, applying a stress of 80% of the 0.2% yield strength value shown in "T5 yield strength” in the table in the bending direction, and under the following conditions. 720 cycles were carried out and the presence or absence of cracks was evaluated. " ⁇ " in the table indicates that no crack occurred.
  • aluminum alloy extruded materials with high strength and excellent SCC resistance can be obtained while effectively using recycled aluminum materials, which can be used for structural members of vehicles and various machines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Of Metal (AREA)

Abstract

Le but de la présente invention est de fournir un procédé de fabrication d'un matériau extrudé en alliage d'aluminium permettant d'élargir la plage admissible pour le Si et le Fe en tant qu'impuretés et d'obtenir une résistance élevée, de manière à permettre l'utilisation d'un matériau recyclé en aluminium. La présente invention concerne un procédé de fabrication d'un matériau extrudé en alliage d'aluminium dans lequel est utilisé un alliage d'aluminium contenant 20 à 95 % en masse d'un matériau recyclé en aluminium obtenu par récupération d'un matériau extrudé d'un alliage d'aluminium comprenant un matériau de rebut usagé ou un matériau de rebut généré pendant un processus de fabrication et la refusion du matériau extrudé, et contenant, en masse, 6,0 à 8,0 % de Zn, 1,0 à 2,0 % de Mg, 0,10 à 0,50 % de Cu, 0,10 à 0,25 % de Zr, et 0,005 à 0,05 % de Ti, ainsi que 0,30 % ou moins de Si et 0,40 % ou moins de Fe en tant qu'impuretés, le reste étant constitué par de l'Al, le procédé de fabrication d'un matériau extrudé en alliage d'aluminium étant caractérisé par la réalisation d'un refroidissement à partir d'une température de matériau extrudé de 325 à 550 °C immédiatement après le traitement d'extrusion à une vitesse de refroidissement de 50 à 750 °C/min, puis la réalisation d'un traitement de vieillissement artificiel en deux étapes de 1 à 8 heures à 90-130 °C, puis de 1 à 20 heures à 130-180° C.
PCT/JP2022/004678 2021-02-25 2022-02-07 Procédé de fabrication d'un matériau extrudé en alliage d'aluminium WO2022181307A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023502252A JPWO2022181307A1 (fr) 2021-02-25 2022-02-07
DE112022001208.0T DE112022001208T5 (de) 2021-02-25 2022-02-07 Verfahren zur Herstellung eines stranggepressten Aluminiumlegierungsmaterials
CN202280012147.5A CN116761904A (zh) 2021-02-25 2022-02-07 铝合金挤压材料的制造方法
US18/351,826 US20230357889A1 (en) 2021-02-25 2023-07-13 Method For Manufacturing Aluminum Alloy Extruded Material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-028184 2021-02-25
JP2021028184 2021-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/351,826 Continuation US20230357889A1 (en) 2021-02-25 2023-07-13 Method For Manufacturing Aluminum Alloy Extruded Material

Publications (1)

Publication Number Publication Date
WO2022181307A1 true WO2022181307A1 (fr) 2022-09-01

Family

ID=83048261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004678 WO2022181307A1 (fr) 2021-02-25 2022-02-07 Procédé de fabrication d'un matériau extrudé en alliage d'aluminium

Country Status (5)

Country Link
US (1) US20230357889A1 (fr)
JP (1) JPWO2022181307A1 (fr)
CN (1) CN116761904A (fr)
DE (1) DE112022001208T5 (fr)
WO (1) WO2022181307A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233713A1 (fr) * 2022-05-30 2023-12-07 アイシン軽金属株式会社 Procédé de fabrication d'un matériau extrudé en alliage d'aluminium à haute résistance ayant une excellente résistance scc

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316295A (ja) * 2005-05-10 2006-11-24 Furukawa Sky Kk 高温成形用アルミニウム合金押出材およびその高温成形品
JP2019039042A (ja) * 2017-08-25 2019-03-14 アイシン軽金属株式会社 押出成形用のアルミニウム合金及びそれを用いた押出材の製造方法
JP2020139228A (ja) * 2019-02-22 2020-09-03 アイシン軽金属株式会社 アルミニウム合金押出材の製造方法
JP2020164893A (ja) * 2019-03-28 2020-10-08 株式会社神戸製鋼所 アルミニウム合金押出材からなる自動車のドアビーム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2928445B2 (ja) 1993-08-31 1999-08-03 株式会社神戸製鋼所 高強度アルミニウム合金押出材及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316295A (ja) * 2005-05-10 2006-11-24 Furukawa Sky Kk 高温成形用アルミニウム合金押出材およびその高温成形品
JP2019039042A (ja) * 2017-08-25 2019-03-14 アイシン軽金属株式会社 押出成形用のアルミニウム合金及びそれを用いた押出材の製造方法
JP2020139228A (ja) * 2019-02-22 2020-09-03 アイシン軽金属株式会社 アルミニウム合金押出材の製造方法
JP2020164893A (ja) * 2019-03-28 2020-10-08 株式会社神戸製鋼所 アルミニウム合金押出材からなる自動車のドアビーム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233713A1 (fr) * 2022-05-30 2023-12-07 アイシン軽金属株式会社 Procédé de fabrication d'un matériau extrudé en alliage d'aluminium à haute résistance ayant une excellente résistance scc

Also Published As

Publication number Publication date
DE112022001208T5 (de) 2024-01-11
JPWO2022181307A1 (fr) 2022-09-01
US20230357889A1 (en) 2023-11-09
CN116761904A (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
JP5421613B2 (ja) 耐軟化性に優れた高強度アルミニウム合金線棒材およびその製造方法
JP6955483B2 (ja) 耐食性に優れ、良好な焼入れ性を有する高強度アルミニウム合金押出材及びその製造方法
JP5335056B2 (ja) ボルト用アルミニウム合金線及びボルト並びにそれらの製造方法
RU2413025C2 (ru) Продукт из деформируемого алюминиевого сплава серии аа7000 и способ производства упомянутого продукта
JP2012207302A (ja) 熱処理型Al−Zn−Mg系アルミニウム合金押出材の製造方法
FR2907466A1 (fr) Produits en alliage d'aluminium de la serie aa7000 et leur procede de fabrication
WO2012165086A1 (fr) Alliage d'aluminium et procédé de production d'extrusion l'utilisant
JP4328996B2 (ja) Al−Mg−Si系アルミニウム合金冷間鍛造品の製造方法
JP5204793B2 (ja) 耐応力腐食割れ性に優れた高強度アルミニウム合金押出材
JP7479854B2 (ja) アルミニウム合金押出材の製造方法
JP2004084058A (ja) 輸送機構造材用アルミニウム合金鍛造材の製造方法およびアルミニウム合金鍛造材
JP2021110042A (ja) 靭性及び耐食性に優れる高強度アルミニウム合金押出材の製造方法
JP2021123798A (ja) 高強度アルミニウム合金押出材の製造方法
JP2004292937A (ja) 輸送機構造材用アルミニウム合金鍛造材およびその製造方法
JPH10219381A (ja) 耐粒界腐食性に優れた高強度アルミニウム合金およびその製造方法
TWI434939B (zh) 鋁合金及其製備方法
US20230357889A1 (en) Method For Manufacturing Aluminum Alloy Extruded Material
US20230357902A1 (en) Method For Manufacturing Aluminum Alloy Extruded Material With High Strength And Excellent In SCC Resistance And Hardenability
JP2000212673A (ja) 耐応力腐食割れ性に優れた航空機ストリンガ―用アルミニウム合金板およびその製造方法
JPH08232035A (ja) 曲げ加工性に優れたバンパー用高強度アルミニウム合金材およびその製造方法
JP5802114B2 (ja) ボルト用アルミニウム合金線及びボルト並びにボルト用アルミニウム合金線の製造方法
JP5435266B2 (ja) 疲労強度,靭性及び光輝性に優れたアルマイト処理用アルミニウム合金展伸材及びその製造方法
JP5631379B2 (ja) 耐応力腐食割れ性に優れたバンパーレインフォース用高強度アルミニウム合金押出材
JP5088703B2 (ja) 外観品質の優れたAl−Mg−Si系アルミニウム合金冷間鍛造品
JP2003155535A (ja) 自動車ブラケット用アルミニウム合金押出材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502252

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280012147.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022001208

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759347

Country of ref document: EP

Kind code of ref document: A1